

Avaya Interaction Center
Client SDK Programmer Guide

Release 7.2
May 2013
Issue 1.1

© 2013 Avaya Inc. All Rights Reserved.

Notice
While reasonable efforts were made to ensure that the information in this
document was complete and accurate at the time of printing, Avaya Inc. can
assume no liability for any errors. Changes and corrections to the information
in this document might be incorporated in future releases.

Documentation disclaimer
Avaya Inc. is not responsible for any modifications, additions, or deletions to
the original published version of this documentation unless such modifications,
additions, or deletions were performed by Avaya. Customer and/or End User
agree to indemnify and hold harmless Avaya, Avaya's agents, servants and
employees against all claims, lawsuits, demands and judgments arising out of,
or in connection with, subsequent modifications, additions or deletions to this
documentation to the extent made by the Customer or End User.

Link disclaimer
Avaya Inc. is not responsible for the contents or reliability of any linked Web
sites referenced elsewhere within this documentation, and Avaya does not
necessarily endorse the products, services, or information described or offered
within them. We cannot guarantee that these links will work all the time and we
have no control over the availability of the linked pages.

Warranty
Avaya Inc. provides a limited warranty on this product. Refer to your sales
agreement to establish the terms of the limited warranty. In addition, Avaya’s
standard warranty language, as well as information regarding support for this
product, while under warranty, is available through the Avaya Support Web
site:
http://www.avaya.com/support

License
USE OR INSTALLATION OF THE PRODUCT INDICATES THE END USER'S
ACCEPTANCE OF THE TERMS SET FORTH HEREIN AND THE GENERAL
LICENSE TERMS AVAILABLE ON THE AVAYA WEB SITE
http://support.avaya.com/LicenseInfo/ ("GENERAL LICENSE TERMS"). IF
YOU DO NOT WISH TO BE BOUND BY THESE TERMS, YOU MUST
RETURN THE PRODUCT(S) TO THE POINT OF PURCHASE WITHIN TEN
(10) DAYS OF DELIVERY FOR A REFUND OR CREDIT.
Avaya grants End User a license within the scope of the license types
described below. The applicable number of licenses and units of capacity for
which the license is granted will be one (1), unless a different number of
licenses or units of capacity is specified in the Documentation or other
materials available to End User. "Designated Processor" means a single
stand-alone computing device. "Server" means a Designated Processor that
hosts a software application to be accessed by multiple users. "Software"
means the computer programs in object code, originally licensed by Avaya and
ultimately utilized by End User, whether as stand-alone Products or
pre-installed on Hardware. "Hardware" means the standard hardware
Products, originally sold by Avaya and ultimately utilized by End User.

License type(s)
Concurrent User License (CU). End User may install and use the Software on
multiple Designated Processors or one or more Servers, so long as only the
licensed number of Units are accessing and using the Software at any given
time. A "Unit" means the unit on which Avaya, at its sole discretion, bases the
pricing of its licenses and can be, without limitation, an agent, port or user, an
e-mail or voice mail account in the name of a person or corporate function
(e.g., webmaster or helpdesk), or a directory entry in the administrative
database utilized by the Product that permits one user to interface with the
Software. Units may be linked to a specific, identified Server.

Copyright
Except where expressly stated otherwise, the Product is protected by copyright
and other laws respecting proprietary rights. Unauthorized reproduction,
transfer, and or use can be a criminal, as well as a civil, offense under the
applicable law.

Third-party components
Certain software programs or portions thereof included in the Product may
contain software distributed under third party agreements ("Third Party
Components"), which may contain terms that expand or limit rights to use
certain portions of the Product ("Third Party Terms"). Information identifying
Third Party Components and the Third Party Terms that apply to them is
available on the Avaya Support Web site:
http://support.avaya.com/ThirdPartyLicense/

Preventing toll fraud
"Toll fraud" is the unauthorized use of your telecommunications system by an
unauthorized party (for example, a person who is not a corporate employee,
agent, subcontractor, or is not working on your company's behalf). Be aware
that there can be a risk of toll fraud associated with your system and that, if toll

fraud occurs, it can result in substantial additional charges for your
telecommunications services.

Avaya fraud intervention
If you suspect that you are being victimized by toll fraud and you need technical
assistance or support, call Technical Service Center Toll Fraud Intervention
Hotline at +1-800-643-2353 for the United States and Canada. For additional
support telephone numbers, see the Avaya Support Web site:
http://www.avaya.com/support

Trademarks
Avaya and the Avaya logo are either registered trademarks or trademarks of
Avaya Inc. in the United States of America and/or other jurisdictions.
All other trademarks are the property of their respective owners.

Downloading documents
For the most current versions of documentation, see the Avaya Support Web
site:
http://www.avaya.com/support

Avaya support
Avaya provides a telephone number for you to use to report problems or to ask
questions about your product. The support telephone number
is 1-800-242-2121 in the United States. For additional support telephone
numbers, see the Avaya Support Web site:
http://www.avaya.com/support

http://www.avaya.com/support
http://www.avaya.com/support
http://www.avaya.com/support/
http://support.avaya.com/LicenseInfo/
http://support.avaya.com/ThirdPartyLicense/
http://www.avaya.com/support/

Avaya IC Client SDK Programmer Guide May 2013 3

Preface . 9
Purpose. 9
Audience . 9
Reason for Re-issue . 9
Related documents . 10
Availability . 10

Chapter 1: Introduction . 11
Features of the Client SDK . 11
Limitations of the Client SDK . 12
Architecture of the Client SDK . 14
Client components. 15

Custom application . 15
Client API . 15
SDK client framework . 16
Hierarchical Data Store . 16

Server components . 17
SDK server bridge . 17
Web container . 17
Messaging providers . 18
Basic services . 18
User Object Model . 18

Client-side integration . 19
Server-side integration . 19
Additional documentation for the Client SDK . 19

Chapter 2: Client API object model. 21
Communication through the Client SDK . 21

Delivery of communications to application users 21
Delivery of outbound communications from application users 22

Work items and the Current concept . 23
Relationship between Current and the Working state 23
Identifying the Current work item. 23
How a work item becomes Current . 24
Effect of makeCurrent() . 24
Relationship between Current and Voice Trailing 25

Events in the Client SDK . 26
Operations . 26
Method calls . 26

Contents

 Contents

4 Avaya IC Client SDK Programmer Guide May 2013

Event registration . 27
Overview of the object model . 28
Client API objects . 29

Application . 29
Session . 30
User . 33
Channel. 33
VoiceChannel . 35
EmailChannel . 36
ChatChannel . 36
WorkList . 37
WorkItem . 38
MediaInteraction . 41
VoiceMediaInteraction. 42
ChatMediaInteraction . 45
Document . 48
EmailDocument . 48
DraftDocument . 49
EmailDraft . 49

Attributes on the WorkItem object . 50
Attribute storage in the EDU . 50
WorkItem functions for attribute storage . 51
Data integration with a custom application . 51
Attribute data in the Contact table . 51
Example: moving data from a contact routing workflow to the database 52

Chapter 3: Sample clients . 55
Overview . 55
Features not supported in the sample clients . 56
About the Java sample client . 56

User interface of the Java sample client . 57
Source code for the Java sample client . 57
Design configuration files for the Java sample client 58
Resources for the Java sample client . 58
Dependencies of the Java sample client . 59
Developing a custom Java sample client . 59
Running a Java sample client from an SDK server system. 60
Running a Java sample client from a non-SDK server system 61

About the .NET sample client . 61
User interface of the .NET sample client . 62

 Contents

Avaya IC Client SDK Programmer Guide May 2013 5

Code and resources for the .NET sample client . 62
Dependencies of the .NET sample client. 63
Developing a custom .NET sample client . 63
Running a .NET sample client from an SDK server system 64
Running a .NET sample client from a non-SDK server system. 65

Chapter 4: Guidelines for using the Client API . 67
Chat interaction guidelines . 68

Methods not allowed for chat interactions. 68
Handle TranscriptLine events for chat interactions 68
Do not use Datawake method. 69

Voice interaction guidelines . 69
Using VoiceChannel.Reset . 69
Setting the force multiple calls option on the switch 70
Impact of network recovery on voice interaction 70

Callback guidelines . 70
Time and date duration guideline. 72
History API guidelines. 73

Retrieving the history for a WorkItem or Customer 73
WorkItemHistory record . 74
CustomerHistory record. 74
Formatting dates for the history of an object . 75
Example: retrieve WorkItem history for Java application. 75
Example: retrieve Customer history for Java application 76

AddressBook API guidelines . 76
Retrieving the AddressBook object . 76
Implementing Address Book searches. 77
Example: Finding a subset of agents based on criteria. 77
Example: Finding a subset of queues based on criteria 78

WrapupSelection API guideline. 78
Event handling guidelines . 79

Register listeners for events before calling Session.Initialize 80
Create a separate listener for each event . 80
Avoid blocking operations in event handling . 83
Handle ConnectionStatusChange and SessionShutdown events 83

State guidelines . 85
Check object for the appropriate state . 85
Check status of WorkItem. 86

Log in and log out guidelines . 86
Simultaneous log in and log out for Chat and Email 87

 Contents

6 Avaya IC Client SDK Programmer Guide May 2013

Check WorkItem status during logout . 87
Exception handling guidelines . 87

NullPointerException and ArgumentNullException 87
ConnectionException . 88
AuthenticationException . 88

Operation failure and success guidelines . 88
OperationFailed . 89
OperationSuccess . 89

Null return value guidelines. 89
Customization guidelines . 90

Customization directory. 90
Customization files . 90
SDKEduAttributesToFilter.properties . 91
SDKWorkItemAttributesFilter.properties. 91
SDKSessionAttributesFilter.properties . 91
SDKWrapupCodesCategoryGroups.properties . 92
SDKSupportedCharsets.properties . 92
SDKICPropertiesSections.properties . 92
Deploying a configuration file . 92

Performance considerations . 93
Using WebAppContext . 93
Configuring the messaging service . 95

Chapter 5: Compiling and debugging a custom application 99
Supported compilers . 99
Logging. 99

Logging at the module boundaries . 100
Client SDK server logging. 101
Client SDK client logging . 104
Logging guidelines . 105
Tracing issues through Client SDK logs . 106
Sample log messages . 107

Error messages . 114
Client SDK diagnostic information . 114

Using the diagnostic API . 115
When the Hierarchical Data Store is updated . 115
Viewing the HDS diagnostic information in the sample clients 115
Using the HDS diagnostic information to identify problems 116
Debugging problems found with the HDS diagnostic information 117
Opening the Diagnostic Viewer . 117

 Contents

Avaya IC Client SDK Programmer Guide May 2013 7

Debugging common problems . 117
Custom application cannot communicate with Client SDK server 118
Chat or email work item is not delivered . 118
WorkItem state does not change . 119
.NET client encounters socket exception error during log in. 120

Getting support . 121

Chapter 6: Localization and internationalization . 123

Appendix A: Sample scenarios . 125
Login scenario . 126
Logout scenario . 128
Agent availability scenario . 129
Display channel properties scenario . 131
Workitem lifecycle scenario. 133
Workitem collaboration scenario . 136
OnHold/OffHold indication scenario . 138
Display text message scenario . 139
Display email scenario . 142
New Outbound email scenario . 143
Reply to email scenario . 144
Display WorkItem History scenario. 146
Display Customer History scenario . 148
AddressBook scenario . 150
Retrieving Workitem Contact Attributes scenario . 151
Voice Call scenario . 153

Appendix B: Additional sample scenarios. 155
Application object scenario . 155

Password change scenario . 156
Session object scenarios . 156

Session status scenario. 157
Connectivity status scenario . 158
Session shutdown request scenario . 159
Enable and disable operational state scenario . 160

Channel object scenario . 161
Enable and disable channel operational state scenario 161

WorkItem object scenarios . 162
Display assigned work items scenario . 162

 Contents

8 Avaya IC Client SDK Programmer Guide May 2013

Prompt on WorkItem arrival scenario . 163
Enable and disable work item operational state scenario 165
Access work item attributes scenario . 165

Voice interaction scenario . 166
OnHold alert on threshold scenario . 166

Chat interaction scenarios . 167
Inactivity alert on threshold scenario . 167
Language filter scenario . 168
Customer-generated alert scenario . 169

Email document scenarios . 169
Apply signatures scenario . 169
Support for attachments scenario . 170

Wrapup scenarios . 171
Access wrapup codes scenario . 171
Wrapup dialog box scenario . 172
Use terminate reasons scenario . 173

Supervisory scenario . 173
Join-Us Scenario. 176

Appendix C: Error messages . 179
MajorCodes . 179
MinorCodes . 180

Index . 183

Avaya IC Client SDK Programmer Guide May 2013 9

Preface

This section contains the following topics:

l Purpose on page 9

l Audience on page 9

l Reason for Re-issue on page 9

l Related documents on page 10

l Availability on page 10

Purpose
The purpose of this guide is to provide detailed information about the Client Software
Development Kit (Client SDK) for Avaya Interaction Center 7.2.

Audience
This guide is intended primarily for those who use the Client SDK for Avaya Interaction Center
7.2. You should use this guide as an information source for developing a custom application
with the Client SDK.

Reason for Re-issue
Updates to the following chapter:

l Sample clients on page 55

 Preface

10 Avaya IC Client SDK Programmer Guide May 2013

Related documents
This document provides programming and development information for the Client SDK.
Additional information related to the Client API is available in the following Avaya IC
documentation.

Client API documentation: The Client API documentation is available in JavaDoc and nDoc
formats. The Client API documentation includes detailed information about the object model,
such as methods, classes, fields, and constructors. For more information, see Additional
documentation for the Client SDK on page 19.

IC Installation Planning and Prerequisites: This document provides information about the
supported third-party platforms and other prerequisites required for the Client SDK, including
installation information for those platforms. IC Installation Planning and Prerequisites also
includes planning and deployment information for the Client SDK.

IC Installation and Configuration: This document provides installation information for all
Avaya IC components, including the Client SDK.

Avaya IC Readme: This document provides last-minute information that was not available for
the publication of this document.

Avaya IC Readme Addendum: This document provides last-minute information that became
available after the release of Avaya Interaction Center 7.2.

Availability
Copies of this document are available on the Avaya support Web site, http://www.avaya.com/
support.

Note:
Note: There is no charge for downloading documents from the Avaya Web site.

http://www.avaya.com/support
http://www.avaya.com/support

Avaya IC Client SDK Programmer Guide May 2013 11

Chapter 1: Introduction

The Avaya Interaction Center (Avaya IC) Client Software Development Kit (Client SDK) is a
client-side toolkit. Using this toolkit, you can:

l Develop a custom agent desktop application that can access Avaya IC core functions.

l Upgrade the existing custom agent desktop applications to access the Avaya IC core
functionality.

l Allow a third-party agent framework or application to work with Avaya IC.

l Integrate your custom application or custom code on clients or on servers.

This section includes the following topics:

l Features of the Client SDK on page 11

l Limitations of the Client SDK on page 12

l Architecture of the Client SDK on page 14

l Client components on page 15

l Server components on page 17

l Client-side integration on page 19

l Server-side integration on page 19

l Additional documentation for the Client SDK on page 19

Features of the Client SDK
A custom agent desktop application developed using the APIs (Application Programming
Interface) from the client SDK can:

l Save valuable screen real estate. The agent desktop does not need to display an Avaya IC
agent application.

l Minimize functionality to the features that only required for a specific implementation. The
custom application does not have to include features that are not required for an agent in
the contact center.

The Client SDK includes the following features:

Client API: This client-side API includes an application-level protocol that hides communication
and session management and provides interfaces that are meaningful to custom applications.
Avaya designed the Client API to support future Avaya IC enhancements.

Chapter 1: Introduction

12 Avaya IC Client SDK Programmer Guide May 2013

Supported technologies:
l Includes .NET and Java libraries for custom application development.

l Works with NAT, firewalls, and proxy servers.

Security: The Client SDK supports the following security:

l Secure Socket Layer (SSL) for synchronous communication

l Advanced Encryption Standard (AES) for asynchronous communication

Supported integrations: The Client SDK supports server-side and client-side integrations with
an Avaya IC core system.

Supported scalability: The Client SDK provides the following support for scalability:

l Up to 500 agents per Client SDK server

l Clustered deployment option for multiple Client SDK servers

Support for internationalization: The Client SDK provides internationalization support for
custom applications in languages other than US English. For more information, see Localization
and internationalization on page 123.

Limitations of the Client SDK
The Client SDK has some limitations in Avaya IC 7.2. These limitations might impact the
development of custom applications and the interoperability of custom applications with Avaya
IC agent desktop applications.

The Client SDK imposes the following limitations on a custom application:

Development limitations of the Client SDK: The Client SDK imposes the following limitations
on how you use the Client SDK to develop applications:

l You can not customize Avaya IC agent desktop applications with the Client SDK. For
information, see Avaya Agent Integration and Avaya Agent Web Client Customization
guides.

l You do not have a generalized Enterprise Application Integration (EAI) interface to access
Avaya IC databases. However, you can use Avaya IC workflows to access data in the
Avaya IC databases.

Limitations of the Client SDK

Avaya IC Client SDK Programmer Guide May 2013 13

Interoperability limitations with Avaya IC agent desktop applications: The Client SDK
does not support more than one agent desktop application that works with Avaya IC on the
agent desktop at one time. For example, an application user cannot run a custom application
developed with the Client SDK and Avaya Agent on a computer at the same time.

Limitations of the Client API: The Client API does not provide methods to access agent or
global resources, email templates, or the suggested responses generated by Avaya Content
Analyzer. However, you can develop a custom scheme to store and access the resources in
your custom application.

Functionality limitations of custom applications: Custom applications developed with Client
SDK do not support the following functionality that is available with the Avaya IC agent desktop
applications:

l Ability to monitor queues and telephone events.

l Manual control of the allowable workload for individual channels. For example, the
application user cannot change the chat workload.

l Administration of Avaya IC components. For example, you cannot administer agents for
Avaya IC through a custom application.

l Ability to monitor real-time statistics.

l Access to Datawake records.

l The following Avaya Agent chat features:

- Collaborative Form Filling
- Shared Browsing
- Datawake

Chapter 1: Introduction

14 Avaya IC Client SDK Programmer Guide May 2013

Architecture of the Client SDK
The following diagram shows the Client SDK architecture and how the components work
together.

Client components

Avaya IC Client SDK Programmer Guide May 2013 15

Client components
You can use the client components of the Client SDK to:

l Develop custom agent desktop applications.

l Embed an existing agent desktop application at the Avaya IC integration points.

This section includes the following topics:

l Custom application on page 15

l Client API on page 15

l SDK client framework on page 16

l Hierarchical Data Store on page 16

Custom application
Custom application is the code developed with the Client SDK. You can host the custom code
on a client or a server machine. The custom code can create a session for one or more
application users. Usually, multiple user sessions can be used if the custom application is
hosted on a server machine.

Custom application must use the Client API to access all Avaya IC functions.

Client API
Client API exposes some of the Avaya IC agent functionality that you can use to develop
custom agent desktop applications. You can develop a custom application that can use the
Client API to access the following functionality of an Avaya IC core system:

l Agent functionality

l Advanced routing and work delivery capabilities

All classes in the Client API use the same object model. The object model includes objects such
as Session, Channel, and WorkItem.

Each object include methods that correspond to operations. For example, the Accept method
available in the WorkItem object. Calling the Accept method on the WorkItem object means the
application user wants to accept the work item that is delivered.

The objects in the Client API determine what happens with a particular client or API request. For
example, a request can go directly to the local data store or to a server through messaging.

For more information about the Client API, see Client API object model on page 21 and the
Client API reference documentation.

Chapter 1: Introduction

16 Avaya IC Client SDK Programmer Guide May 2013

SDK client framework
The SDK client framework provides the infrastructure for the Client API classes. This
infrastructure includes events, interface with communication layers, and error handling.

The SDK client framework lets you:

l Send events to a server.

l Receive events from server.

l Access the Hierarchical data store.

Hierarchical Data Store
The Hierarchical Data Store (HDS) is a client-side data repository or cache for event data
received from the Client SDK server components. This cache reduces the number of calls that a
custom application needs to make to a server.

The SDK client framework can access data through the Hierarchical Data Store.

The Hierarchical Data Store de-serializes data events from the server into a memory cache.

The Client SDK includes an API that obtains HDS diagnostic information. This diagnostic
information provides a snapshot of data of all the objects in the Client API that are cached in the
HDS. The Diagnostic Viewer provided with the sample clients displays the data obtained by the
Client API. You can use the data provided by the Client API to diagnose errors that occur with
your custom applications.

Server components

Avaya IC Client SDK Programmer Guide May 2013 17

Server components
The Client SDK server is a Web application that is deployed on a Tomcat server. The SDK client
components use the Client SDK server to communicate with an Avaya IC core system. The
complete server-side code is written using Java.

This section includes the following topics:

l SDK server bridge on page 17

l Web container on page 17

l Messaging providers on page 18

l Basic services on page 18

l User Object Model on page 18

SDK server bridge
The SDK server bridge provides the following functionality for the Client SDK:

l Communication between the core Avaya IC services and the custom application through
the server messaging provider.

l Interface to interact with the User Object Model (UOM).

The SDK server bridge receives events from the SDK client framework through the server
messaging component. Depending on the event received, the SDK server bridge makes the
appropriate calls to the UOM. The SDK server bridge uses the Client SDK server objects to
determine which calls to make to the UOM.

The SDK server bridge can also receive events from the UOM. The SDK server bridge then
uses the client messaging provider to send these events to the Client SDK client framework.

The Client SDK server objects perform all mapping required between the Client SDK and the
UOM. The Client SDK server objects are similar to the Client API object model. These objects
can:

l Be a wrapper on existing UOM objects.

l Reference the corresponding UOM objects.

l Use their own rules to construct their state based on the UOM objects.

Web container
The Web container is the Tomcat servlet engine and Web server used by the Client SDK server.

Chapter 1: Introduction

18 Avaya IC Client SDK Programmer Guide May 2013

Messaging providers
The SDK mediator includes the following messaging providers that are used for asynchronous
communication between the client and server:

Client messaging provider: The SDK client components use the client messaging provider to
send or receive events.

Server messaging provider: The SDK server components use the server messaging provider
to send or receive events.

Basic services
The Client SDK uses the basic services component to communicate with the Avaya IC core
system.

User Object Model
The UOM is a representation of an application user and the state of an application user without
UI. The UOM consists of a live object model and a well-defined set of access methods. The
access methods allow your custom application to retrieve and update the state of all currently
connected application users.

The UOM layer is built on the top of VESP Binding and supports the Client SDK. The VESP
Binding provides access to the Avaya IC servers.

The UOM is limited strictly to representing the application user and associated services and
channels. A separate instance of the UOM exists for each application user connected through
the Client SDK. This UOM is assembled when a new application user logs in. The application
user receives the channels and services determined in the application user profile. For
example, services and channels maintained by a supervisor can be different from those
maintained by an agent.

This UOM persists for the duration of an application user session.

The UOM resides in the middle tier and encompasses much of the higher-level functionality
behind the Client SDK. For each application user, this layer maintains representations of the
following items:

l User

l Channels configured for the user, such as voice, email, or chat

l Media interactions and documents, such as voice, email, or chat, associated with the
channels

Client-side integration

Avaya IC Client SDK Programmer Guide May 2013 19

l Participants associated with the interactions

l Work items that group together related interactions

l Services, such as interaction service and blending service

Client-side integration
For a client-side integration, a single user program creates the integration with the Client SDK
and the core Avaya IC system. This user program usually runs on an agent desktop.

In a client-side integration, this user program must:

l Use the Client API.

l Create only one user session per instance of the user program.

Server-side integration
For a server-side integration, a server process creates the integration with the Client SDK and
the core Avaya IC system. This server process supports multiple user sessions in a single
process. Each user session represents a unique Avaya IC login ID.

Usually, the agent desktop application communicates to this server, either directly or through
other servers, to use the Avaya IC functionality.

In a server-side integration, the Client SDK:

l Does not have any presence on the agent desktops.

l Is present only on the server machine.

Additional documentation for the Client SDK
Avaya IC also provides some additional documentation for the Client SDK. You can access this
information on the Avaya IC CD-ROMs.

Object model and state models: The following diagrams are available in PDF format:

l Object model: sdkobjectmodel.pdf

l State models for all stateful Client SDK objects: sdkstatemodels.pdf

Chapter 1: Introduction

20 Avaya IC Client SDK Programmer Guide May 2013

These diagrams are included on the Avaya IC 7.2 Documentation CD-ROM and are installed in
the following location:

IC_INSTALL_DIR\IC72\sdk\design

Client API documentation: The Client API documentation is available in JavaDoc and nDoc
formats. The Client API documentation includes detailed information about the object model,
such as methods, classes, fields, and constructors.

The following table lists the locations where the Client API documentation is installed.

Format Installation location

Client API documentation for the
.NET API

IC_INSTALL_DIR\IC72\sdk\design\dotnet\doc

Client API documentation for the
Java API.

IC_INSTALL_DIR\IC72\sdk\design\java\doc

Avaya IC Client SDK Programmer Guide May 2013 21

Chapter 2: Client API object model

The Client API is an object oriented Interface. The Client API exposes Avaya IC functionality as
classes, methods, and contextual events. The event listener objects consume Avaya IC events.

The Java and .NET classes of the Client API use the same object model. This object model
includes all objects, classes, and methods that you can use to determine what happens with a
client or API request.

This section includes the following topics.

l Communication through the Client SDK on page 21

l Work items and the Current concept on page 23

l Events in the Client SDK on page 26

l Overview of the object model on page 28

l Client API objects on page 29

l Attributes on the WorkItem object on page 50

Communication through the Client SDK
Communication through the Client SDK is different from communication through the Avaya IC
agent desktop applications.

This section includes the following topics:

l Delivery of communications to application users on page 21

l Delivery of outbound communications from application users on page 22

Delivery of communications to application users
In the Avaya IC agent desktop applications, the delivery of communications from customers to
application users focuses on the voice, email, and chat channels. Each communication is a
contact in Avaya Agent or a work item in Avaya Agent Web Client.

The Avaya IC agent desktop applications have a 1:1 ratio of communication to contact or work
item delivered to the application user. Each contact or work item represents one communication
from a customer. These communications are delivered as communication media to the agent
desktop application.

Chapter 2: Client API object model

22 Avaya IC Client SDK Programmer Guide May 2013

The Client SDK starts with the assumption that all communications are not equal.
Communications have different qualities and nuances that need to be considered. Voice takes
the largest amount of focus because the communication is interactive and real-time. Chat is
also interactive and real-time, but the communication is slower, and a textual transcript allows
for context shifts between multiple communications. Email is static in content, not interactive or
real-time.

The Client SDK uses a 1:1 ratio of communication to item delivered to an application user.

Instead of delivering a contact or work item as a communication media, the Client SDK delivers
a work item in a WorkItem object. A WorkItem can contain the communication as a media
interaction or as a static document. The WorkItem allows future enhancements to Avaya IC,
such as routing of work that does not initially contain a communication.

In the Client SDK:

l Voice and chat communications are media interactions.

l Email communications are static documents.

For more information about the WorkItem and other objects in the Client API object model, see
Client API object model on page 21.

Delivery of outbound communications from application users
In Avaya IC agent desktop applications and through the Client SDK, application users can
initiate work. In Avaya IC 7.2, this work is limited to outbound email messages and voice calls.

Because outbound work is not associated with an existing WorkItem, the custom application
must use the channel to create an outbound communication. As a result of this operation, the
Client SDK creates a WorkItem. That WorkItem must use the channel that represents the
required type of communication.

For example, a MakeCall on the Channel.VoiceChannel object initiates a new outbound voice
contact. This MakeCall provides a WorkItem with a VoiceMediaInteraction to represent the new
outbound voice communication. Similarly, a NewEmail call on the Channel.EmailChannel
creates a WorkItem where a new email draft can be linked.

Note:
Note: In case of callback scenario, an outbound voice call is placed using workitem

object, so that both the chat and voice media interactions can be grouped
together in a single workitem object.

Work items and the Current concept

Avaya IC Client SDK Programmer Guide May 2013 23

Work items and the Current concept
The Client SDK uses the concept of Current for work items that are assigned to an application
user. The Current concept is also used in the Avaya Agent Web Client, but is not used in Avaya
Agent.

To develop an application in the Client SDK, you must understand the concept of Current.

This section includes the following topics:

l Relationship between Current and the Working state on page 23

l Identifying the Current work item on page 23

l How a work item becomes Current on page 24

l Effect of makeCurrent() on page 24

l Relationship between Current and Voice Trailing on page 25

Relationship between Current and the Working state
The Current concept was introduced to address the following issues that can occur when the
Working state is used to indicate the work item that is being handled by an application user:

Multiple work items can be considered Working at the same time: For example, an
application user talks on the telephone to a customer and has an email work item open in the
Email application. Because both items are in Working state, Avaya IC cannot determine which
work item the application user is actually handling. This problem can skew reporting for that
application user.

A work item in Wrapup state cannot be Working: If multiple work items are in the Wrapup
state, Avaya IC cannot track which wrapped work item the application user is actually handling.
This problem can skew reporting.

Identifying the Current work item
In the Client SDK, a work item is considered Current if that work item has primary focus in the
application. Current indicates that the application user is actively handling the work item and
that the work item is gathering time for reporting purposes.

Current is not the same as the Working state for work items. A work item need not be working to
become a Current workitem. However, a Working work item must be Current or Voice Trailing.

Chapter 2: Client API object model

24 Avaya IC Client SDK Programmer Guide May 2013

When a work item becomes Current, Avaya IC flags that work item. This flag identifies the work
item as the one that has primary focus and is currently being handled.

Only one work item can be Current and considered to be the item that an application user is
handling. For example, an application user can have multiple work items in the Wrapped state,
but only one of those work items can be Current. You cannot have an additional Current work
item, even if a second work item is of a different media type.

How a work item becomes Current
A work item becomes Current when you call makeCurrent() on the work item. Usually this
call occurs when an application user selects that work item in the application.

! Important:
Important: If you want accurate reporting, you must call makeCurrent() on the work item

at the correct time. For example, if an email does not become Current when
opened by an application user, you cannot capture and report on the time the
application user worked on that email.

Work items raise a CURRENT_CONTEXT_CHANGED event to let consumers know of a
change in their Current status.

For example, if WorkItem A is current, and makeCurrent() is called on WorkItem B:

1. The Current flag is cleared from WorkItem A, which generates the
WorkItem.CurrentContextChanged event. An isCurrent() call on WorkItem A now
returns false.

2. WorkItem B is flagged as the Current work item, which generates a
WorkItem.CurrentContextChanged event. An isCurrent() call on WorkItem B now
returns true.

Effect of makeCurrent()
When makeCurrent() is invoked on WorkItem A, the following events are triggered:

1. If WorkItem B is Current:

a. The Current flag is cleared from WorkItem B.

b. WorkItem B raises an event that indicates a change in its Current context.

c. isCurrent() on WorkItem B returns false.

2. If WorkItem B can be deferred or paused:

a. The defer() method is invoked.

b. WorkItem B transitions into the inactive Paused or Deferred state.

Work items and the Current concept

Avaya IC Client SDK Programmer Guide May 2013 25

c. A state change event is raised for WorkItem B.

3. WorkItem A is flagged as Current:

a. WorkItem A raises a WorkItem.CurrentContextChanged event.

b. isCurrent() returns true.

4. If WorkItem A can be activated:

a. The activate() method is invoked.

b. WorkItem A transitions into the Working state.

c. A state change event is raised for WorkItem A.

For example, if WorkItem A is inactive when makeCurrent() is invoked, WorkItem A is
flagged Current and is activated. However, if WorkItem A is in Wrapped state when
makeCurrent() is invoked, WorkItem A is flagged Current but is not activated. A WorkItem
cannot transition from Wrapped state to Working state.

Relationship between Current and Voice Trailing
With voice trailing, an application user can multitask in a multimedia environment that uses the
Current concept. For example, with voice trailing, an application user can reply to an email and
continue to speak to a customer on the telephone.

In the Client SDK, only one work item can be current. This limit implies that an application user
can have only one Working work item and cannot multitask. For example, if an application user
talks on the telephone to a customer and selects an email work item, the Current concept
inactivates the voice work item. This inactivation automatically places the telephone call on
hold.

Voice trailing avoids this automatic inactivation of a voice work item. With voice trailing, a voice
work item can be Working but not Current. With voice trailing, a voice work item can continue to
trail after an application user selects an email work item to handle. Both work items remain
Working, and the application user can handle them simultaneously. However, the Client SDK
considers only the email work item to be Current.

You can configure voice trailing through Avaya IC properties. For more information, see IC
Administration Volume 2: Agents, Customers, & Queues.

Usually, voice trailing can be determined by the following query:

! Important:
Important: Only voice work items can be placed in a voice trailing state. Chat cannot satisfy

the above query, except during state transitions, which are transient in nature.
When a chat transitions out of the Current state, the work item is paused.

WorkItem.isCurrent() == false and WorkItem.getState() == WorkItem.State.WORKING

Chapter 2: Client API object model

26 Avaya IC Client SDK Programmer Guide May 2013

Events in the Client SDK
The Client API defines the events for the objects in the Client SDK.

This section includes the following topics:

l Operations on page 26

l Method calls on page 26

l Event registration on page 27

Operations
The objects in the Client API expose methods. Each method represents an operation that can
be performed on these objects. Any operation has the following basic outcomes:

l Succeeded

l Failed

A successful operation can include data that needs to be returned as a result of that operation.

Method calls
With the Client API, method calls can be either synchronous or asynchronous.

Synchronous method calls

If the method call is synchronous, the outcome can be easily determined. For example, a return
value can indicate the outcome or return data, or the method can throw an exception. Examples
of synchronous communication with the Client API include logging in, and fetching and
uploading email attachments.

Asynchronous method calls

If the method call is asynchronous, the outcome or return data can be known only through
notifications by the Client SDK. This notification is done through events. All asynchronous
operations performed on an object must result in an event. The event indicates whether the
operation succeeded or failed.

Asynchronous communications use the client messaging provider and the server messaging
provider.

Events in the Client SDK

Avaya IC Client SDK Programmer Guide May 2013 27

A failure event is always explicitly raised if an operation fails. An exception is an explicit
indication of failure. An exception might be thrown if the state of an object is invalid.

A success event can be implicit or explicit.

Implicit indication of success: An implicit success indication occurs when an operation
causes a change in the object state that clearly indicates the action succeeded. In this case, the
state change of the object is sufficient to determine that the operation was successful.

For example, an implicit indication of a successful operation occurs when an application user
tries to release or defer a WorkItem:

l If the WorkItem is successfully released, the WorkItem enters the Wrapped state. If the
release fails, an OPERATION_FAILED event is generated.

l If the WorkItem is successfully deferred, the WorkItem enters the Deferred state. If the
deferral fails, an OPERATION_FAILED event is generated.

Explicit indication of success: An explicit indication occurs in one of the following cases:

l An operation does not cause a state change.

l An operation involves a process where a state change does occur, but the process cannot
uniquely identify that an operation has completed successfully.

In such cases, a unique event is generated that indicates success of that operation.

For example, an explicit indication of a successful operation occurs when you set WorkItem
attributes:

l If the attributes are written successfully, an OPERATION_SUCCEEDED event is
generated.

l If the write fails, an OPERATION_FAILED event is generated.

Event registration
The Client SDK provides a mechanism for clients to register with objects that generate events.
Your custom application must add itself as a listener to objects for all events that matters to the
application.

When an event change occurs within an object, the Client SDK generates an event that is
propagated to all listeners to that object. Usually, these events are raised as a result of:

l User operations on a particular object

l Changes in the object driven by the core Avaya IC system

Chapter 2: Client API object model

28 Avaya IC Client SDK Programmer Guide May 2013

Overview of the object model
The following diagram shows the object model that forms the base of the Client API. For more
information about each object, see Client API objects on page 29.

For information about how to access a diagram of the complete object model, see Additional
documentation for the Client SDK on page 19.

Client API objects

Avaya IC Client SDK Programmer Guide May 2013 29

Client API objects
This section provides an overview of the objects in the Client API object model. For more
information about the classes and methods within these objects, see the API reference
documentation provided with the Client API.

This section includes the following topics:

l Application on page 29

l Session on page 30

l User on page 33

l Channel on page 33

l VoiceChannel on page 35

l EmailChannel on page 36

l ChatChannel on page 36

l WorkList on page 37

l WorkItem on page 38

l MediaInteraction on page 41

l VoiceMediaInteraction on page 42

l ChatMediaInteraction on page 45

l Document on page 48

l EmailDocument on page 48

l DraftDocument on page 49

l EmailDraft on page 49

Application

Description

Application is the starting point for the Client SDK. You can use the Login method of the
Application object to provide a Session object.

Limitations

None.

Chapter 2: Client API object model

30 Avaya IC Client SDK Programmer Guide May 2013

Sample scenarios

This object is used in the following scenarios:

l Login scenario on page 126

l Logout scenario on page 128

l Password change scenario on page 156

l Session status scenario on page 157

l Connectivity status scenario on page 158

l Session shutdown request scenario on page 159

Session

Description

Session represents the Avaya IC session for a logged in application user. In the Client SDK,
Session performs a central role of the primary object that you use to access other objects. You
use this object to register for any published events on Client SDK objects. Session also
provides the events related to the load, connectivity, and state of an application user.

You can use Session to:

l Register listeners for all published Client SDK object events.

l Receive events regarding agent state, workload, and agent connectivity.

l Manage availability and Auxwork statuses.

l Manage supervisory routines.

l Get system codes for Auxwork, logout, and wrapup.

l Access application user ADU data through the session attribute functions.

l Get character sets and Avaya IC properties.

l Get other objects including Channel and WorkList.

Limitations

The Session object has the following limitations:

l To use the GetSessionAttribute and SetSessionAttribute functions, you must have to
customize the Client SDK to specify the ADU elements that are available to the function
calls.

l To use character sets and Avaya IC properties, you must have to customize the Client
SDK to make them available to the function calls.

Client API objects

Avaya IC Client SDK Programmer Guide May 2013 31

l To use wrapup codes, Aux codes, and release reason codes, you must have to customize
the Client SDK to make them available to the function calls.

For more information, see Customization guidelines on page 90.

Session state model diagram

The following diagram shows the state model for Session.

Chapter 2: Client API object model

32 Avaya IC Client SDK Programmer Guide May 2013

State definitions

The following table describes the state definitions included in the state model for Session.

Sample scenarios

This object is used in the following scenarios:

l Login scenario on page 126

l Agent availability scenario on page 129

l Session status scenario on page 157

l Connectivity status scenario on page 158

l Session shutdown request scenario on page 159

l Enable and disable operational state scenario on page 160

l Display channel properties scenario on page 131

l AddressBook scenario on page 150

l Prompt on WorkItem arrival scenario on page 163

State Definition

Logged_in Application user is successfully logged in, but active state has not yet
been determined. Logged_in is the initial state reported to clients
through the Client SDK.

Initialized Session was successfully initialized. This state is transitional.

Init_auxwork Application user submits request to enter Auxwork state. The Avaya
IC system uses this state to acknowledge the request and prevent the
delivery of new WorkItems.

Auxwork Application user has successfully entered Auxwork state. This state
confirms that all WorkItems are in a state that supports Auxwork.
No WorkItems will be delivered until the application user enters
Available state.

Init_available Application user submits request to enter Available state. The Avaya
IC system uses this state to acknowledge the request and prepare for
the availability of the application user.

Available Application user has successfully entered Available state. This state
confirms that the Avaya IC system completed the request from the
application user to become available.
The application user can now receive WorkItems on active channels.

Logged_out Application user has successfully logged out. All WorkItems in the
WorkList are in an acceptable logout allowable state, such as
deferred. Avaya IC has completed the logout.

Client API objects

Avaya IC Client SDK Programmer Guide May 2013 33

l Wrapup dialog box scenario on page 172

l Use terminate reasons scenario on page 173

User

Description

User represents the application user profile attributes such as name and login ID. You can use
the User object to access core application user attributes and retrieve agent information and
role.

Limitations

Some channel specific data is unavailable until the Session is initialized.

Channel

Description

Channel is a generic representation of a path for a communication.

You can use Channel to:

l Access functions specific to a media, independent of an existing WorkItem.

l Receive health and state events specific to the configured media.

l Retrieve configured task loads and ceilings for a given channel.

l Log in to, log out of, or reset a connection for a channel.

l Create a new WorkItem with outbound intent for voice or email.

In Avaya IC 7.2, the channels are VoiceChannel, EmailChannel, and ChatChannel.

Limitations

None.

Chapter 2: Client API object model

34 Avaya IC Client SDK Programmer Guide May 2013

Channel state model diagram

The following diagram shows the state model for Channel.

State definitions

Each ChannelConnection maintains channel state. The state of a channel determines the ability
of the system to assign work items to a particular channel. The channel state is triggered by the
user.

Client API objects

Avaya IC Client SDK Programmer Guide May 2013 35

The following table describes the state definitions included in the state model for Channel.

Sample scenarios

This object is used in the following scenarios:

l Display channel properties scenario on page 131

l Enable and disable channel operational state scenario on page 161

VoiceChannel

Description

VoiceChannel represents the channel that you use to work with voice interactions. You can use
VoiceChannel to:

l Log in to and log out of the voice channel.

l Initiate new outbound voice communications, resulting in a new WorkItem with a voice
media interaction.

l Reset the connection for the voice channel when the hard phone and soft phone get out of
sync.

Limitations

None.

State Definition

loggedout The application user is not currently signed in or logged into the
channel.

idle The application user is available to receive work item on the channel,
but does not currently have any work items.

busy The application user does not want to be available to receive new
work items and has set his or her state accordingly. For example, the
user is in AuxWork.

occupied The application user is handling the maximum number of work items
permitted by his or her current endpoint setting.

active The application user is handling at least one work item, but is
available to receive more work items.

Chapter 2: Client API object model

36 Avaya IC Client SDK Programmer Guide May 2013

Sample scenarios

This object is used in the following scenarios:

l Display channel properties scenario on page 131

l Enable and disable channel operational state scenario on page 161

EmailChannel

Description

EmailChannel represents the channel that you use to work with email documents. You can use
EmailChannel to:

l Log in to and log out of the email and chat channels.

l Initiate new outbound email communications, resulting in a new WorkItem through which
the email draft can be composed.

l Reset the connections for the chat and email channels.

Limitations

Resetting, logging in, and logging out of the email channel also affect the chat channel.

Sample scenarios

This object is used in the following scenarios:

l Display channel properties scenario on page 131

l Enable and disable channel operational state scenario on page 161

ChatChannel

Description

ChatChannel represents the channel that you use to work with chat interactions. You can use
ChatChannel to:

l Log in to and log out of the chat and email channels

l Reset the connections for the chat and email channels

Client API objects

Avaya IC Client SDK Programmer Guide May 2013 37

Limitations

ChatChannel has the following limitations:

l ChatChannel works with inbound communications only. An application user cannot initiate
a chat.

l Resetting, logging in, and logging out of the chat channel also affect the email channel.

Sample scenarios

This object is used in the following scenarios:

l Display channel properties scenario on page 131

l Enable and disable channel operational state scenario on page 161

WorkList

Description

WorkList represents the structure that contains every WorkItem assigned to an application user.
You can use WorkList to:

l Receive notification that a WorkItem was added to or removed from the work list of an
application user.

l Get the WorkItem objects assigned to an application user.

Limitations

None.

Sample scenarios

This object is used in the following scenarios:

l Display assigned work items scenario on page 162

l Prompt on WorkItem arrival scenario on page 163

l Workitem lifecycle scenario on page 133

Chapter 2: Client API object model

38 Avaya IC Client SDK Programmer Guide May 2013

WorkItem

Description

WorkItem is the primary processing object for the Client SDK and performs the following tasks:

l Represents the work assigned to an application user without regard to the associated
media, allowing a WorkItem to exist without active media.

l Groups together related MediaInteraction and Document objects.

You can use WorkItem to:

l Allow an application user to accept, collaborate on, and complete assigned work.

l Track the time spent by an application user on the Current WorkItem.

A collaboration occurs when an application user communicates with another party about an
active WorkItem. When an application user starts a collaboration, the application must declare
the intent of the collaboration: conference, consultation, or transfer.

A conference completes when all active parties are joined in the same media that was used to
initiate the conference. A consultation keeps all participants separate and completes when the
new party is released. A transfer is a blind handoff of a WorkItem to another party.

Limitations

The WorkItem object has the following limitations:

l Only one application user can own a WorkItem at any given time.

l Each WorkItem can contain either VoiceMediaInteraction, ChatMediaInteraction,
EmailDocument or both VoiceMediaInteraction and ChatMediaInteraction as related media
interactions in case of callback.

l A WorkItem must be associated with a VoiceMediaInteraction, ChatMediaInteraction, or
EmailDocument.

l For a conference or consultation, a WorkItem must be associated with an interactive
media, such as VoiceMediaInteraction or ChatMediaInteraction.

Client API objects

Avaya IC Client SDK Programmer Guide May 2013 39

WorkItem state model diagram

The following diagram shows the state model for WorkItem.

Chapter 2: Client API object model

40 Avaya IC Client SDK Programmer Guide May 2013

State definitions

The following table describes the state definitions included in the state model for WorkItem.

State Definition

Initiating An application user initiates a WorkItem. This state occurs when an
application user makes an outbound phone call.

Nonviable The WorkItem is in an unusable state. Usually a WorkItem does not
get delivered in this state or is only in this state temporarily.
The following scenarios might cause a WorkItem to be delivered in
the Nonviable state:
l An application user has worked on a Session that contains a

WorkItem with an active VoiceMediaInteraction, and that Session
terminated abnormally through a process crash. The next time
the application user logs in, the application user receives the
WorkItem with the VoiceMediaInteraction in a Nonviable state.
The application user can release the WorkItem.

l An application user receives a new WorkItem that contains a
VoiceMediaInteraction. Auto-accept is not enabled. Therefore,
the WorkItem is in the Nonviable state only until the state
changes to Alerting. This scenario is usually caused by a time lag
after the server receives the call from the Telephony server and
before the server receives the attributes of the call from the EDU
server.

Nonviable is an exception state. You will see a WorkItem in this state
for an extended duration only if there is a problem. A WorkItem can
be in this state for a transient period of time.

Alerting The WorkItem was delivered to an application user. The Avaya IC
system is waiting for the application user to accept the WorkItem.

Paused The Workitem was accepted but is not current. This state usually
indicates that the application user is working on a different task.

Deferred The application user has postponed the WorkItem to be worked on
later. A WorkItem in the Deferred state does not count against the
current workload levels of an application user.
This state is only valid for WorkItems that do not contain interactive
media, such as email.

Working The WorkItem is active and gathering time. A WorkItem in the
Working state counts against the current workload levels of an
application user.

Transferring The WorkItem is being processed as a blind transfer. Transferring is a
transitional state.

Conferencing The Avaya IC system is establishing a conference with a new party
for the WorkItem. The conference includes the party that originated
the WorkItem.

Client API objects

Avaya IC Client SDK Programmer Guide May 2013 41

Sample scenarios

The WorkItem object is used in the following scenarios:

l Session shutdown request scenario on page 159

l Display assigned work items scenario on page 162

l Prompt on WorkItem arrival scenario on page 163

l Prompt on WorkItem arrival scenario on page 163

l Enable and disable work item operational state scenario on page 165

l Workitem lifecycle scenario on page 133

l Workitem collaboration scenario on page 136

l Access work item attributes scenario on page 165

l Wrapup dialog box scenario on page 172

l Use terminate reasons scenario on page 173

l Display email scenario on page 142

l Display WorkItem History scenario on page 146

l Display Customer History scenario on page 148

MediaInteraction

Description

MediaInteraction is a generic representation of real-time, interactive communication with one or
more parties. A MediaInteraction must be associated with a WorkItem.

MediaInteraction provides access to generic media events for states and operations.
Capabilities and media-specific events are provided through the VoiceMediaInteraction and
ChatMediaInteraction subclasses.

Consulting The Avaya IC system is establishing a conference with a new party
for the WorkItem. The conference will not include the party that
originated the WorkItem.

Wrapup The WorkItem was released.
The Client SDK integration must call complete to exit this state and
have the WorkItem complete.

Completed Wrapup was completed. Completed is an internal Avaya IC state for
cleanup of the WorkItem.

State Definition

Chapter 2: Client API object model

42 Avaya IC Client SDK Programmer Guide May 2013

For Avaya IC 7.2, the communication paths for MediaInteration are voice and chat only.

Limitations

None.

Sample scenarios

This object is used in the following scenarios:

l Display assigned work items scenario on page 162

l Prompt on WorkItem arrival scenario on page 163

l Enable and disable work item operational state scenario on page 165

l OnHold/OffHold indication scenario on page 138

VoiceMediaInteraction

Description

VoiceMediaInteraction represents real-time work on the voice channel. VoiceMediaInteraction
provides access to features and events that are specific to voice communication. You can use
VoiceMediaInteraction to:

l Put a voice call on hold.

l Reconnect to a voice call.

l Send DTMF digits.

l Receive events that are specific to voice interaction processing.

Limitations

None.

Client API objects

Avaya IC Client SDK Programmer Guide May 2013 43

VoiceMediaInteraction state model diagram

The following diagram shows the state model for VoiceMediaInteraction.

Chapter 2: Client API object model

44 Avaya IC Client SDK Programmer Guide May 2013

State definitions

The following table describes the state definitions included in the state model for
VoiceMediaInteraction.

State Definition

Initiating An application user initiates a WorkItem. This state occurs when an
application user makes an outbound phone call.

Nonviable The WorkItem associated with the VoiceMediaInteration is in an
unusable state. Usually a WorkItem does not get delivered in this
state or is only in this state temporarily.
The following scenarios might cause a WorkItem to be delivered in
the Nonviable state:
l An application user has worked on a Session that contains a

WorkItem with an active VoiceMediaInteraction, and that Session
terminated abnormally through a process crash. The next time
the application user logs in, the application user receives the
WorkItem with the VoiceMediaInteraction in a Nonviable state.
The application user can release the WorkItem.

l An application user receives a new WorkItem that contains a
VoiceMediaInteraction. Auto-accept is not enabled. Therefore,
the WorkItem is in the Nonviable state only until the state
changes to Alerting. This scenario is usually caused by a time lag
after the server receives the call from the Telephony server and
before the server receives the attributes of the call from the EDU
server.

Nonviable is an exception state. You will see a WorkItem in this state
for an extended duration only if there is a problem. A WorkItem can
be in this state for a transient period of time.

Delivered The WorkItem associated with the VoiceMediaInteraction was
delivered to an application user. The Avaya IC system is waiting for
the application user to accept the WorkItem that contains the
VoiceMediaInteraction.

Active The VoiceMediaInteraction is active with the application user and the
initial party.

Inactive The call associated with the VoiceMediaInteraction is on hold.
Usually, this state occurs because the application user needs to
complete another activity, or initiate a transfer, conference or consult.

Disconnected The call associated with the VoiceMediaInteraction was
disconnected.

Completed Completed is an internal Avaya IC state for cleanup of
VoiceMediaInteractions.

Client API objects

Avaya IC Client SDK Programmer Guide May 2013 45

Sample scenarios

This object is used in the following scenarios:

l Workitem collaboration scenario on page 136

l OnHold/OffHold indication scenario on page 138

l OnHold alert on threshold scenario on page 166

ChatMediaInteraction

Description

ChatMediaInteraction represents real-time work on the chat channel. ChatMediaInteraction
provides access to features and events specific to chat communication. You can use
ChatMediaInteraction to:

l Access the chat transcripts as documents associated with the WorkItem.

l Receive events that are specific to chat interaction processing.

l Send text or URLs to chat participants.

l Retrieve callback information and using WorkItem object to place voice call back to
customer.

l Create joinus handle for involving additional people in ongoing chat communication.

l Monitor chat interactions of agents.

Limitations

ChatMediaInteraction has the following limitations:

l Outbound chat initiated by an application user is not supported.

l Datawake is not supported.

Chapter 2: Client API object model

46 Avaya IC Client SDK Programmer Guide May 2013

ChatMediaInteraction state model diagram

The following diagram shows the state model for ChatMediaInteraction.

Client API objects

Avaya IC Client SDK Programmer Guide May 2013 47

State definitions

The following table describes the state definitions included in the state model for
ChatMediaInteraction.

Sample scenarios

This object is used in the following scenarios:

l Display text message scenario on page 139

l Inactivity alert on threshold scenario on page 167

l Language filter scenario on page 168

l Customer-generated alert scenario on page 169

State Definition

Delivered The ChatMediaInteraction was delivered to an application user. The
Avaya IC system is waiting for the application user to accept and
activate the ChatMediaInteraction.

Active The application user is in the chat room, actively handling the chat
work item. The WorkItem associated with the ChatMediaInteraction is
in a Working state.

Inactive The application user is not actively handling the chat work item. The
WorkItem associated with the ChatMediaInteraction is not in a
Working state. Usually, this state occurs because the application user
has switched to work on a different WorkItem.

Disconnected The chat associated with the ChatMediaInteraction was
disconnected.

Completed Completed is an internal Avaya IC state for cleanup of
ChatMediaInteractions.

Chapter 2: Client API object model

48 Avaya IC Client SDK Programmer Guide May 2013

Document

Description

Document is a container for noninteractive information. From the Document object, you can
perform the following operations:

l Get the contents of the document.

l Get the WorkItem object associated with the document.

l Get the document type.

l Receive events on changes to the document.

A Document must be associated with a WorkItem.

Limitations

None.

Sample scenarios

This object is used in the following scenario:

l Enable and disable work item operational state scenario on page 165

EmailDocument

Description

EmailDocument represents work on the email channel. You can use EmailDocument to:

l Deliver the contents of an email to the requesting custom application.

l Access the contents and attributes of the email, such as the header fields, language, body,
and attachments.

l Create an EmailDraft related to the existing email, such as reply or forward.

Limitations

None.

Client API objects

Avaya IC Client SDK Programmer Guide May 2013 49

Sample scenarios

This object is used in the following scenarios:

l Display email scenario on page 142

l New Outbound email scenario on page 143

l Reply to email scenario on page 144

l Apply signatures scenario on page 169

l Support for attachments scenario on page 170

DraftDocument

Description

DraftDocument is a generic representation of an outbound document. Drafts can be saved for
later access by an application user. However, a draft document is private and cannot be shared
with other application users.

The structure of DraftDocument is purposefully generic to enable future support of other
delivery mechanisms.

Limitations

The DraftDocument object supports only EmailDraft in Avaya IC 7.2.

EmailDraft

Description

EmailDraft represents an outbound email. EmailDraft includes several types of drafts, based on
the type of outbound message the draft will create. These types of drafts include:

l Reply

l Forward

l Reply Request

l Subject Matter Expert (SME) Request

l Request for additional information

Chapter 2: Client API object model

50 Avaya IC Client SDK Programmer Guide May 2013

Limitations

EmailDraft supports only one draft of each type at any given time for EmailDocument. For
example, an application user can have a draft reply, a draft forward to another application user,
and a draft request for information from an external agent simultaneously. However, an
application user cannot have two draft replies.

Sample scenarios

This object is used in the following scenarios:

l Reply to email scenario on page 144

l Apply signatures scenario on page 169

Attributes on the WorkItem object
The Client SDK provides a structure around attributes that improves the integration of the Client
SDK with the Avaya IC system, IC Repository database, and with other systems. This structure
is provided by an EDU container that holds all Client SDK attributes for a work item. You must
use this EDU container to access and set data associated with a work item.

This section includes the following topics:

l Attribute storage in the EDU on page 50

l WorkItem functions for attribute storage on page 51

l Data integration with a custom application on page 51

l Attribute data in the Contact table on page 51

l Example: moving data from a contact routing workflow to the database on page 52

Attribute storage in the EDU
The EDU includes the contact_attr.<name> container that stores attributes for a work item.

The contact_attr container has only one entry for each named attribute. You can manipulate
every element in the container with the ContactAttribute functions on the WorkItem object.

The contact_attr container can maintain one value for each attribute on a work item. If the
container already has a value for an attribute, the Client SDK will overwrite the existing value
with a new value.

Attributes on the WorkItem object

Avaya IC Client SDK Programmer Guide May 2013 51

WorkItem functions for attribute storage
The following table lists the functions on the WorkItem object that can access the contact_attr
container in the EDU.

Data integration with a custom application
The Client SDK and a custom application perform most data lookups in the Avaya IC system
through processes, such as workflows. However, a custom application must have access to and
be able to manipulate, display, or reference data.

To write data for the Client SDK into the contact_attr container, a workflow or other Avaya IC
process must prefix the key with contact_attr. Then, the WorkItem ContactAttribute functions
can update and fetch the data.

Attribute data in the Contact table
When a user completes a work item, the Avaya IC system retires the associated EDU. The
Report server then processes that EDU and saves the EDU data to the Contact table in IC
Repository. By default, this EDU data does not include the contact_attr container. To add data
from the contact_attr container into the database, you must create field expression records in
the mapping rules structures for each EDU attribute you want to save.

Note:
Note: Avaya recommends that you store the data in separate fields. Do not share a field

with mixed elements.

To save attribute data in the Contact table of IC Repository, you must:

1. Add the required new fields to the Contact table in IC Repository.

2. Create new field expression records for the contact creation rule.

Function Description

SetContactAttribute(NameValueList) Takes a NameValueList object that contains the name
value pairs to be inserted in the contact_attr container.

GetContactAttribute Returns a NameValueList object containing all entries
in the contact_attr container.

Chapter 2: Client API object model

52 Avaya IC Client SDK Programmer Guide May 2013

Example: moving data from a contact routing workflow to the
database

This example shows how a custom application can:

l Obtain customer information from the database through a contact routing workflow.

l Return information to the database after the application user completes the work item.

Columns required in the Contact table

This example requires that you add the following columns to the Contact table with Database
Designer:

l Contact fieldname

l account_no

l customer_value

l promised_payment

l promised_date

Field expression records required for the contact create rule

This example requires that you add the following field expression records for the contact create
rule:

Create rule Field name Field value

Contact account_no contact_attr.account_no

Contact customer_value contact_attr.customer_value

Contact promised_payment contact_attr.promised_payment

Contact promised_date contact_attr.promised_date

Attributes on the WorkItem object

Avaya IC Client SDK Programmer Guide May 2013 53

How the data moves through the Avaya IC system

1. The contact routing workflow performs a database lookup on the customer for the following
information:

l account_no

l customer_value

l account_balance

2. The database lookup returns the following information to the workflow:

3. Because the custom application needs this information, the workflow writes the data to the
contact_attr container of the EDU, as follows:

4. The workflow routes the work item to an application user through the Client SDK.

5. To use the information in the contact_attr container in a screen pop or other function, the
custom application:

a. Calls workitem.GetContactAttribute.

b. Receives a NameValueList with the following data:

6. During the conversation between the application user and the customer, the customer
makes a promise to pay $200 on March 13, 2006.

Field name Value

account_no 1234567A

customer_value Gold

account_balance $300

Container element Value

contact_attr.account_no 1234567A

contact_attr.customer_value Gold

contact_attr.account_balance $300

Name Value

account_no 1234567A

customer_value Gold

account_balance $300

Chapter 2: Client API object model

54 Avaya IC Client SDK Programmer Guide May 2013

7. To record this information for historical data, the custom application:

a. Calls workitem.SetContactAttribute.

b. Passes a NameValueList that contains:

8. The Client SDK updates the contact_attr container of the EDU, as follows:

9. After the processing is complete, the EDU retires to the Report server.

10. Because the columns already exist in the Contact table, and the rows already exist in the
field expression table, the Report server automatically writes the data to the Contact table.

Name Value

promised_payment $200

promised_date March 13, 2006

Container element Value

contact_attr.account_no 1234567A

contact_attr.customer_value Gold

contact_attr.account_balance $300

contact_attr.promised_payment $200

contact_attr.promised_date March 13, 2006

Avaya IC Client SDK Programmer Guide May 2013 55

Chapter 3: Sample clients

The Client SDK includes two sample clients that you can use in a test or development
environment to test functionality that can be accessed through the Client API.

This section includes the following topics:

l Overview on page 55

l Features not supported in the sample clients on page 56

l About the Java sample client on page 56

l About the .NET sample client on page 61

Overview
The Client SDK includes following sample clients:

l A sample client written in Java.

l A sample client written in C# for .NET.

The above sample clients are not designed for use in a production environment.

! Important:
Important: Avaya does not support the use of the sample clients in a production

environment. Avaya will respond only to sample client issues in a test or
development environment, if you use the sample client to test functionality that
can be accessed through the Client API.

The user interfaces of the sample clients have a very different look and feel. They provide two
examples of the types of custom applications that you can develop with the Client SDK.

You can access the source code of both sample clients. The source code is extensively
commented to provide assistance with the Client API and to show examples of best practices.
You can modify sections of the source code for use in your custom applications.

Chapter 3: Sample clients

56 Avaya IC Client SDK Programmer Guide May 2013

Features not supported in the sample clients
The sample clients do not support all of the features available with the Client SDK.

The following feature is not supported by either sample client:
l HTML Email

Features supported in the Java sample client but not supported in the .NET
sample client:

l Login and logout of channels

l New Outbound email

l Push URL in the Chat window

About the Java sample client
The Java sample client is developed using Swing in Java. The Java sample client is packaged
in JAR files.

This section includes the following topics:

l User interface of the Java sample client on page 57

l Source code for the Java sample client on page 57

l Dependencies of the Java sample client on page 59

l Developing a custom Java sample client on page 59

l Running a Java sample client from an SDK server system on page 60

l Running a Java sample client from a non-SDK server system on page 61

About the Java sample client

Avaya IC Client SDK Programmer Guide May 2013 57

User interface of the Java sample client
The interface of the Java sample client is based on the Avaya Agent Web Client interface. The
Java sample client takes up minimal space on the desktop when the pop-up windows are
closed. The pop-up windows include an Email application and a Chat application.

The following figure shows the Java sample client with an active outbound voice work item.

Source code for the Java sample client
You can find the source code for the Java sample client in the following directory:

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src

The following table describes the files that contain the source code for the Java sample client.

Package name Contents

com.avaya.ic.sdk.sample Sample client class that is the entry point to the
application

com.avaya.ic.sdk.sample.ui PresentationSession that forms the glue between the
model, view, and controller components

com.avaya.ic.sdk.sample.ui.
command

Code that manages application user action commands

com.avaya.ic.sdk.sample.ui.
components

Code for all the user interface and view components

com.avaya.ic.sdk.sample.ui.event Classes that manage eventing between the view and
controller components

com.avaya.ic.sdk.sample.ui.model Classes that form the model for the more complex
user interface elements, such as list

com.avaya.ic.sdk.sample.ui.
controllers

Classes that provide a communication bridge between
view components and the Client SDK.

Chapter 3: Sample clients

58 Avaya IC Client SDK Programmer Guide May 2013

Design configuration files for the Java sample client
You can find the design configuration files for the Java sample client in the following directory:

IC_INSTALL_DIR\IC72\sdk\design\java\sample\config

The following table describes the files that contain the design for the Java sample client.

Resources for the Java sample client
The resources used by the Java sample client are images. All images for the Java sample client
are installed in the following directory:

IC_INSTALL_DIR\IC72\sdk\design\java\sample\images

com.avaya.ic.sdk.sample.ui.
resources

Resource management classes

com.avaya.ic.sdk.sample.util Some utility classes

Package name Contents

File name Contents

Application.properties Layout information for application components, such as
toolbars and lists.

ClientActions.properties Information on all actions defined for the application. You
can tie an action to multiple user interface elements, such
as toolbar buttons, toolbar menus, and hot keys.

ClientInterface.properties Information that ties property names to images used by the
application.

ClientMessages.properties Messages that the sample client displays in the user
interface.

About the Java sample client

Avaya IC Client SDK Programmer Guide May 2013 59

Dependencies of the Java sample client
The Java sample client depends on the following libraries that are installed with the Client SDK
design files:

l avaya-common.jar

l avayaiccommon.jar

l common-base.jar

l avaya-ic-sdk-client.jar

l avaya-ic-sdk-common.jar

l commons-logging.jar

l commons-logging-api.jar

l log4j-1.2.8.jar

l mail.jar

These libraries are installed in the following directory:

IC_INSTALL_DIR\IC72\sdk\design\java\lib

Developing a custom Java sample client
To develop a custom Java sample client using the Eclipse application:

1. From the system where you configured the SDK server, copy the \\
<Avaya_IC72_HOME>\sdk\design\Java directory.

2. Start the Eclipse application.

3. In Eclipse, create a new Java project and create a new Java project:

l Project name

l Location

4. Right-click the new Java project and select Configure Build Path.

5. In the Properties for Custom Client dialog box, click Libraries.

6. Click Add External JARs.

7. From the .lib directory, select and add all the .jar files.

8. In the navigation pane, click Java Compiler.
9. In the right pane, select the Enable project specific settings check box.

10. In the Click compliance settings field, click JRE version 1.6.

Chapter 3: Sample clients

60 Avaya IC Client SDK Programmer Guide May 2013

11. Click OK. The Eclipse application rebuilds the complete project.

12. Right-click Project and select Import File System.

13. Click Next.
14. In the File system dialog box, click Browse and select the Java/sample/images

directory.

15. Click Finish.

16. Right-click Project and select Import File System.

17. Click Next.
18. In the File system dialog box, click Browse and select the Java/sample/config

directory.

19. Click Finish.

20. Right-click Project and navigate to com.avaya.ic.sdk.sample.

21. Right-click Sampleclient.java and select Run as Java application.

22. In the Log in dialog box, enter the following:

l User Name

l Password

l SDK Server URL

23. Click Log in.

24. Verify that the sample client starts and you can log in from the Java sample client.

Running a Java sample client from an SDK server system
1. Navigate to the IC_INSTALL_DIR\IC72\sdk\design\Java\sample\bin directory.

2. Double-click the RunClient.bat file.

3. In the Login dialog box, enter the following:

l User Name

l Password

l Server URL. For example, http://<SDK Server name or IP address>:9700/
icsdk.

4. Click Log in. You are logged in the Avaya IC system from the Java sample client.

About the .NET sample client

Avaya IC Client SDK Programmer Guide May 2013 61

Running a Java sample client from a non-SDK server system
1. From the system where you configured the SDK server, copy the IC_INSTALL_DIR\

IC72\sdk\design\Java directory to the system where you want to run the Java sample
client.

2. From the \Java directory, open the RunClient.bat file and replace the value for DIR
with <JRE_HOME>\bin. Save the RunClient.bat file.

3. In the \Java directory, double-click the RunClient.bat file.

4. In the Login dialog box, enter the following:

l User Name

l Password

l Server URL. For example, http://<SDK Server name or IP address>:9700/
icsdk.

5. Click Log in. You are logged in the Avaya IC system from the Java sample client.

About the .NET sample client
The .NET sample client is written in C#. The .NET sample client is packaged in assembly and
DLL files.

This section includes the following topics:

l User interface of the .NET sample client on page 62

l Code and resources for the .NET sample client on page 62

l Dependencies of the .NET sample client on page 63

l Developing a custom .NET sample client on page 63

l Running a .NET sample client from an SDK server system on page 64

l Running a .NET sample client from a non-SDK server system on page 65

Chapter 3: Sample clients

62 Avaya IC Client SDK Programmer Guide May 2013

User interface of the .NET sample client
The .NET sample client can be positioned anywhere on the agent desktop. All components of
the application including the work list opens within the application.

The following figure shows the .NET sample client.

Code and resources for the .NET sample client
The following topics describe the files that contain the code and resources for the .NET sample
client:

l Com.Avaya.Ic.Sdk.Sampleclient.Ui on page 62

l Com.Avaya.Ic.Sdk.SampleClient.Controller on page 63

Com.Avaya.Ic.Sdk.Sampleclient.Ui

Description: Contains the forms and the supporting code for the forms. All images are
embedded in the forms.

Installation location: The Com.Avaya.Ic.Sdk.Sampleclient.Ui files are installed in the following
directory:

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\
Com.Avaya.Ic.Sdk.Sampleclient\Ui

About the .NET sample client

Avaya IC Client SDK Programmer Guide May 2013 63

Com.Avaya.Ic.Sdk.SampleClient.Controller

Description: Contains the Controller classes. The Controller classes do the following:

l Contain all of the Client SDK related code.

l Maintain a reference to the view.

l Update the view when events are received from the Client API.

Installation location: The Com.Avaya.Ic.Sdk.SampleClient.Controller files are installed in the
following directory:

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\
Com.Avaya.Ic.Sdk.Sampleclient\Controller

Dependencies of the .NET sample client
The .NET sample client depends on the following DLLs that are installed with the Client SDK
design files:

l Com.Avaya.Util.dll

l Com.Avaya.Util.Messaging.dll

l ICSharpCode.SharpZipLib.dll

l log4net.dll

l AvayaICSDKClient.dll

These libraries are installed in the following directory:

IC_INSTALL_DIR\IC72\sdk\dotnet\sample\bin

Developing a custom .NET sample client
To develop a custom .NET sample client using Microsoft Visual Studio:

1. From the system where you configured the SDK server, copy the \\
<AVAYA_IC72_HOME>\sdk\design\dotnet directory.

2. Navigate to the \\<AVAYA_IC72_HOME>\sdk\design\dotnet\sample\src
directory.

3. Open the SampleClient.solution directory in Microsoft Visual Studio.

4. In the left navigation pane, right-click Reference and select Add Reference.

5. In the Add Reference dialog box, click Browse.

Chapter 3: Sample clients

64 Avaya IC Client SDK Programmer Guide May 2013

6. In the Look in field, select the directory where you copied the \\<AVAYA_IC72_HOME>\
sdk\design\dotnet directory.

7. Navigate to the \\<AVAYA_IC72_HOME>\sdk\design\dotnet\lib directory and
select all the .dll files and click OK.

8. To start the sample client in release mode:

1. In Microsoft Visual Studio, from the drop-down list, select Release.

2. Click Start Debugging. The system displays the dialog box with a message indicating
that the you are running the .NET sample client in the release mode.

3. Click OK.

9. To start the sample client in the Debug mode:

1. In Microsoft Visual Studio, from the drop-down list, select Debug.

2. To debug a specific area of the .NET sample client code, enter the debug point in the
code and then run the sample client.

3. In the Login dialog box, enter the following:

l Login

l Password

l SDK server URL. For example, http://<SDK_Server>:9700/icsdk.

10. Click Login. The system displays the .NET sample client interface.

Running a .NET sample client from an SDK server system
1. Navigate to the \\IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\bin

directory.

2. Double-click the RunClient.bet file.

3. In the Login dialog box, enter the following:

l User Name

l Password

l Server URL. For example, http://<SDK Server Name or IP address>:9700/
icsdk.

4. Click Login. You are logged in the Avaya IC system through a .NET sample client.

About the .NET sample client

Avaya IC Client SDK Programmer Guide May 2013 65

Running a .NET sample client from a non-SDK server system

! Important:
Important: Ensure that you have .NET 3.5 or later on the non-SDK system.

1. From the system where you configured the SDK server, copy the IC_INSTALL_DIR\
IC72\sdk\design\dotnet directory to the system where you want to run the .NET
sample client.

2. In the \dotnet directory, double-click the RunClient.bat file.

3. In the Login dialog box, enter the following:

l User Name

l Password

l Server URL. For example, http://<SDK Server name or IP address>:9700/
icsdk.

4. Click Log in. You are logged in the Avaya IC system from the .NET sample client.

Chapter 3: Sample clients

66 Avaya IC Client SDK Programmer Guide May 2013

Avaya IC Client SDK Programmer Guide May 2013 67

Chapter 4: Guidelines for using the Client
API

Avaya recommends that you consider the following guidelines when you develop a custom
application or integration with the Client API.

This section includes the following topics:

l Chat interaction guidelines on page 68

l Voice interaction guidelines on page 69

l Callback guidelines on page 70

l Time and date duration guideline on page 72

l History API guidelines on page 73

l AddressBook API guidelines on page 76

l WrapupSelection API guideline on page 78

l Event handling guidelines on page 79

l State guidelines on page 85

l Log in and log out guidelines on page 86

l Exception handling guidelines on page 87

l Operation failure and success guidelines on page 88

l Null return value guidelines on page 89

l Customization guidelines on page 90

l Performance considerations on page 93

! Important:
Important: The code provided in this section is for example only. Last minute changes to the

Client SDK may result in differences between the samples in this section and the
actual code in the Client SDK. Before you implement any of these guidelines,
review the Client API documentation and code in the Client SDK.

Chapter 4: Guidelines for using the Client API

68 Avaya IC Client SDK Programmer Guide May 2013

Chat interaction guidelines
Avaya recommends that you should be aware of the following guidelines when you develop
your custom code:

l Methods not allowed for chat interactions on page 68

l Handle TranscriptLine events for chat interactions on page 68

l Do not use Datawake method on page 69

Methods not allowed for chat interactions
The following methods are not allowed for chat interactions:

l collaborationComplete for conference and consult

l collaborationCancel for conference and consult

Handle TranscriptLine events for chat interactions
If your custom application includes chat, ensure your code:

l Monitors the application user and customer idle time.

l Generates idleness and other alerts as needed by the custom application.

The Client SDK provides an event stream that you can use to monitor idle times. However, your
custom code must include timers to monitor the events against the threshold settings to ensure
that alerts are generated.

Reason

Idleness alerts ensure that application user in a chat room is alerted if the participants are
waiting for a response to a message.

For example, an application user handles two chats with two different customers. After sending
a message to the first customer, the application user starts a chat with the second customer. If
the first customer responds, the application user needs to be alerted that a message has arrived
in the first chat room. If the application user does not respond within the specified time, your
custom application generates an alert. The alert notifies the application user that the customer
is still waiting for a response.

Voice interaction guidelines

Avaya IC Client SDK Programmer Guide May 2013 69

Coding information

When a message is sent or received by an application user, the Client SDK:

1. Creates a TranscriptLine object.

2. Provides the TranscriptLine object to the consumer through a
TRANSCRIPT_LINE_ADDED event on the TranscriptDocument.

The TranscriptLine object represents a message sent into the chat room. TranscriptLine
includes the OriginatorHandle property that provides the originator of the message. This
originator can be agent, caller, system, or unknown.

Use these objects and the OriginatorHandle property when you code the alerts in your custom
application. You can create, start, and reset timers based on the context carried in those
objects.

For more information about TranscriptLine, see the Client API documentation.

Do not use Datawake method
The Client SDK does not support Datawake.

Do not use the getDatawakeURL(); method in your custom application. That method will
return a NULL.

Voice interaction guidelines
Avaya recommends that you should be aware of the following guidelines when you develop
your custom code:

l Using VoiceChannel.Reset on page 69

l Setting the force multiple calls option on the switch on page 70

l Impact of network recovery on voice interaction on page 70

Using VoiceChannel.Reset
VoiceChannel.Reset does not hang up any telephone calls. The API is supposed to terminate
all the EDUs associated with the softphone and set the agent into "ready" or "notready" state
depending on the API call.

Only use VoiceChannel.Reset if the softphone state is out of sync with the hardphone operation.
Do not use this API to hang up a telephone call.

Chapter 4: Guidelines for using the Client API

70 Avaya IC Client SDK Programmer Guide May 2013

Setting the force multiple calls option on the switch
If an application user accepts a voice call and is made busy from the softphone, the user can
still receive a second voice call. The switch is unaware that the user is busy and may send a
second call. This problem occurs only when the force multiple calls option is enabled on the
hunt group where the user has logged in.

The task load and ceilings set on Avaya IC for the voice channel are not enforced on the voice
channel.

Impact of network recovery on voice interaction
If a network recovery that requires an application user to log in back occurs when an application
user is handling a voice interaction on the hardphone, the voice channel will not connect to the
Telephony server. The user will not have access to any softphone controls, because the
softphone is out of sync.

Reason

The voice channel does not automatically connect to the Telephony server because this
connection can drop the current call on the hardphone.

User expectations

Under these circumstances, the Client SDK expects the application user to perform the
following steps in sequence:

1. End the call on the hardphone.

2. Wrapup and complete the contact that corresponds to the EDU associated with the call.

The voice channel should automatically log in as soon as all hardphone contacts have
been wrapped and cleared from the task list.

Callback guidelines
Chat and Callback feature allows the customer to specify the callback number while initiating a
chat from IC website. On receiving the workitem, agent can retrieve the callback number from
ChatMediaInteraction object and can place an outbound call to the customer. In this case,
the voice call gets associated with chat interaction and is grouped together in the same
workitem.

Callback guidelines

Avaya IC Client SDK Programmer Guide May 2013 71

This section will detail out the implementation considerations, guidelines and limitations of
callback feature.

Note:
Note: From the feature implementation perspective the Chat and Callback, Web

Schedule Callback, and Chat and VoIP are same.

Implementation considerations

1. In order to associate the Chat and Voice media interactions:

l Report Server must be present either in the Web domain or in its failover domain.

l A EDU Server must be present either in the domain of the Report server or in its
failover domain.

2. For a workitem with chat and voice media interactions grouped together, SDK treats chat
as parent media interaction and voice as child media interaction.

3. For collaborating a multimedia interaction, agent must be searched using the agent ID or
the address book and not using the station ID.

Guidelines for implementing chat and callback

This scenario requires the following steps:

1. Register listeners for the WorkItemAdded and WorkItemRemoved events.

2. Register listeners for the MediaInteractionAdded and MediaInteractionRemoved
events.

3. Create handlers to receive above events.

4. Update the user interface to display workitem and media interaction separately.

5. Update the user interface to display callback number after the chat media interaction is
received.

6. Provide a mechanism to place a voice callback on the Workitem object.

Guidelines for collaborating chat and callback

As chat and voice media interactions are grouped together in a single workitem, you need to
ensure that the collaborated agent receive both the interactions as a single workitem.

Following are the high level steps:

1. Register listeners for AudioSourceChanged and PartyAdded events.

2. Provide handlers for these events.

3. Conference or consult voice media interaction by invoking collaborationBegin() API
on a Workitem object, with VoiceMediaInteraction as a parameter.

4. On receiving AudioSourceChanged event, collaborate Chat media interaction by
invoking collaborationBegin() API on a Workitem object.

Chapter 4: Guidelines for using the Client API

72 Avaya IC Client SDK Programmer Guide May 2013

5. On receiving PartyAdded event, invoke collaborationComplete() API on a
Workitem object.

Guidelines for completing chat and callback

As mentioned earlier, for a workitem with chat and voice media interactions grouped together,
SDK treats chat as parent media interaction and voice as child media interaction. Therefore
invoking the complete() API on a workitem removes both chat and voice interactions.

If only voice interaction needs to be removed, invoke complete() API on the
VoiceMediaInteraction object.

Collect the wrapup codes when the parent media interaction is removed.

Limitations

Collaborating of chat and callback interaction to a queue is not supported. Doing so will raise
OperationFailed event.

Time and date duration guideline
The SDK server does not calculate specific durations. The Client SDK provide APIs that allow a
custom application to perform these calculations if needed.

If your custom application requires the calculation of a specific duration, use the create date
value or the delivered date value to do the required calculation. For example, your custom code
can calculate the age of a particular work item in milliseconds by subtracting the current time in
ms from the create date value.

Use the following APIs in your calculations:

l WorkItem.getDeliveredDate()

l WorkItem.getCreateDate()

l WorkItem.getQueueTime()

l Document.getCreateDate()

History API guidelines

Avaya IC Client SDK Programmer Guide May 2013 73

History API guidelines
Avaya recommends that you should be aware of these guidelines when you use the History API
in your custom code:

l Retrieving the history for a WorkItem or Customer on page 73

l WorkItemHistory record on page 74

l CustomerHistory record on page 74

l Formatting dates for the history of an object on page 75

l Example: retrieve WorkItem history for Java application on page 75

l Example: retrieve Customer history for Java application on page 76

Retrieving the history for a WorkItem or Customer
When a WorkItem arrives at a custom application, the Client SDK does not automatically send
the WorkItemHistory or the CustomerHistory for that WorkItem. This process ensures that the
Client SDK can deliver the WorkItem to the application user as quickly as possible, and avoid
the time-consuming look ups required for WorkItemHistory and CustomerHistory.

The Client SDK is optimized to allow your custom application to retrieve the WorkItemHistory or
CustomerHistory. The retrieval of the most recent WorkItemHistory and CustomerHistory is
asynchronous. When the history data arrives at the custom application, the Client SDK
automatically caches the data on the client.

For the CustomerHistory, your custom application must specifically request every piece of
information that you want to display to the user.

When you retrieve the history, always follow this two-step process:

1. Request the history.

2. Retrieve the history data.

Chapter 4: Guidelines for using the Client API

74 Avaya IC Client SDK Programmer Guide May 2013

WorkItemHistory record
The Client SDK obtains information for a WorkItemHistory record from the EDU for a
VoiceMediaInteraction and a ChatMediaInteraction.

For an EmailDocument, the WorkItemHistory record is the same as the TrackingHistory. The
Client SDK server retrieves that information from the IC Email server, which retrieves the
information from the database. This information does not include the time spent by an email in
queue.

Each WorkItemHistory record has a type of NameValueList. Each field in the record has a type
of NameValue. By default, each WorkItemHistory record contains the following fields:

l starttime

l origin

l description

CustomerHistory record
Your custom application can potentially retrieve more information for a CustomerHistory record.
Each CustomerHistory record corresponds to a previous interaction that the customer had with
the contact center. This interaction can be a single historical MediaInteraction or a single
historical EmailMessage exchanged between the customer and the contact center.

Data provided with a CustomerHistory record: In addition to the data provided with a
WorkItemHistory, the CustomerHistory can also include:

l WrapupRecords for all types of WorkItems

l WorkItemHistory for all types of WorkItems

l Transcripts for ChatMediaInteractions

l EmailMessages for EmailDocuments

Fields in a CustomerHistory record: Each CustomerHistory record has a type of
NameValueList. Each field in the record has a type of NameValue. By default, each
CustomerHistory record contains the following fields:

l type

l state

l topic

l time

History API guidelines

Avaya IC Client SDK Programmer Guide May 2013 75

Rules for database queries: The CustomerHistory record fields represent the summary
information available for the CustomerHistory record. This summary information is obtained
through a database query. The query criteria must obey the following rules:

l If a customerkey is present in the EDU for the MediaInteraction or Document, the query
must use the customerkey to perform the customer history query.

l If no customerkey is present in the EDU, the query must use the following query criteria:

- ANI for VoiceMediaInteractions
- Email Address for EmailDocuments
- Chat Handle for ChatMediaInteractions

Formatting dates for the history of an object
The Client SDK does not provide a formatted string for the date. The History API returns a string
that contains a millisecond value. For Java, the millisecond value is from January 1, 1970. For
.NET, the millisecond value is from January 1, 1900.

Your custom application needs to apply a locale specific pattern when parsing the date string.

To use the date format in your custom application:

1. Convert the millisecond value to a Long.

2. Add the Long to a date object.

3. Retrieve the formatted string from the date object.

Example: retrieve WorkItem history for Java application

Note:
Note: This example uses the API names for the Java API of the Client SDK. A .NET

application should follow the same steps. For information about the
corresponding API calls for .NET, see the .NET API documentation provided with
the Client SDK.

For more information, see Display WorkItem History scenario on page 146.

To retrieve the history for a WorkItem requires the following steps:

1. Call Workitem.requestHistory to request the WorkItem history.

2. Wait until the Workitem.RequestHistoryResponse event is received.

This event indicates that the WorkItem history is received and available in the HDS.

3. Retrieve the WorkItem object from the Workitem.RequestHistoryResponse event.

4. Call Workitem.getHistory to retrieve the history data.

Chapter 4: Guidelines for using the Client API

76 Avaya IC Client SDK Programmer Guide May 2013

Example: retrieve Customer history for Java application

Note:
Note: This example uses the API names for the Java API of the Client SDK. A .NET

application should follow the same steps. For information about the
corresponding API calls for .NET, see the .NET API documentation provided with
the Client SDK.

For more information, see Display Customer History scenario on page 148.

To retrieve the history for a Customer requires the following steps:

1. Call Workitem.requestCustomerHistory with the appropriate search criteria to
request the customer history.

2. Wait until the Workitem.RequestCustomerHistoryResponse event is received.

This event indicates that the customer history is received and available in the HDS.

3. Retrieve the WorkItem object from the
Workitem.RequestCustomerHistoryResponse event.

4. Call Workitem.getCustomerHistory to retrieve the customer history data.

AddressBook API guidelines
Avaya recommends that you should be aware of the following guidelines when you develop
your custom code:

l Retrieving the AddressBook object on page 76

l Implementing Address Book searches on page 77

l Example: Finding a subset of agents based on criteria on page 77

l Example: Finding a subset of queues based on criteria on page 78

Retrieving the AddressBook object
When an application user initiates an Avaya IC session, the system does not send
AddressBook data to the application by default. However, you can use AddressBook APIs in the
Client API to retrieve agents and queues on the AddressBook object.

Use the Session.getAddressBook() API to retrieve the AddressBook object. The
AddressBook object contains all of the addressable agents and queues in the Avaya IC
system.

AddressBook API guidelines

Avaya IC Client SDK Programmer Guide May 2013 77

Implementing Address Book searches
You can implement your custom application to do either of the following AddressBook searches:

l Perform a default search for AddressBook data with the findAgents or findQueues
methods.

l Collect query information from the application users and use that information in your
AddressBook search.

These searches return either a FindAgentsResponse or FindQueuesResponse event that
contains the relevant records.

Tip:
Tip: You can use search criteria to specify and retrieve a subset of agents or queues

for the Address Book, instead of all agents or queues in the Avaya IC system. For
information about the search criteria, see the Client API documentation.

Example: Finding a subset of agents based on criteria

Note:
Note: This example uses the API names for the Java API of the Client SDK. A .NET

application should follow the same steps. For information about the
corresponding API calls for .NET, see the .NET API documentation provided with
the Client SDK.

For an example scenario with more detailed information, see AddressBook scenario on
page 150.

To retrieve a subset of agents based on criteria requires the following steps:

1. Call Session.getAddressBook to retrieve the AddressBook object.

2. Call AddressBook.findAgents with the appropriate criteria to request the subset of
agents.

3. Wait until the AddressBook.FindAgentsResponse is received.

This event indicates that the agent subset is received and available in the HDS.

4. Call AddressBook.FindAgentsResponse.getAgentRecords to retrieve the subset
of agents.

Chapter 4: Guidelines for using the Client API

78 Avaya IC Client SDK Programmer Guide May 2013

Example: Finding a subset of queues based on criteria

Note:
Note: This example uses the API names for the Java API of the Client SDK. A .NET

application should follow the same steps. For information about the
corresponding API calls for .NET, see the .NET API documentation provided with
the Client SDK.

For an example scenario with more detailed information, see AddressBook scenario on
page 150.

To retrieve a subset of queues based on criteria requires the following steps:

1. Call Session.getAddressBook to retrieve the AddressBook object.

2. Call AddressBook.findQueues with the appropriate criteria to request the subset of
queues.

3. Wait until the AddressBook.FindQueuesResponse is received.

This event indicates that the queue subset is received and available in the HDS.

4. Call AddressBook.FindQueuesResponse.getQueueRecords to retrieve the subset
of queues.

WrapupSelection API guideline
The WrapupSelectionList represents a list of WrapupSelections that has been set on a
WorkItem.

If you use the WrapupSelection API do not expect the WrapupSelectionList method
addWrapupSelection to add the wrapup selection to the list. addWriapup Selection adds the
WrapupSelection to a cache.

Event handling guidelines

Avaya IC Client SDK Programmer Guide May 2013 79

Recommended sample code

Sample of code to avoid

! Important:
Important: Do not follow the practice shown in the below sample code when you create

listeners.

Event handling guidelines
Avaya recommends that you consider the following guidelines when you develop event
handling in your custom code:

l Register listeners for events before calling Session.Initialize on page 80

l Create a separate listener for each event on page 80

l Avoid blocking operations in event handling on page 83

l Handle ConnectionStatusChange and SessionShutdown events on page 83

public void foo{
...
WrapupSelectionList list = wi.getWrapupSelectionList();
list.addWrapupSelection(new WrapupSelectionImpl(categoryCode, reasonCode, outcomeCode);
wi.setWrapupSelectionList(list); //add the cached wrapupselection to the list. This call
sends an event to the server. You now need to wait for OperationSucceeded event before
calling getWrapupSelections to see if the wrapup selection was added.
}
public static void WorkItemOperationSucceededListener implements SessionListener{
 public void onEvent(Event evt){
 WorkItem.OperationSucceeded success = (WorkItem.OperationSucceeded) evt;
 if(success.getOperationName() ==
WorkItem.Operation.SETWRAPUPSELECTIONLIST.toString()){
 wi.getWrapupSelectionList().getWrapupSelections(); //this will contain the newly
added wrapup selection.
 }
 }
}

public void foo(){
....
WrapupSelectionList list = wi.getWrapupSelectionList();
list.addWrapupSelection(new WrapupSelectionImpl(categoryCode, reasonCode, outcomeCode);
list.getWrapupSelections(); //returned collection will not have
...
}

Chapter 4: Guidelines for using the Client API

80 Avaya IC Client SDK Programmer Guide May 2013

Register listeners for events before calling Session.Initialize
Register all or most of your listeners between the call to Application.Login and Session.Initialize.

Reason

If you do not register listeners before Session.Initialize, timing reasons can cause events to
arrive before the listeners are registered. An event that arrives before registration of the
appropriate listener might be lost.

Recommended sample code

.NET sample code

Java sample code

Create a separate listener for each event
Do not use the same listener to handle more than one event.

Note:
Note: .NET enforces this behavior automatically.

Reason

The Client API does not prevent you from using the same listener to handle more than one
event. However, if you use the same listener for multiple events, your code must repeatedly
instruct the Client API to perform the internal check for which listener to call. This practice
results in inefficient, spaghetti handler code.

...
ISession _session = _app.Login(user, password);
_session.SessionStateChanged += new SessionStateChangedHandler(HandleSessionStateChanged);
..
..
_session.Initialize();

Session _session = application.login(user, pass);
_session.registerListener(Session.StateChanged.TYPE, new SessionStateChangedListener());
...
...
_session.initialize();

Event handling guidelines

Avaya IC Client SDK Programmer Guide May 2013 81

Recommended sample code

Java sample code

//Registration code
_session.registerListener(Session.StateChanged.TYPE, new SessionStateChangedListener());
_session.registerListener(WorkList.WorkItemAdded.TYPE, new WorkItemAddedListener());
_session.registerListener(Channel.StateChanged.TYPE, new ChannelStateChangedListener());

//Handler code
private static class SessionStateChangedListener implements SessionListener{
public void onEvent(Event evt){

//handle the event here
}
}
private static class WorkItemAddedListener implements SessionListener{
public void onEvent(Event evt){

//handle the event here
}
}
private static class ChannelStateChangedListener implements SessionListener{
public void onEvent(Event evt){

//handle the event here
}
}

Chapter 4: Guidelines for using the Client API

82 Avaya IC Client SDK Programmer Guide May 2013

.NET sample code

Sample of code to avoid

! Important:
Important: Do not follow the practice shown in the below sample code when you create

listeners.

_session.SessionStateChanged += new SessionStateChangedHandler(HandleSessionStateChanged);
_session.WorkListWorkItemAdded += new WorkListWorkItemAddedHandler(HandleWorkItemAdded);
_session.ChannelStateChanged += new ChannelStateChangedHandler(HandleChannelStateChange);

//Handler code
private void HandleSessionStateChanged(SessionStateChangedEventArgs earg)

{

}

private void HandleWorkItemAdded(WorkListWorkItemAddedEventArgs earg)

{

}

private void HandleChannelStateChange(ChannelStateChangedEventArgs earg)

{

}

//Registration code
_listener = new AllEventListener();

_session.registerListener(Session.StateChanged.TYPE, _listener);
_session.registerListener(WorkList.WorkItemAdded.TYPE, _listener);
_session.registerListener(Channel.StateChanged.TYPE, _listener);

//Handler code

private static class AllEventListener implements EventListener{
public void onEvent(Event evt){

if(evt instanceof SessionStateChanged){
handleSessionStateChanged();

} else if(evt instanceof WorkListWorkItemAdded){
handleWorkItemAdded();

} else if(evt instanceof ChannelStateChanged){
handleChannelStateChanged();

}
}

}

Event handling guidelines

Avaya IC Client SDK Programmer Guide May 2013 83

Avoid blocking operations in event handling
Do not use blocking operations or operations that require a significant amount of processing in
the event handlers. Examples of such operations are:

l Painting application windows

l Implementing I/O

l Playing media

l Writing a loop that loops for a long time

Reason

All events from the Client API arrive on a single thread that processes all inbound messages
from the server. For server-side integration, a blocking operation or an operation that requires a
significant amount of processing can cause message queues to back up and impact
performance.

Handle ConnectionStatusChange and SessionShutdown events
Do not use Client API objects in your code after a ConnectionStatusChange event is received
and the ConnectionStatus is equal to FAILED. Always use a logout operation after that event.

Reason

After a custom application receives a SessionShutdown event or the ConnectionStatus of the
Session changes to Failed, the Session object and all other objects that belong to that session
become unusable. A logout is the only valid operation after these events.

All custom code that uses the Client API must register for these events and gracefully log out of
the session after the events occur.

If your custom code uses Client API objects after a Connection failure event or a
SessionShutdown event, the Communication component will usually throw an error. The Client
SDK throws a CommunicationException when the connection is impaired or disabled. For more
information about this custom exception, see the API documentation.

These errors are runtime exceptions in Java. The Client API does not expect application users
to handle these exceptions. Therefore, your custom code must handle these events properly to
provide an acceptable application user experience.

Chapter 4: Guidelines for using the Client API

84 Avaya IC Client SDK Programmer Guide May 2013

Recommended sample code

Java sample code

//Registration code
_session.registerListener(Session.Shutdown.TYPE, new SessionShutdownListener());
_session.registerListener(Session.ConnectionStatusChange.TYPE, new
ConnectionStatusChangeListener());

//Handler code
private static class SessionShutdownListener implements SessionListener{
public void onEvent(Event evt){
 //Check the reason for shutdown and display message to user (or) do additional handling

 //at the end just logout the user
 _application.logout(_session.getUser().getLoginId());
}
}

private static class ConnectionStatusChangeListener implements SessionListener{
public void onEvent(Event evt){
 Session.ConnectionStatusChange csc = (Session.ConnectionStatusChange) evt;
 if(csc.getConnectionStatus() == ConnectionStatus.FAILED){
 _application.logout(_session.getUser().getLoginId());
 }
}
}

State guidelines

Avaya IC Client SDK Programmer Guide May 2013 85

.NET sample code

State guidelines
Avaya recommends that you consider the following guidelines with respect to object states in
your custom code:

l Check object for the appropriate state on page 85

l Check status of WorkItem on page 86

Check object for the appropriate state
For all objects with defined state models, your custom code must:

1. Check for the appropriate state.

2. If the object is in the required state, make a Client API call on that object.

_session.SessionShutdown += new SessionShutDownHandler(HandleSessionShutDown);
_session.SessionConnectionStatusChanged += new
SessionConnectionStatusChangedHandler(HandleSessionConnectionStatusChanged);

//Handler code

private void HandleSessionShutDown(SessionShutDownEventArgs earg)

{

//Check the reason for shutdown and display message to user (or) do additional handling
//at the end just logout the user
_application.logout(_session.User.LoginId);
}

private void HandleSessionConnectionStatusChanged(SessionConnectionStatusChangedEventArgs
earg)

{

if (earg.ConnectionStatus == SessionConnectionStatus.FAILED){
_application.logout(_session.getUser().getLoginId());

}

}

Chapter 4: Guidelines for using the Client API

86 Avaya IC Client SDK Programmer Guide May 2013

Reason

The Client SDK performs state validations on the SDK server. If the custom code does not
check for the state of the object before making a Client API call, your custom application will
have to perform unnecessary round trip checks to the server.

Objects with state models

The following table shows those objects that have a state model.

Check status of WorkItem
For all operations on a WorkItem and the media interaction or document contained in that
WorkItem, your custom code must check whether the WorkItem is Current before making most
life cycle calls. For more information, see WorkItem state model diagram on page 39.

Reason

Some lifecycle operations on WorkItem are valid only if the WorkItem is the Current WorkItem.
Your custom code must therefore:

1. Check if a WorkItem is Current.

2. If the WorkItem is Current, perform a lifecycle operation.

Log in and log out guidelines
Avaya recommends that you consider the following guidelines with respect to logging in and
logging out of the application in your custom code:

l Simultaneous log in and log out for Chat and Email on page 87

l Check WorkItem status during logout on page 87

Object State model

Session Session state model diagram on page 31

WorkItem WorkItem state model diagram on page 39

Voice MediaInteraction VoiceMediaInteraction state model diagram on page 43

ChatMediaInteraction ChatMediaInteraction state model diagram on page 46

Exception handling guidelines

Avaya IC Client SDK Programmer Guide May 2013 87

Simultaneous log in and log out for Chat and Email
An application user must log in or out of the Chat and Email channel simultaneously. A user
cannot perform a single channel log in to or log out of the Chat channel or the Email channel.

Reason

In Avaya IC, the chat and email channels are not exclusive. Logging in or out of one of those
channels will always log the user in or out of the other channel.

Check WorkItem status during logout
When an application user logs out of your custom application, your custom code must check the
state of all WorkItems in the WorkItemList. If the list includes an active or Current WorkItem,
your custom code must prevent the user from logging out.

Reason

Neither the Avaya IC system nor the Client SDK prevent an application user from logging out if
the user has active work items.

Exception handling guidelines
Avaya recommends that you avoid the following exception in your custom code:

l NullPointerException and ArgumentNullException on page 87

Avaya recommends that you handle the following exceptions in your custom code:

l ConnectionException on page 88

l AuthenticationException on page 88

NullPointerException and ArgumentNullException
Your custom code must avoid NullPointerException and ArgumentNullException.

These exceptions occur if both of the following are true:

l Null parameters are passed to the Client API.

l Methods used in the custom code did not expect null parameters.

Chapter 4: Guidelines for using the Client API

88 Avaya IC Client SDK Programmer Guide May 2013

ConnectionException
Your custom code must handle ConnectionException, according to the requirements of the
programming language:

l In Java, ConnectionException is a checked exception.

l In C#, your custom code must handle the exception. C# does not enforce this exception.

Reason

This exception occurs during the following events:

l Log in

l Log out

l Add or get an email attachment

AuthenticationException
Your custom code must handle AuthenticationException, according to the requirements of the
programming language:

l In Java, AuthenticationException is a checked exception.

l In C#, your code must handle the exception. C# does not enforce this exception.

Reason

This exception occurs if an application user provides:

l An invalid username or password

l An expired password

Operation failure and success guidelines
Several objects in the Client API have OperationFailed or OperationSucceeded events. Avaya
recommends that you consider the following guidelines when you handle these events in your
custom code:

l OperationFailed on page 89

l OperationSuccess on page 89

Null return value guidelines

Avaya IC Client SDK Programmer Guide May 2013 89

OperationFailed
Your custom code must handle an OperationFailed event where available.

Reason

An operation failure event can indicate a problem with Avaya IC. This event can occur for
operations that are asynchronous in Avaya IC.

An OperationFailed event can occur when certain calls fail at Avaya IC servers. For example, a
CollaborationBegin call can raise an OperationFailed event if the wrong destination is provided.

An OperationFailed event also occurs if an application user tries to execute an invalid operation.

OperationSuccess
An OperationSuccess event occurs rarely. However, your custom code must handle an
OperationSuccess event where available.

Reason

An OperationSuccess event occurs in rare cases in which the application user needs feedback
on the success of an operation.

For example, an EmailDraft.Send event will raise an OperationSuccess event to acknowledge
that an outbound email was sent.

Null return value guidelines
The Client API has many scenarios where a method call can return a null value. Your custom
code must expect null return values. Avaya recommends that you code carefully to avoid
unexpected NullPointerExceptions.

For example, NullPointerExceptions can be raised:

l Because an Email Cc is not a mandatory method, getCc() might return a null value.

l If an application user is not enabled for all channels, the Session method getChannel()
might return a null value.

Chapter 4: Guidelines for using the Client API

90 Avaya IC Client SDK Programmer Guide May 2013

Customization guidelines
You can configure the Client SDK to customize access to the following items:

l Avaya IC agent properties

l EDU and ADU attributes

l Wrapup codes

This section includes the following topics:

l Customization directory on page 90

l Customization files on page 90

l Deploying a configuration file on page 92

Customization directory
Avaya IC installs the Client SDK customizing files in the following directory on a computer that
hosts the Client SDK server:

IC_INSTALL_DIR\IC72\sdk\server\icsdk\custom\config\sdk\

Customization files

! Important:
Important: If your custom application does not require customizing, do not modify the entries

in these files. Filter and send data to a custom application only if the data is
absolutely necessary. For example, do not send all Avaya IC property sections or
cache and filter all EDU data. If you send more than required data to the custom
application, server performance might be severely impacted.

This section includes the following topics that describe the customizing files provided with the
Client SDK:

l SDKEduAttributesToFilter.properties on page 91

l SDKWorkItemAttributesFilter.properties on page 91

l SDKSessionAttributesFilter.properties on page 91

l SDKWrapupCodesCategoryGroups.properties on page 92

l SDKSupportedCharsets.properties on page 92

l SDKICPropertiesSections.properties on page 92

Customization guidelines

Avaya IC Client SDK Programmer Guide May 2013 91

SDKEduAttributesToFilter.properties
Description: Determines which EDU fields are sent as MediaInteraction and Document
attributes.

Methods: Use the following methods to access the EDU fields:

l MediaInteraction.getAttributes()

l Document.getAttributes()

Note:
Note: The EDU fields must be available at the SDK server bridge before they can be

filtered. Define the EDU fields to be made available at the SDK server bridge in
the EDUFieldsToCache.properties file. This properties file is in the configuration
directory.

SDKWorkItemAttributesFilter.properties
Description: Determines which EDU fields are sent as WorkItem attributes.

Methods: Use the WorkItem.getAttributes() method to access the EDU fields.

Note:
Note: The EDU fields must be available at the SDK server bridge before they can be

filtered. Define the EDU fields to be made available at the SDK server bridge in
the EDUFieldsToCache.properties file. This properties file is in the configuration
directory.

SDKSessionAttributesFilter.properties
Description: Determines which ADU fields are sent as Session attributes.

Methods: Use the Session.getAttributes() method to access the EDU fields.

Note:
Note: The ADU fields must be available at the SDK server bridge before they can be

filtered. Define the ADU fields to be made available at the SDK server bridge in
the ADUFieldsToCache.properties file. This properties file is in the configuration
directory.

Chapter 4: Guidelines for using the Client API

92 Avaya IC Client SDK Programmer Guide May 2013

SDKWrapupCodesCategoryGroups.properties
Description: Determines which wrapup codes are sent to the custom application.

Methods: Use the Session.getWrapupCodes() method to access the wrapup codes.

SDKSupportedCharsets.properties
Description: Determines which character sets are:

l Supported by Avaya IC

l Exposed to the custom application

l Used when emails are sent

Methods: Use the Session.getSupportedCharsets() method to access the character
sets.

SDKICPropertiesSections.properties
Description: Determines which Avaya IC agent property sections are available to the custom
application.

Methods: Use the Session.getICProperties() method to access the properties.

Tip:
Tip: For information about the IC_INSTALL_DIR\IC72\sdk\server\icsdk\

custom\config\ICPropertiesSections.properties file that you can
use to customize the UOM, see Avaya Agent Web Client Customization.

Deploying a configuration file
After you update a configuration, place a copy of the file in the following directory on the
machine that hosts the Client SDK server:

/WEB-INF/classes/com/avaya/ic/sdk/customization

Performance considerations

Avaya IC Client SDK Programmer Guide May 2013 93

Performance considerations
You can configure and tune the Client SDK to improve the performance of a custom application.

This section includes the following topics:

l Using WebAppContext on page 93

l Configuring the messaging service on page 95

Using WebAppContext
This configuration uses WebAppContext and SDKAppContext. Avaya recommends that you
create and configure a single instance of the WebAppContext for each Client SDK process or
custom application.

This section includes the following topics:

l Creating and configuring WebAppContext on page 93

l Using the setter methods of WebAppContext on page 94

Creating and configuring WebAppContext

You can use the following methods to create and configure an instance of WebAppContext:

WebAppContext(URI appUri): Allows an application to connect to the server directly with
specified URI. This mechanism requires the following:

l The URI must contain the Web application context root.

l The server address and port specified in the URI must be directly accessible from the
client machine.

l All of the ports specified in the server application deployment descriptor (web.xml) with the
messaging.listener.port.range parameter must be directly addressable.

WebAppContext(URI appUri, URI proxyUri): Allows an application to connect to the server
indirectly through a proxy server. This mechanism requires the following:

l The URI must be provided as a second parameter to the proxy server.

l Only the address and port of the proxy server can be directly addressable from the client
machine.

l The proxy server must meet all requirements listed for WebAppContext(URI appUri).

Chapter 4: Guidelines for using the Client API

94 Avaya IC Client SDK Programmer Guide May 2013

WebAppContext(URI appUri, boolean useSystemProxy): Allows an application to connect
to the server indirectly through a proxy server. This mechanism uses the system properties to
specify the proxy server.

For .NET, this mechanism uses the proxy specified in the Internet Explorer configuration.

Using the setter methods of WebAppContext

The following setter methods of the WebAppContext class provide additional tuning:

setMessagingOutboundPoolSize(int messagingOutboundPoolSize): Specifies the number
of threads in the thread pool that process outbound messages by forwarding them to the TCP
transport layer. These threads perform network-related activities for the outbound traffic. The
default value is 1.

setMessagingInboundPoolSize(int messagingInboundPoolSize): Specifies the number of
threads in the thread pool that process inbound messages by notifying all message listeners.
The default value is 1.

Avaya recommends that you gradually increase a number of threads in this thread pool as the
number of concurrent agent sessions grows. Use this method for server-side integration only.

setMessagingSelectorPoolSize(int messagingSelectorPoolSize): Specifies the number of
threads that service transport activity for asynchronous socket communications. For values of 1
or greater, a pool of specified number of threads are created and each agent session uses
individual asynchronous duplex connections to the server. If the agent session communicates
through a proxy, two separate asynchronous connections are established per agent. The default
value is 1.

You can also set a value of 0. If you use a value of 0, no thread pool is used for the transport.
Each agent session creates its own listener thread to service inbound traffic. Two separate
synchronous connections are established to the server per agent.

setMessagingSchedulerPoolSize(int messagingSchedulerPoolSize): Specifies the number
of threads in the thread pool, in addition to the timer thread, that assists with scheduled tasks.
The primary task is network status monitoring.

! Important:
Important: Do not use setMessagingSchedulerPoolSize(int messagingSchedulerPoolSize)

for .NET. Avaya recommends that you leave the value at 0. With that value, no
thread pool is created in addition to the timer main thread.

Performance considerations

Avaya IC Client SDK Programmer Guide May 2013 95

Configuring the messaging service
You can configure the Client SDK messaging server. Some parameters in this section are
already included in the application deployment descriptor (web.xml). You can specify the
additional parameters in that file if needed.

This section includes the following properties:

l Service/transport properties on page 95

l Workload capacity properties on page 96

l Functional properties on page 97

Service/transport properties

avaya.ic.webclient.url: Binds the messaging service to the correct IP address on the server
machine. If you specify the IP address incorrectly, the server raises a binding exception during
startup.

messaging.listener.port.range: Specifies the server ports that you want the Messaging
Service to bind. This property works in conjunction with avaya.ic.webclient.url. The server
requires the address and the port to perform binding. If the specified port is already occupied by
another process, the binding algorithm will repeat an attempt with the next value specified with
the range.

The binding algorithm will also repeat attempts if the Messaging Service has multiple listeners
to start. The algorithm fails only if no ports are available in the specified range.

The default value is 8000-9000. This value provides a range of 1000 subsequent ports. Other
examples of acceptable port ranges are:

l 8001: a single port

l 8001,8010,9001,9010: a comma separated list of ports for a total of 4 ports

l 8001-8010,9001-9010: a comma separated list of subranges of ports for a total of 20 ports

! Important:
Important: Your server must have the specified ports available and open for external access

by the end-clients or proxy server.

Chapter 4: Guidelines for using the Client API

96 Avaya IC Client SDK Programmer Guide May 2013

messaging.listener.config: Specifies the number of listeners to start so that inbound and
outbound activities can be serviced. You can set this property to only 1 or 2.

The default value is 2. This value means that two listeners will be started. One listener will
service client connections for inbound work. The second listener will service client connections
for outbound work. All connections are established and maintained by the client.

If you set the value to 1, the Messaging Service starts the inbound listener only. That listener
must accept all client connections. If the custom application opens only one connection per
agent session for inbound and outbound work, the inbound listener will accept all connections.

messaging.listener.backlog: Specifies the maximum queue length for incoming connection
indications. Each indication is a request to connect. If a connection indication arrives when the
queue is full, the server refuses the connection.

The backlog value must be a positive value greater than 0. If the value passed is equal or less
than 0, then the Java platform default value will be assumed. The default value is -1.

The Java default on Windows is 50 for the socket backlog. To be able to handle a high number
of concurrent requests to connect, set the value of the socket backlog at a much higher value
than the default. 1024 or even higher is a recommended value for the Messaging Service
listeners.

messaging.socket.timeout: Specifies a time-out for socket operations. The default is value is
-1. This value means that the socket operations will never expire, providing a time-out of infinity.
This property applies only to synchronous socket operations.

messaging.inbound.capacity: Specifies the number of threads that will service transport
activity for client connections for inbound work. This property is similar to the
messagingSelectorPoolSize property of the SDK client. The default value is 1.

Note:
Note: This property does not create a thread pool. The Client SDK uses a simple

round-robin algorithm to assign work to the threads.

messaging.outbound.capacity: This property is useful if the SDK clients work through a proxy
server and need to establish separate connections for outbound and inbound work. The default
value is 1.

This property is not useful if you configure only an inbound listener configured. This property
also does not have any value if all clients establish only one asynchronous duplex connection
per agent session.

Workload capacity properties

messaging.inbound.thread.pool.size: Specifies the number of threads in the thread pool that
will process inbound messages by notifying all message listeners. This property is the same as
the messagingInboundPoolSize property of the SDK client.

Performance considerations

Avaya IC Client SDK Programmer Guide May 2013 97

messaging.outbound.thread.pool.size: Specifies the number of threads in the thread pool
that will process outbound messages by forwarding them to the TCP transport layer. These
threads will perform network related activities for outbound traffic. This property is the same as
the messagingOutboundPoolSize property of the SDK client.

Functional properties

messaging.session.timeout: Specifies the duration of time after which session connectivity
will be considered lost. For example, this time period can be invoked after the Client SDK detect
a loss of client-server connectivity. After this time period expires, the system will send a
shutdown signal. This signal is symmetric for both client and server. The default value is 600
seconds, or 10 minutes.

messaging.session.heartbeat: Specifies the ping interval for monitoring client-server
connectivity. The default value is 60 seconds.

Chapter 4: Guidelines for using the Client API

98 Avaya IC Client SDK Programmer Guide May 2013

Avaya IC Client SDK Programmer Guide May 2013 99

Chapter 5: Compiling and debugging a
custom application

This section includes the following topics.

l Supported compilers on page 99

l Logging on page 99

l Error messages on page 114

l Client SDK diagnostic information on page 114

l Debugging common problems on page 117

l Getting support on page 121

Supported compilers
The following table shows the compilers that the Client SDK supports for each client platform.

Logging
The Client SDK logging generates several logs. Wherever possible, these logs:

l Show the execution path in the Client SDK.

l Distinguish whether a problem occurred in a component of the Client SDK or in the code of
a custom application.

Client platform Supported compiler

.NET .NET 2.0

Java Java 1.6.0_10

Chapter 5: Compiling and debugging a custom application

100 Avaya IC Client SDK Programmer Guide May 2013

This section includes the following topics:

l Logging at the module boundaries on page 100

l Client SDK server logging on page 101

l Client SDK client logging on page 104

l Logging guidelines on page 105

l Tracing issues through Client SDK logs on page 106

l Sample log messages on page 107

Logging at the module boundaries
The following diagram shows the module boundaries where the Client SDK performs logging.
For more information about how to trace issues across the module boundaries, see Tracing
issues through Client SDK logs on page 106.

Logging

Avaya IC Client SDK Programmer Guide May 2013 101

Client SDK server logging
The Client SDK server uses log4j for logging. For information about how to use the log4j
configuration file to change the logging level for the Client SDK server, see Changing the level
of Client SDK server logging on page 103.

This section includes the following topics:

l When server logging occurs on page 101

l Server log files on page 101

l Location of log4j configuration files on page 102

l Location of Client SDK server log files on page 102

l Changing the log4j file name on page 102

l Changing the level of Client SDK server logging on page 103

When server logging occurs

The Client SDK server logs when:

l A message is received from the client. Logging includes the ID attribute of the message.

l A call is made into the UOM and Basic Services as a result of an arriving message.
Logging can include the ID of the object on which the method is invoked.

l An event is received from the UOM. Logging can include the ID of the UOM object that
fired that event.

l A message is sent to the client. Logging includes the message name. For a data message,
logging also shows the dataid and rootcause attributes of the message.

Server log files

The Client SDK server includes the following log configuration files:

Log files Description

log4j.xml.basic Info level logging for standard Client SDK server logging

log4j.xml.comm Info level logging and debug level logging for the communication and
messaging module

log4j.xml.debug Debug logging for reporting issues

Chapter 5: Compiling and debugging a custom application

102 Avaya IC Client SDK Programmer Guide May 2013

Location of log4j configuration files

The log4j configuration files are provided in the IC_INSTALL_DIR/IC72/sdk/server/
icsdk.war file.

When you start the SDK server for the first time, the server extracts the icsdk.war file into the
following folder: IC_INSTALL_DIR/IC72/sdk/server/icsdk

The log4j configuration files are extracted in the following folder: IC_INSTALL_DIR/IC72/
sdk/server/icsdk/WEB-INF/classes.

Location of Client SDK server log files

By default, the Client SDK server log files are stored in the following folder:

IC_INSTALL_DIR/IC72/tomcat/logs/

Changing the log4j file name

By default, the Client SDK server uses log4j.xml for the log4j configuration file name. You can
change the file name, if necessary.

To change the file name for the log4j configuration file, perform the steps in the following table:

Operating system Steps

Windows 1. Open the following file for editing:
IC_INSTALL_DIR\IC72\tomcat\bin\icsdk.bat

2. Change the log4j configuration file name.
3. Save the icsdk.bat file.
4. Stop the Client SDK service in the Window Services control panel.
5. Configure the Client SDK services with the Configuration Tool, as

described in IC Installation and Configuration, to recreate the Client
SDK service.
Note: You must re-configure the Client SDK services to make the
renamed log4j file effective.

Logging

Avaya IC Client SDK Programmer Guide May 2013 103

Changing the level of Client SDK server logging

The following items control the level of logging for the Client SDK server:

l The value of the Avaya IC property Agent/Desktop/WebClient/LogLevelServer

l The logging configuration file

If the log level setting in the Agent/Desktop/WebClient/LogLevelServer property is lower than
that in the log4j.xml file, the property overrides the setting in the file. For example:

l If the log level in the server log4j.xml is debug and LogLevelServer is set to info, all logging
for the Client SDK server occurs at info level.

l If the log level in the server log4j.xml is info and the LogLevelServer is set to debug, all
logging for the Client SDK server occurs at the info level. Logging ignores the
LogLevelServer property.

To change the logging level for the Client SDK server:

1. In IC Manager, set the required value for the Agent/Desktop/WebClient/LogLevelServer
property.

For information on how to set this property, see IC Administration Volume 2: Agents,
Customers, & Queues.

2. Select the server log configuration file with the correct level of logging.

3. Rename the selected file to log4j.xml.

For example, to set Client SDK server logging at the info level, rename log4j.xml.basic to
log4j.xml.

Solaris or AIX 1. Open the following file for editing:
IC_INSTALL_DIR/IC72/tomcat/bin/icsdk.sh

2. Change the log4j configuration file name.
3. Save the icsdk.sh file.
4. Navigate to the IC_INSTALL_DIR/IC72/bin directory.
5. Execute the following command to stop and restart the Client SDK

server:
nohup ./ictomcat.sh [stop | start] SDK

Note: You must re-configure the Client SDK services to make the
renamed log4j file effective.

Operating system Steps

Chapter 5: Compiling and debugging a custom application

104 Avaya IC Client SDK Programmer Guide May 2013

Client SDK client logging
The Client SDK uses log4j for the Java sample client and log4net for the .NET sample client. To
optimize consistent logging, the Client SDK uses log4j and log4net internally.

This section includes the following topics:

l When Client SDK client logging occurs on page 104

l Logging in the .NET sample client on page 104

l Changing the level of logging for the .NET sample client on page 105

l Logging in the Java sample client on page 105

l Configuring the Java sample client to log to a file on page 105

When Client SDK client logging occurs

On the client-side, the Client SDK logs when:

l The code calls a method of the Client API. Logging shows the ID of the object that was
called and all the parameters of the method.

l A component is about to send a message to the server. Logging shows the ID attribute
associated with the message.

l The server receives a message. Logging shows the name of the message. If the message
is a data message, logging also shows the dataid and rootcause attributes of the
message.

Logging in the .NET sample client

The .NET sample client uses the log4net logger module.

The .NET sample client has a log4net configuration file named CSharptester.exe.log4net. By
default, this configuration file creates a debug.log in the current directory.

For information about logging with log4net, see the following Website:

http://logging.apache.org/log4net

http://logging.apache.org/log4net

Logging

Avaya IC Client SDK Programmer Guide May 2013 105

Changing the level of logging for the .NET sample client

To change the level of logging for the .NET sample client, modify the CSharpTester.exe.log4net
file to log at the required logging level.

Logging in the Java sample client

The Java sample client uses commons-logging. By default, the Java sample client logs
everything to console. You can configure the Java sample client to log according to the
log4j.xml specifications.

For information about configuring log4j, see the following Website:

http://logging.apache.org/log4j/docs

Configuring the Java sample client to log to a file

To configure the Java sample client to log to a file:

1. Copy the sample log4j.xml file:

l From IC_INSTALL_DIR\IC72\sdk\design\java\sample\config

l To IC_INSTALL_DIR\IC72\sdk\design\java\sample\bin

2. In a text editor, open the sample log4j.xml file for editing.

3. Uncomment the second appender and comment the first appender.

4. Save the log4j.xml file.

Setting the logging level for the Java sample client

To set the logging level for the Java sample client, modify the log4j.xml file to log at the desired
level of logging.

Logging guidelines
Avaya recommends you to consider the following guidelines when you configure logging for the
Client SDK:

Use prepackaged logging configurations for custom applications: To effectively log with
the Client SDK, you must be familiar with the logging toolkit used for the platform of your custom
application. For best results, Avaya recommends you to use the prepackaged configurations
that are provided with the Client SDK for your custom applications.

http://logging.apache.org/log4j/docs

Chapter 5: Compiling and debugging a custom application

106 Avaya IC Client SDK Programmer Guide May 2013

Set default logging at info level: At info level, the Client SDK logs the information required to
assist you in understanding how the Client SDK functions. Logging at Info level includes events
that occur at the boundaries of the Client SDK.

Use debug level only when problems occur: At debug level, the Client SDK logs additional
information that Avaya DevConnect and Support require to debug the problem.

Configure Avaya IC logging properties: Some Avaya IC properties control the configuration
of logging in the log4j.xml file. For more information about those properties, including
recommended settings, see IC Administration Volume 2: Agents, Customers, & Queues.

Tracing issues through Client SDK logs
In Client SDK logs, you can:

l Use the ID of an object to trace what happens when a single method of the Client API is
called.

l Trace the events propagated by Avaya IC, such as WorkItem delivery.

Tip:
Tip: If the problem was initiated in the Avaya IC core system, verify that no issues

occurred in that system before the object or event was passed to the Client SDK.

To trace an issue through the Client SDK logs:

1. Review the Client SDK server log to verify that the UOM fired the appropriate event for the
object or method call.

l If the log includes this event, the object or method call has traversed through the UOM
and has reached the SDK server bridge. Continue with Step 2.

l If the log does not include this event, the UOM might have a problem. Increase the log
level to debug on the Client SDK server, reproduce the issue, and then contact Avaya
for support.

2. Review the Client SDK server log to verify that the SDK server bridge sent a message over
the Communication layer.

l If the log includes this message, the object or method call has traversed through the
SDK server bridge. Continue with Step 3.

l If the log does not include this message, the SDK server bridge might have a problem.
Increase the log level to debug on the Client SDK server, reproduce the issue, and
then contact Avaya for support.

3. Review the Client SDK client log to verify that the Client SDK client framework received
the message.

l If the log includes this message, the object or method call traversed successfully over
the Communication Layer. Continue with Step 4.

Logging

Avaya IC Client SDK Programmer Guide May 2013 107

l If the log does not include this message, the Communication Layer might have a
problem. Increase the log level to debug on the Client SDK client, reproduce the issue,
and then contact Avaya for support.

4. In the Diagnostic Viewer, verify that the appropriate data was added to the Hierarchical
Data Store.

l If the Diagnostic Viewer shows the data, the Client SDK client framework and
Hierarchical Data Store likely did not cause the problem.

l If the Diagnostic Viewer does not show the data, the Hierarchical Data Store or the
Client SDK client framework might have a problem. Increase the log level to debug on
the Client SDK client, reproduce the issue, and then contact Avaya for support.

Sample log messages
Logging in the Client SDK is symmetrical. The Client SDK logs always include one or both of the
following:

l Application user for which the item was logged

l Session for which the item was logged

This section describes the seven messages that the Client SDK client and server logs when the
makeAvailable method is called on the Session object. The client logs message types 1 through
3. The server logs message types 4 through 6.

Note:
Note: This section provides sample messages for only one scenario. However, Client

SDK logs will include similar messages for other events and method calls.

This section includes the following topics:

l Log message type 1 on page 108

l Log message type 2 on page 109

l Log message type 3 on page 110

l Log message type 4 on page 111

l Log message type 5 on page 112

l Log message type 6 on page 113

Chapter 5: Compiling and debugging a custom application

108 Avaya IC Client SDK Programmer Guide May 2013

Log message type 1

Description

Message type 1 is logged when a Client API call is made. The Client SDK client logs this
message.

Sample message

Message explanation

2005-09-26 18:56:11,921|INFO|com.avaya.ic.client.sdk.impl.SessionImpl|
AWT-EventQueue-0||||{agent1}.makeAvailable()|[]

Message section Description

2005-09-26 18:56:11,921 The date and time when the message was logged.

INFO The log level at which the message was logged.

com.avaya.ic.client.sdk.impl.Session
Impl

The Logger Name that logged this message.

AWT-EventQueue-0 The ID of the thread on which this message was
logged.

{agent1}.makeAvailable() The text of the log message. The text uses the
following format:
{(<objectid>).<methodName>(¶m1=value
1....¶mN..valueN)

where
l objectid is a unique identifier for the object on

which the method was called.
l methodName is the name of the method that was

called.
l paramN is the name of the parameter.
l valueN is the value of the parameter. If the value is

an object reference, the log includes the output of
the toString method on the object.

Logging

Avaya IC Client SDK Programmer Guide May 2013 109

Log message type 2

Description

Message type 2 is logged just before the Client SDK client sends the method call as a message
over the communication layer. The Client SDK client logs this message.

Sample message

Message explanation

2005-09-26 18:56:11,921|INFO |com.avaya.client.sdk.framework.impl.
SDKMessagingConnectorImpl|AWT-EventQueue-0||||Sending Message : Name =
session.makeavailable&Object Id = agent1|[]

Message section Description

2005-09-26 18:56:11,921 The date and time when the message was logged.

INFO The log level at which the message was logged.

com.avaya.client.sdk.framework.impl
.SDKMessagingConnectorImpl

The Logger Name that logged this message.

AWT-EventQueue-0 The ID of the thread on which this message was
logged.

Sending Message : Name =
session.makeavailable&Object Id =
agent1

The text of the log message. The text uses the
following format:
Sending Message : Name =
<interfaceName>.<methodName> &Object Id
= <objectid>

where
l interfaceName is the name of the interface for

which the message is being sent to the server.
l methodName is the name of the method for which

the message is being sent to the server.
l objectid is a unique identifier for the object on

which the method was called.

Chapter 5: Compiling and debugging a custom application

110 Avaya IC Client SDK Programmer Guide May 2013

Log message type 3

Description

Message type 3 is logged when the communication layer delivers an event to the client
framework. The Client SDK client logs this message.

Sample message

Message explanation

2005-09-26 18:56:12,015|INFO |com.avaya.client.sdk.framework.impl.
SDKMessagingConnectorImpl|MessagingClientRF_agent1-InboundExecutor_Thread-1||||
Received Message : Name = data.modify&Data Id = agent1&Root Cause =
[LiveUserImpl.INIT_AVAILABLE], reason=[Setting a new user state. The old state was
AUXWORK.]|[]

Message section Description

2005-09-26 18:56:12,015 The date and time when the message was logged.

INFO The log level at which the message was logged.

com.avaya.client.sdk.framework.impl
.SDKMessagingConnectorImpl

The Logger Name that logged this message.

MessagingClientRF_agent1-Inbound
Executor_Thread-1

The ID of the thread on which this message was
logged.

Received Message : Name =
data.modify&Data Id = agent1&Root
Cause =
[LiveUserImpl.INIT_AVAILABLE],
reason=[Setting a new user state.
The old state was AUXWORK.]

The text of the log message. The text uses the
following format:
Received Message : Name =
<messageName>&Data Id =
<fullyQualifiedObjectId>&Root Cause =
<reasonServerSentMessage>

where
l messageName is the name of the message sent

by the server.
l fullyQualifiedObjectId is a unique identifier for the

object on the client.
l reasonServerSentMessage is the reason that the

server sent the message.

Logging

Avaya IC Client SDK Programmer Guide May 2013 111

Log message type 4

Description

Message type 4 is logged when a message handler on the SDK server bridge is invoked. The
Client SDK server logs this message.

Sample Message

Message explanation

2005-09-26 19:16:51,312|INFO| com.avaya.ic.sdk.bridge.controllers.session.
SessionMessageHandlers$SessionMakeAvailableHandler|MessagingServiceRF-InboundExecutor
_Thread-6||||onMessage(): Received message for agent1: [session.makeavailable]|[]

Message section Description

2005-09-26 19:16:51,312 The date and time when the message was logged.

INFO The log level at which the message was logged.

$SessionMakeAvailableHandler The Logger Name that logged this message.

MessagingServiceRF-
InboundExecutor_Thread-6

The ID of the thread on which this message was
logged.

onMessage(): Received message for
agent1: [session.makeavailable]

The text of the log message. The text uses the
following format:
onMessage(): Received message for
<objectid>:
[<interfaceName>.<methodName>]

where
l objectid is a unique identifier for the object on

which the method was called.
l interfaceName is the name of the interface for

which the message is being sent to the server.
l methodName is the name of the method for which

the message is being sent to the server.

Chapter 5: Compiling and debugging a custom application

112 Avaya IC Client SDK Programmer Guide May 2013

Log message type 5

Description

Message type 5 is logged when an event is received from the UOM. The Client SDK server logs
this message.

Sample Message

Message explanation

2005-09-26 19:16:51,327|INFO |com.avaya.ic.sdk.bridge.controllers.session.
SessionController$MyUserListener|UOMEventQueueExecutor_Thread-7|agent1|x3FFJip6aNZ0dO
HHFbInpfd||Received uom event for agent1: [STATE_CHANGED[INIT_AVAILABLE]]|[]

Message section Description

2005-09-26 19:16:51,327 The date and time when the message was logged.

INFO The log level at which the message was logged.

$MyUserListener The Logger Name that logged this message.

UOMEventQueueExecutor_
Thread-7

The ID of the thread on which this message was
logged.

Received uom event for agent1:
[STATE_CHANGED
[INIT_AVAILABLE]]

The text of the log message. The text uses the
following format:
Received uom event for <objectid>:
<reason>

where
l objectid is a unique identifier for the object on

which the method was called.
l reason explains why the UOM sent the event.

Logging

Avaya IC Client SDK Programmer Guide May 2013 113

Log message type 6

Description

Message type 6 is logged just before the SDK server bridge sends a message over the
Communication Layer. The Client SDK server logs this message.

Sample Message

Message explanation

2005-09-26 19:16:51,327|INFO |com.avaya.ic.sdk.bridge.controllers.session.
SessionController|UOMEventQueueExecutor_Thread-7|agent1|x3FFJip6aNZ0dOHHFbInpfd||Send
ing message to client: data id = agent1; rootcause = [LiveUserImpl.INIT_AVAILABLE],
reason=[Setting a new user state. The old state was AUXWORK.]|[]

Message section Description

2005-09-26 19:16:51,327 The date and time when the message was logged.

INFO The log level at which the message was logged.

com.avaya.ic.sdk.bridge.controllers.
session.SessionController

The Logger Name that logged this message.

UOMEventQueueExecutor_
Thread-7

The ID of the thread on which this message was
logged.

Sending message to client: data id =
agent1; rootcause =
[LiveUserImpl.INIT_AVAILABLE],
reason=[Setting a new user state.
The old state was AUXWORK.]

The text of the log message. The text uses the
following format:
Sending message to client: data id =
<fullyQualifiedObjectId> ; rootcause = <
reasonServerSendingMessage>

where
l fullyQualifiedObjectId is a unique identifier for the

object on the client.
l reasonServerSendingMessage explains why the

server sent the message.

Chapter 5: Compiling and debugging a custom application

114 Avaya IC Client SDK Programmer Guide May 2013

Error messages
All the error, warning, and information messages generated by Client SDK components are
delivered as events. Each message includes:

l Message code

l Message description in English

The messages are not localized into non-English languages. Each message has an error code
that you can use to customize or translate the message. For a list of messages and error codes,
see Error messages on page 179.

Client SDK diagnostic information
The Client SDK includes an API that can provide a snapshot of the Hierarchical Data Store
(HDS). You can use this snapshot information to debug issues and view the state of a sample
client or custom application at any given point.

For more information about the HDS, see Hierarchical Data Store on page 16.

This section includes the following topics:

l Using the diagnostic API on page 115

l When the Hierarchical Data Store is updated on page 115

l Viewing the HDS diagnostic information in the sample clients on page 115

l Using the HDS diagnostic information to identify problems on page 116

l Debugging problems found with the HDS diagnostic information on page 117

l Opening the Diagnostic Viewer on page 117

Client SDK diagnostic information

Avaya IC Client SDK Programmer Guide May 2013 115

Using the diagnostic API
You can use the diagnostic API to send HDS diagnostic information into a file after a specified
user action or trigger. You can then analyze this information to debug issues with your custom
application.

The sample clients display the output of the diagnostic API in the Diagnostic Viewer.

! Important:
Important: Use the diagnostic API for diagnostic purposes with your custom application in

debug mode only.

To use the diagnostic API, note the following:

1. The diagnostic API is defined on the Session object.

2. Use the appropriate call from the following table.

When the Hierarchical Data Store is updated
The Hierarchical Data Store is updated when one of the following messages arrives in the Client
SDK client:

l data.modify

l data.add

l data.remove

l event.notification

When data is updated in the Hierarchical Data Store, your custom code can trigger an event.

Viewing the HDS diagnostic information in the sample clients
You can use the Diagnostic Viewer to view the HDS diagnostic information in the sample clients.

The user interface of the Diagnostic Viewer in the .NET sample client is not exactly the same as
that of the Java sample client. However, both versions provide the same view of the folders and
their contents.

Operating system API call

.NET string DumpDiagnosticInfo()

Java String dumpDiagnosticInfo()

Chapter 5: Compiling and debugging a custom application

116 Avaya IC Client SDK Programmer Guide May 2013

Data elements in the Diagnostic Viewer

The Diagnostic Viewer displays the values returned by the DumpDiagnosticInfo method.

Changed elements in the Diagnostic Viewer

Changes to the structure of data elements in the Diagnostic Viewer and the relationships
between the elements correlate:

l Changes in the Hierarchical Data Store

l Events that derive from the Client API

For example, in the diagram in Viewing the HDS diagnostic information in the sample clients on
page 115, if the state of an agent1 changes, you can expect a Session.StateChanged event to
occur.

Using the HDS diagnostic information to identify problems
You can use the diagnostic API to obtain a snapshot of the HDS at any given point in time and
display the snapshot information in a user interface or log file for debugging purposes.

The Diagnostic Viewer in the sample clients is an example of how to display and view HDS
diagnostic information. For example, with the Diagnostic Viewer in the sample clients you can:

l View the data in the Hierarchical Data Store.

l Determine whether messages arrived and related events were generated as expected.

If one or more of these messages do not arrive in the Client SDK client, the Hierarchical Data
Store is not updated. This problem usually indicates that there is an issue with the Client SDK
client framework or the Hierarchical Data Store.

If the Hierarchical Data Store was updated but an event triggered by that update did not
generate, this problem usually indicates one of the following issues:

l The Hierarchical Data Store did not notify the Client SDK client framework of the change in
data.

l The Client SDK client framework did not implement the event generation.

l A problem in the Client SDK client framework caused the event not to generate.

Debugging common problems

Avaya IC Client SDK Programmer Guide May 2013 117

Debugging problems found with the HDS diagnostic information
If the HDS diagnostic information reveals a problem, do the following:

1. Review the logs to determine whether an exception is logged.

2. If an exception is logged, change the log configuration to debug, and reproduce the
problem. Then send the logs to Avaya support.

Opening the Diagnostic Viewer
To open the Diagnostic Viewer from the .NET sample client, click the Diagnostic Viewer
button.

To open the Diagnostic Viewer from the Java sample client, select HDS Diagnostic from the
Tools menu.

Debugging common problems
This section includes the following topics:

l Custom application cannot communicate with Client SDK server on page 118

l Chat or email work item is not delivered on page 118

l WorkItem state does not change on page 119

l .NET client encounters socket exception error during log in on page 120

Tip:
Tip: If you encounter a problem that is not included in this section, review the

sequence of steps in Tracing issues through Client SDK logs on page 106 to
identify the component that triggered the issue.

Chapter 5: Compiling and debugging a custom application

118 Avaya IC Client SDK Programmer Guide May 2013

Custom application cannot communicate with Client SDK server
Problem: Your custom application cannot communicate with the Client SDK server.

Solution: Verify the following items:

1. On the SDK Server tab of the Configuration Tool, confirm that the SDK Server Machine
field includes the fully-qualified domain name of the computer that hosts the Client SDK
server machine.

2. If necessary, rerun to the Configuration Tool to configure the Client SDK services, as
described in IC Installation and Configuration.

Chat or email work item is not delivered
Problem: The custom application or sample client does not receive a chat or email work item
sent to an application user.

Solution: Verify the following steps:

1. Review the WebACD Administration pages in IC Manager to determine who is the current
owner of the work item:

l If the work item is assigned to an Avaya IC agent, the Avaya IC core system has
routed the work item correctly. Continue with Step 2.

l If the work item is not visible in the WebACD Administration pages or has not been
routed to an Avaya IC agent:

- Verify the configuration of all Avaya IC agents.

- Verify the configuration of the Web Management servers.

- Contact Avaya support.

2. Review the Client SDK server log to verify that the UOM has generated a ContactAdded
event.

l If the log includes this event, the work item has traversed through the UOM and has
reached the SDK server bridge. Continue with Step 3.

l If the log does not include this event, the UOM might have a problem. Increase the log
level to debug on the Client SDK server, reproduce the issue, and then contact Avaya
support.

3. Review the Client SDK server log to verify that the SDK server bridge sent a message over
the Communication layer.

l If the log includes this event, the work item has traversed through the SDK server
bridge. Continue with Step 4.

Debugging common problems

Avaya IC Client SDK Programmer Guide May 2013 119

l If the log does not include this event, the SDK server bridge might have a problem.
Increase the log level to debug on the Client SDK server, reproduce the issue, and
then contact Avaya support.

4. Review the Client SDK client log to verify that the SDK client framework received the
message.

l If the log includes this message, the work item traversed successfully over the
communication layer. Continue with Step 5.

l If the log does not include this message, the Communication Layer might have a
problem. Increase the log level to debug on the SDK client, reproduce the issue, and
then contact Avaya support.

5. In the Diagnostic Viewer, verify that the data was added to the Hierarchical Data Store.

l If the Diagnostic Viewer shows the data, the SDK client framework and Hierarchical
Data Store likely did not cause the problem.

l If the Diagnostic Viewer does not show the data, the Hierarchical Data Store or the
SDK client framework might have a problem. Increase the log level to debug on the
SDK client, reproduce the issue, and then contact Avaya support.

WorkItem state does not change
Problem: The state of a WorkItem does not change as expected.

Solution: Verify the following steps:

1. Review the Client SDK server log to verify that the UOM has generated the state change
event.

l If the log includes this event, the state change call has traversed through the UOM and
has reached the SDK server bridge. Continue with Step 2.

l If the log does not include this event, the UOM might have a problem. Increase the log
level to debug on the Client SDK server, reproduce the issue, and then contact Avaya
support.

2. Review the Client SDK server log to verify that the SDK server bridge sent a message over
the Communication layer.

l If the log includes this event, the state change call has traversed through the SDK
server bridge. Continue with Step 3.

l If the log does not include this event, the SDK server bridge might have a problem.
Increase the log level to debug on the Client SDK server, reproduce the issue, and
then contact Avaya support.

Chapter 5: Compiling and debugging a custom application

120 Avaya IC Client SDK Programmer Guide May 2013

3. Review the Client SDK client log to verify that the SDK client framework received the
message.

l If the log includes this message, the state change call has traversed over the
communication layer. Continue with Step 4.

l If the log does not include this message, the communication layer might have a
problem. Increase the log level to debug on the SDK client, reproduce the issue, and
then contact Avaya support.

4. In the Diagnostic Viewer, verify that the data was added to the Hierarchical Data Store.

l If the Diagnostic Viewer shows the data, the SDK client framework and Hierarchical
Data Store likely did not cause the problem.

l If the Diagnostic Viewer does not show the data, the Hierarchical Data Store or the
SDK client framework might have a problem. Increase the log level to debug on the
SDK client, reproduce the issue, and then contact Avaya support.

.NET client encounters socket exception error during log in
Problem: The following socket exception error is generated when you log in to a .NET client:

Solution: This socket exception error is a known .NET 1.1 issue with network bindings. You can
encounter this issue with a .NET client, especially if you use VMWare or during the
development phase.

According to Microsoft, the socket exception error occurs if the number of protocol bindings
exceeds 50, and you use the IPAddress class directly or indirectly.

For more information about this .NET 1.1 issue, including information about the recommended
solution, see the following Microsoft Knowledge base article:

http://support.microsoft.com/default.aspx?scid=kb;en-us;815209

System.Net.Sockets.SocketException: An operation on a socket could not be performed
because the system lacked sufficient buffer space or because a queue was full at
System.Net.Sockets.Socket.InitializeSockets() at System.Net.Sockets.Socket..cctor()

http://support.microsoft.com/default.aspx?scid=kb;en-us;815209

Getting support

Avaya IC Client SDK Programmer Guide May 2013 121

Getting support
Development support for the Client SDK is available only through the Avaya
DeveloperConnection Program (DevConnect). You must follow the DevConnect guidelines to
obtain support for the Client SDK.

To obtain support or participate in testing opportunities, use the DevConnect Portal on the
following Website:

http://www.devconnectprogram.com

Innovator, Premier, or Strategic level members of the DevConnect Program are entitled to
technical support. Support is unavailable to Registered level members of the program. If you
are a Registered level member and require support, you can apply for a higher level of
membership. Avaya determines membership status at all levels. Membership at the Innovator,
Premier, or Strategic level is not open to all companies.

When you contact DevConnect to request technical support, provide the following information:

l Configuration settings, including the SDK server bridge configuration parameters

l Usage scenario, including all steps required to reproduce the issue

l Any custom code that exercises the Client API

l Screen shots, if the issue occurs in a sample client or is visible in your custom application

l Copies of all logs related to the issue, including all client and server logs

l All other information that you gathered when you attempted to resolve the issue

http://www.devconnectprogram.com

Chapter 5: Compiling and debugging a custom application

122 Avaya IC Client SDK Programmer Guide May 2013

Avaya IC Client SDK Programmer Guide May 2013 123

Chapter 6: Localization and
internationalization

The Client SDK is internationalized and includes support for non-English custom applications.
You can use the Client SDK to build internationalized custom applications or to integrate into
existing internationalized applications.

The Client SDK does not include localized versions of the sample clients or error messages.
They are provided in English only. The error messages and other strings in the Client SDK are
configured to make them available for you to customize and translate. Each error message has
a error code associated with them. For a list of messages and error codes, see Error
messages on page 179.

All strings in the Client SDK are in Unicode format. Avaya IC internally uses UTF-8 format.
However, Avaya IC and the Client SDK perform the conversions between Unicode and UTF-8
formats. Your custom application does not need to perform the conversions.

For information about how to customize the character sets that are used in your custom
application, see SDKSupportedCharsets.properties on page 92.

Chapter 6: Localization and internationalization

124 Avaya IC Client SDK Programmer Guide May 2013

Avaya IC Client SDK Programmer Guide May 2013 125

Appendix A: Sample scenarios

! Important:
Important: The code provided in this section is for example only. The actual code in the

sample clients may differ with the samples provided in this section. Always review
the code in the sample clients before you implement any of the scenarios.

This section includes the following topics.

l Login scenario on page 126

l Logout scenario on page 128

l Agent availability scenario on page 129

l Display channel properties scenario on page 131

l Workitem lifecycle scenario on page 133

l Workitem collaboration scenario on page 136

l OnHold/OffHold indication scenario on page 138

l Display text message scenario on page 139

l Display email scenario on page 142

l New Outbound email scenario on page 143

l Reply to email scenario on page 144

l Display WorkItem History scenario on page 146

l Display Customer History scenario on page 148

l AddressBook scenario on page 150

l Retrieving Workitem Contact Attributes scenario on page 151

l Voice Call scenario on page 153

Appendix A: Sample scenarios

126 Avaya IC Client SDK Programmer Guide May 2013

Login scenario
This scenario provides the information needed to use the Client SDK to log in to the Avaya IC
system.

Primary objects used in scenario

This scenario uses the following objects: Application, ApplicationFactory, WebAppContext,
Session.

Implementation considerations

Before you write your custom code, consider the following:

When can you consider an application user to be logged in? An application user can be
considered logged in when the application user was authenticated, and a valid Session object is
available through the Application.

At this point, the Session object is in the logged_in state. However, logged_in is a transitional
state, and the session is still not initialized. A session is not useful before initialization. Do not
allow the application user to perform any session-based operations until the Session object is in
a stable state of Auxwork or Available.

The Avaya IC property Agent/Desktop/AuxWorkOnLogin determines whether the initial
stable state is Auxwork or Available.

How are log in failures propagated? Log in failures are propagated either by exceptions
during the log in request, or through the Session.OperationFailed event.

Why are authentication and initialization not a single-step process? Authentication and
initialization are two-step processes. These processes allow the application user to register for
the event feed from the client library prior to the session initialization. At this point, the Client
SDK starts to receive events from the Client SDK server.

Therefore, at the end of a successful authentication, the application user receives a valid
session. You can use this valid session to register for events. After registration, invoke
initialize() on the Session object to initialize the session.

Can you log in an application user twice with the same Tomcat instance? An application
user cannot have two active Avaya IC sessions. If an application user logs in from a different
Client SDK session, Avaya IC terminates the first session.

Can you log in an application user with two different Tomcat instances? Since the
back-end Avaya IC system is the same, an application user cannot have two active Avaya IC
sessions. If an application user logs in from a different Client SDK session on another Tomcat
instance, Avaya IC terminates the first session.

Login scenario

Avaya IC Client SDK Programmer Guide May 2013 127

High-level steps

This scenario requires the following steps:

1. Set an instance of the Application object using the ApplicationFactory.

2. For the authentication process, use the Application to log in and get access to the Session.

3. Use the Session object to register listeners to receive events.

4. Initialize the Session to complete the process.

Event changes

This scenario involves the following event changes for the objects:

1. During initialization, the Session moves to the transitional Initialized state.

2. The Session moves to a stable Auxwork or Available state.

3. As part of the initialization, channels are also logged in and move to a stable state of Busy
or Idle, depending on whether the application user is in Auxwork or Available.

Sample code

Location of code in Java sample client

Location of code in .NET sample client

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
PresentationSessionImpl.java

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\Com.Avaya.Ic.Sdk.Sampleclient\
Controller\UIController.cs

Appendix A: Sample scenarios

128 Avaya IC Client SDK Programmer Guide May 2013

Logout scenario
This scenario provides the information needed to gracefully log out an application user from the
Avaya IC system with the Client SDK.

Primary objects used in scenario

This scenario uses the following object: Application.

Implementation considerations

Before you write your custom code, consider the following:

How is the session impacted when logout is invoked on the application? When you
invoke logout on the application, the session state changes to logged_out.

What event stream can you expect? The session state will be logged_out.

What determines that an application user is logged out? The following items determine
that an application user is logged out:

l The session state is logged_out.

l Any operation on the session reference generates an OperationFailed event.

l Any attempt to access the session with Application.getSession(id) with the ID of
that session returns a null.

What happens if the server host process is terminated without logging out? Your custom
application gets a ConnectionStatusChanged event. The following table shows what this event
indicates.

Note:
Note: All user operations that need server involvement need to be disabled if the

connection status is IMPAIRED or FAILED. These user operations include
session availability and workitem lifecycle operations. If possible, disable all user
interface elements when the connection is impaired. If the connection cannot be
restored, ensure the application logs out.

Event Description

FAILED Indicates the session connection has failed permanently, and the
connection cannot be restored. For all practical purposes, the session is
no longer valid.

IMPAIRED Indicates the session connection is impaired, and the Client SDK will try to
reconnect.

Agent availability scenario

Avaya IC Client SDK Programmer Guide May 2013 129

High-level steps

This scenario requires the following steps:

1. Access the Application object.

2. Use the Application object to log out.

Event changes

This scenario involves the following event change for the object:

l Session moves to the Logged_out state.

Sample code

Location of code in Java sample client

Location of code in .NET sample client

Agent availability scenario
This scenario provides the information needed to enable an application user to set himself or
herself:

l As Available to start receiving work

l In Auxwork to stop receiving work

Primary objects used in scenario

This scenario uses the following object: Session

Implementation considerations

Before you write your custom code, consider the following:

Which operations need to be invoked? Invoke the following operations:

l Session.enterAuxwork()

l Session.makeAvailable()

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
PresentationSessionImpl.java

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\Com.Avaya.Ic.Sdk.Sampleclient\
Controller\UIController.cs

Appendix A: Sample scenarios

130 Avaya IC Client SDK Programmer Guide May 2013

Which events need to be acted on? Who needs these events? Both operations affect the
state of the Session. Therefore, your custom application must listen to and act on
Session.StateChanged events.

Which server-side responsibilities are involved? When invoked, these methods change the
state of the session and affect the state of the logged in channels. Therefore, also listen to
channel state change events.

Similarly, after channels are available, they can receive work. The Avaya IC core servers might
start to deliver queued items. If this occurs, listen to WorkList.WorkItemAdded events.

Do you want to rely on an OperationSuccess message or a State Change? Most session
operations lead to session state changes. If the state change indicates that the operation
succeeded, the Client SDK does not generate an additional OperationSuccess event.

Operations that do not lead to a state change generate an explicit OperationSuccess event to
indicate the operation was successful. This event is not limited to the Session object but also
occurs for operations exposed by all other Client API objects.

Which API call can manually change endpoints and load? None! The Avaya IC 7.2 release
of the Client SDK does not support manual endpoint manipulation. This release supports only
blended mode. Therefore, the Client API does not expose any objects or methods that can
manually change endpoints and load.

High-level steps

This scenario requires the following steps:

1. Access the Session object.

2. Through Session, invoke the operation that enables an application user to receive work.

3. Listen to necessary events that indicate that the operation was successful.

4. Through Session, invoke the operation that enables an application user to stop receiving
work.

5. Listen to necessary events that indicate that the operation was successful.

Event changes

This scenario involves the following event changes for the objects:

l For Available, Session object moves from Init_available to Available.

l For Auxwork, Session object moves from Init_auxwork to Auxwork.

Display channel properties scenario

Avaya IC Client SDK Programmer Guide May 2013 131

Sample code

Location of code in Java sample client

Location of code in .NET sample client

Display channel properties scenario
This scenario provides the information needed to ensure that the full view of each channel is
available in the custom application and to ensure that:

l The application displays the channel state and ceiling in the status bar.

l The application displays health status changes through different icons.

l The channel background displays the delivery status. For example, the icon is:

- White when work items can be delivered.
- Black when work items cannot be delivered.

Note:
Note: The Java sample client implements this user interface specification. The .NET

client has a different user interface view and does not follow this scenario.

Primary objects used in scenario

This scenario uses the following objects: Session, Channel, VoiceChannel, EmailChannel,
ChatChannel.

Implementation considerations

Before you write your custom code, consider the following:

What are the potential uses of the health status? The health status indicates the ability of
the channel to service the interactions and documents associated with that channel. If the
channel health is impaired or failed, certain operations on the interaction or document might not
be possible. Therefore, use the health status to determine the enablement or disablement of
user interface buttons that are associated with WorkItem, Interaction, or Document operations
that depend on a healthy channel.

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic/sdk\sample\ui\
controllers\SessionControllerImpl.java

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\Com.Avaya.Ic.Sdk.Sampleclient\
Controller\UIController.cs

Appendix A: Sample scenarios

132 Avaya IC Client SDK Programmer Guide May 2013

How can you make channels available and unavailable? The only way to enable channels
to receive or not receive work is to toggle session availability. Use the following methods:

l Session.enterAuxwork() to make all channels busy

l Session.makeAvailable() to make all channels available to receive work

You cannot individually modulate channel endpoints. Avaya IC allows that operation only in
manual mode. The Client SDK does not support manual mode.

What mechanism can you use to notify the application of health and delivery status, state
changes, and other relevant events? Use the following explicit event callbacks to be notified
of a change in the health or delivery status:

l HealthStatusChanged

l DeliveryStatusChanged

High-level steps

This scenario requires the following steps:

1. Access the Session object.

2. Register listeners for Channel events.

3. After the handlers receive an event:

a. Identify the event.

b. Make the necessary changes in the user interface.

Event changes

This scenario involves the following event changes for the objects:

l Channel.HealthStatusChanged

l Channel.DeliveryStatusChanged

Sample code

Location of code in Java sample client

Location of code in .NET sample client

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
controllers\ChannelViewControllerImpl.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
core\StatusBarPanel.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
core\AgentSummaryPanel.java

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\Com.Avaya.Ic.Sdk.Sampleclient\
Controller\UIController.cs

Workitem lifecycle scenario

Avaya IC Client SDK Programmer Guide May 2013 133

Workitem lifecycle scenario
This scenario provides the information needed to exercise the lifecycle operations of a delivered
work item from delivery to completion.

Note:
Note: This scenario assumes that AutoAccept is disabled through the Avaya IC

properties. With AutoAccept disabled, you must accept the work item after
delivery.

Primary objects used in scenario

This scenario uses the following objects: WorkList, WorkItem

Implementation considerations

Before you write your custom code, consider the following:

How do you check the values of PromptOnArrival and WrapUpEnabled Avaya IC
properties? You can access Avaya IC properties through appropriate methods exposed on the
Session object. However, by default, only a subset of the Avaya IC properties is sent to the
client and accessible through the session. The SDKICpropertiesSections.properties file defines
the property sections that are sent to the client. To access additional Avaya IC properties, you
must customize this file. For more information, see SDKICPropertiesSections.properties on
page 92.

Which events need to be considered? Which entities generate these events? For example,
what are the required WorkItem and WorkList state change events? The WorkList object
generates WorkItem delivery and removal events. These events indicate the delivery and
removal of a work item. The WorkItemAdded event provides access to the most recently
delivered WorkItem object.

WorkItem operations trigger most lifecycle changes on the Workitem and lead to corresponding
changes in the WorkItem state. These operations include:

l accept()

l decline

l makeCurrent()

l defer()

l release()

l complete()

Appendix A: Sample scenarios

134 Avaya IC Client SDK Programmer Guide May 2013

Note:
Note: All work items must go through the Wrapup state. This requirement ensures that

you can take all necessary custom actions before calling the
WorkItem.complete()API. Therefore, even if an application user declines a
work item or a RONA timeout occurs before an application user accepts, the work
item enters the Wrapup state. For scenarios in which the application user does
not accept a work item, and no wrapup data needs to be collected, the
WorkItem.getTerminateReason() provides the context to identify what
triggered the Wrapup state.

You must look at these TerminateReason codes to determine which of the following operations
needs to occur next:

l Launch a wrapup sequence.

l Invoke immediately the complete() API to terminate the WorkItem.

Usually, you should immediately invoke the WorkItem.complete() when the state changes
to Wrapup and TerminateReason is not equal to NORMAL. Your code should invoke the
WorkItem.complete()API no matter how you configure the WrapupEnabled Avaya IC
property.

When and why must you override the WrapupEnabled=true setting? The Avaya IC
property called WrapupEnabled controls whether wrapup occurs after an application user
releases a work item. Your custom application must check this value to determine whether to
launch the wrapup sequence after a work item enters the Wrapup state.

However, in some scenarios, you might need to suppress wrapup even if the WrapupEnabled
property is set to true. Most of these scenarios are captured in the TerminateReasons. Your
custom code should check the TerminateReason to determine whether to ignore the value of
the WrapupEnabled property.

Why is the client responsible for completing the work item? Based on our experience,
integrators and developers frequently customize wrapup or take special steps after a workitem
enters the Wrapup state. Therefore, the Client SDK ensures that each work item goes through
the Wrapup state. The Client SDK developer must invoke complete() on the WorkItem
object to terminate and to remove the work item from the work list of an application user. Your
client can perform these operations after the client collects wrapup data or immediately if the
TerminateReason indicates a special scenario.

Where are the reasons for entering wrapup defined? The TerminateReasons are defined on
the WorkItem object. These reasons are accessible through the
WorkItem.getTerminateReason() method.

High-level steps

This scenario requires the following steps:

1. Register listeners for WorkItem and WorkList events.

Workitem lifecycle scenario

Avaya IC Client SDK Programmer Guide May 2013 135

2. Depending upon the values of Avaya IC properties, prompt on arrival if the WorkItem is in
Alerting state.

3. After the work item is accepted, hook in operations that manipulate state changes.

4. Set the event handlers that update the user interface. For example, buttons to reflect
operational state, or a list widget to display the latest state and currentness.

5. After the work item is released, check the value of TerminateReason and the
wrapupEnabled property to determine if your application must display the Wrap Up dialog
box.

6. If the wrapupEnabled property is disabled or the TerminateReason is not NORMAL,
complete the work item after the state changes to wrapup.

Event changes

Depending on the operation invoked, you get state and event changes for the objects. These
changes include:

l WorkItem.StateChanged

l WorkItem state changes from Alerting to Working to Wrapup

For more information, see the implementation considerations in this section.

Sample code

Location of code in Java sample client

Location of code in .NET sample client

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
controllers\WorkListViewControllerImpl.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
core\InteractionListPanel.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\model\
action\helper\WorkItemActionHelperFactory.java

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\Com.Avaya.Ic.Sdk.Sampleclient\
Controller\UIController.cs

Appendix A: Sample scenarios

136 Avaya IC Client SDK Programmer Guide May 2013

Workitem collaboration scenario
This scenario provides the information needed to transfer a WorkItem that contains a
VoiceMediaInteraction to another voice agent.

Primary objects used in scenario

This scenario uses the following objects: WorkItem, VoiceMediaInteraction.

Implementation considerations

Before you write your custom code, consider the following:

How do you disable prompt on arrival and wrapupEnabled, with auto-accept set to true?
You disable these actions through Avaya IC properties. When auto-accept is set to true, the
WorkItem is automatically accepted into the application user worklist on delivery and made
Current by the Client SDK server. The application user can then start to handle the work item
immediately.

When can an application user perform WorkItem operations? Usually, an application user
can perform operations only on a current work item. An agent must accept a work item before
that work item can become current. To reflect this sequence, you must ensure that all buttons
associated with WorkItem operations are tied into the WorkItem.isCurrent() boolean
value. You only need to tie Accept and Decline to the WorkItem state value of Alerting to enable
those buttons.

Where do the collaboration methods reside? Are the prerequisites for collaboration
satisfied? For example, is the required channel available? Is this reflected in the button
state? Collaboration methods reside on the WorkItem, not the channel. Collaboration includes
conferences and consults. In the Client SDK, you use a particular channel to collaborate a work
item. As a result, you cannot collaborate a WorkItem that does not have an associated channel.

When your custom code enables or disables user interface buttons associated with the
collaborative operations, consider the requirements of collaboration.

Which events indicate a successful transfer or a failed transfer? What actions does the
custom application need to take after an event is received? If a state change can uniquely
identify that a transfer was successful, the Client API does not raise an OperationSuccess
event. Therefore, you will not see an OperationSuccess event after the operation of
tWorkItem.transfer() API. If the transfer succeeds, the WorkItem goes into the Wrapup
state. If the transfer fails, the Client SDK raises an OperationFailed event, which indicates
the reason for the failure.

Workitem collaboration scenario

Avaya IC Client SDK Programmer Guide May 2013 137

Note:
Note: Especially in collaboration and transfer scenarios, you can get a state change

after you invoke a collaborate or transfer operation. This state change occurs
because the WorkItem can enter a transitional CONFERENCING/
TRANSFERRING/CONSULTING state, and then return to the previous state if
the conference or transfer fails. You will receive state changes for this operation.
However, those state changes do not indicate that the operation was successful.

Are reasons available if the transfer fails? The Client SDK provides these reasons in the
OperationFailed event. At this time, no enumerations are defined.

From a state change perspective, what will happen if a collaborative request fails? You
receive state change events. A rollback from the transitional state to the previous stable state
causes these state change events.

Is collaboration with a chat media interaction a two-step process? No, collaboration with a
chat media interaction is not a two-step process. Specifically for chat media interactions,
collaboration is a single-step process. After the collaboration is successful, collaboration
immediately enters the collaboration complete phase. For a conference, this step confirms that
the chat is successfully conferenced and all parties are in the call.

This single step process means:

1. In the case of conference, the chat is successfully conferenced, and all parties are in the
call.

2. Consultative collaboration is not currently supported for chat media because this
collaboration is essentially a transfer().

3. collaborationComplete(CONFERENCE/CONSULT) is invalid for chat media based
work items.

Can a chat transfer request be cancelled after initiation? Yes. You can cancel the chat
transfer by invoking the transferCancel() API on the Workitem object.

High-level steps

This scenario requires the following steps:

1. Register listeners for WorkItem events.

2. Read the destination from the text box, and determine the destinationType. In this case,
the destinationType is agent.

3. Invoke the collaboration methods and wait for events that indicate a success or failure.

Event changes

This scenario involves the following event changes for the objects:

l WorkItem state change events from Working to Conferencing to Working

l OperationFailed and Operation Success events

Appendix A: Sample scenarios

138 Avaya IC Client SDK Programmer Guide May 2013

Sample code

Location of code in Java sample client

Location of code in .NET sample client

OnHold/OffHold indication scenario
This scenario provides the information needed to display the work list and update the toolbar
when a voice media interaction:

l Is on hold.

l Has been reconnected.

Primary objects used in scenario

This scenario uses the following object: VoiceMediaInteraction

Implementation considerations

Before you write your custom code, consider the following:

Which operations allow an application user to place a voice interaction on hold? Use the
hold() operation exposed on the VoiceMediaInteraction object.

Which event notifies that the voice interaction is on hold or reconnected?
VoiceMediaInteraction state changes indicate whether the interaction is on hold or reconnected.

Can a work item be Current or Working when a voice interaction is on hold? Yes. An
application user can work on a work item even if the voice call is on hold. Therefore, the Client
SDK supports this scenario. You must invoke life cycle operations to change the currentness of
a work item. For example, you can invoke the defer() API on a work item that contains an
email, or the application user can make another work item current.

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
controllers\WorkListViewControllerImpl.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
core\InteractionListPanel.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\model\
action\helper\WorkItemActionHelperFactory.java

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\Com.Avaya.Ic.Sdk.Sampleclient\
Controller\UIController.cs

Display text message scenario

Avaya IC Client SDK Programmer Guide May 2013 139

High-level steps

This scenario requires the following steps:

1. Provide a mechanism to invoke the appropriate methods.

2. Implement handlers that react to state change events.

3. Update the user interface based on the state change events.

Event changes

This scenario involves the following event changes for the objects:

l VoiceMediaInteraction.State.ACTIVE to VoiceMediaInteraction.State.INACTIVE

l VoiceMediaInteraction.State.INACTIVE to VoiceMediaInteraction.State.ACTIVE

Sample code

Location of code in Java sample client

Location of code in .NET sample client

Display text message scenario
This scenario provides the information needed to implement a solution where:

l An application user can exchange messages with a customer.

l The transcript highlights the messages exchanged. For example you can highlight the
customer name with blue and the application user name with red.

Primary objects used in scenario

This scenario uses the following objects: ChatMediaInteraction, TranscriptDocument.

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
controllers\MediaInteractionViewControllerImpl.java

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\Com.Avaya.Ic.Sdk.Sampleclient\
Controller\UIController.cs

Appendix A: Sample scenarios

140 Avaya IC Client SDK Programmer Guide May 2013

Implementation considerations

Before you write your custom code, consider the following:

Which method do you use to navigate to the chat interaction and access the transcript?
A Document class named TranscriptDocument represents the transcript. To access the
transcript, do the following:

l Access ChatMediaInteraction from MediaInteractionList.

l MediaInteractionList is contained within WorkItem.

l Access TranscriptDocument from ChatMediaInteraction.

After the ChatMediaInteraction is available, access the transcript with the
ChatMediaInteraction.getTranscript()method. You can access a collection of all
TranscriptLine objects with the
transcriptDocument.getTranscriptLines().getAll() method.

Which mechanism do you use to register for events associated with message updates?
The TranscriptDocument generates a TranscriptLineAdded event when a message is received
from the associated chat room. The following example shows a mechanism to register for these
events:

Note:
Note: The context of a TranscriptDocument is available in the

TranscriptDocument.TranscriptLineAdded Event object.

Which user interface transcript element needs to be updated on receiving messages?
Usually, the window that displays the real-time message exchange has an embedded listener to
receive these event callbacks.

Where are the message types defined? The different message types are defined on the
TranscriptLine that represents a message. Currently, the two types of messages that can be
exchanged are TEXT and URL.

How do you identify between different sources of the same type? The TranscriptLine
defines the MessageType and an OriginType that indicates the originator. The following table
shows who can originate a message in the chat room.

session.registerListener(TranscriptDocument.TranscriptLineAdded.TYPE, new
TranscriptLineAddedListener());

Message originator Description

CALLER The customer

AGENT The application user

SYSTEM A broadcast message from the chat subsystem

Display text message scenario

Avaya IC Client SDK Programmer Guide May 2013 141

A chat room can host multiple agents or customers. For example, messages can arrive from
two different AGENT originator types. TranscriptLine.getOriginatorHandle()
uniquely identifies the chat handle for the originator of a message.

Can you identify parties? For example, who is the source of a particular message? The
OriginType identifies parties.

High-level steps

This scenario requires the following steps:

1. On WorkItem delivery:

a. Access the transcript document for the ChatMediaInteraction.

b. Use the transcript document to populate the transcript window.

2. Implement handlers that react to transcript events.

3. Update the user interface based on the transcript events.

Event changes

This scenario involves the following event change for the objects:

l TranscriptLineAdded event on TranscriptDocument

Sample code

Location of code in Java sample client

Location of code in .NET sample client

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
controllers\MediaInteractionViewControllerImpl.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\model\
TextEditorPane.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
chat\ChatTranscriptPanel.java

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\Com.Avaya.Ic.Sdk.Sampleclient\
Controller\UIController.cs

Appendix A: Sample scenarios

142 Avaya IC Client SDK Programmer Guide May 2013

Display email scenario
This scenario provides the information needed to:

l Receive a WorkItem that contains an EmailDocument.

l Display the contents of that email in the email viewer.

Primary objects used in scenario

This scenario uses the following objects: WorkItem, EmailDocument.

Implementation considerations

Before you write your custom code, consider the following:

Does EmailDocument have a state model? No, EmailDocument does not have a state
model. The Client SDK considers a Document object to be static. Therefore Document and
related objects do not have any state.

What is the significance of the different email types? How does your custom application
know the type of an email? The Client SDK defines email types in the EmailMessage object.
The types define the different categories of e-mails that Avaya IC tracks.

To access the type of an email document, use the Document.getType() API. The type of a
Document can be Email, ChatTranscript, or Draft.

High-level steps

This scenario requires the following steps:

1. When a WorkItem is delivered, determine whether the work item contains an
EmailDocument.

2. Display the fields of the EmailDocument in the email viewer.

Event changes

This scenario does not involve any event changes for the objects.

New Outbound email scenario

Avaya IC Client SDK Programmer Guide May 2013 143

Sample code

Location of code in Java sample client

Location of code in .NET sample client

New Outbound email scenario
This scenario provides the information needed to create and send new outbound email.

Primary objects used in scenario

This scenario uses the following objects: Session, EmailChannel, WorkItem, EmailDocument,
and EmailDraft.

Implementation considerations

Before you write your custom code, consider the following:

Which operation sends the email? EmailDraft.send() sends an outbound email.

High-level steps

This scenario requires the following steps:

1. Register listeners and create handlers for WorkItemAdded,
EmailDraftOperationSucceeded, and EmailDraftOperationFailed events.

2. Get access to EmailChannel object through Session object.

3. Invoke createNewOutboundEmail() API on the EmailChannel object. On successful
invoking of the API, SDK server raises the WorkItemAdded event, which will have email
document representing a new outbound email as a draft.

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
document\DocumentListPanel.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
document\EmailView.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
document\EmailMessagePreviewTab.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
document\AttachmentPanel.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
controllers\EmailViewControllerImpl.java

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\Com.Avaya.Ic.Sdk.Sampleclient\
Controller\UIController.cs

Appendix A: Sample scenarios

144 Avaya IC Client SDK Programmer Guide May 2013

4. Get access to the EmailDocument object from the WorkItemAdded event.

5. Invoke the GetDraft() API with the EmailDraftType.NEW_OUTBOUND parameter on
the EmailDocument object to get an access to the EmailDraft object.

6. Set OutboundAccount on EmailDraft object. You can retrieve registered outbound
account list in IC using the getOutboundAccountList () API on EmailChannel
object.

7. Invoke the Send() API on the EmailDraft object, which sends a new outbound email.

8. Determine the success or failure status of an outbound email from the
EmailDraftOperationSucceeded and EmailDraftOperationFailed events.

Event changes

This scenario involves the following event changes:

l WorkItemAdded, EmailDraftOperationSucceeded and
EmailDraftOperationFailed.

Sample code

Location of code in Java sample client

Note:
Note: This scenario is not implemented for the .NET sample client.

Reply to email scenario
This scenario provides the information needed to:

l Create a normal reply to a delivered workitem that contains an email document.

l Use the same charset for the reply if a character set exists.

l Use ISO-8859-1 for the reply if no character set exists.

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\command\
SampleClientCommand.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
document\EmailMessageEditPanel.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
document\ EmailView.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
controllers\EmailViewControllerImpl.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\model\
action\UIActionListFactory.java

Reply to email scenario

Avaya IC Client SDK Programmer Guide May 2013 145

Primary objects used in scenario

This scenario uses the following objects: EmailDocument, EmailDraft, EmailMessage.

Implementation considerations

Before you write your custom code, consider the following:

How do you create a draft to prepopulate the composition window? Which draft type do
you need to specify? The application user determines whether the type of draft to be created
is available. For example, the application user can click a button or make a selection from a
drop-down list. When the type of draft is available, the Client SDK passes the appropriate
enumeration value in the createDraft(EmailDraft.Type type) method on the
EmailDocument. This method returns an EmailDraft object that has all the necessary headers
set. These headers determine the email type when the email is sent to ensure that Avaya IC
can appropriately track the work item.

During the creation of the EmailDraft, the Client SDK prepopulates certain fields based on the
original document, such as the To, Cc, and Subject fields. However, you must set the content.
For example, when an application user replies to an email, you can embed the text of the
original email in the message body. Because this content might require special formatting, the
client developer must set the content. The Client SDK does not provide any special handling of
content when the email draft is created.

Which properties need to be set on the EmailDraft? Most of the basic fields need to be set
on the EmailDraft. The most important property is the character set if the original email does not
include a character set. If a character set is available from the original email document, the
email draft uses that character set by default. However, you can override this setting.

! Important:
Important: You must provide a character set for all EmailDrafts. A character set is required

for new outbound email drafts, where no default character set can be obtained
from an inbound email document with a valid character set.

Which operation sends the email? EmailDraft.send() sends out an email.

How do draft types differ from email types? This information is available in the API
documentation installed with the Client SDK design files.

High-level steps

This scenario requires the following steps:

1. Get access to the EmailDraft object of the appropriate type through the Email Document.

2. Create the composition window, and populate the window with the email draft contents.

3. When the composition is ready to be sent:

a. Collect the email data from the composition window.

Appendix A: Sample scenarios

146 Avaya IC Client SDK Programmer Guide May 2013

b. Set the appropriate fields on the EmailDraft, including the charset and content type.

c. Send the reply.

d. Check for OperationSucceeded event.

Event changes

This scenario involves the following event changes for the EmailDraft.Send/Cancel/Save
operations:

l OperationSucceeded

l OperationFailed

Sample code

Location of code in Java sample client

Location of code in .NET sample client

Display WorkItem History scenario
This scenario provides the information needed to retrieve the history of a WorkItem.

Primary objects used in scenario

This scenario uses the following objects: WorkItem, WorkItemHistory

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
document\EmailView.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
document\EmailMessageEditPanel.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
controllers\EmailViewControllerImpl.java

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\Com.Avaya.Ic.Sdk.Sampleclient\
Controller\UIController.cs

Display WorkItem History scenario

Avaya IC Client SDK Programmer Guide May 2013 147

Implementation considerations

Before you write your custom code, consider the following:

Which method do you use to request the history information? Use
WorkItem.requestHistory(). This method makes a request on the server side to get the
history. When the History is received, a WorkItem.RequestHistoryResponse is sent to
notify the listeners. You can access a collection of all history objects with the
workItem.getHistory().getAll() method.

Which mechanism do you use to register for events associated with history updates?
The WorkItem generates a RequestHistoryResponse event when the History is received
from the server. The following example shows a mechanism to register for these events:

Note:
Note: The Client SDK uses different mechanisms in Java and .NET to register listeners.

For more information, see Event handling guidelines on page 79.

When should an application retrieve the WorkItem history? Avaya recommends that you
retrieve the WorkItem history when a WorkItem arrives in the custom application, or when an
application user selects the WorkItem and makes it current.

High-level steps

This scenario requires the following steps:

1. Implement an event listener to handle WorkItemRequestHistoryResponse events.

2. When the application user selects a WorkItem, send a request to retrieve the WorkItem
history information.

3. Update the display based on the WorkItem history information returned from the
WorkItemRequestHistoryResponse events.

Event changes

This scenario involves an event change for the RequestHistoryResponse event on WorkItem.

Sample code

Location of code in Java sample client

session.registerListener(WorkItem.RequestHistoryResponse.TYPE, new
WorkItemHistoryResponseListener());

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
controllers\SessionControllerImpl.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
pane\ContactHistoryPanel.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
pane\AbstractContactDataPanel.java

Appendix A: Sample scenarios

148 Avaya IC Client SDK Programmer Guide May 2013

Location of code in .NET sample client

Display Customer History scenario
This scenario provides the information needed to retrieve the history for a Customer.

Primary objects used in scenario

This scenario uses the following objects: WorkItem, CustomerHistory, RecordsList,
NameValueList.

Implementation considerations

Before you write your custom code, consider the following:

Which method do you use to request the history information? Use
WorkItem.requestCustomerHistory(CustomerHistory.QueryCriteria
criteria. This method makes a request on the server side to get the history. When the
History is received from the server, WorkItem.RequestCustomerHistoryResponse event
will be sent to notify the listeners. You can access a collection of all history objects with the
workItem.getCustomerHistory().getAll() method.

Which mechanism do you use to register for events associated with history updates?
The WorkItem generates a RequestCustomerHistoryResponse event when the History is
received from the server. The following example shows a mechanism to register for these
events:

Note:
Note: The Client SDK uses different mechanisms in Java and .NET to register listeners.

For more information, see Event handling guidelines on page 79.

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\Com.Avaya.Ic.Sdk.Sampleclient\
Controller\UIController.cs
IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\Com.Avaya.Ic.Sdk.Sampleclient\Ui\
WorkItemDetailsHelper.cs

session.registerListener(WorkItem.RequestCustomerHistoryResponse.TYPE, new
CustomerHistoryResponseListener());

Display Customer History scenario

Avaya IC Client SDK Programmer Guide May 2013 149

When should an application retrieve the Customer history? Avaya recommends that a
custom application provide Customer history information only on demand.

When an application user selects a WorkItem and makes it current, your custom application
should retrieve a summary of the CustomerHistory record and populate the user interface with
that summary.

When the application user double clicks on an item in that summary list, your custom application
should retrieve the details of that record. For example, your custom application can retrieve
WrapupRecords, WorkItemHistory and other additional data as applicable for the
CustomerHistoryRecord from the Client SDK server.

High-level steps

This scenario requires the following steps:

1. Implement event listeners to handle the following events:

l WorkItemRequestCustomerHistoryResponse

l CustomerHistoryRequestWrapupRecordsResponse

l CustomerHistoryRequestWorkItemHistoryResponse

l ChatMediaInteractionRecordRequestTranscriptResponse

l EmailMessageRecordRequestEmailMessageResponse

2. Send a request to retrieve the customer history information when a Workitem is selected.

3. Update the display based on the customer history information returned from the events,

Event changes

This scenario involves an event change for the RequestCustomerHistoryResponse event
on WorkItem.

Sample code

Location of code in Java sample client

Location of code in .NET sample client

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
controllers\SessionControllerImpl.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
pane\CustomerHistoryPanel.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
pane\AbstractContactDataPanel.java

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\Com.Avaya.Ic.Sdk.Sampleclient\
Controller\UIController.cs
IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\Com.Avaya.Ic.Sdk.Sampleclient\Ui\
WorkItemDetailsHelper.cs

Appendix A: Sample scenarios

150 Avaya IC Client SDK Programmer Guide May 2013

AddressBook scenario
This scenario provides the information needed to retrieve addressable agents and queues for
the Address Book in a custom application.

Primary objects used in scenario

This scenario uses the following objects: Session, AddressBook, AddressBookAgentQuery,
AddressBookQueueQuery, AddressBookEntry.

Implementation considerations

Before you write your custom code, consider the following:

How can you get the AddressBook object? You can get the AddressBook object from the
Session object with the Session.getAddressBook() method.

How can you get the addressable agents? Make a request to get agents with the
AddressBook.findAgents(AddressBookAgentQuery query)method. When the
information is returned, the AddressBook.FindAgentsResponse event is sent to notify the
listeners. You can access a collection of all returned addressable agents with the
AddressBook.FindAgentsResponse.getAgentRecords().getAll() method.

How can you get the addressable queues? Make a request to get queues with the
AddressBook.findQueues(AddressBookQueueQuery query) method. When the
information is returned, the AddressBook.FindQueuesResponse event is sent to notify the
listeners. You can access a collection of all returned addressable queues with the
AddressBook.FindQueuesResponse.getQueueRecords().getAll() method.

Which mechanism do you use to register for events associated with addressable entry
updates? The AddressBook generates a FindAgentsResponse event when the agent type
response is received or a FindQueuesResponse event when the queue type response is
received from the server. The following example shows a mechanism to register for these
events:

session.registerListener(AddressBook.FindAgentsResponse.TYPE, new
FindAgentsResponseListener());
session.registerListener(AddressBook.FindQueuesResponse.TYPE, new

FindQueuesResponseListener());

Retrieving Workitem Contact Attributes scenario

Avaya IC Client SDK Programmer Guide May 2013 151

High-level steps

This scenario requires the following steps:

1. Retrieve the AddressBook object from the Session object.

2. Register for the following events:

l AddressBook.FindAgentsResponse

l AddressBook.FindQueuesResponse

3. Implement event listeners to handle AddressBook events.

4. Make requests to get information about the addressable agents and queues.

5. Update the user interface based on the AddressBook events.

Event changes

This scenario involves event changes for the FindAgentsResponse and
FindQueuesResponse events on AddressBook.

Sample code

Location of code in Java sample client

Location of code in .NET sample client

Retrieving Workitem Contact Attributes scenario
This scenario provides information about configuring the SDK to monitor the contact_attr
container.

Primary objects used in scenario

This scenario uses the following objects: WorkItem

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
controllers\SessionControllerImpl.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
uad\SimpleUADDialog.java

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\Com.Avaya.Ic.Sdk.Sampleclient\
Controller\UIController.cs
IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\Com.Avaya.Ic.Sdk.Sampleclient\Ui\
frmAddressBook.cs

Appendix A: Sample scenarios

152 Avaya IC Client SDK Programmer Guide May 2013

Implementation Considerations

Before you write your custom code, consider the following:

What Edu fields needs to be monitored? Monitor only those EDU fields which are in your
business requirement. This way SDK server can fetch only the required fields from EDU
container.

Will you be notified with an event in case the fields are modified? Yes, SDK server raises
ContactAttributeChanged event for each field that you have added or modified.

High-level Steps

This scenario requires following steps:

1. Add the following line to the EDUFieldsToCache.properties located at
...\Avaya\IC72\sdk\server\icsdk\custom\config directory

 all_1=contact_attr.*

2. Copy the EDUFieldsToCache.properties file to the following directory:
...\Avaya\IC72\sdk\server\icsdk\WEB-INF\classes\com\avaya\ic

3. Ensure that file SDKWorkItemAttributesFilter.properties located at the
...\Avaya\IC72\sdk\server\icsdk\custom\config\sdk\ directory contains an
entry for contact_attr.*.

For example: field_9=contact_attr.*

4. Copy the SDKWorkItemAttributesFilter.properties file to the following
directory:
...\Avaya\IC72\sdk\server\icsdk\WEB-INF\classes\com\avaya\ic\sdk\
customization

5. Restart the SDK Server to reflect the changes that you have made in both the properties
files. The SDK server starts monitoring all changes to EDU fields in the contact_attr
container.

Event changes

This scenario involves the following event changes:

ContactAttributesChanged

Sample code

Location of code in Java sample client:

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
controllers\WorkListViewControllerImpl.java

Voice Call scenario

Avaya IC Client SDK Programmer Guide May 2013 153

Location of code in .NET sample client

Voice Call scenario
This scenario provides the information required for outbound and inbound voice call.

Primary objects used in scenario

This scenario uses the following objects: Session, VoiceChannel, WorkList, WorkItem,
MediaInteractionList, VoiceMediaInteraction.

Implementation considerations

Consider the following before you write your custom code:

Which events signify the delivery or removal of workitems and VoiceMediaInteraction?
l WorkList.WorkItemAdded

l WorkList.WorkItemRemoved

l MediaInteractionList.MediaInteractionAdded

l MediaInteractionList.MediaInteractionRemoved

Which events you can consider for voice call?
l WorkItem.StateChanged

l WorkItem.CurrentContextChanged

l WorkItem.OperationSucceeded

l WorkItem.OperationFailed

l VoiceMediaInteraction.AudioSource

l VoiceMediaInteraction.AudioSourceChanged

l VoiceMediaInteraction.DestinationBusy

l VoiceMediaInteraction.DestinationConnected

l VoiceMediaInteraction.Diverted

l VoiceMediaInteraction.OperationFailed

Which objects generate events for voice call?
l WorkList

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\Com.Avaya.Ic.Sdk.Sampleclient\
Controller\UIController.cs

Appendix A: Sample scenarios

154 Avaya IC Client SDK Programmer Guide May 2013

l WorkItem

l MediaInteractionList

l VoiceMediaInteraction

How to place outbound voice call? Invoke the makeCall() API with required parameters on
VoiceChannel object.

High-level steps

Outbound voice call requires the following steps:

1. Register listeners and create handlers for the appropriate WorkList, MediaInteractionList
and VoiceMediaInteraction object's events.

2. Access the VoiceChannel object through Session object.

3. Invoke makeCall() API on the VoiceChannel object. On success, SDK server raises the
WorkItemAdded event of WorkList object.

4. Retrieve WorkItem object from WorkItemAdded event and update the user interface
accordingly.

5. SDK server raises MediaInteractionAdded event when voice media is added to a
workitem.

6. Retrieve VoiceMediaInteraction from MediaInteractionList.MediaInteractionAdded event
and update the user interface accordingly.

Note:
Note: In Avaya IC 7.2, apart from the WorkItemAdded and WorkItemRemoved events,

two new events, MediaInteractionAdded and MediaInteractionRemoved are
raised.

The MediaInteractionAdded event is raised when a media is added to a workitem and
the MediaInteractionRemoved event is raised when a media is removed from the
workitem mediainteraction list.

These events are applicable even for single interaction.

For steps for handling inbound voice call, see WorkItem object scenarios on page 162.

Avaya IC Client SDK Programmer Guide May 2013 155

Appendix B: Additional sample scenarios

This section includes some additional high-level descriptions of scenarios that you might want
to consider including in your custom application. These scenarios do not contain the same
detailed descriptions provided in Sample scenarios on page 125.

! Important:
Important: Some of these scenarios might not be fully implemented in the sample clients.

This section includes the following topics.

l Application object scenario on page 155

l Session object scenarios on page 156

l Channel object scenario on page 161

l WorkItem object scenarios on page 162

l Voice interaction scenario on page 166

l Chat interaction scenarios on page 167

l Email document scenarios on page 169

l Wrapup scenarios on page 171

l Supervisory scenario on page 173

l Join-Us Scenario on page 176

Application object scenario
This section includes the following scenario related to logging in to and out of a custom
application:

l Password change scenario on page 156

Appendix B: Additional sample scenarios

156 Avaya IC Client SDK Programmer Guide May 2013

Password change scenario
The sample code in this scenario shows how to implement a solution that:

l Enables a new application user to change the assigned Avaya IC password on the first
login.

l Ensures that subsequent logins use the new password for authentication.

Primary objects used in scenario

This scenario uses the following object: Application

Implementation considerations

Before you write your custom code, consider the following:

l Have you created an Avaya IC agent account that requires a password change?

l What indicates a password change is needed?

l What are the potential causes of login failure, and how can they be identified?

l Where are the causes documented?

l What is the impact of the Avaya IC rules for changing passwords? Do you need to validate
the new password?

l Can you authenticate against external resources, such as LDAP?

High-level steps

This scenario requires the following steps:

1. Create an instance of the Application object.

2. Log in to the application.

3. On failure, determine a reason and, based on that, prompt the application user for a new
password.

4. For subsequent logins, use the new password to log in to the application, as described in
Login scenario on page 126.

Session object scenarios
This section includes the following scenarios related to session availability:

l Session status scenario on page 157

Session object scenarios

Avaya IC Client SDK Programmer Guide May 2013 157

l Connectivity status scenario on page 158

l Session shutdown request scenario on page 159

l Enable and disable operational state scenario on page 160

Session status scenario
This scenario provides the information needed to:

l Specify how your custom application reacts to Session availability.

l Warn the custom application that the Session is unavailable.

l Display a warning in the status bar on unavailable status.

l Display a dialog box for session failure before a forced shutdown.

l Appropriately disable application operations.

Primary objects used in scenario

This scenario uses the following objects: Application, Session.

Implementation considerations

Before you write your custom code, consider the following:

l What behavior is allowed or not allowed during session unavailability and failure?

l What must happen if the custom application does not exit during session failure?

l How will you notify about session unavailability?

l Which user interface changes must occur on session unavailability? For example, should
the code disable the Agent Available button?

High-level steps

This scenario requires the following steps:

1. Access the Session object.

2. Enable listeners for session status change events.

3. On status changes:

a. Disable the user interface on unavailability.

b. Force a logout on failure.

Appendix B: Additional sample scenarios

158 Avaya IC Client SDK Programmer Guide May 2013

Connectivity status scenario
This scenario provides the information needed to ensure that your custom application can
handle network connectivity failures.

To test your custom application, remove the network cable, and verify that:

l The status bar indicates that the connection was broken.

l If the network cable is reconnected within 30 seconds, or a specified length of time:

- Your application displays a dialog box that notifies the application user that the
application needs to be shut down.

- When the application user selects OK in the dialog box, the application shuts down.

Primary objects used in scenario

This scenario uses the following objects: Application, Session

Implementation considerations

Before you write your custom code, consider the following:

l What mechanism do you use to notify the application of connectivity status, such as
impaired and failed?

l Which application interface changes must occur on connectivity status changes? For
example, should the code display messages in the status bar, change connectivity icons,
or disable interface elements?

l Is the threshold configurable? Where is this specified?

l What will happen if the custom application does not shut down? How will the Client API
react? Will the Client API force a shutdown?

High-level steps

This scenario requires the following steps:

1. Access the Session object.

2. Register Connectivity status event listeners.

3. Listen to the Connectivity Status changed events.

4. Take appropriate actions to a Connectivity Status changed event.

Session object scenarios

Avaya IC Client SDK Programmer Guide May 2013 159

Session shutdown request scenario
This scenario provides the information needed to ensure that your custom application shuts
down gracefully during a server-driven forced shutdown request. When a shutdown request is
received:

l Your application displays a dialog box that notifies the application user about the reasons
that the application needs to be shut down.

l When the application user selects OK in the dialog box, force a graceful shutdown.

Primary objects used in scenario

This scenario uses the following objects: Session, WorkItem, Application.

Implementation considerations

Before you write your custom code, consider the following:

l Which events and shutdown reasons must initiate a shutdown request?

l How will you force the application user to complete certain ongoing tasks before
shutdown?

l How will you initiate the shutdown?

l How can you ensure that your session does not time-out?

High-level steps

This scenario requires the following steps:

1. Register for the event that indicates forced logout.

2. After the event is received:

a. Determine the reason for the shutdown.

b. Based on the reason, your custom application must take the necessary steps before a
logout. For example, automatically complete work items, or disable the Agent
Available button.

3. Use the Application object to initiate a logout.

Appendix B: Additional sample scenarios

160 Avaya IC Client SDK Programmer Guide May 2013

Enable and disable operational state scenario
This scenario provides the information needed to implement the user interface to ensure that
the button states correctly reflect the state of the relevant operations.

Primary objects used in scenario

This scenario uses the following object: Session

Implementation considerations

Before you write your custom code, consider the following:

l What are the dependencies of the different operations on the items exposed by the
Session object, such as state, status, and properties?

l What support does the Client SDK provide if an incorrect operation is invoked? For
example, OperationFailed events.

For more information, see Guidelines for using the Client API on page 67.

High-level steps

This scenario requires the following steps for each button on the user interface:

l Enable when the operation that the button is expected to invoke is possible, based on
operational state.

ELSE

l Disable to prevent illegal operations from being invoked.

Channel object scenario

Avaya IC Client SDK Programmer Guide May 2013 161

Channel object scenario
This section includes the following scenario related to channels:

l Enable and disable channel operational state scenario on page 161

Enable and disable channel operational state scenario
This scenario provides the information needed to implement the user interface to ensure that
the button states correctly reflect the state of the relevant channel operations.

Primary objects used in scenario

This scenario uses the following objects: Channel, VoiceChannel, EmailChannel, ChatChannel.

Implementation considerations

Before you write your custom code, consider the following:

l What are the dependencies of the different operations on the items exposed by the
Channel objects, such as state, status, and properties?

l Why are the chat and email channels linked? How should your custom code handle them?
For example, can you make an application user available for Email only?

l What support does the Client SDK provide if an incorrect operation is invoked? For
example, OperationFailed events.

l What is the purpose of the Reset method on the channels? How do they work? Do you
need to make this method available to the application user?

High-level steps

This scenario requires the following steps for each button on the user interface:

l Enable when the operation that the button is expected to invoke is possible, based on
operational state.

ELSE

l Disable to prevent illegal operations from being invoked.

Appendix B: Additional sample scenarios

162 Avaya IC Client SDK Programmer Guide May 2013

WorkItem object scenarios
This section includes the following scenarios related to work items:

l Display assigned work items scenario on page 162

l Prompt on WorkItem arrival scenario on page 163

l Enable and disable work item operational state scenario on page 165

l Access work item attributes scenario on page 165

Display assigned work items scenario
This scenario provides the information needed to:

l Update the list widget in the user interface with details of the assigned work item. For
example, have the list widget display one or more of the following for each work item:

- "Current" status of the work item
- State of the work item
- Type of media that the work item contains: voice, email, or chat
- Origin of the work item
- State of the media interaction: connected or disconnected
- Topic for escalation

l Update the Channel user interface to display the total number of media interactions and
documents.

Primary objects used in scenario

This scenario uses the following objects: WorkItem, MediaInteraction, WorkList,
MediaInteractionList, DocumentList.

Implementation considerations

Before you write your custom code, consider the following:

l Which events signify the delivery of work items?

l Which event handlers and actions update the list widget?

l Which methods return the specified data?

l What user interface elements, such as icons, do you need to represent various states?

l Which objects do you need to listen to events?

WorkItem object scenarios

Avaya IC Client SDK Programmer Guide May 2013 163

l How is being Current different from the Working state of a work item? Why does a work
item need to be current?

For more information about the Current concept for work items, see Work items and the
Current concept on page 23.

High-level steps

This scenario requires the following steps:

1. Register listeners for the appropriate WorkList events.

2. Create handlers to receive events.

3. Update the user interface to reflect work item delivery.

Note:
Note: In Avaya IC 7.2, apart from the WorkItemAdded and WorkItemRemoved

events, two new events are raised. The MediaInteractionAdded event,
which is raised when a media is added to a workitem, and the
MediaInteractionRemoved event, which is raised when a media is removed
from the workitem mediainteraction list. These events are applicable even for
single interaction.

You must add appropriate listeners for both these events and update the UI
accordingly.

Prompt on WorkItem arrival scenario
This scenario provides the information needed to:

l Using the PromptOnArrival property, display a prompt to the application user that asks if
the application user wants to accept the work item.

l If the application user selects:

- Yes, the application accept the work item.
- No, the application declines the work item only if AutoAccept is set to False for the

associated channel.

Note:
Note: SDK does not support declining incoming voice calls.

Appendix B: Additional sample scenarios

164 Avaya IC Client SDK Programmer Guide May 2013

Primary objects used in scenario

This scenario uses the following objects: Session, WorkItem, MediaInteraction, WorkList,
MediaInteractionList, DocumentList.

Avaya IC properties used in scenario

This scenario uses the following properties:

l PromptOnArrival

l AutoAccept

Implementation considerations

Before you write your custom code, consider the following:

l Which operations allow you to accept or decline a work item?

l Which events signify successful accept or decline?

l Which actions need to be taken if the operation is successful?

l Do any other Avaya IC properties, such as RONA, play a role in the dialog behavior?

High-level steps

This scenario requires the following steps:

1. Implement the Accept/Decline dialog box.

2. Use Avaya IC properties to determine behavior.

3. Hook in appropriate operations to the button clicks.

4. Implement event handlers.

5. Update the user interface accordingly.

Event changes

This scenario involves at least one of the following event changes for the objects:

l Worklist.workitemRemoved

l Wrapped state with TerminateReason

l workitem.stateChanged away from alerting

WorkItem object scenarios

Avaya IC Client SDK Programmer Guide May 2013 165

Enable and disable work item operational state scenario
This scenario provides the information needed to ensure that the button states correctly reflect
the state of the relevant work item operations.

Primary objects used in scenario

This scenario uses the following objects: WorkItem, MediaInteraction, Document.

Implementation considerations

Before you write your custom code, consider the following:

l What are the dependencies of the different operations on the items exposed by the
WorkItem object, such as state, status, and properties?

l Does a workitem being current impacts workitem operations?

For more information about the Current concept for work items, see Work items and the
Current concept on page 23.

l What support does the Client SDK provide if an incorrect operation is invoked? For
example, OperationFailed events.

High-level steps

This scenario requires the following steps for each button on the user interface:

l Enable when the operation that the button is expected to invoke is possible, based on
operational state.

ELSE

l Disable to prevent illegal operations from being invoked.

Access work item attributes scenario
This scenario provides the information needed to:

l Display work item attributes in the attributes viewer.

l Set up the customization so that the attributes viewer displays two custom fields in the
EDU that start with contact_attr.

Primary objects used in scenario

This scenario uses the following objects: WorkItem.

Appendix B: Additional sample scenarios

166 Avaya IC Client SDK Programmer Guide May 2013

Implementation considerations

Before you write your custom code, consider the following:

l Which methods do you use to access the attributes?

l Which user interface widget displays the attributes?

l How are attributes set through the Client SDK?

l Does the custom application get an event when an attribute is changed?

l What do the attributes represent? Where does the data come from?

For more information, see Attributes on the WorkItem object on page 50.

High-level steps

This scenario requires the following steps:

1. Access the attributes list through the Client API call.

2. Iterate through the attributes to display the key value pairs.

Voice interaction scenario
This section includes the following scenario related to voice interactions:

l OnHold alert on threshold scenario on page 166

OnHold alert on threshold scenario
This scenario provides the information needed to implement a solution where:

l An agent is alerted whenever a voice interaction was placed on hold for longer than a
configured threshold.

l Reconnecting clears the alert.

Primary objects used in scenario

This scenario uses the following object: VoiceMediaInteraction

Implementation considerations

Before you write your custom code, consider the following:

l Which operations allow your custom application to place a voice interaction on hold?

l Which event notifies that the voice interaction is on hold or reconnected?

Chat interaction scenarios

Avaya IC Client SDK Programmer Guide May 2013 167

l Which timers are needed?

l Which user interface elements do the event handlers need to update?

High-level steps

This scenario requires the following steps:

1. Provide a mechanism to invoke the appropriate methods.

2. Implement handlers that react to state change events.

3. Update the user interface based on the state change events.

Chat interaction scenarios
This section includes the following scenarios related to chat interactions:

l Inactivity alert on threshold scenario on page 167

l Language filter scenario on page 168

l Customer-generated alert scenario on page 169

Inactivity alert on threshold scenario
This scenario provides the information needed to notify an application user if:

l A customer has sent a chat message, but the application user has not responded in a
certain configurable threshold.

l The customer was idle for a certain configurable threshold.

Primary objects used in scenario

This scenario uses the following object: ChatMediaInteraction.

Implementation considerations

Before you write your custom code, consider the following:

l Which event notifies that the transcript is added?

l What determines that the line added from Customer or Agent?

l What timers are needed?

l Which user interface elements do the event handlers need to update?

Appendix B: Additional sample scenarios

168 Avaya IC Client SDK Programmer Guide May 2013

High-level steps

This scenario requires the following steps:

1. Implement handlers that react to TranscriptLineAdded events.

2. Start a timer.

3. Update the user interface based when timer expires.

4. Reset the timer.

Language filter scenario
This scenario provides the information needed to:

l Pass all text sent by an application user through a language filter, where foul language is
replaced with "#" before the text is sent to the customer.

l Use a foul language word list that is customizable and can be read from a file.

Primary objects used in scenario

This scenario uses the following object: ChatMediaInteraction.

Implementation considerations

Before you write your custom code, consider the following:

l How do you use a file I/O, word-list file, and in-memory caching at startup?

l How do you filter the implementation to parse and compare content with the word list prior
to sending the message through the Client SDK?

High-level steps

This scenario requires the following steps:

1. Provide a mechanism to invoke the appropriate methods.

2. Implement handlers that react to state change events.

3. Update the user interface based on the state change events.

Email document scenarios

Avaya IC Client SDK Programmer Guide May 2013 169

Customer-generated alert scenario
This scenario provides the information needed to give a customer the ability to dynamically
force the attention of an application user by:

l Causing the user interface to pop-up to the front on the agent desktop.

l Using color signals to indicate that the customer has requested urgent help.

Primary objects used in scenario

This scenario uses the following object: ChatMediaInteraction.

Implementation considerations

Before you write your custom code, consider the following:

l How do you create a text protocol that can be encoded within the message exchange?

l Which user interface elements do the event handlers need to update?

l Which classes need to listen to the transcript lines to act on the encoded protocol?

High-level steps

This scenario requires the following steps:

1. Add listeners for the transcriptLineAdded event.

2. Implement the protocol decoder on receipt of the message.

3. Based on the meta-message, update the user interface.

Email document scenarios
This section includes the following scenarios related to email documents:

l Apply signatures scenario on page 169

l Support for attachments scenario on page 170

Apply signatures scenario
This scenario provides the information needed to:

l Create a signature file that contains a signature named signature.txt.

Appendix B: Additional sample scenarios

170 Avaya IC Client SDK Programmer Guide May 2013

l Append the signature to each reply sent out by the application user.

Primary objects used in scenario

This scenario uses the following objects: EmailDocument, EmailDraft, EmailMessage.

Implementation considerations

Before you write your custom code, consider the following:

l How do you create the draft? Which user interface elements should you populate with the
draft data?

l How do you use I/O to read from the signature file?

l Which event sends the composition?

High-level steps

This scenario requires the following steps:

1. Get access to the EmailDraft object of the appropriate type through the Email Document.

2. Create the composition window, and populate the window with the email draft contents.

3. When the composition is ready to be sent:

a. Collect the email data from the composition window.

b. Set the appropriate fields on the EmailDraft, including the charset and content type.

4. Append the signature to the end of the content.

5. Send the email.

Support for attachments scenario
This scenario provides the information needed to provide attachment support for:

l Viewing attachments.

l Sending attachments during a composition.

Primary objects used in scenario

This scenario uses the following objects: EmailDocument, EmailDraft, EmailAttachment

Implementation considerations

Before you write your custom code, consider the following:

l How do you access the EmailAttachment object?

l How do you use the attachment ID to identify an attachment?

Wrapup scenarios

Avaya IC Client SDK Programmer Guide May 2013 171

l How must your application react to attachment-related events?

l Which synchronous operations are involved?

High-level steps

This scenario requires the following steps:

1. Get access to the EmailDraft object of the appropriate type through the Email Document.

2. Create the composition window, and populate the window with the email draft contents.

3. When the composition is ready to be sent:

a. Collect the email data from the composition window.

b. Set the appropriate fields on the EmailDraft, including the charset and content type.

4. Add the attachment to the email.

5. Send the email.

Wrapup scenarios
This section includes the following scenarios related to wrapup:

l Access wrapup codes scenario on page 171

l Wrapup dialog box scenario on page 172

l Use terminate reasons scenario on page 173

Access wrapup codes scenario
This scenario provides the information needed to implement a solution in which an application
user can select and set wrapup codes before completion of a WorkItem.

Primary objects used in scenario

This scenario uses the following objects: Session, WorkItem, WrapupSelection,
CategoryCodesList, CategoryCode, ReasonCode, OutcomeCode, CodesList.

Implementation considerations

Before you write your custom code, consider the following:

l Have wrapup codes been configured in Avaya IC?

l How do you access the wrapup codes with the Client API?

Appendix B: Additional sample scenarios

172 Avaya IC Client SDK Programmer Guide May 2013

l How do you use the Client API to specify a wrapup code?

High-level steps

This scenario requires the following steps:

1. Create an application user interface for wrapup.

2. Implement a handler for the WorkItem state change event.

3. Listen to the Wrapup state change event.

4. Implement the code that populates the user interface, as appropriate.

Wrapup dialog box scenario
This scenario provides the information needed to display a wizard dialog box when a work item
is released, as follows:

l The first page of the wizard displays the category codes.

l The second page of the wizard displays the relevant reason codes.

l The third page of the wizard displays the relevant outcome codes.

Primary objects used in scenario

This scenario uses the following objects: Session, WorkItem, WrapupSelection,
CategoryCodesList, CategoryCode, ReasonCode, OutcomeCode, CodesList.

Implementation considerations

Before you write your custom code, consider the following:

l Have wrapup codes been configured in Avaya IC?

l How do you access the wrapup codes with the Client API?

l How do you use the Client API to specify a wrapup code?

High-level steps

This scenario requires the following steps:

1. Create the wizard dialog box.

2. Implement a handler for the WorkItem state change event.

3. Implement the code that populates the user interface, as appropriate.

Supervisory scenario

Avaya IC Client SDK Programmer Guide May 2013 173

Use terminate reasons scenario
This scenario provides the information needed to ensure that the normal wrapup mechanism is
not invoked when terminate reason is not Normal.

Primary objects used in scenario

This scenario uses the following objects: Session, WorkItem

Implementation considerations

Before you write your custom code, consider the following:

l Is this mandatory?

l What terminate reasons do you want to use?

l Where do you define the terminate reasons?

High-level steps

This scenario requires the following steps:

1. Implement a handler for the WorkItem state change event.

2. Check the reason code that accompanies this event.

3. Call complete on WorkItem when the reason code is not Normal.

Supervisory scenario
This scenario provides information required for supervisory operations. In this scenario
Supervisor can perform the following operations:

l Begin and END session

l Monitor Chat

l Changing Supervisor Visibility

Primary objects used in scenario

This scenario uses the following primary objects:

l Session

l User

l Workitem

Appendix B: Additional sample scenarios

174 Avaya IC Client SDK Programmer Guide May 2013

l ChatMediaInteration

Implementation considerations

Before you write your custom code, consider the following:

How to identify the supervisor role? If the logging-in agent has a role of supervisor, you can
provide options to begin and end supervisor session. To check the role of agent invoke the
User.isSupervisor() API.

Which interactions supervisor can monitor? Supervisor can monitor only chat media
interactions. Supervisor cannot monitor voice interactions. Email Documents can only be
viewed by supervisor.

Which events need to be acted on? Who needs these events? If the logging-in agent is
supervisor and invokes beginSupervising() or endSupervising() API on the Session
object, SDK server raises SupervisorSessionStatusChanged event indicating session
began or ended. This event is primarily required to an agent who is logging in as supervisor so
that custom application can act and change the display accordingly, if required.

Will the agents (belonging to this supervisor monitoring workgroup) be notified when
supervisor begins or ends session? Yes, SDK server raises the
SupervisorStatusChanged event stating Supervisor is Online or Offline.

How will agent information be notified to supervisor? After the supervisor begins a
supervising session, SDK server raises the AgentStatusChanged event when agent,
belonging to this supervisor monitoring workgroup, login or logout. You need to register for this
event to get agent information.

How will supervisor monitor agent workitems? Which event will be received? To get
workitems handled by agents, you need to invoke the requestWorkitems() API on the
Session object passing the agent ID. Once the requestWorkitems() API is invoked on a
particular agent you don't need to call that API again. SDK server takes care of getting the
workitems for that agent whenever any new workitems gets added or removed for that agent.
SDK server raises the WorkItemAdded event, similar to when a normal workitem is received to
an agent.

Similarly, SDK server raises the WorkItemRemoved event whenever agent wraps the
workitem.

How to identify the owner of workitem? How to identify that a workitem is supervised
workitem? You can invoke the getOwnerLoginId() API on the Workitem object to identify
the agent who is handling this interaction. You can invoke the isWorkitemSupervised()
API on the Workitem object to identify whether a workitem is supervised or not.

What all operations are not allowed for supervisor? Supervisor cannot perform following
operations on supervised workitems.

l accept

Supervisory scenario

Avaya IC Client SDK Programmer Guide May 2013 175

l release

l complete

l decline

l collaborationBegin

l collaborationCancel

l collaborationComplete

l transfer

l makecurrent

l defer

l setJoinUsHandle on ChatMediaInteraction

How will supervisor monitor Chat interactions? To monitor a chat session, supervisor has to
invoke the monitor() API on the ChatMediaInteraction object. On Invoking this API,
SDK Server joins the supervisor to chat room but in an invisible mode. To become visible to chat
room, supervisor has to invoke setVisibility() API on the ChatMediaInteraction
object.

High-level steps

This scenario requires the following steps:

1. Access the Session object and get the user object.

2. Check the role of an agent. If role is supervisor, provide an option to begin or end the
supervisor session.

3. Listen for SupervisorSessionStatusChanged and AgentStatusChanged events to
get agent information.

4. To monitor workitems handled by a particular agent, invoke requestWorkitems() API
which triggers SDK server to retrieve supervised workitems by raising WorkitemAdded
event.

5. Listen to this event, retrieve the owner of this workitem by invoking the
getOwnerloginId() API.

6. If workitem has chat media interaction and needs to be monitored, invoke the monitor()
API on the ChatMediaInteraction object. You will start receiving transcript events for
this chat media.

7. In order to make supervisor visible or invisible to a chat room, invoke the
setVisibility() API on the ChatMediaInteraction object.

Appendix B: Additional sample scenarios

176 Avaya IC Client SDK Programmer Guide May 2013

Event changes

The following events are involved in this scenario:

1. The Session.SupervisorSessionStatusChanged event raised for agent whose role
is supervisor, whenever supervisor do begin or end supervisor session.

2. The Session.SupervisorStatusChanged event raised for agents belonging to this
supervisor monitored workgroup, if supervisor is logged in/out.

3. The Session.AgentStatusChanged event raised when agent logs in or logs out.

4. The ChatMediaInteraction.MonitoringStatusChanged event raised when
supervisor starts/ends monitoring chat interaction.

5. The ChatMediaInteraction.VisiblityModeChanged event raised when supervisor
becomes visible/invisible to chat room.

Sample code

Location of code in Java sample client

Location of code in .NET sample client

Join-Us Scenario
You may occasionally have a customer who would like to invite one or more people to join the
chat session. This type of session is called a Join-Us Conference.

IC_INSTALL_DIR/IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
core\SupervisorPanel.java
IC_INSTALL_DIR/IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
core\WorklistViewControllerImpl.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\components\
core\MainToolBarPanel.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\command\
SampleClientCommand.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ ui\model\
action\UIActionListFactory.java
IC_INSTALL_DIR\IC72\sdk\sample\src\com\avaya\ic\sdk\sample\ui\model\action\helper\
AgentActionHelperFactory.java

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\Com.Avaya.Ic.Sdk.Sampleclient\
Controller\UIController.cs
IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\Com.Avaya.Ic.Sdk.Sampleclient\Ui \
frmMain.cs

Join-Us Scenario

Avaya IC Client SDK Programmer Guide May 2013 177

Before initiating a Join-Us Conference, create a Join-Us handle (user name) and send the
handle with a join-us URL to the person who is going to enter the Join-Us session.

This scenario provides information about setting the Join-Us handle.

Primary objects used in scenario

This scenario uses the ChatMediaInteraction object.

Implementation considerations

Before you write your custom code, consider the following:

Which events indicate a success or failure of setting JoinUs Handle? Client SDK raises
the TranscriptLineAdded event that provides information about success. In case of failure,
you will get OperationFailed event with reason.

Can Supervisor set Join-Us handle? No, this operation is not supported for Supervisor. The
OperationFailed event is raised if supervisor performs this operation.

Under what circumstances can set Join-Us handle fails? Under the following situation, the
set Join-Us handle fails and the OperationFailed event is raised:

l If the chat session doesn't exist

l If the join-us handle already exist for another chat session. It is recommended to use the
system generated handle to avoid duplication.

High-level steps

l Register Listener for TranscriptLineAdded event and create a handler to receive this
event.

l Provide a mechanism to create a Join-Us handle and invoke the setJoinUsHandle()
API on the ChatMediaInteraction object.

Appendix B: Additional sample scenarios

178 Avaya IC Client SDK Programmer Guide May 2013

Sample code

Location of code in Java sample client

Location of code in .NET sample client

IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\command\
SampleClientCommand.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
components\chat\ChatView.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
components\uad\JoinUsDialog.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ui\
controllers\WorklistViewControllerImpl.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ ui\model\
action\helper\ActionHelper.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ ui\model\
action\helper\ChatActionHelperFactory.java
IC_INSTALL_DIR\IC72\sdk\design\java\sample\src\com\avaya\ic\sdk\sample\ ui\model\
action\UIActionListFactory.java

IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\Com.Avaya.Ic.Sdk.Sampleclient\
Controller\UIController.cs
IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\Com.Avaya.Ic.Sdk.Sampleclient\Ui\
frmMain.cs
IC_INSTALL_DIR\IC72\sdk\design\dotnet\sample\src\Com.Avaya.Ic.Sdk.Sampleclient\Ui\
frmJoinUs.cs

Avaya IC Client SDK Programmer Guide May 2013 179

Appendix C: Error messages

The Client SDK error messages include error codes and error strings. Each error message has
a MajorCode and a MinorCode.

Client SDK users receive these errors as part of OperationFailed events.

This section includes the following topics:

l MajorCodes on page 179

l MinorCodes on page 180

MajorCodes
The MajorCode describes the high level area to which the error belongs.

Error code Error string

0 "UNKNOWN"

100 "SDK_BRIDGE"

200 "UOM"

300 "VESP"

400 "IC"

Appendix C: Error messages

180 Avaya IC Client SDK Programmer Guide May 2013

MinorCodes
The MinorCode provides specific information about an error.

This section includes the following topics:

l General or common error codes on page 180

l Session error codes on page 180

l Common channel error codes on page 181

l Email Channel error codes on page 181

l WorkItem error codes on page 181

l EmailDraft error codes on page 181

l Common media interaction error codes on page 182

l Voice Media interaction error codes on page 182

General or common error codes

Session error codes

Error code Error string

0 "UNKNOWN"

1 "Unable to retrieve corresponding UOM object"

2 "Operation currently not allowed on this object"

3 "Invalid destination passed"

4 "Invalid destination type passed"

Error code Error string

101 "Invalid attribute name passed - should start with " + <"custom">
Note: The string "custom" is the name of the EDU container.

102 "Session object not found"

103 "AuxReasonCodes not found"

104 "AuxReasonCodes not found"

MinorCodes

Avaya IC Client SDK Programmer Guide May 2013 181

Common channel error codes

Email Channel error codes

WorkItem error codes

EmailDraft error codes

Error code Error string

202 "Channel object not found"

Error code Error string

231 "Invalid To Address passed"

Error code Error string

301 "Invalid collaboration intent passed - null or invalid"

302 "Invalid media interaction passed for collaboration"

303 "Collaboration may be in progress - intent from previous collaboration
not cleared - can't honout new request"

304 "Invalid wrapup selection list passed"

305 "Invalid attribute name passed - should start with " + + <"custom">
Note: The string "custom" is the name of the EDU container.

306 "Collaboration intent was not set"

307 "Media interaction was not set"

308 "Invalid release reason passed"

309 "Workitem object not found"

Error code Error string

401 "Operation not supported on this draft"

402 "Invalid attachment id passed"

Appendix C: Error messages

182 Avaya IC Client SDK Programmer Guide May 2013

Common media interaction error codes

Voice Media interaction error codes

403 "Attachment id not found"

404 "Invalid pool information passed - null or invalid"

Error code Error string

Error code Error string

501 "media interaction object not found"

Error code Error string

531 "Invalid digits passed"

Avaya IC Client SDK Programmer Guide May 2013 183

 Index

Index

Symbols
.NET

compilers 99
diagnostic API 115
libraries . 12
socket exceptions. 120

.NET client
about . 61
log4Net . 104
logs . 104
open Diagnostic Viewer 117
setting log levels 105

.NET Framework. 99

A
accept() . 133
access work item attributes scenario 165
access wrapup codes scenario 171
Active state 44, 47
active state . 35
active work items 23
AddressBook 76

event changes 151
implementation considerations. 150
object . 150
objects . 150
sample code 151
scenario . 150
steps. . 151

AddressBook.FindAgentsResponse 150
AddressBook.FindQueuesResponse 150
AddressBookAgentQuery. 150
AddressBookEntry 150
AddressBookQueueQuery 150
ADU

access data 30
customizing attributes 91

AES. 12
agent availability

event changes 130
implementation considerations. 129
object . 129
sample code 131
scenario . 129
steps. . 130

agent properties, using 92

Alerting state . 40
API

AddressBook 76, 78
diagnostic. 115
History . 73
see Client API

Application
connectivity status 158
log in . 126
log out . 128
object. . 29
password change 156
Session shutdown 159
Session status 157

Application.Login 80
ApplicationFactory 126
apply signatures scenario 169
architecture . 14
ArgumentNullException 87
asynchronous communication

AES . 12
method calls 26

attributes
about . 50
ADU . 91
contact_attr 50
ContactAttribute functions 50
data integration 51
EDU . 91
functions . 51
saving data 51
Session. . 91
storage in EDU 50
WorkItem . 91

AuthenticationException 88
AutoAccept. 164
Auxwork state 32
Available state 32
Avaya DeveloperConnection Program 121

B
basic services 18
best practices

AddressBook API 76
chat interactions. 68
Client API . 67
customization 90

184 Avaya IC Client SDK Programmer Guide May 2013

 Index

event handling 79
exception handling 87
History API 73
log in and out 86
logging . 105
null return values 89
operations 88
performance considerations 93
states . 85
time and date duration 72
TranscriptLine events 68
voice interactions 69
WrapupSelection API 78

blocking operations 83
busy state . 35

C
CategoryCode 171, 172
CategoryCodesList. 171, 172
changing log4j file name 102
Channel

active state 35
busy state 35
display properties 131
enable and disable 161
idle state . 35
object . 33
occupied state 35
operational state scenario 161
states . 34

Channel.HealthStatusChanged 132
character sets, customizing. 92
chat

debugging delivery 118
log in and out 87
unsupported methods 68

chat interaction guidelines 68
ChatChannel 36, 131, 161
ChatInteraction

see ChatMediaInteraction
ChatMediaInteraction

about . 45
active state 47
completed state 47
delivered state 47
disconnected state 47
inactive state 47
scenarios 139, 167, 168, 169
states . 47

ChatMediaInteraction.getTranscript() 140
checking

object states 85
WorkItem status 86

Client API

about . 15
documentation 10, 20
guidelines. 67
model diagrams 19
server objects 17

client messaging provider 18
Client SDK

architecture 14
features. 11
limitations . 12
messaging provider 18
Web container 17

Client SDK server bridge
see SDK server bridge

clients
.NET . 61
Client API . 15
components. 15
custom . 15
framework 16
Hierarchical Data Store 16
Java . 56
logging . 104

client-side
integration 19
log files . 104
logging . 104

codes, error messages 180
CodesList 171, 172
collaboration, work item 136
collaborationCancel. 68
collaborationComplete 68, 137
common problems 117
commons-logging. 105
communication

asynchronous 26
synchronous 26

compilers
.NET . 99
Java . 99

complete() 133, 134
Completed state 41, 44, 47
components

basic services 18
client . 15
Client API . 15
Client API server objects 17
client framework. 16
custom client 15
Hierarchical Data Store 16
messaging provider 18
sample clients. 55
SDK server bridge. 17
server . 17
User Object Model. 18

Avaya IC Client SDK Programmer Guide May 2013 185

 Index

Web container 17
Conferencing state 40
configuration file 92
configuration files for log4 102
configuring Client SDK 90
ConnectionException. 88
ConnectionStatusChange 83
connectivity status scenario. 158
Consulting state 41
contact_attr . 50
ContactAttribute 50
container, EDU 50
createEmailDraft 145
creating listeners. 80
CSharptester.exe.log4net 104
current work item 23
currentness . 23
custom application 15
custom client 15
customer-generated alert scenario 169
CustomerHistory

data provided. 74
database queries 75
display . 148
fields. 74
record . 74
retrieving . 73
when to retrieve 149

customizing
ADU attributes 91
agent properties 92
character sets 92
Client SDK 90
deploying configuration file 92
EDU attributes 91
files . 90
Session attributes. 91
WorkItem attributes 91
wrapup codes 92

D
data

changes . 116
diagnostic 114
elements . 116
integration 51
saving . 51
updating in HDS 115
viewing. 115, 116

data store, hierarchical 16
database queries, CustomerHistory 75
date

formatting 75
guideline . 72

millisecond value 75
debugging

.NET socket exceptions 120
common problems. 117
communication 118
diagnostic API. 115
diagnostic information114
Diagnostic Viewer117
error messages 114, 179
logging . 99
work item delivery118
work item state 119

decline. 133
defer() . 133
Deferred state 40
Delivered state 44, 47
DeliveryStatusChanged 132
deliveryStatusChanged 132
description . 74
DevConnect 121
diagnostic API

about . .115
using . .116

diagnostic information. 116
Diagnostic Viewer

about . 16
API . .115
changed elements116
data elements116
debugging with 117
open .117
view of data 115, 116

directory, customization 90
Disconnected state 44, 47
display assigned work items scenario 162
display channel properties

event changes 132
implementation considerations 131
objects . 131
sample code 132
scenario 131
steps . 132

display Customer history
event changes 149
implementation considerations 148
sample code 149
scenario 148
steps . 149

display email
event changes 142
implementation considerations 142
objects . 142
sample code 143, 144
scenario 142
steps . 142

186 Avaya IC Client SDK Programmer Guide May 2013

 Index

display text message
event changes 141
implementation considerations. 140
objects . 139
sample code 141
scenario . 139
steps. . 141

display WorkItem history
event changes 147
implementation considerations. 147
objects 146, 148
sample code 147
scenario . 146
steps. . 147

Document 48, 165
Document.getAttributes() 91
Document.getCreateDate() 72
Document.getType() 142
documentation

Client API 10, 20
object model 19
related . 10
state models 19

DocumentList 162, 164
DraftDocument 49
duration guideline 72

E
EDU

contact_attr 50
customizing attributes 91
saving attribute data 51
WorkItem attributes 50

email
debugging delivery 118
log in and out 87

EmailAttachment. 170
EmailChannel 36, 131, 161
EmailDocument 48, 142, 145, 170
EmailDraft 49, 145, 170
EmailDraft.send() 145
EmailMessage. 142, 145, 170
encryption . 12
error messages

about 114, 179
MajorCode 179
MinorCode 180

event changes
AddressBook 151
agent availability 130
display channel properties. 132
display Customer history 149
display email 142
display text message 141

display WorkItem history 147
log in . 127
log out . 129
OnHold/OffHold indication 139
reply to email 146
work item collaboration 137
work item lifecycle 135

event handling
blocking operations 83
ConnectionStatusChange 83
create listeners 80
guidelines. 79
register listeners. 80
SessionShutdown 83
TranscriptLine. 68

events
AddressBook.FindAgentsResponse 150
AddressBook.FindQueuesResponse 150
FindAgentsResponse 150
FindQueuesResponse 150
RequestHistoryResponse 147
WorkItem.RequestCustomerHistoryResponse. . 148

examples
access work item attributes 165
access wrapup codes 171
AddressBook 150
agent availability 129
apply signatures. 169
channel operational state 161
connectivity status 158
customer-generated alert 169
display assigned work items 162
display channel properties 131
display Customer history 148
display email 142
display text message 139
display WorkItem history 146
inactivity alert on threshold 167
language filter 168
log in . 126
log out . 128
OnHold alert on threshold 166
OnHold/OffHold indication 138
operational state 160
password change 156
prompt on WorkItem arrival 163
reply to email 144
saving attribute data 51
session shutdown request 159
Session status 157
support for attachments 170
use terminate reasons 173
voice call 153
work item collaboration 136
work item lifecycle 133

Avaya IC Client SDK Programmer Guide May 2013 187

 Index

work item operational state 165
wrapup code dialog box 172

exception handling 87

F
features . .11
files, customization. 90
files, log . 107
FindAgentsResponse 150
FindQueuesResponse 150
firewalls . 12
flag, current . 24
force multiple calls option. 70
formatting, date for history 75
framework, client. 16
functions

attributes . 51
ContactAttribute 50

G
GetContactAttribute 51
getting support. 121
guidelines

AddressBook API 76
chat . 68
chat interaction 68
Client API 67
customization. 90
event handling 79
exception handling 87
History API 73
logging . 105
logging in 86
logging out 86
null return values 89
operations 88
performance considerations 93
states . 85
time and date duration 72
voice interaction 69
WrapupSelection API 78

H
handling

events . 79
TranscriptLine events 68

HDS
see Hierarchical Data Store

HealthStatusChanged 132
Hierarchical Data Store

about . 16

diagnostic information114
Diagnostic Viewer 16
updating .115

History API guidelines
about . 73
CustomerHistory 149
CustomerHistory record 74
formatting date 75
retrieving history. 73
WorkItemHistory 147
WorkItemHistory record 74

I
identifying problems 116
idle state . 35
implementation considerations

AddressBook 150
agent availability 129
display channel properties 131
display Customer history 148
display email 142
display text message 140
display WorkItem history 147
log in . 126
log out . 128
OnHold/OffHold indication 138
reply to email 145
voice call 153
work item collaboration 136
work item lifecycle 133

Inactive state 44, 47
inactivity alert on threshold scenario 167
Init_auxwork state 32
Init_available state 32
Initialized state 32
Initiating state 40, 44
integration

client-side. 19
data . 51
server-side 19

integrations
supported . 12

internationalization 12
about . 123
character sets 92
error messages 179

J
Java . 12

commons-logging 105
compilers . 99
diagnostic API. 115
log4j . 105

188 Avaya IC Client SDK Programmer Guide May 2013

 Index

Java client
about . 56
log to a file 105
logs . 105
open Diagnostic Viewer 117
setting log levels 105

JavaDoc . 20
JDK. 99
join us handle 177

L
language filter scenario. 168
lifecycle, work item. 133
limitations

Client SDK 12
sample clients 56

listeners
creating . 80
registering 80

localization
about . 123
character sets 92
error messages. 179

location
customization files 90
log4j configuration files 102

log files
client-side 104
server . 101

log in
chat . 87
ConnectionException 88
email. 87
event changes 127
guidelines 86
implementation considerations. 126
objects . 126
sample code 127, 176
scenario . 126
steps. . 127

log levels
.NET client 105
Java client 105
server . 103

log out
chat . 87
ConnectionException 88
email. 87
event changes 129
guidelines 86
implementation considerations. 128
objects . 128
sample code 129
scenario . 128

steps . 129
WorkItem status 87

log4j
changing file name 102
configuration files 102
server logging 101

log4j.xml.basic 101
log4j.xml.comm. 101
log4j.xml.debug 101
log4net logger module 104
Logged_in state 32
Logged_out state 32
loggedout state 35
logging

.NET client 104
about . 99
changing log4j file name 102
client . 104
client-side. 104
Java client 105
log files . 107
log4j . 101
module boundaries 100
recommendations 105
sample clients. 104
server . 101
setting

.NET client. 105
Java client 105
server 103

logs
Client SDK 107
sample client 104

M
MajorCode . 179
makeCurrent() 133
MediaInteraction 41, 162, 164, 165
MediaInteraction.getAttributes() 91
MediaInteractionList 140, 162, 164
messages, error 114, 179
MessageType 140
messaging provider

client . 18
Client SDK 18
server . 18

method calls
about . 26
asynchronous 26
synchronous 26

methods, chat 68
millisecond value, date 75
MinorCode . 180
module boundaries 100

Avaya IC Client SDK Programmer Guide May 2013 189

 Index

monitoring chat sessions 175

N
NameValue . 74
NameValueList 74, 148
NAT. 12
nDoc . 20
Nonviable state 40, 44
null return values 89
NullPointerException87, 89

O
object model diagram 19
objects

Application 29
Channel . 33
ChatChannel 36
ChatMediaInteraction 45
checking state 85
Document 48
DraftDocument 49
EmailChannel 36
EmailDocument 48
EmailDraft 49
history . 73
MediaInteraction 41
server . 17
Session . 30
User . 33
User Object Model 18
VoiceChannel 35
VoiceMediaInteraction 42
WorkItem 38
WorkList . 37

occupied state 35
OnHold alert on threshold scenario 166
OnHold/OffHold indication

event changes 139
implementation considerations. 138
objects . 138
sample code 139
scenario . 138
steps. . 139

opening Diagnostic Viewer 117
operational state scenario 160
OperationFailed 89
operations

about . 26
blocking . 83
failure . 88
success . 88

OperationSuccess 89
origin . 74

OriginatorHandle 69
OriginType . 140
OutcomeCode 171, 172

P
password change scenario 156
Paused state . 40
performance considerations 93
prompt on WorkItem arrival scenario 163
PromptOnArrival 163
properties, agent 92
proxy servers. 12

Q
queries, CustomerHistory 75

R
ReasonCode 171, 172
recommendations

AddressBook API 76
chat interactions. 68
Client API . 67
customization 90
event handling 79
exception handling 87
History API 73
log in and out 86
logging . 105
null return values 89
operations 88
performance considerations 93
states. . 85
time and date duration 72
voice interactions 69
WrapupSelection API 78

records
CustomerHistory 74
WorkItemHistory 74

registering listeners 80
related documentation 10
release() . 133
reply to email

event changes 146
implementation considerations 145
objects . 145
sample code 146
scenario 144
steps 143, 145

RequestHistoryResponse event 147
retrieving object history 73
return, null . 89

190 Avaya IC Client SDK Programmer Guide May 2013

 Index

S
sample clients

.NET. 61
about . 55
Java . 56
logging . 104
unsupported features 56

sample code
AddressBook 151
agent availability 131
create listeners 81
display channel properties. 132
display Customer history 149
display email 143, 144
display text message 141
display WorkItem history 147
log in. 127, 176
log out . 129
OnHold/OffHold indication 139
register listeners 80
reply to email 146
work item collaboration 138
work item lifecycle 135
WrapupSelection 79

saving attribute data 51
scalability . 12
scenarios

access work item attributes 165
access wrapup codes 171
AddressBook 150
agent availability 129
Application object 155
apply signatures 169
Channel object 161
channel operational state 161
chat interaction 167
connectivity status 158
customer-generated alert 169
display assigned work items 162
display channel properties. 131
display Customer history 148
display email 142
display text message 139
display WorkItem history 146
email document 169
inactivity alert on threshold 167
join us scenario. 176
language filter 168
log in. . 126
log out . 128
OnHold alert on threshold 166
OnHold/OffHold indication 138
operational state 160

password change 156
prompt on WorkItem arrival 163
reply to email 144
Session object 156
session shutdown request 159
Session status 157
supervisory scenario. 173
support for attachments 170
use terminate reasons 173
voice call 153
voice interaction 166
work item collaboration 136
work item lifecycle 133
work item operational state. 165
WorkItem object 162
wrapup . 171
wrapup code dialog box 172

SDK client framework 16
SDK server

components. 17
debugging communication118

SDK server bridge 17
SDKAppContext 93
SDKEduAttributesToFilter.properties. 91
SDKICPropertiesSections.properties. 92
SDKICpropertiesSections.properties file 133
SDKSessionAttributesFilter.properties 91
SDKSupportedCharsets.properties 92
SDKWorkItemAttributesFilter.properties 91
SDKWrapupCodesCategoryGroups.properties 92
security . 12
server

basic services 18
components. 17
log files . 101
logging . 101
messaging provider 18
SDK server bridge. 17
server objects 17
setting log levels 103
User Object Model. 18
Web container 17

server bridge, SDK 17
server messaging provider 18
server objects 17
server-side integration 19
Session

about . 30
AddressBook 150
agent availability 129
attributes . 91
channel properties. 131
connectivity status 158
enable and disable 160
log in . 126

Avaya IC Client SDK Programmer Guide May 2013 191

 Index

prompt on arrival 164
shutdown request. 159
states . 32
status . 157
terminate reasons 173
voice call . 153
wrapup. 171, 172

session shutdown request scenario 159
Session status scenario 157
Session.enterAuxwork() 129, 132
Session.getAddressBook() 150
Session.Initialize 80
Session.makeAvailable() 129, 132
SessionShutdown 83
SetContactAttribute 51
SSL . 12
starttime. 74
state model

Channel . 34
ChatMediaInteraction 46
diagrams . 19
Session . 31
VoiceMediaInteraction 43
WorkItem 39

states
Active .44, 47
active . 35
Alerting . 40
Auxwork . 32
Available . 32
busy . 35
Channel . 34
ChatMediaInteraction 47
check WorkItem status 86
checking object 85
Completed 41, 44, 47
Conferencing 40
Consulting 41
Deferred . 40
Delivered. 44, 47
Disconnected. 44, 47
guidelines 85
idle . 35
Inactive 44, 47
Init_auxwork 32
Init_available 32
Initialized. 32
Initiating 40, 44
Logged_in 32
Logged_out 32
loggedout 35
Nonviable 40, 44
occupied . 35
Paused . 40
Session . 32

Transferring. 40
VoiceMediaInteraction 44
Working . 40
WorkItem . 40
Wrapup . 41

String dumpDiagnosticInfo()115
string DumpDiagnosticInfo()115
supervisory operations 174
supervisory role 174
support for attachments scenario 170
support, getting. 121
supported compilers 99
synchronous communication

method calls 26
SSL . 12

T
technologies . 12
time guideline 72
TranscriptDocument 139
transcriptDocument.getTranscriptLineList() 140
TranscriptLine 68, 140
TranscriptLine.getOriginatorHandle(). 141
TranscriptLineAdded 141
transfer() . 137
Transferring state. 40
troubleshooting

API . .114
common problems. 117
diagnostic information114
error messages 179

U
UOM. . 18
updating Hierarchical Data Store 115
use terminate reasons scenario 173
User . 33
User Object Model 18
using

agent properties 92
diagnostic API. 115
diagnostic information116

V
values, null return. 89
viewing data 115, 116
voice call

implementation considerations 153
objects . 153
scenario 153
steps . 154

192 Avaya IC Client SDK Programmer Guide May 2013

 Index

voice interaction guidelines 69
voice trailing . 25
VoiceChannel 35, 131, 161
VoiceChannel.Reset 69
VoiceInteraction

see VoiceMediaInteraction
VoiceMediaInteraction

about . 42
active state 44
completed state 44
delivered state 44
disconnected state 44
inactive state 44
initiating state. 44
nonviable state 44
scenario 136, 138, 166
states . 44

VoiceMediaInteraction.State.ACTIVE 139
VoiceMediaInteraction.State.INACTIVE 139

W
Web container 17
WebAppContext 93, 126
work item collaboration

event changes 137
implementation considerations. 136
objects . 136
sample code 138
scenario . 136
steps. . 137

work item lifecycle
event changes 135
implementation considerations. 133
objects . 133
sample code 135
scenario . 133
steps. . 134

work item operational state scenario 165
work items

active . 23
current . 23
debugging delivery 118
debugging state 119
voice trailing 25

workflows . 51
Working state 40
WorkItem

about . 38
access . 165
alerting state 40
attributes . 50
check status 86
collaboration 136
completed state 41

conferencing state 40
consulting state 41
contact_attr container 50
ContactAttribute functions 50
customizing attributes 91
deferred state 40
display assigned 162
display customer history 148
display email 142
display history. 146
enable and disable 165
functions . 51
initiating state 40
lifecycle. 133
log out status 87
paused state 40
prompt on arrival 164
session shutdown 159
states. . 40
terminate reasons 173
transferring state 40
working state 40
wrapup codes 171
wrapup dialog 172
wrapup state 41

WorkItem.complete() 134
WorkItem.CurrentContextChanged 24
WorkItem.getCreateDate() 72
WorkItem.getDeliveredDate() 72
WorkItem.getQueueTime() 72
WorkItem.getTerminateReason() 134
WorkItem.isCurrent() 136
WorkItem.RequestCustomerHistoryResponse event 148
WorkItem.StateChanged 135
workitem.stateChanged 164
WorkItemHistory 146

about . 74
retrieving . 73
when to retrieve 147

WorkList 37, 133, 162, 164
Worklist.workitemRemoved 164
wrapup code dialog box scenario 172
wrapup codes, customizing 92
wrapup scenarios. 171
Wrapup state. 41
WrapupEnabled 134
WrapupSelection 78, 171, 172
WrapupSelectionList 78

	Contents
	Preface
	Purpose
	Audience
	Reason for Re-issue
	Related documents
	Availability

	Chapter 1: Introduction
	Features of the Client SDK
	Limitations of the Client SDK
	Architecture of the Client SDK
	Client components
	Custom application
	Client API
	SDK client framework
	Hierarchical Data Store

	Server components
	SDK server bridge
	Web container
	Messaging providers
	Basic services
	User Object Model

	Client-side integration
	Server-side integration
	Additional documentation for the Client SDK

	Chapter 2: Client API object model
	Communication through the Client SDK
	Delivery of communications to application users
	Delivery of outbound communications from application users

	Work items and the Current concept
	Relationship between Current and the Working state
	Identifying the Current work item
	How a work item becomes Current
	Effect of makeCurrent()
	Relationship between Current and Voice Trailing

	Events in the Client SDK
	Operations
	Method calls
	Event registration

	Overview of the object model
	Client API objects
	Application
	Session
	User
	Channel
	VoiceChannel
	EmailChannel
	ChatChannel
	WorkList
	WorkItem
	MediaInteraction
	VoiceMediaInteraction
	ChatMediaInteraction
	Document
	EmailDocument
	DraftDocument
	EmailDraft

	Attributes on the WorkItem object
	Attribute storage in the EDU
	WorkItem functions for attribute storage
	Data integration with a custom application
	Attribute data in the Contact table
	Example: moving data from a contact routing workflow to the database

	Chapter 3: Sample clients
	Overview
	Features not supported in the sample clients
	About the Java sample client
	User interface of the Java sample client
	Source code for the Java sample client
	Design configuration files for the Java sample client
	Resources for the Java sample client
	Dependencies of the Java sample client
	Developing a custom Java sample client
	Running a Java sample client from an SDK server system
	Running a Java sample client from a non-SDK server system

	About the .NET sample client
	User interface of the .NET sample client
	Code and resources for the .NET sample client
	Dependencies of the .NET sample client
	Developing a custom .NET sample client
	Running a .NET sample client from an SDK server system
	Running a .NET sample client from a non-SDK server system

	Chapter 4: Guidelines for using the Client API
	Chat interaction guidelines
	Methods not allowed for chat interactions
	Handle TranscriptLine events for chat interactions
	Do not use Datawake method

	Voice interaction guidelines
	Using VoiceChannel.Reset
	Setting the force multiple calls option on the switch
	Impact of network recovery on voice interaction

	Callback guidelines
	Time and date duration guideline
	History API guidelines
	Retrieving the history for a WorkItem or Customer
	WorkItemHistory record
	CustomerHistory record
	Formatting dates for the history of an object
	Example: retrieve WorkItem history for Java application
	Example: retrieve Customer history for Java application

	AddressBook API guidelines
	Retrieving the AddressBook object
	Implementing Address Book searches
	Example: Finding a subset of agents based on criteria
	Example: Finding a subset of queues based on criteria

	WrapupSelection API guideline
	Event handling guidelines
	Register listeners for events before calling Session.Initialize
	Create a separate listener for each event
	Avoid blocking operations in event handling
	Handle ConnectionStatusChange and SessionShutdown events

	State guidelines
	Check object for the appropriate state
	Check status of WorkItem

	Log in and log out guidelines
	Simultaneous log in and log out for Chat and Email
	Check WorkItem status during logout

	Exception handling guidelines
	NullPointerException and ArgumentNullException
	ConnectionException
	AuthenticationException

	Operation failure and success guidelines
	OperationFailed
	OperationSuccess

	Null return value guidelines
	Customization guidelines
	Customization directory
	Customization files
	SDKEduAttributesToFilter.properties
	SDKWorkItemAttributesFilter.properties
	SDKSessionAttributesFilter.properties
	SDKWrapupCodesCategoryGroups.properties
	SDKSupportedCharsets.properties
	SDKICPropertiesSections.properties
	Deploying a configuration file

	Performance considerations
	Using WebAppContext
	Configuring the messaging service

	Chapter 5: Compiling and debugging a custom application
	Supported compilers
	Logging
	Logging at the module boundaries
	Client SDK server logging
	Client SDK client logging
	Logging guidelines
	Tracing issues through Client SDK logs
	Sample log messages

	Error messages
	Client SDK diagnostic information
	Using the diagnostic API
	When the Hierarchical Data Store is updated
	Viewing the HDS diagnostic information in the sample clients
	Using the HDS diagnostic information to identify problems
	Debugging problems found with the HDS diagnostic information
	Opening the Diagnostic Viewer

	Debugging common problems
	Custom application cannot communicate with Client SDK server
	Chat or email work item is not delivered
	WorkItem state does not change
	.NET client encounters socket exception error during log in

	Getting support

	Chapter 6: Localization and internationalization
	Appendix A: Sample scenarios
	Login scenario
	Logout scenario
	Agent availability scenario
	Display channel properties scenario
	Workitem lifecycle scenario
	Workitem collaboration scenario
	OnHold/OffHold indication scenario
	Display text message scenario
	Display email scenario
	New Outbound email scenario
	Reply to email scenario
	Display WorkItem History scenario
	Display Customer History scenario
	AddressBook scenario
	Retrieving Workitem Contact Attributes scenario
	Voice Call scenario

	Appendix B: Additional sample scenarios
	Application object scenario
	Password change scenario

	Session object scenarios
	Session status scenario
	Connectivity status scenario
	Session shutdown request scenario
	Enable and disable operational state scenario

	Channel object scenario
	Enable and disable channel operational state scenario

	WorkItem object scenarios
	Display assigned work items scenario
	Prompt on WorkItem arrival scenario
	Enable and disable work item operational state scenario
	Access work item attributes scenario

	Voice interaction scenario
	OnHold alert on threshold scenario

	Chat interaction scenarios
	Inactivity alert on threshold scenario
	Language filter scenario
	Customer-generated alert scenario

	Email document scenarios
	Apply signatures scenario
	Support for attachments scenario

	Wrapup scenarios
	Access wrapup codes scenario
	Wrapup dialog box scenario
	Use terminate reasons scenario

	Supervisory scenario
	Join-Us Scenario

	Appendix C: Error messages
	MajorCodes
	MinorCodes

	Index

