

Avaya Aura
®
 Application Enablement

Services

TSAPI for Avaya Communication Manager
Programmer’s Reference

Release 6.1

02-300544

Issue 5

June 2011

ii TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

© 2011 Avaya Inc.

All Rights Reserved.

Notice

While reasonable efforts have been made to ensure that the information in this document is complete and accurate at the

time of printing, Avaya assumes no liability for any errors. Avaya reserves the right to make changes and corrections to

the information in this document without the obligation to notify any person or organization of such changes.

Documentation disclaimer

Avaya shall not be responsible for any modifications, additions, or deletions to the original published version of this

documentation unless such modifications, additions, or deletions were performed by Avaya. End User agree to indemnify

and hold harmless Avaya, Avaya's agents, servants and employees against all claims, lawsuits, demands and judgments

arising out of, or in connection with, subsequent modifications, additions or deletions to this documentation, to the extent

made by End User.

Link disclaimer

Avaya is not responsible for the contents or reliability of any linked Web sites referenced within this site or

documentation(s) provided by Avaya. Avaya is not responsible for the accuracy of any information, statement or content

provided on these sites and does not necessarily endorse the products, services, or information described or offered

within them.

Avaya does not guarantee that these links will work all the time and has no control over the availability of the linked

pages.

Warranty

Avaya provides a limited warranty on this product. Refer to your sales agreement to establish the terms of the limited

warranty. In addition, Avaya‘s standard warranty language, as well as information regarding support for this product, while

under warranty, is available to Avaya customers and other parties through the Avaya Support Web site:

http://www.avaya.com/support. Please note that if you acquired the product from an authorized Avaya reseller outside of

the United States and Canada, the warranty is provided to you by said Avaya reseller and not by Avaya.

Licenses

THE SOFTWARE LICENSE TERMS AVAILABLE ON THE AVAYA WEBSITE,

HTTP://SUPPORT.AVAYA.COM/LICENSEINFO/ ARE APPLICABLE TO ANYONE WHO DOWNLOADS, USES AND/OR

INSTALLS AVAYA SOFTWARE, PURCHASED FROM AVAYA INC., ANY AVAYA AFFILIATE, OR AN AUTHORIZED

AVAYA RESELLER (AS APPLICABLE) UNDER A COMMERCIAL AGREEMENT WITH AVAYA OR AN AUTHORIZED

AVAYA RESELLER. UNLESS OTHERWISE AGREED TO BY AVAYA IN WRITING, AVAYA DOES NOT EXTEND THIS

LICENSE IF THE SOFTWARE WAS OBTAINED FROM ANYONE OTHER THAN AVAYA, AN AVAYA AFFILIATE OR AN

AVAYA AUTHORIZED RESELLER, AND AVAYA RESERVES THE RIGHT TO TAKE LEGAL ACTION AGAINST YOU

AND ANYONE ELSE USING OR SELLING THE SOFTWARE WITHOUT A LICENSE. BY INSTALLING,

DOWNLOADING OR USING THE SOFTWARE, OR AUTHORIZING OTHERS TO DO SO, YOU, ON BEHALF OF

YOURSELF AND THE ENTITY FOR WHOM YOU ARE INSTALLING, DOWNLOADING OR USING THE SOFTWARE

(HEREINAFTER REFERRED TO INTERCHANGEABLY AS ―YOU‖ AND ―END USER‖), AGREE TO THESE TERMS

AND CONDITIONS AND CREATE A BINDING CONTRACT BETWEEN YOU AND AVAYA INC. OR THE

APPLICABLE AVAYA AFFILIATE (―AVAYA‖).

Avaya grants End User a license within the scope of the license types described below. The applicable number of

licenses and units of capacity for which the license is granted will be one (1), unless a different number of licenses or units

of capacity is specified in the Documentation or other materials available to End User. ―Designated Processor‖ means a

single stand-alone computing device. ―Server‖ means a Designated Processor that hosts a software application to be

accessed by multiple users. ―Software‖ means the computer programs in object code, originally licensed by Avaya and

ultimately utilized by End User, whether as stand-alone products or pre-installed on Hardware. ―Hardware‖ means the

standard hardware originally sold by Avaya and ultimately utilized by End User.

License type(s)

Named User License (NU). End User may: (i) install and use the Software on a single Designated Processor or Server per

authorized Named User (defined below); or (ii) install and use the Software on a Server so long as only authorized Named

Users access and use the Software. ―Named User,‖ means a user or device that has been expressly authorized by Avaya

to access and use the Software. At Avaya's sole discretion, a ―Named User‖ may be, without limitation, designated by

name, corporate function (e.g., webmaster or helpdesk), an e-mail or voice mail account in the name of a person or

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 iii

corporate function, or a directory entry in the administrative database utilized by the Software that permits one user to

interface with the Software.

Shrinkwrap License (SR). With respect to Software that contains elements provided by third party suppliers, End User

may install and use the Software in accordance with the terms and conditions of the applicable license agreements, such

as ―shrinkwrap‖ or ―clickwrap‖ license accompanying or applicable to the Software (―Shrinkwrap License‖). The text of the

Shrinkwrap License will be available from Avaya upon End User‘s request (see ―Third-party Components‖ for more

information).

Copyright

Except where expressly stated otherwise, no use should be made of materials on this site, the Documentation(s) and

Product(s) provided by Avaya. All content on this site, the documentation(s) and the product(s) provided by Avaya

including the selection, arrangement and design of the content is owned either by Avaya or its licensors and is protected

by copyright and other intellectual property laws including the sui generis rights relating to the protection of databases.

You may not modify, copy, reproduce, republish, upload, post, transmit or distribute in any way any content, in whole or in

part, including any code and software. Unauthorized reproduction, transmission, dissemination, storage, and or use

without the express written consent of Avaya can be a criminal, as well as a civil, offense under the applicable law.

Third-party components

Certain software programs or portions thereof included in the Product may contain software distributed under third party

agreements (―Third Party Components‖), which may contain terms that expand or limit rights to use certain portions of the

Product (―Third Party Terms‖). Information regarding distributed Linux OS source code (for those Products that have

distributed the Linux OS source code), and identifying the copyright holders of the Third Party Components and the

Third Party Terms that apply to them is available on the Avaya Support

Web site: http://www.avaya.com/support/Copyright/.

Preventing toll fraud

―Toll fraud‖ is the unauthorized use of your telecommunications system by an unauthorized party (for example, a person

who is not a corporate employee, agent, subcontractor, or is not working on your company's behalf). Be aware that there

can be a risk of toll fraud associated with your system and that, if toll fraud occurs, it can result in substantial additional

charges for your telecommunications services.

Avaya fraud intervention

If you suspect that you are being victimized by toll fraud and you need technical assistance or support, call Technical

Service Center Toll Fraud Intervention Hotline at +1-800-643-2353 for the United States and Canada. For additional

support telephone numbers, see the Avaya Support Web site: http://www.avaya.com/support/. Suspected security

vulnerabilities with Avaya products should be reported to Avaya by sending mail to: securityalerts@avaya.com.

Trademarks

Avaya, the Avaya logo, one-X Portal, Communication Manager, Application Enablement Services, Modular Messaging,

and Conferencing are either registered trademarks or trademarks of Avaya Inc. in the United States of America and/or

other jurisdictions.

All other trademarks are the property of their respective owners.

Downloading documents

For the most current versions of documentation, see the Avaya Support Web site: http://www.avaya.com/support

Contact Avaya Support

Avaya provides a telephone number for you to use to report problems or to ask questions about your product. The support

telephone number is 1-800-242-2121 in the United States. For additional support telephone numbers, see the Avaya Web

site: http://www.avaya.com/support

iv TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Contents

About this document .. 1

Intended audience ... 1

Structure and organization of this document .. 2

Reason for Reissue ... 4

AE Services 6.1.0 clients and backward compatibility .. 6

About installing the SDK ... 6

Related Documents ... 7

Related Ecma International documents .. 7

Related Avaya documents .. 8

Web based training ... 9

Customer Support ... 9

Conventions used in this document .. 10

Format of Service Description Pages ... 11

Common ACS Parameter Syntax ... 14

Chapter 1: Overview of the TSAPI Client and the TSAPI SDK 15

Introduction .. 15

Ecma International and the CSTA Standards ... 16

The TSAPI Specification ... 16

TSAPI for Avaya Communication Manager .. 16

The TSAPI Client .. 17

The TSAPI SDK .. 18

Chapter 2: The TSAPI Programming Environment 19

Contents of the TSAPI SDK .. 20

TSAPI SDK header files .. 20

TSAPI Service client libraries .. 20

TSAPI client library configuration file (TSLIB) ... 21

Code Samples (Windows client only) ... 21

TSAPI for Windows SDK Overview... 24

TSAPI SDK for Linux ... 26

Basic TSAPI programming tips ... 30

Opening and closing streams ... 30

Monitoring switch object state changes .. 30

Client/server roles and the routing service ... 31

The client/server session and the operation invocation model ... 31

Advanced TSAPI Programming Techniques .. 32

Transferring or conferencing a call together with screen pop information 33

CSTA Services Used to Conference or Transfer Calls ... 34
Using the Consultation Call Service ... 34
Unique Advantage of the Consultation Call Service .. 34

Using Original Call Information to Pop a Screen .. 36

Using UUI to Pass Information to Remote Applications ... 38

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 v

Re-registering as a Routing Server after a TCP/IP failure .. 40
Who can benefit from this route register request feature? ... 40

Routing transactions ... 41

Server-side programming considerations ... 46

Multiple AE Services server considerations .. 46

CTI Link Availability ... 47

Chapter 3: Control Services ... 48

Control Services provided by TSAPI ... 49

API Control Services ... 49

CSTA Control Services ... 50

Opening, Closing and Aborting an ACS stream.. 50

Opening an ACS stream ... 51

Closing an ACS stream ... 52

Aborting an ACS stream ... 53

Sending CSTA Requests and Responses .. 54

Receiving Events .. 55

Blocking Event Reception ... 55

Non-Blocking Event Reception ... 56

Specifying TSAPI versions when you open a stream ... 57

Providing a list of TSAPI versions in the API version parameter .. 57
How the TSAPI version is negotiated ... 57

Requesting private data when you open an ACS stream ... 59

Querying for Available Services .. 59

ACS functions and confirmation events .. 60

acsOpenStream() ... 61

ACSOpenStreamConfEvent ... 68

acsCloseStream() .. 70

ACSCloseStreamConfEvent ... 72

ACSUniversalFailureConfEvent .. 74

acsAbortStream() ... 76

acsGetEventBlock() ... 77

acsGetEventPoll() .. 80

acsGetFile() (Linux) ... 83

acsSetESR() (Windows) .. 84

acsEventNotify() (Windows) ... 86

acsFlushEventQueue() .. 89

acsEnumServerNames() .. 91

acsGetServerID() ... 93

acsQueryAuthInfo() .. 94

acsSetHeartbeatInterval() .. 97

ACSSetHeartbeatIntervalConfEvent ... 99

ACS Unsolicited Events .. 101

ACSUniversalFailureEvent ... 101

ACS Data Types ... 105

ACS Common Data Types .. 106

vi TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

ACS Event Data Types ... 109

CSTA control services and confirmation events ... 110

cstaGetAPICaps() .. 111

CSTAGetAPICapsConfEvent .. 113

cstaGetDeviceList() .. 116

CSTAGetDeviceListConfEvent ... 118

cstaQueryCallMonitor() .. 120

CSTAQueryCallMonitorConfEvent.. 121

CSTA Event Data Types ... 123

Chapter 4: CSTA Service Groups supported by the TSAPI Service 127

Supported Services and Service Groups .. 128

CSTA Objects.. 133

The CSTA Device object ... 133
Device Type .. 133
Device Class ... 134
Device Identifier .. 134
Device History... 139

The CSTA Call object ... 141

The CSTA Connection object ... 142

CSTAUniversalFailureConfEvent .. 147

Chapter 5: Avaya TSAPI Service Private Data .. 148

What is private data? .. 149

What is a private data version? ... 150

Linking your application to the private data functions ... 151

Summary of TSAPI Service Private Data ... 152

Private Data Version 9 Features ... 155

Consult Mode for Held, Service Initiated, and Originated Events 155

UCID in Single Step Transfer Call Confirmation Event... 156

Private Data Version 8 Features ... 157

Single Step Transfer Call .. 157

Calling Device in Failed Event .. 157

Requesting private data .. 158

Sample code for requesting private data .. 159

Applications that do not use private data .. 160

CSTA Get API Capabilities confirmation structures for Private Data Version 8 161

Code for the ATTGetAPICapsConfEvent - PDV 8 .. 161

Private Data Service sample code .. 162

Upgrading and maintaining applications that use private data ... 169

Using the private data header files.. 170

The attpdefs.h file -- PDU names and numbers ... 170

The attpriv.h file -- other related PDU elements ... 171

Upgrading PDV 8 applications to PDV 9 .. 172

Upgrading PDV 7 applications to PDV 8 .. 174

Upgrading PDV 6 applications to PDV 7 .. 175

Maintaining applications that use prior versions of private data ... 176

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 vii

Maintaining a PDV 8 application in a PDV 9 environment ... 176
Maintaining a PDV 7 application in a PDV 8 environment ... 177

Recompiling against the same SDK ... 178

Chapter 6: Call Control Service Group ... 179

Graphical Notation Used in the Diagrams ... 180

Alternate Call Service ... 181

Answer Call Service .. 181

Clear Call Service ... 182

Clear Connection Service ... 182

Conference Call Service ... 183

Consultation Call Service .. 183

Consultation Direct-Agent Call Service ... 184

Consultation Supervisor-Assist Call Service ... 184

Deflect Call Service ... 185

Hold Call Service... 185

Make Call Service ... 185

Make Direct-Agent Call Service .. 186

Make Predictive Call Service .. 186

Make Supervisor-Assist Call Service .. 187

Pickup Call Service ... 187

Reconnect Call Service ... 187

Retrieve Call Service .. 188

Single Step Conference Call ... 188

Single Step Transfer Call .. 189

Transfer Call Service .. 189

Alternate Call Service .. 190

Answer Call Service .. 194

Clear Call Service ... 198

Clear Connection Service ... 200

Conference Call Service ... 207

Consultation Call Service .. 213

Consultation Direct-Agent Call Service ... 222

Consultation Supervisor-Assist Call Service ... 232

Deflect Call Service ... 241

Hold Call Service ... 245

Make Call Service ... 249

Make Direct-Agent Call Service .. 262

Make Predictive Call Service .. 272

Make Supervisor-Assist Call Service .. 284

Pickup Call Service ... 293

Reconnect Call Service ... 297

Retrieve Call Service ... 303

Send DTMF Tone Service (Private Data Version 4 and Later) ... 307

Selective Listening Hold Service (Private Data Version 5 and Later) 314

Selective Listening Retrieve Service (Private Data Version 5 and Later) 320

viii TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Single Step Conference Call Service (Private Data Version 5 and Later) 325

Single Step Transfer Call (Private Data Version 8 and later) ... 334

Transfer Call Service ... 340

Chapter 7: Set Feature Service Group ... 346

Set Advice of Charge Service (Private Data Version 5 and Later) ... 347

Set Agent State Service .. 351

Set Billing Rate Service (Private Data Version 5 and Later) ... 362

Set Do Not Disturb Feature Service .. 367

Set Forwarding Feature Service ... 370

Set Message Waiting Indicator (MWI) Feature Service .. 374

Chapter 8: Query Service Group .. 377

Query ACD Split Service ... 378

Query Agent Login Service ... 382

Query Agent State Service .. 389

Query Call Classifier Service .. 398

Query Device Info ... 402

Query Device Name Service ... 409

Query Do Not Disturb Service ... 416

Query Forwarding Service .. 418

Query Message Waiting Indicator Service .. 422

Query Station Status Service .. 426

Query Time of Day Service ... 430

Query Trunk Group Service .. 434

Query Universal Call ID Service (Private) ... 438

Chapter 9: Snapshot Service Group ... 442

Snapshot Call Service ... 443

Snapshot Device Service .. 449

Chapter 10: Monitor Service Group.. 456

Overview ... 456

Change Monitor Filter Service — cstaChangeMonitorFilter() ... 456

Monitor Call Service — cstaMonitorCall() ... 456

Monitor Calls Via Device Service — cstaMonitorCallsViaDevice() 456

Monitor Device Service — cstaMonitorDevice() ... 457

Monitor Ended Event — CSTAMonitorEndedEvent ... 457

Monitor Stop On Call Service (Private) — attMonitorStopOnCall() 457

Monitor Stop Service — cstaMonitorStop() .. 457

Event Filters and Monitor Services ... 457

The localConnectionInfo Parameter for Monitor Services .. 460

Change Monitor Filter Service ... 461

Monitor Call Service .. 467

Monitor Calls Via Device Service .. 478

Special Rules - Monitor Calls Via Device Service .. 482

Monitor Device Service ... 488

Monitor Ended Event Report ... 497

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 ix

Monitor Stop On Call Service (Private) ... 499

Monitor Stop Service ... 503

Chapter 11: Event Report Service Group ... 505

CSTAEventCause and LocalConnectionState .. 506

Event Minimization Feature on Communication Manager .. 513

Call Cleared Event .. 514

Charge Advice Event (Private) .. 519

Conferenced Event ... 524

Connection Cleared Event .. 546

Delivered Event ... 555

Diverted Event ... 597

Do Not Disturb Event .. 603

Entered Digits Event (Private) ... 605

Established Event ... 608

Failed Event .. 637

Forwarding Event .. 645

Held Event ... 648

Logged Off Event .. 652

Logged On Event .. 655

Network Reached Event ... 658

Originated Event ... 666

Queued Event ... 674

Retrieved Event ... 681

Service Initiated Event .. 684

Transferred Event ... 689

Event Report Detailed Information .. 710

Analog Sets ... 710
Redirection.. 710
Redirection on No Answer .. 710
Switch Hook Operation ... 710

ANI Screen Pop Application Requirements .. 711

Announcements .. 711

Answer Supervision .. 712

Attendants and Attendant Groups... 712

Attendant Specific Button Operation ... 712

Attendant Auto-Manual Splitting ... 713

Attendant Call Waiting .. 713

Attendant Control of Trunk Group Access .. 713

AUDIX ... 713

Automatic Call Distribution (ACD) ... 714
Announcements .. 714
Interflow .. 714
Night Service .. 714
Service Observing .. 714
Auto-Available Split .. 714

x TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Bridged Call Appearance .. 714

Busy Verification of Terminals .. 715

Call Coverage ... 715

Call Coverage Path Containing VDNs .. 716

Call Forwarding All Calls ... 716

Call Park .. 716

Call Pickup .. 717

Call Vectoring .. 717
Call Prompting .. 719
Lookahead Interflow ... 719
Multiple Split Queuing ... 719
Call Waiting... 719

Conference .. 719

Consult Button... 719

CTI Link Failure ... 720

Data Calls .. 720

DCS ... 720

Direct Agent Calling and Number of Calls In Queue .. 720

Drop Button Operation .. 720

Expert Agent Selection (EAS) ... 721
Logical Agents .. 721

Hold ... 721

Integrated Services Digital Network (ISDN) .. 721

Multiple Split Queuing ... 722

Personal Central Office Line (PCOL) .. 722

Primary Rate Interface (PRI) ... 722

Ringback Queuing .. 723

Send All Calls (SAC) ... 723

Service-Observing... 723

Temporary Bridged Appearances ... 723

Terminating Extension Group (TEG) .. 723

Transfer ... 724

Trunk-to-Trunk Transfer .. 724

Chapter 12: Routing Service Group ... 725

Route End Event ... 726

Route End Service (TSAPI Version 2) .. 730

Route End Service (TSAPI Version 1) .. 733

Route Register Abort Event .. 734

Route Register Cancel Service ... 736

Route Register Service ... 739

Route Request Event (TSAPI Version 2) .. 742

Route Request Event (TSAPI Version 1) .. 759

Route Select Service (TSAPI Version 2) .. 763

Route Select Service (TSAPI Version 1) .. 775

Route Used Event (TSAPI Version 2) ... 777

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 xi

Route Used Event (TSAPI Version 1) ... 781

Chapter 13: System Status Service Group ... 783

Overview ... 783

System Status Request Service - cstaSysStatReq() .. 783

System Status Start Service - cstaSysStatStart() ... 783

System Status Stop Service - cstaSysStatStop() ... 783

Change System Status Filter Service cstaChangeSysStatFilter() 783

System Status Event - CSTASysStatEvent .. 783

System Status Events - Not Supported .. 783

System Status Request Service.. 784

System Status Start Service ... 791

System Status Stop Service .. 799

Change System Status Filter Service ... 801

System Status Event ... 810

Appendix A: Universal Failure Events .. 816

Common switch-related CSTA Service errors .. 816

TSAPI Client library error codes.. 823

ACSUniversalFailureConfEvent error values .. 826

ACS Related Errors ... 844

Appendix B: Summary of Private data support .. 845

Private Data Version 9 features .. 845

Consult Modes .. 845

UCID in Single Step Transfer Call Confirmation event ... 845

Private Data Version 9 features, services, and events ... 845

Private Data Version 8 features .. 847

Single Step Transfer Call Escape Service .. 847

Calling Device in Failed Event .. 847

Private Data Version 8 features, services, and events ... 847

Private Data Version 7 features .. 848

Network Call Redirection for Routing .. 848

Redirecting Number Information Element (presented through DeviceHistory)................... 848

Query Device Name for Attendants .. 848

Enhanced cstaGetAPICaps Version ... 849

Increased Aux Reason Codes .. 849

Private Data Version 7 features, services, and events ... 850

CSTA Get API Capabilities confirmation structures for Private Data Version 7 851

Private Data Version Feature Support prior to AE Services TSAPI R3.1.0 853

Summary of private data versions 2 through 6 ... 854

CSTA Device ID Type (Private Data Version 4 and Earlier) ... 861

CSTAGetAPICaps Confirmation interface structures for Private Data Versions 4, 5, and 6 .. 862

Private Data Version 5 and 6 Syntax .. 863

Private Data Version 4 Syntax .. 863

Private Data Function Changes between V5 and V6.. 864

Private Data Sample Code .. 865

xii TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Appendix C: Server-Side Capacities ... 871

Communication Manager CSTA system capacities .. 872

Index ... 877

 Intended audience

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 1

About this document

This document, the Avaya Aura® Application Enablement Services TSAPI for Avaya

Communication Manager Programmer Reference is the primary documentation resource

for developing and maintaining TSAPI based applications in an Avaya Communication

Manager environment. TSAPI is the acronym for Telephony Services Application

Programming Interface.

Intended audience

This programming guide is intended for C programmers (C or C++) who have a working

knowledge of the following:

 Ecma International Standards for Computer Supported Telecommunications
Applications (ECMA-179 and ECMA-180)

 Telephony Services Application Programming Interface (TSAPI) Specification.
This is documented by the Avaya MultiVantage Application Enablement Services
TSAPI Programmer Reference, 02-300545

 Telecommunications applications

About this document

2 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Structure and organization of this document

Use this chapter summary to become familiar with the structure and contents of this

document.

 Chapter 1: Overview of the TSAPI Client and the TSAPI SDK provides a brief
overview of the AE Services TSAPI Service.

 Chapter 2: The TSAPI Programming Environment describes the tools that are
provided with the TSAPI SDK. This chapter also provides some basic
programming tips and some advanced programming tips.

 Chapter 3: Control Services describes the control services that are provided by
Telephony Services Application Programming Interface (TSAPI). This chapter is
based on the ―Control Services‖ chapter in the Avaya MultiVantage Application
Enablement Services TSAPI Programmer Reference, 02-300545. This
information applies at the TSAPI interface level, and it is not specific to
Communication Manager. You will need to use these control services in a
Communication Manager environment. To avoid having you refer to the TSAPI
Programmer Reference for information about control services, this document
includes the information.

 Chapter 4: CSTA Service Groups supported by the TSAPI Service describes the
CSTA Service groups that the TSAPI Service supports.

 Chapter 5: Avaya TSAPI Service Private Data describes the private data services
provided by the TSAPI Service. This chapter also includes information about how
to manage private data using the private data version control mechanism.

 Chapter 6: Call Control Service Group describes the group of services that
enable a telephony client application to control a call or connection on
Communication Manager. These services are typically used for placing calls from
a device and controlling any connection on a single call as the call moves
through Communication Manager.

 Chapter 7: Set Feature Service Group describes the services that allow a client
application to set switch-controlled features or values on a Communication
Manager device.

 Chapter 8: Query Service Group describes the services that allow a client
application to query the switch to provide the state of device features and static
attributes of a device.

 Chapter 9: Snapshot Service Group describes the services that enable the client
to ―take a snapshot‖ of information about a particular call and information
concerning calls associated with a particular device.

 Chapter 10: Monitor Service Group describes the three types of monitor services
the TSAPI Service provides for Communication Manager.

 Chapter 11: Event Report Service Group describes event messages (or reports)
from Communication Manager to the TSAPI Service.

 Chapter 12: Routing Service Group describes the services that allow the switch
to request and receive routing instructions for a call.

 Structure and organization of this document

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 3

 Chapter 13: System Status Service Group describes the services that allow an
application to receive reports on the status of the switching system.

 Appendix A: Universal Failure Events describes ACS Universal Failure Events.

 Appendix B: Summary of Private data support describes previous private data
versions of AE Services.

 Appendix C: Server-Side Capacities describes server-side capacities, which
include Avaya Communication Manager capacities and AE Services TSAPI
Service capacities.

About this document

4 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Reason for Reissue

This section highlights changes to the TSAPI for Communication Manager

Programmer‘s Reference for AE Services Releases 4.0 through 6.1:

General Maintenance Updates

The AE Services 6.1 TSAPI for Communication Manager Programmer‘s reference has

been reissued to make minor corrections to manual pages.

Private Data Version 9

AE Services 6.1 introduces private data version 9, which includes the following features:

 Consult Modes - In some scenarios, private data associated with the CSTA Held
Event, Service Initiated Event, and Originated Event will now indicate whether
these events are related to a conference operation, a transfer operation, or a
Consultation Call service request.

 The Single Step Transfer Call Confirmation Event now includes the Universal
Call ID (UCID) of the resulting call.

Private Data Version 8

AE Services 4.1 introduces private data version 8, which includes the following features:

 Single Step Transfer Call - see Single Step Transfer Call (Private Data Version 8
and later) on page 334.

 Calling Device in Failed Event - see Calling Device in Failed Event on page 157.

 New Get API Capabilities confirmation event - see CSTA Get API Capabilities
confirmation structures for Private Data Version 8 on page 161.

 A new private data parameter, flowPredictiveCallEvents, has been added to the
CSTAMonitorCallsViaDevice service. For more information, see Monitor Calls
Via Device Service on page 478.

Route Registration Request service update

Beginning with AE Services 4.0, the TSAPI Service allows an application to re-establish

a route registration request due to a service interruption, such as a network outage

between the client and the AE Server. For information about functional changes, see the

following sections of this document

 Routing transactions on page 41.

 Route Register Service on page 739.

 Route Register Abort Event on page 734.

 Reason for Reissue

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 5

TSAPI client connections over secure links

Beginning with AE Services 4.1.0, the TSAPI service provides the option for configuring

secure application links between the TSAPI client and the AE Services server.

For the TSAPI client you will need to set up the configuration file (tslib.ini, for

Windows or tslibrc, for Linux) to select the AE Services Server (AE Server), which is

configured for secure TLINKs (described next in Server Implementation notes for TSAPI

client connections). To establish a session, TSAPI based applications use the

acsOpenStream() service to open a TLINK. As a result of accommodating secure links,

acsOpenStream() provides several new return values. For more information, see

acsOpenStream() on page 61.

Server Implementation notes for TSAPI client connections

To implement client connections over secure TLINKs, you need to administer the AE

Services Server, using the Application Enablement Services (AE Services) Management

Console, as follows:

 (Optional) Administer a range of "Encrypted TLINK Ports" on the Ports OAM
page. To access this setting from the Application Enablement Services
Management Console, select Networking > Ports.

 Administer TSAPI links with the Encrypted security setting on the Add / Edit
TSAPI Links OAM page. To access this page from the Application Enablement
Services Management Console, select AE Services > TSAPI > TSAPI Links.
From the TSAPI Links OAM page, select Add Link or Edit Link.

For more information, see the Avaya Aura® Application Enablement Services

Administration and Maintenance Guide, 02-300357 and the AE Services OAM Help

pages.

TSAPI client heartbeat

Beginning with AE Services Release 4.1.0, the TSAPI Service automatically provides a

client heartbeat, allowing the client library to detect network connectivity issues between

the AE Services server and the client. For more information, see the following topics:

 Opening an ACS stream on page 51

 acsOpenStream() on page 61.

 acsSetHeartbeatInterval() on page 97.

Alternate TLINK capability

Beginning with AE Services Release 4.1.0, the TSAPI Service provides applications with

the ability to specify an optional list of alternate TLINKs to be used automatically and

transparently by acsOpenStream(). The alternate TLINKs are only used if the TLINK

specified in the open stream call is not available at the time that procedure was invoked.

When multiple AE Servers are used as alternates, the username and password specified

by the application in the acsOpenStream() request should be configured identically for

each AE Server.

About this document

6 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

For more information, see acsGetServerID() on page 93.

AE Services 6.1.0 clients and backward compatibility

Application Enablement Services is the software platform for the TSAPI Service

(Tserver).

AE Services Release 6.1.0 supports the AE Services Release 6.1.0 TSAPI clients and is

backward compatible with AE Services TSAPI clients for Releases 5.2.x and 4.x.

About installing the SDK

This programming guide assumes that you have installed the AE Services TSAPI client

and the Software Development Kit (SDK). The Avaya Aura® Application Enablement

Services TSAPI and CVLAN Client and SDK Installation Guide, 02-300543, provides

instructions for installing the TSAPI client and the SDK in Chapter 2, ―Installing AE

Services TSAPI clients and SDKs.‖

When you install the SDK software, you install the TSAPI SDK header files, libraries,

samples and tools. If you install the TSAPI Client only, you will not have access to these

SDK components.

In terms of working with the software, your starting point in this programmer reference is

Chapter 2: The TSAPI Programming Environment. Chapter 2 describes the names and

locations of the SDK components, and provides some basic information about using

them.

 Related Documents

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 7

Related Documents

This section provides references for documents that serve as the basis for this document

as well as documents that contain additional information about AE Services and

Communication Manager features.

 Related Ecma International documents on page 7

 Related Avaya documents on page 8

Related Ecma International documents

This programming reference is based on the following Ecma International documents:

 ECMA -179, ―Services for Computer Supported Telecommunications
Applications (CSTA) Phase I, ―defines the relationship between an application
and a switch. It also defines the CSTA Services that an application can request.

 ECMA -180, ―Protocol for Computer Supported Telecommunications Applications
(CSTA) Phase I,‖ defines a Protocol for Computer-Supported
Telecommunications Applications (CSTA) for OSI Layer 7 communication
between a computing network and a telecommunications network. ECMA-180
specifies application protocol data units (APDUs) for the services described in
ECMA-179.

 ECMA - 269, ―Services for Computer Supported Telecommunications
Applications (CSTA) Phase III,‖ Phase III of CSTA extends the previous Phase I
and Phase II Standards.

About this document

8 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Related Avaya documents

You can find additional information in the following documents.

 Avaya MultiVantage Application Enablement Services TSAPI Programmer
Reference, 02-300545 (also referred to as the TSAPI Specification). The Avaya
MultiVantage Application Enablement Services TSAPI Programmer Reference is
the generic description of TSAPI as a standard programming interface. Use the
TSAPI Specification if you need to brush-up on your TSAPI skills or refresh your
knowledge of TSAPI.

Use the document you are currently reading as your primary reference for
developing and maintaining TSAPI applications. It describes how to program to
the TSAPI interface in an Avaya Communication Manager environment.

 Avaya Aura® Application Enablement Services TSAPI and CVLAN Client and
SDK Installation Guide, 02-300543.

Use this document to install the software development kits (SDKs) that this
document, the TSAPI for Avaya Communication Manager Programmer‘s
Reference, describes.

 Avaya Aura® Application Enablement Services Administration and Maintenance
Guide, 02- 300357. Use this administration guide for information about the
configuration and operation of the AE Services TSAPI Service.

 AE Services OAM Help (included with the AE Services operations,
administration, and maintenance (OAM) interface). Use this on-line reference as
a supplement to the administration guide for information about the configuration
and operation of the AE Services TSAPI Service.

 Administrator Guide for Avaya Communication Manager, 03-300509

Use this administrator guide when you need information about switch setup and
operation.

 Web based training

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 9

Web based training

The Avaya Developer Connection program (DevConnect) provides a series of Web

based training modules called "Avaya Application Enablement Services." If you are

interested in developing TSAPI applications, DevConnect provides a training module

that teaches you how to develop applications using Telephony Services Application

Programming Interface (TSAPI).

 Log in to DevConnect (devconnect.avaya.com).

 From the Welcome page, select Avaya Application Enablement Services - In-
Depth Technical Training, and follow the links to get to the DevConnect
Training site.

 NOTE:

To access Web-based training, you must be a registered member of the
DevConnect program.

Customer Support

For questions about Application Enablement Services, TSAPI Service operation, call 1-

800-344-9670.

About this document

10 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Conventions used in this document

This document uses the following conventions.

Convention Example Usage

plain monospace #include <acs.h> Coding examples.

Note: Coding examples contain
operators and special characters
that are part of the C programming
language syntax. For example, the
angle brackets in the example are
part of the C language syntax.

bold Start In text descriptions, bold can
indicate the following.

 Mouse and keyboard
selections

 function calls

 command names

 field names (field names refer
to alphanumeric text you would
type in a text box or a selection
you would make from a drop-
down list.

 special emphasis

uppercase

 ACS

 CSTA

ACSUniversalFailureConfEvent

CSTAGetDeviceConfEvent
When the terms ACS and CSTA
are uppercased, they refer to
structures or manifest constants.

lowercase

 acs

 csta

acsOpenStream

cstaQueryCallMonitor
When the terms acs and csta are
lowercased, they refer to function
names.

 Format of Service Description Pages

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 11

Format of Service Description Pages

Chapters 3 through 13 of this document contain service descriptions. Table 1 describes

the general format and content of the service descriptions.

Table 1 : Service Description page elements

Element Description

Summary Short description of the service in a list format.

Direction Direction of the service request or event report across the TSAPI
interface:

 Client to Switch – client/application to switch/TSAPI Service

 Switch to Client – switch/TSAPI Service to client/application

Function and
Confirmation Event:

CSTA service request function and CSTA confirmation event as
defined in the Avaya MultiVantage Application Enablement
Services TSAPI Programmer Reference, 02-300545

Private Data Function
and Private Data
Confirmation Event

Private data setup function and private data confirmation event, if
any. This function may be called to setup private parameters, if
any. This function returns an error if there is an error in the private
parameters. An application should check the return value to make
sure that the private data is set up correctly before sending the
request to the TSAPI Service.

Service Parameters: List of parameters for this service request. Common ACS

parameters such as acsHandle, invokeID, and privateData are

not shown.

Private Parameters: List of parameters that can be specified in private data for this
service request.

Ack Parameters: List of parameters in the confirmation event for the positive
acknowledgment from the server. Common ACS parameters such

as acsHandle, eventClass, eventType, and privateData are

not shown.

Ack Private
Parameters:

List of parameters in the private data of the confirmation event for
the positive acknowledgment from the server.

Nak Parameters:

universalFailure

If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain one of the error values described in the
CSTAUniversalFailureConfEvent on page 147.

About this document

12 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 1 : Service Description page elements

Element Description

Functional
Description

Detailed description of the telephony function that this CSTA
Service provides in a TSAPI Service CSTA environment.

Service Parameters Indicates the parameter type.

parameter Detailed information for each parameter in the service request. A
noData indicator means that it requires no additional parameters
other than the common ACS parameters.

support level Identifies the level of support for each service parameter:

 [mandatory] This parameter is mandatory as defined in Standard
ECMA-179. It must be present in the service request. If not, the
service request will be denied with OBJECT_NOT_KNOWN.

 [mandatory - partially supported] This parameter is mandatory as
defined in Standard ECMA-179. However, the TSAPI Service can
only support part of the parameter due to Communication
Manager feature limitations. The TSAPI Service sets a
Communication Manager default value for the portion not
supported.

 [mandatory - not supported] This parameter is mandatory as
defined in Standard ECMA-179. However, The TSAPI Service
does not support this parameter due to Communication Manager
feature limitations. ―Not supported‖ means that whether the
application provides a value or not, the value specified will be
ignored and a default value will be assigned. If this is a parameter
(for example, event report parameter) returned from the switch,
the TSAPI Service sets a Communication Manager default value
for this parameter.

 [optional] This parameter is optional as defined in Standard
ECMA-179. It may or may not be present in the service request. If
not, the TSAPI Service sets a Communication Manager default
value.

 [optional - supported] This parameter is optional as defined in
Standard ECMA-179, but it is always supported.

 [optional - partially supported] This parameter is optional as
defined in Standard ECMA-179. However, the TSAPI Service can
only support part of the parameter due to Communication
Manager feature limitations. The part that is not supported will be
ignored, if it is present.

 Format of Service Description Pages

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 13

Table 1 : Service Description page elements

Element Description

 [optional - not supported] This parameter is optional as defined in
Standard ECMA-179, but it is not supported by The TSAPI
Service. ―Not supported‖ means that whether the application
provides a value or not, the value specified will be ignored and the
TSAPI Service will assign a Communication Manager default
value.

 [optional - limited support] This parameter is optional as defined in
Standard ECMA-179, but it is not fully supported by the TSAPI
Service.

An application must understand the limitations of this parameter in
order to use the information correctly. The limitations are
described in the Detailed Information section associated with each
service.

Private Service Parameters:

parameter Detailed information for each private parameter in the service
request.

support level Identifies the level of support for each private parameter:

 [mandatory] This parameter is mandatory for the specific service.
It must be present in the private data of the request. If not, the
service request will be denied by the TSAPI Service with
OBJECT_NOT_KNOWN.

 [optional] This parameter is optional for the specific service. It may
or may not be present in the private data. If not, the TSAPI
Service will assign a Communication Manager default value.

 [optional - not supported] This parameter is optional for the
specific service. This parameter is reserved for future use. It is
ignored for the current implementation.

Ack Parameters:

parameter Detailed information for each parameter in the service
confirmation event. A noData indicator means that the TSAPI
Service sends no additional parameters other than the
confirmation event itself along with the common ACS parameters.

Ack Private Parameters:

14 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 1 : Service Description page elements

Element Description

parameter Detailed information for each parameter in the private data of the
service confirmation event.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain one of the error values described in the
CSTAUniversalFailureConfEvent on page 147.

Detailed Information: Detailed information about switch operations, feature interactions,
restrictions, and special rules.

Syntax: C-declarations of the TSAPI function and the confirmation event
for this service. See Common ACS Parameter Syntax.

Private Data Syntax: C-declarations of the private parameters and the set up functions
and of the private parameters in the confirmation event for this
service.

Example: Programming examples are given for some of the services and
events.

Common ACS Parameter Syntax

Here is an example of the common ACS parameter syntax used on the service

description pages.

typedef unsigned long InvokeID_t;

typedef unsigned short ACSHandle_t;

typedef unsigned short EventClass_t;

typedef unsigned short EventType_t;

/* defines for ACS event classes */

#define ACSREQUEST 0

#define ACSUNSOLICITED 1

#define ACSCONFIRMATION 2

/* defines for CSTA event classes */

#define CSTAREQUEST 3

#define CSTAUNSOLICITED 4

#define CSTACONFIRMATION 5

#define CSTAEVENTREPORT 6

15 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Chapter 1: Overview of the TSAPI Client and
the TSAPI SDK

This chapter provides a brief history of TSAPI (Telephony Services Application

Programming Interface). It contains the following topics:

 Introduction on page 15

 Ecma International and the CSTA Standards on page 16

 The TSAPI Specification on page 16

 TSAPI for Avaya Communication Manager on page 16

 The TSAPI Client on page 17

 The TSAPI SDK on page 18

Introduction

Application Enablement Services (AE Services) TSAPI for Communication Manager is a

library interface that is designed exclusively for use with Avaya Communication

Manager. It is a standards based library based on Ecma International Standards and the

Telephony Services Application Programming Interface (TSAPI) Specification. This

historical summary describes the relationship between the Ecma International standards,

the TSAPI Specification, and TSAPI for Communication Manager. The following topics

describe how these pieces fit together at a conceptual level.

16 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Ecma International and the CSTA Standards

Ecma International is an international standards organization. Two Ecma standards,

ECMA-179 and ECMA-180 are about Computer-Supported Telecommunications

Applications (CSTA), and they are often referred to as ―CSTA‖ documents. These two

CSTA documents form the basis for Computer Telephony Integration (CTI).

 ECMA-179 defines the relationship between an application and a switch. It also
defines the CSTA Services that an application can request.

 ECMA-180 defines a Protocol for Computer-Supported Telecommunications
Applications (CSTA) for OSI Layer 7 communication between a computing
network and a telecommunications network. ECMA-180 specifies application
protocol data units (APDUs) for the services described in ECMA-179.

For more information about Ecma International and to get the standards go to the Ecma

International Web Site:

http://www.ecma-international.org/memento/index.html

The TSAPI Specification

The Telephony Services Application Programming Interface (TSAPI) specification is an

implementation of the ECMA-179 and ECMA-180 standards. It is a generic, switch-

independent API that describes how to implement Computer Telephony Integration (CTI)

in a switch-independent way. This generic specification is described in the Application

Enablement Services TSAPI Programmer’s Reference, 02-300545. It describes TSAPI

at the TSAPI interface level, and forms the basis for this document, the Avaya Aura®

Application Enablement Services TSAPI for Avaya Communication Manager

Programmer Reference.

TSAPI for Avaya Communication Manager

TSAPI for Avaya Communication Manager is an implementation of the generic TSAPI

Specification. Stated another way, TSAPI for Avaya Communication Manager is a

switch-specific API that provides the C programming community (C and C++

programmers) with a way to implement CTI in Avaya Communication Manager

environment.

This document, the AE Services TSAPI for Avaya Communication Manager Programmer

Reference, is your primary documentation resource for developing and maintaining

TSAPI applications. It describes the CSTA services that are available for interacting with

Avaya Communication Manager.

http://www.ecma-international.org/memento/index.html

 The TSAPI Client

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 17

The TSAPI Client

The TSAPI Client provides applications with access to Avaya Communication Manager

call processing. The primary component of the TSAPI Client is the TSAPI library. The

TSAPI library is the C library of function calls that enables an application to request

CSTA Services. Additionally the TSAPI client provides access to Avaya Private data.

Avaya Private Data provides access to specialized features of Avaya Communication

Manager. For more information about TSAPI client libraries, see

18 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Chapter 2: The TSAPI Programming Environment.

The TSAPI SDK

The TSAPI SDK provides you with the necessary tools for developing and designing a

TSAPI application in a Communication Manager environment. The TSAPI SDK does not

include the TSAPI Client. For more information about the TSAPI SDK, see Contents of

the TSAPI SDK on page 20.

19 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Chapter 2: The TSAPI Programming
Environment

The TSAPI Software Development Kit (SDK) is intended for programmers who are

developing Computer Telephony Integration (CTI) applications. This chapter provides

some basic information about the TSAPI programming environment. It includes the

following topics:

 Contents of the TSAPI SDK on page 20

 TSAPI SDK header files on page 20

 TSAPI Service client libraries on page 20

 TSAPI client library configuration file (TSLIB) on page 21

 TSAPI for Windows SDK Overview on page 24

 TSAPI SDK for Linux on page 26

 Basic TSAPI programming tips on page 30

 Advanced TSAPI Programming Techniques on page 32

 Server-side programming considerations on page 46

TIP:

AE Services provides a self-paced, Web-based training module that teaches you
how to develop TSAPI applications. For more information see Web based
training on page 9.

Chapter 2: The TSAPI Programming Environment

20 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Contents of the TSAPI SDK

The AE Services TSAPI SDK consists of the following components.

 headers and libraries

 sample code

 the TSAPI Exerciser (for Windows-based clients only)

The TSAPI client must be installed separately. For information about installing the TSAPI

SDK and the TSAPI Client, see the Avaya Application Enablement Services TSAPI and

CVLAN Client and SDK Installation Guide, 02-300543.

TSAPI SDK header files

The TSAPI SDK header files contain coding structures you need to use for designing

and maintaining your applications. If you plan to design or update an application for

compliance with Private Data you will need to use ―attpriv.h‖ and ―attpdefs.h.‖ For

more information about private data, see Using the private data header files on page

170.

TSAPI Service client libraries

The TSAPI Service client library provides a set of functions that acts as an interface

between client applications and the TSAPI Service. Applications use these functions to

establish an authorized connection with the TSAPI Service and to send telephony

control messages (CSTA messages) to Avaya Communication Manager.

Table 2: TSAPI Service client libraries

Library name Operating system Description

CSTA32.DLL Windows Contain TSAPI functions

(cstaServiceName and the

acsServiceName) services. libcsta.so Linux

ATTPRIV32.DLL Windows Contain private data
encoding and functions

(attServiceName). libattpriv.so Linux

 Contents of the TSAPI SDK

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 21

TSAPI client library configuration file (TSLIB)

The TSAPI for Communication Manager client libraries use the TSLIB configuration file

to identify the network address of the AE Services Server running the TSAPI Service.

 For Windows-based clients, the configuration file is TSLIB.INI.

 For Linux-based clients, the configuration file is tslibrc.

See the Avaya Aura® Application Enablement Services TSAPI and CVLAN Client and

SDK Installation Guide, 02-300543, for information about setting up the TSLIB

configuration file.

Code Samples (Windows client only)

The Samples directory contains samples of complete applications that demonstrate how

to program to TSAPI.

Table 3 provides a brief description of each of the TSAPI code samples. Each sample is

a complete application that demonstrates how to program to TSAPI. Notice that each

sample builds on the next, with the successive sample implementing more TSAPI

functionality than the previous one. See Table 4 and Table 5 for a list of the files that the

sample applications use.

 NOTE:

Porting this code to other platforms will require modifications to event notification.

Table 3: TSAPI Code Samples

Sample Functionality Summary

1. TSAPIOUT TSAPI outgoing
call handling

One device, one call

 Shows basic outgoing call handling for a single device
and a single call with no redirection, conferencing,
transferring, and so on.

 It includes making a call and hanging up a call.

2. TSAPIIN TSAPI incoming
call handling

One device, one call

 Adds incoming call handling to Sample 1 (no redirection,
conferencing, transferring, and so on).

 It demonstrates the difference between incoming calls
and outgoing calls.

3. TSAPIMUL TSAPI multiple
call handling

One device, many calls

 Adds multiple call handling to Sample 2.

 Demonstrates how to keep track of multiple calls on the
same device.

 Includes holding calls, retrieving calls, and redirecting
calls.

Chapter 2: The TSAPI Programming Environment

22 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

4. TSAPICNF TSAPI
conference call
handling

One device, many calls

 Adds conferencing and transferring to Sample 3.

 Includes tracking of multiple connections on a single call.

 Contents of the TSAPI SDK

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 23

Table 4: TSAPI Sample code -- common files

File Name Description

 TSAPI.CPP

 TSAPI.H

 Helper classes for tracking devices and calls. Includes routines for

retrieving events from the CSTA32.DLL

 OPENTSRV.CPP

 OPENTSRV.H

 Implementation file that handles the Open Tserver dialog

 Supports the Open Tserver dialog. Authorizes the user, opens the
TSAPI stream and registers the selected device with the TSAPI helper
classes.

 SAMPLDLG.CPP

 SAMPLDLG.H

 implementation file

 Supports the main application dialog. All call related control is here:
making calls, answering calls, call event handling, and so forth.

 STDAFX.CPP

 STDAFX.H

 source file that includes just the standard header files

 These MFC files do not contain any interesting code for the purpose of
TSAPI-code demonstration

 RESOURCE.H Resource IDs for the application

Table 5: TSAPI Sample code -- application specific function files

Name Description

 TSAPIOUT.CPP

 TSAPIOUT.H

 TSAPIOUT.RC

 Defines the class behaviors for Sample 1, the TSAPIOUT application

 Main header file for the TSAPIOUT application

 Initialization and resources for Sample 1.

 TSAPIIN.CPP

 TSAPIIN.H

 TSAPIIN.RC

 Defines the class behaviors for Sample 2, the TSAPIIN application

 Main header file for the TSAPIIN application

 Initialization and resources for Sample 2.

 TSAPIMUL.CPP

 TSAPIMUL.H

 TSAPIMUL.RC

 Defines the class behaviors for Sample 3, the TSAPIMUL application

 Main header file for the TSAPIMUL application

 Initialization and resources for Sample 3.

 TSAPICNF.CPP

 TSAPICNF.H

 TSAPICNF.RC

 Defines the class behaviors for Sample 4, the TSAPCNF application

 Main header file for the TSAPICNF application

 Initialization and resources for Sample 4.

Chapter 2: The TSAPI Programming Environment

24 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

TSAPI for Windows SDK Overview

Read this section for information about developing TSAPI applications in a Windows

environment. You do not need to be familiar with the CSTA call model or API, but you

should read Chapter 3: Control Services.

Development Platforms

AE Services requires that you use Microsoft Visual C++ 6.0 or Microsoft Visual C++

2005 for developing Windows .EXE applications. Using another compiler may require

you to modify the header files, for example, to account for differences in structure

alignment, size of enumerated data types, and so forth. The Win32 TSAPI library

assumes the default 8-byte structure packing and an enum size of 4 bytes.

Linking to the TSAPI Library

The TSAPI for Win32 is implemented as a dynamic link library, CSTA32.DLL. Specify the

CSTA32.LIB import library when compiling your application.

 NOTE:

Applications using private data should also specify the ATTPRIV32.LIB import

library.

Using Application Control Services

This section describes how to use application control services (ACS) to retrieve events

on Win32 platforms.

Event Notification

 acsEventNotify() enables asynchronous notification of incoming events via

Windows messages.

 acsSetESR() enables asynchronous notification of incoming events via an

application-defined callback routine. This routine will be called in the context of a
background thread created by the TSAPI Library, not a thread created by the
application. The callback routine should not invoke TSAPI Library functions.

Receiving Events

This section describes event reception using acsGetEventPoll() and

acsGetEventBlock()on Win32.

Blocking Versus Polling

acsGetEventBlock() suspends the calling thread until it receives an event.

acsGetEventPoll() returns control immediately if no event is available, allowing the

application to query other input sources or events.

 TSAPI for Windows SDK Overview

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 25

Tip:

Calling acsGetEventPoll() repetitively can unduly consume processor time and

resources, to the detriment of other applications. Instead of polling, consider

creating a separate thread which calls acsGetEventBlock(), or use

acsEventNotify() to receive asynchronous notifications.

Receiving Events from Any Stream

An application may specify a NULL stream handle when calling acsGetEventPoll() or

acsGetEventBlock() to request that the TSAPI Service library return the first event

available on any of that application's streams.

Sharing ACS Streams between Threads

The ACS handle value is global to all threads in a given application process. This handle

can be accessed in any thread, even threads that did not originally open the handle. For

example, one thread can call the acsOpenStream() function, which returns an ACS

handle. A different thread in the same process can make other TSAPI calls with the

returned ACS handle. No special action is required to enable the second thread to use

the handle; it just needs to obtain the handle value.

While permitted, it normally does not make sense for more than one thread to retrieve

events from a single stream. The TSAPI Library allows calls from different threads to be

safely interleaved, but coordination of the resulting actions and events is the

responsibility of the application.

Message Trace

The TSAPI Spy (TSSPY32.EXE) program may be used to obtain a trace of messages

flowing between applications and the TSAPI Service.

Chapter 2: The TSAPI Programming Environment

26 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

TSAPI SDK for Linux

Use this section for information about developing TSAPI applications using Linux. You

do not need to be familiar with the CSTA call model or API, but you should read

27 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Chapter 3: Control Services.

Development Platforms

The TSAPI header files in this SDK are compatible with the GNU Linux C Compiler.

Using another compiler may require you to modify the header files, for example, to

account for differences in structure alignment, size of enumerated data types, and so

forth.

Linking to the TSAPI Library

The TSAPI for Linux client is implemented as a shared object library, libcsta.so, and

follows the standard conventions for library path search and dynamic linking. If libcsta.so

is installed in one of the standard directories, it is only necessary to include "-lcsta" in

your link step, for example:

cc -D_REENTRANT -o myprog myprog.c -lcsta

 NOTE:

Applications using private data also need to include -lattpriv in the link

step.

Using Application Control Services

This section describes how to use application control services (ACS) to retrieve events

on Linux.

Event Notification

The acsEventNotify() and acsSetESR() functions are not provided on the Linux

platform.

Linux does not directly promote an event-driven programming model, but rather a file-

oriented one. To work most effectively in the Linux environment, the TSAPI event stream

should appear as a file. The acsGetFile() function returns the file descriptor

associated with an ACS stream handle. The returned value may be used like any other

file descriptor in an I/O multiplexing call, such as poll() or select(), to determine the

availability of TSAPI events.

! IMPORTANT:

Do not perform other I/O or control operations directly on this file
descriptor. Doing so may lead to unpredictable results from the TSAPI
library.

Receiving Events

This section describes event reception using acsGetEventPoll() and

acsGetEventBlock() on Linux.

Blocking Versus Polling

The acsGetEventBlock() function suspends the calling application until it receives an

event. If your application has no other work to perform in the meantime, this is the

Chapter 2: The TSAPI Programming Environment

28 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

simplest and most efficient way to receive events from the TSAPI. Typically, however, an

application needs to respond to input from the user or other sources, and cannot afford

to wait exclusively for TSAPI events. The acsGetEventPoll() function returns control

immediately if no event is available, allowing the application to query other input sources

or events.

Calling acsGetEventPoll() repetitively can unduly consume processor time and

resources, to the detriment of other applications. Instead of polling, consider multiplexing

your input sources via the poll() or select() system calls.

Receiving Events from Any Stream

An application may specify a NULL stream handle when calling acsGetEventPoll() or

acsGetEventBlock() to request that the TSAPI Service library return the first event

available on any of that application's streams.

Message Trace

To create a log file of TSAPI messages sent to and received from the TSAPI Service, set

the shell environment variable CSTATRACE to the pathname of the desired file, prior to

starting your application. The log file will be created if necessary, or appended to if it

already exists.

 TSAPI SDK for Linux

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 29

Sample Code

The following Linux pseudo-code illustrates the use of the acsGetFile() function to set

up an asynchronous event handler.

int EventIsPending = 0;

/* handleEvent() called when SIGIO is received */

void handleEvent (int sig)

{

 EventIsPending++;

}

void main (void)

{

 ACSHandle_t acsHandle;

 int acs_fd;

 /* install the signal handler */

 signal (SIGIO, handleEvent);

 /* open an ACS stream */

 acsOpenStream (&acsHandle, ...etc...);

 /* get its file descriptor */

 acs_fd = acsGetFile (acsHandle);

 /* Indicate that this process should receive */

 /* notification of pending input */

 fcntl(acs_fd, F_SETOWN, getpid());

 /*

 * Enable asynchronous notification of

 * pending I/O requests.

 */

 fcntl(acs_fd, F_SETFL, FASYNC);

 /* proceed with application processing */

 while (notDone)

 {

 if (EventIsPending > 0)

 {

 /* retrieve a TSAPI event */

 acsGetEventPoll (acsHandle, ...etc...);

 EventIsPending = 0;

 /* re-enable handler */

 signal (SIGIO, handleEvent);

 }

 /* perform other background processing... */

 }

}

Chapter 2: The TSAPI Programming Environment

30 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Basic TSAPI programming tips

This section provides some basic, TSAPI programming tips on the following topics:

 Opening and closing streams on page 30

 Monitoring switch object state changes on page 30

 Client/server roles and the routing service on page 31

 The client/server session and the operation invocation model on page 31

For more information about designing applications see Advanced TSAPI Programming

Techniques on page 32.

Opening and closing streams

This section provides some fundamental TSAPI programming information about opening

and closing ACS streams. For information about API Control Services (ACS), see

Chapter 3: Control Services on page 48.

 Your application must close all open streams -- preferably by calling

acsAbortStream() -- before exiting.

 If you use acsCloseStream(), you must retrieve the

ACSCloseStreamConfEvent by calling acsGetEventBlock() or

acsGetEventPoll().

Unless your application needs to process all outstanding events before exiting,

use acsAbortStream() instead of acsCloseStream().

 When opening a stream, an application may negotiate with the TSAPI Service to
agree upon the version of private data protocol to be used (see Requesting
private data on page 161).

 An application should open only one stream per advertised service. Each stream
carries messages for the application to one advertised service.

Monitoring switch object state changes

Call Control Services allow a client application to control a call or connections on a

switch. Although client applications can manipulate switch objects, Call Control Services

do not provide Event Reports as objects change state. To monitor switch object state

changes (that is, to receive Event Report Services from a switch), a client must request

a Monitor Service for an object before it requests Call Control Services for that object.

 Basic TSAPI programming tips

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 31

Client/server roles and the routing service

The CSTA client/server relationship allows for bi-directional services. Both switching and

computer applications can assume the role of either client or server.

Currently, the Routing Service is the only CSTA service in which the switch application is

the client. In all other CSTA services, the computer application is the client. When an

application requests a service, a local communications component in the client

communicates the request to the server. Each instance of a request creates a new

client/server relationship.

The client/server session and the operation invocation model

A client must establish a communication channel to the TSAPI Service before the

application can request service from the TSAPI Service. For the TSAPI Service, this

communication channel is an API Control Service stream. This stream establishes a

session between a TSAPI application (at a client PC) and the server. An application

uses the acsOpenStream function to open a stream. The function returns an acsHandle

that the application uses to identify the stream.

When a client application requests a CSTA Service, it passes an invokeID that it may

use later to associate a response from the server with a specific request. A client‘s

request for service is also called an operation invocation. The server replies (via a

service response) to the client‘s request with either confirmation (result) or failure

(error/rejection) and includes the invokeID in the response. At that time, the application

may use the invokeID in some other request.

Some services (such as monitoring a call or device) continue their operation beyond the

service response. Since the invokeID no longer identifies the service invocation after an

acknowledgment, an additional identifier is necessary for such services. These services

return a cross-reference ID in their acknowledgment. The cross-reference ID is a unique

value that an application can use to associate event reports with the initiating service

request. The cross reference terminates when the service stops.

Chapter 2: The TSAPI Programming Environment

32 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Advanced TSAPI Programming Techniques

This section provides you with some programming techniques that are useful for

designing desktop oriented applications. It includes the following topics:

 Transferring or conferencing a call together with screen pop information on page 33

 CSTA Services Used to Conference or Transfer Calls on page 34

 Using Original Call Information to Pop a Screen on page 36

 Using UUI to Pass Information to Remote Applications on page 38

 Re-registering as a Routing Server after a TCP/IP failure on page 40

 Advanced TSAPI Programming Techniques

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 33

Transferring or conferencing a call together with screen pop
information

Many desktop applications involve scenarios where an incoming call arrives at a

monitored phone, (for example, a claims agent) and the application uses caller

information to pop a screen at that desktop. At some point, the claims agent realizes that

both the call and the data screen need to be shared with some other person, (for

example, a supervisor). The claims agent may need to conference in the supervisor, or

may need to transfer the call to the supervisor. In both cases, a similar application

running at the supervisor‘s desktop that is monitoring the supervisor‘s phone needs to

obtain information about the original caller from CSTA events to pop the same screen at

the supervisor‘s desktop.

Before designing a screen pop application, an application designer must first understand

the caller information that the TSAPI Service makes available. When an incoming call

arrives at a monitored station device, the TSAPI Service provides CSTA Delivered and

Established events that contain a variety of caller information:

 Calling Number (CSTA parameter) - This parameter contains the calling
number, when known. An application may use the calling number to access
customer records in a database. The Event Report chapter contains detailed
information about the facilities that provide Calling Number.

 Called Number (CSTA parameter) - This parameter contains the called number,
when known. Often this parameter contains the ―DNIS‖ (Dialed Number
Identification Service) information for an incoming call from the public network.
An application may use the called number to pop an appropriate screen when,
for example, callers dial different numbers to order different products.

 Digits Collected by Call Prompting (Avaya private data) - Integrated systems
often route callers to a voice response unit that collects the caller‘s account
number. These voice response units can often be integrated with a
Communication Manager Server so that the caller‘s account number is made
available to the monitoring application. An application may use the collected
digits to access customer records in a database.

 User-to-User Information (UUI) (Avaya private data) - This parameter contains
information that some other application has associated with the incoming call.
UUI has the important property that it can be passed across certain facilities
(PRI) which can be purchased within the public switched network. An application
may use the UUI to access customer records in a database.

 Lookahead Interflow Information (Avaya private data) - This parameter
contains information about the call history of an incoming call that is being
forwarded from a remote Communication Manager Server.

Chapter 2: The TSAPI Programming Environment

34 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

CSTA Services Used to Conference or Transfer Calls

The previous section, Transferring or conferencing a call together with screen pop

information, described the caller information that the TSAPI Service makes available.

Your next considerations are the various CSTA services that you can use to conference

or transfer calls, and the different event contents that result from these services.

The following sections describe two examples of TSAPI service sequences that an

application can use to conference or transfer calls.

 Using the Consultation Call Service on page 34

 Unique Advantage of the Consultation Call Service on page 34

Using the Consultation Call Service

This example depicts what happens when the Consultation Call Service is used with

either the Conference Call service or the Transfer Call Service.

The following steps depict the operations involved.

 1. cstaConsultationCall()

 2. cstaConferenceCall() or cstaTransferCall()

First, the Consultation Call service, cstaConsultationCall(), places an active call on

hold and then makes a consultation call (such as the call to the supervisor described in

Transferring or conferencing a call together with screen pop information). Next, the

Conference Call or Transfer Call service conferences or transfers the call.

Unique Advantage of the Consultation Call Service

The unique (and important) attribute of cstaConsultationCall() is that the

consultation service associates the call being placed on hold with the consultation call.

An application that monitors the phone receiving the consultation call will see information

about the original caller in an Avaya private data item called ―Original Call Information‖

appearing in the CSTA Delivered event.

―Original Call Information‖ gives an application (such as the supervisor‘s) the information

necessary to pop a screen using the original caller‘s information at the time that the call

begins alerting at the consultation desktop.

 NOTE:

Applications that need to pass information about the original caller and have a
screen pop when the call alerts at the consultation desktop should use the

cstaConsultationCall() service to place those calls.

 Advanced TSAPI Programming Techniques

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 35

Emulating Manual Operations

This example depicts what happens when an application emulates a series of manual

operations. The following sequence emulates what a user might do manually at a phone

to conference or transfer calls.

 1. cstaHoldCall();

 2. cstaMakeCall();

 3. cstaConferenceCall() or cstaTransferCall().

Unlike the Consultation Call service, these operations do not associate any information

about the call being placed on hold with the call that is being made. In fact, such an

association cannot be made because the calling station may have multiple calls on hold

and the TSAPI Service cannot anticipate which of those will actually be transferred.

However, using this sequence of operations does, in some cases, pass information

about the original caller in events for the consultation call. This occurs for transferred

calls when the transferring party hangs up before the consultation call is answered. This

is known as an ―unsupervised transfer‖.

Notice that when the consultation party answers the unsupervised transfer, there are two

parties on the call, the original caller and the consultation party. Therefore, when the

calling party answers, the TSAPI Service puts information about the original caller in the

CSTA Established event. This sequence allows an application monitoring the party

receiving the consultation call to pop a screen about the original caller only in the case of

an unsupervised transfer and only when the call is answered.

Chapter 2: The TSAPI Programming Environment

36 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Using Original Call Information to Pop a Screen

When an incoming call arrives at a monitored desktop (the claims agent in the previous

example), an application can use any of the caller information described in CSTA

Services Used to Conference or Transfer Calls to pop a screen. When the application

uses cstaConsultationCall() to pass a call to another phone, the TSAPI Service retains

the original caller information in a block of private data called ―Original Call Information‖

(OCI). The TSAPI Service passes OCI in the Delivered and Established events for the

consultation call. Thus, an application monitoring the consultation desktop can use any

of the original caller information to pop a screen.

Application designers must be aware of the following:

 OCI indicates that the call is not a new call.

 OCI fields are reported with a non-null value only if they are giving historical data
from a prior call that is different than the current call. The implications of this on
the called and calling fields are as follows:

– If a called device is the same as the OCI called device, the OCI called device
is reported as null.

– If a calling device is the same as the OCI calling device, the OCI calling
device is reported as null.

 Using cstaConsultationCall() is the recommended way of passing calls from

desktop to desktop in such a way that the original caller information is available
for popping screens.

 The TSAPI Service shares ―Original Call Information‖ with applications using the
same AE Server to monitor phones.

 ―Original Call Information‖ cannot be shared across different AE Servers.

 When applications use ―Original Call Information‖ to pop screens, the
applications monitoring phones for the community of users among which calls
are transferred (typically call center or service center agents) must use the same
AE Server.

 The TSAPI Service shifts information into the OCI block as the call information
changes. For example, since prompted digits do not change because a call is
transferred, the original prompted digits may be in the prompted digit private data
parameter rather than the ―Original Call Information‖ block.

Suppose, for example, that a call passes through monitored VDN A (which
collects digits), then passes through monitored VDN B (which also collects digits)
and then is delivered to monitored VDN C. The Delivered event for the call will
contain the digits from VDN A in the Original Call Information and the digits from
VDN B in the Collected Digits private data.

 Applications using caller information should look first in the ―Original Call
Information‖ block. If they find nothing there, they should use the information in
the other private data and CSTA parameters.

 Advanced TSAPI Programming Techniques

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 37

 NOTE:

Using this approach, the application will always use the original caller‘s information to
pop the screen regardless of whether it is running at the desktop that first receives the
call (the claims agent) or a consultation desktop (the supervisor‘s desktop).

Chapter 2: The TSAPI Programming Environment

38 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Using UUI to Pass Information to Remote Applications

In addition to providing ―Original Call Information‖ to allow original caller information to

pass among applications using the same AE Server, Communication Manager provides

advanced private data features that let an application developer implement an

application that passes caller information to applications that do the following:

 monitor stations using different AE Servers

 monitor stations on multiple Communication Manager servers

 reside on a CTI platform at a remote switch that is monitoring stations connected
to it

Since Communication Manager associates User-to-User Information (UUI) with a call

within the Communication Manager server, Communication Manager makes the UUI for

a call available on all of its CTI links. Additionally, when a Communication Manager

server supplies UUI when making a call (such as a consultation call) across PRI facilities

in the public switched network, the UUI passes across the public network to the remote

Communication Manager server. The remote Communication Manager server then

makes this UUI available to applications on its CTI links.

While ―Original Call Information‖ is a way of sharing all caller information across

applications using a given AE Server, UUI is the way to share information across a

broader CTI application community, including applications running at remote switch

sites.

An important decision in the design of an application that works across multiple AE

Server, CTI platforms, and remote Communication Manager servers is what information

passes between applications in the UUI.

Application designers must be aware of the following:

 Unlike ―Original Call Information‖, the amount of information that UUI carries is
limited.

 Often the UUI is an account number that has been collected by a voice response
unit or obtained from a customer database. It might also be the caller‘s telephone
number. It might be a record or transaction identifier that the application defines.

 In all cases, the application is responsible for copying or entering the information
into the call‘s UUI. Applications may enter information into a call‘s UUI when they
make a call, route a call, or drop a call.

 When an application enters information into a call‘s UUI, any previous UUI is
overwritten.

 Advanced TSAPI Programming Techniques

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 39

 Applications that support large and diverse systems must be designed to expect
the same kind of information in the UUI, and the same format of information in
the UUI. That is, application design must be carefully coordinated when a system
includes multiple AE Server, CTI platforms, or Communication Manager servers.

For example, when an application includes users on one AE Server, as well as
users on other AE Servers, CTI platforms, or Communication Manager servers, a
designer could use a hybrid approach. Such an approach would combine the
best of ―Original Call Information‖ (all of the original caller data) with the
advantages of UUI (sharing information across CTI links and remote switches).

Chapter 2: The TSAPI Programming Environment

40 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Re-registering as a Routing Server after a TCP/IP failure

Beginning with AE Services 4.0, a routing application can reestablish itself after

recovering from a near-end TCP/IP outage. When the TSAPI Service receives a

subsequent route register request with the same login name, application name and IP

address as the original route request, it will discard the old route register request and

honor the new request, thereby allowing the application to reinstate itself.

Prior to AE Services 4.0, if a routing application experienced a near-end TCP/IP outage,

and it attempted to re-establish itself after recovering, AE Services would deny the

request. The application could not be reinstated as the routing server unless you

restarted the TSAPI Service.

Based on the network topology, when a network failure occurs, under some

circumstances the client may be able to detect the failure and the AE Server will not. In

this case, beginning with AES 4.0, the client application is able to re-open a stream and

re-register as a routing application, once the network has recovered.

Who can benefit from this route register request feature?

If you have a network configuration with more than one subnet, this recovery feature

applies to you. For all other configurations -- with no subnetting or with only one subnet -

- the feature does not apply because TSAPI Service will detect the outage, abort the

session, and permit another route register request. For a general refresher about routing

at the TSAPI level, continue with Routing transactions on page 41.

 Routing transactions

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 41

Routing transactions

For each routing transaction, the switch sends a CSTARouteRequestExtEvent (route

request) message to the application. The application, in turn, responds to each route

request with a cstaRouteSelectInv() (route select), which specifies a destination for

the call. A transaction is completed when the TSAPI Service responds with a

CSTARouteEndEvent. The TSAPI Service does not impose a limit on the number of

transactions (route requests) from the switching domain. For an illustration, see Figure 1:

Routing Cycle on page 42.

 1. acsOpenStream() - The routing application opens a stream to the TSAPI Service.

The application provides a login ID and application name.

 2. CSTARouteRegisterRequest - The TSAPI application requests to register as a

routing server for a routing device

 NOTE:

The TSAPI Service allows only one application to register as the routing server
for a specific routing device. As long as a routing session is active, all other
route register requests will be denied with a universal failure event

(CSTAUniversalFailureConfEvent). Figure 2: Routing cycle -- demonstrating

rule of "one routing application at a time" on page 44 illustrates how this is
enforced.

 3. routeRegisterReqID -The TSAPI Service positively acknowledges the request

and issues a routing cross reference ID

 4. CSTARouteRequestExtEvent - The switch requests a route (starts a routing dialog)

for the call.

 5. cstaRouteSelectInv() - The application specifies the route.

 6. CSTARouteEndEvent - The switch terminates the routing dialog and informs the

routing server about the outcome of the routing.

 7. CSTARouteRequestExtEvent - The switch requests a route for another call.

 8. cstaRouteSelectInv() - The application specifies the route.

 9. CSTARouteEndEvent - The switch terminates the routing dialog and informs the

routing server about the outcome of the routing.

 10. acsCloseStream() - The application closes the stream, but it may still receive

events on the acsHandle for that ACS stream. The application must continue to

poll until it receives the ACSCloseStreamConfEvent so that the system releases all

stream resources. The stream remains open until the application receives the

ACSCloseStreamConfEvent.

 11. ACSCloseStreamConfEvent - The application receives the

ACSCloseStreamConfEvent so that the system releases all stream resources.

In terms of the routing cycle, a service interruption becomes a factor after Step 3, when

the TSAPI Service acknowledges the application as the routing server

(routeRegisterReqID). For an illustration of the failure and recovery scenario, see

Figure 3: Routing scenario demonstrating TCP/IP failure and recovery on page 45.

Chapter 2: The TSAPI Programming Environment

42 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Figure 1: Routing Cycle

2. CSTARouteRegisterRequest
TSAPI application "A" requests to register as a routing server

4. CSTARouteRequestExtEvent

The switch requests a route (starts a routing dialog) for a call

5. cstaRouteSelectInv()

TSAPI application "A" specifies the route

6. CSTARouteEndEvent

7. CSTARouteRequestExtEvent
The switch requests a route for another call

8. cstaRouteSelectInv()
TSAPI application "A" specifies the route

9. CSTARouteEndEvent

10. cstaRouteRegisterCancel()
Application "A" requests to have its role as the routing server cancelled

11. CSTARouteRegisterCancelConfEvent
The TSAPI service confirms that application "A" is no longer the

The switch terminates the routing dialog for the call

The switch terminates the routing dialog for the call
and informs the routing server about the outcome of the call routing

Routing Server
TSAPI Client

AE Services
TSAPI Service

and informs the routing server about the outcome of the call routing

routing server

3. routeRegisterReqID
The TSAPI Service positively acknowledges the request and issues
a routing cross reference ID

1. acsOpenStream()

TSAPI application "A" opens a stream to the TSAPI Service.

 Routing transactions

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 43

When an application re-registers as a routing server

When an application (Application A, for example) experiences a near-end TCP/IP

outage, the TSAPI Service might not detect the outage. From the viewpoint of the TSAPI

service, Application A is the routing server with an open stream, until Application A

sends a cstaRoutRegisterCancel() request to close the stream.

Up until AE Services 4.0, the only way Application A could reinstate itself was by

restarting the TSAPI Service, thereby closing the stream.

Beginning with AE Services 4.0, if Application A experiences a near-end TCP/IP outage,

it can reinstate itself by sending another route register request to the TSAPI Service,

once the network has recovered. When the TSAPI Service receives this route register

request from Application A, the TSAPI service recognizes that the stream for the new

route register request was opened with the same login name, application name and IP

address as the original route request, so it discards the original route registration request

and re-registers the application as the routing server.

Chapter 2: The TSAPI Programming Environment

44 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Figure 2: Routing cycle -- demonstrating rule of "one routing application at a
time"

2. CSTARouteRegisterRequest
TSAPI application "A" requests to register as a routing server

4. CSTARouteRequestExtEvent

The switch requests a route (starts a routing dialog) for a call

5. cstaRouteSelectInv()

TSAPI application "A" specifies the route

6. CSTARouteEndEvent

7. CSTARouteRequestExtEvent
The switch requests a route for another call

8. cstaRouteSelectInv()
TSAPI application "A" specifies the route

9. CSTARouteEndEvent

12. cstaRouteRegisterCancel()
The application requests to have its role as the routing server cancelled

13. CSTARouteRegisterCancelConfEvent
The TSAPI service confirms that the application is no longer the

The switch terminates the routing dialog for the call

The switch terminates the routing dialog for the call
and informs the routing server about the outcome of the call routing

Routing Server
TSAPI Client

AE Services
TSAPI Service

and informs the routing server about the outcome of the call routing

routing server

10. CSTARouteRegisterRequest
TSAPI application "B" registers as a routing server

11. CSTAUniversalFailureConfEvent
The TSAPI service does not allow application B to register. Only

3. routeRegisterReqID
The TSAPI Service positively acknowledges the request and issues
a routing cross reference ID

one routing server (application "A") can be registered at a time.

1. acsOpenStream()

TSAPI application "A" opens a stream to the TSAPI Service.

 Routing transactions

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 45

Figure 3: Routing scenario demonstrating TCP/IP failure and recovery

1. CSTARouteRegisterRequest
TSAPI application "A" requests to register as a routing server

3. CSTARouteRequestExtEvent

The switch requests a route (starts a routing dialog) for a call

4. cstaRouteSelectInv()

TSAPI application "A" specifies the route

5. CSTARouteEndEvent

6. CSTARouteRequestExtEvent
The switch requests a route for another call

7. cstaRouteSelectInv()
TSAPI application "A" specifies the route

8. CSTARouteEndEvent

The switch terminates the routing dialog for the call

The switch terminates the routing dialog for the call
and informs the routing server about the outcome of the call routing

Routing Server
TSAPI Client

AE Services
TSAPI Service

and informs the routing server about the outcome of the call routing

2. routeRegisterReqID
The TSAPI Service positively acknowledges the request and issues
a routing cross reference ID

TCP/IP FAILS

10. CSTARouteRegisterRequest
TSAPI application "A" requests to register as a routing server

On the basis of matching login, application name, and IP address,
the TSAPI Service allows application A to re-register as a routing server.

The TSAPI Service positively acknowledges the request and issues

11. routeRegisterReqID

a routing cross reference ID to application A.

TCP/IP RESTORED

Application "A" is disconnected;

TSAPI service does not know application A is disconnected.

Application "A" attempts to send a message and gets a TCP/IP error.

Application "A" takes action to re-establish itself. It opens a new stream to the TSAPI
service and attempts to re-establish itself as a routing server for the VDN.

9.

Chapter 2: The TSAPI Programming Environment

46 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Server-side programming considerations

This section describes the effect that server-side events can have on applications. It

includes the following topics:

 Multiple AE Services server considerations on page 46

 CTI Link Availability on page 47

Multiple AE Services server considerations

Due to system capacity limitations, care must be taken when using more than one

Application Enablement Services server (AE Server) for one Communication Manager

server.

 NOTE:

AE Server, in the context of this document, refers to an Application Enablement
Services server running the TSAPI Service.

 The number of simultaneous cstaMonitorDevice() requests on a single station

device is limited to four per Communication Manager server. That is, a maximum
of four AE Servers can monitor the same station at the same time.

 The number of simultaneous cstaMonitorDevice() requests on a single ACD

split device is limited to eight per Communication Manager server. That is, a

maximum of eight AE Servers can use cstaMonitorDevice() to monitor the

same ACD split at the same time.

 The number of simultaneous cstaMonitorCallsViaDevice() monitor requests

on one ACD device (VDN or ACD split) is limited to six per Communication
Manager server. That is, a maximum of six AE Servers can use

cstaMonitorCallsViaDevice() to monitor the same ACD device at a time.

 A call may pass through an ACD device monitored by one AE Server and be
redirected to another ACD device monitored by another AE Server. The former
will lose the event reports of that call after Diverted Event Report. Similar cases

can result when two calls that are monitored by cstaMonitorCallsViaDevice()

requests from different AE Server are merged (transfer or conference operations
or requests) into one.

 Server-side programming considerations

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 47

CTI Link Availability

If a link to a Communication Manager server becomes unavailable, all monitors or

controls using that link terminate.

During initialization, the TSAPI Service advertises for each Communication Manager

server configured with a link in even if the link to the Communication Manager server is

not in service.

 NOTE:

Beginning with AE Services 6.1, this behavior can be changed through OAM by
setting the TSAPI Service Advertising Mode to ―Advertise only those Tlinks that
are currently in service‖. To administer this setting, log into the AE Services
Management Console and select AE Services > TSAPI > TSAPI Properties >
Advanced Settings.

If an application makes an open stream request and there is no link available to the

TSAPI Service, the application will receive an ACS Universal Failure with code

(DRIVER_LINK_UNAVAILABLE).

If the link to a Communication Manager server becomes unavailable, any previously

opened streams remain open until the application closes them or the TSAPI Service is

stopped. The application will not receive a message indicating that the link is unavailable

unless the application has used cstaSysStatStart() to request system status event

reporting.

If a CTI link to a Communication Manager server goes down, the TSAPI Service sends:

 a CSTA Universal Failure event for each outstanding request (cstaMakeCall(),

etc.). An outstanding CSTA request is one that has not yet received a

confirmation event. The error code is set to RESOURCE_OUT_OF_SERVICE (34).

The client should re-issue the request. If the link has become available again, the
request will succeed. If the link is still unavailable, the client will continue to

receive RESOURCE_OUT_OF_SERVICE (34) and should assume service is

unavailable.

 a CSTA Monitor Ended event for any previously established monitor requests.

The cause will be EC_NETWORK_NOT_OBTAINABLE (21). The client should re-

establish the monitor request. If the link has become available again, the request
will succeed. If the link is still unavailable, the client will receive a CSTA

Universal Failure with the error code set to RESOURCE_OUT_OF_SERVICE (34)

and should assume service to the switch is unavailable.

 a Route End event for any active Route Select dialogue. The client need do
nothing.

 a Route Register Abort event for any previously registered routing devices. The
application could make use of System and Link Status Notification (see Chapter
13: System Status Service Group on page 783) to determine when the link
comes back up. If the application wants to continue the routing service after the

CTI link is up, it must issue a cstaRouteRegisterReq() to re-establish a routing

registration session for the routing device.

48 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Chapter 3: Control Services

This chapter describes the control services that are provided by the Telephony Services

Application Programming Interface (TSAPI).

Note:

In the context of this chapter the term TSAPI refers to TSAPI at the interface
level as opposed to TSAPI at the service level (the AE Services TSAPI Service).
To make this distinction clear, this chapter uses the term TSAPI interface.

This chapter includes the following topics:

 Control Services provided by TSAPI on page 49

 Opening, Closing and Aborting an ACS stream on page 50

 Sending CSTA Requests and Responses on page 54

 Receiving Events on page 55

 Specifying TSAPI versions when you open a stream on page 57

 Requesting private data when you open an ACS stream on page 59

 Querying for Available Services on page 59

 ACS functions and confirmation events on page 60

 CSTA control services and confirmation events on page 110

 Control Services provided by TSAPI

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 49

Control Services provided by TSAPI

The TSAPI interface, provides two kinds of control services:

 Application Programming Interface (API) Control Services, or ACS

 CSTA Control Services.

Applications use ACS to manage their interactions with the AE Services TSAPI Service.

ACS functions manage the interface, while CSTA functions provide the CSTA services.

API Control Services

Applications use API Control Services (ACS) to do the following:

 Open an ACS stream with the AE Services TSAPI Service (the TSAPI service
provides CSTA services)

 Close an ACS stream

 Block or poll for events.

 Initialize an operating system event notification facility. For example, on a
Windows client, the application may initialize an Event Service Routine (ESR)

 Get a list of available advertised services

 Select a private data version for use on the stream

 (Beginning with AE Services 4.1) Query an ACS stream for its service name

 (Beginning with AE Services 4.1) Control the interval at which the TSAPI Service
sends heartbeat events to the client.

Chapter 3: Control Services

50 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

CSTA Control Services

Applications use the CSTA Control Services to do the following:

 Query for the CSTA Services available on an open ACS stream, see
cstaGetAPICaps() on page 111.

 Query for a list of Devices that CSTA Services can monitor, control or route for
on an open ACS stream, see cstaGetDeviceList() on page 116.

 Query to determine if CSTA Call/Call Monitoring is available on an open ACS
stream, see cstaQueryCallMonitor() on page 120.

Opening, Closing and Aborting an ACS stream

To access the TSAPI Service, an application must open an ACS stream (or session).

This stream establishes a logical link between the application and call processing

software on the switch. The application requests CSTA services (such as making a call)

over the stream. The TSAPI Service provides ACS streams. Each application must open

an ACS stream before it requests any services.

The TSAPI service can be set up to do security checking to ensure that an application

receives CSTA services only for permitted devices.

The system advertises CSTA services to applications. An application opens an ACS

stream to use an advertised service. Each stream carries messages for the application

to one advertised service.

 Opening, Closing and Aborting an ACS stream

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 51

Opening an ACS stream

Here is the sequence for opening an ACS stream.

 1. The application calls acsOpenStream().

acsOpenStream() is a request to establish an ACS stream to the TSAPI Service

for a particular advertised service. The acsOpenStream() function returns an

acsHandle to the application. The application will use this acsHandle to access the

ACS stream (make requests and receive events).

 2. The application receives an ACSOpenStreamConfEvent event message that

corresponds to the acsOpenStream() request.

The application waits for a corresponding ACSOpenStreamConfEvent with the

acsHandle returned by the acsOpenStream() request. The application should not

request services on the ACS stream until it receives this corresponding

ACSOpenStreamConfEvent.

After an application successfully receives the ACSOpenStreamConfEvent, it may request

CSTA Services such as Device (telephone) monitoring.

! IMPORTANT:

The application should always check the ACSOpenStreamConfEvent to ensure
that the ACS stream has been successfully established before making any CSTA
Service requests.

An application is responsible for releasing its ACS stream(s). To release the system

resources associated with an ACS stream, the application may either close the stream

or abort the stream. Failing to release the resources may corrupt the client system,

resulting in client failure.

! IMPORTANT:

An acsHandle is a local process identifier and should not be shared across
processes.

When TSAPI Client configuration file specifies Alternate Tlinks

When the TSAPI Client configuration file specifies Alternate Tlinks, the username and

password specified by the application in the acsOpenStream() request should be

configured identically for each AE Server. For more information about alternate Tlinks,

see the Avaya Aura® Application Enablement Services TSAPI and CVLAN Client and

SDK Installation Guide, 02-300543.

Chapter 3: Control Services

52 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Closing an ACS stream

Here is the sequence for closing an ACS stream

 1. The application calls acsCloseStream() to initiate the orderly shutdown of an ACS

stream.

After the application calls acsCloseStream() to close an ACS stream, the

application may not request any further services on that stream. The

acsCloseStream() function is a non-blocking call. The application passes an

acsHandle indicating which ACS stream to close. Although the application cannot

make requests on that stream, the acsHandle remains valid until the application

receives the corresponding ACSCloseStreamConfEvent.

! IMPORTANT:

After an application calls acsCloseStream(),), it may still receive events on the
acsHandle for that ACS stream. The application must continue to poll until it
receives the ACSCloseStreamConfEvent so that the system releases all stream
resources. The stream remains open until the application receives the
ACSCloseStreamConfEvent.

 2. The application receives an ACSCloseStreamConfEvent event message that

corresponds to the acsCloseStream() request.

An ACSCloseStreamConfEvent indicates that the acsHandle for the stream is no

longer valid and that the system has freed all system resources associated with the

ACS stream. The last event the application will receive on the ACS stream is the

ACSCloseStreamConfEvent. Closing an ACS stream terminates any CSTA call

control sessions on that stream. Terminating CSTA call control sessions in this way

does not affect the switch processing of controlled calls. The application can no

longer control them on this stream.

 Opening, Closing and Aborting an ACS stream

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 53

Aborting an ACS stream

Here is a description of what happens when an ACS stream aborts.

 The application calls acsAbortStream().

An application may use acsAbortStream() to unilaterally (and synchronously)

terminate an ACS stream when

– it does not require confirmation of successful stream closure, and

– it does not need to receive any events that may be queued for it on that
stream.

The application passes an acsHandle indicating which ACS stream to abort. The

acsAbortStream() function is non-blocking and returns to the application immediately.

When acsAbortStream() returns, the acsHandle is invalid (unlike acsCloseStream()).

The system frees all resources associated with the aborted ACS stream, including any

events queued on this stream. Aborting an ACS stream terminates any CSTA call

control on that stream. Aborting CSTA call control in this way does not affect the switch

processing of controlled calls. It terminates the application's control of them on this

stream. There is no confirmation event for an acsAbortStream() call.

Chapter 3: Control Services

54 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Sending CSTA Requests and Responses

 After an application opens an ACS stream (including reception of the

ACSOpenStreamConfEvent () it may request CSTA services and receive events. In

each service request, the application passes the acsHandle of the stream over which it

is making the request.

Each service request requires an invokeID that the system will return in the

confirmation event (or failure event) for the function call. Since applications may have

multiple requests for the same service outstanding within the same ACS stream,

invokeIDs provide a way to match the confirmation event (or failure event) to the

corresponding request. When an application opens an ACS stream, it specifies (for that

stream) whether it will:

 generate and manage invokeIDs internally, or

 have the TSAPI library generate unique invokeID for each service request.

Once an application specifies this invokeID type for an ACS stream, the application

cannot change invokeID type for the stream.

In general, having the TSAPI library generate unique invokeIDs simplifies application

design. However, when service requests correspond to entries in a data structure, it may

simplify application design to use indexes into the data structure as invokeIDs.

Application-generated invokeIDs might also point to Windows handles. Application-

generated invokeIDs may take on any 32-bit value.

 Receiving Events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 55

Receiving Events

 When an application successfully opens an ACS stream, the TSAPI Library queues the

ACSOpenStreamConfEvent event message for the application. To receive this event, and

subsequent event messages, the application must use one of two event reception

methods:

 a blocking mode, which blocks the application from executing until an event
becomes available. Blocking is appropriate in threaded or preemptive operating
system environments only (Windows XP or Windows 7, for example).

 a non-blocking mode that returns control to the application regardless of whether
an event is available.

! IMPORTANT:

Blocking on event reports may be appropriate for applications that monitor a
Device and only require processing cycles when an event occurs. However,
there may be operating system specific implications. For example, if a
Windows application blocks waiting for CSTA events, then it cannot process
events from its Windows event queue.

Regardless of the mode that an application uses to receive events, it may elect to

receive an event either from a designated ACS stream (that it opened) or from any ACS

stream (that it has opened). TSAPI gives the application the events in chronological

order from the selected stream(s). Thus, if the application receives events from all ACS

streams, then it receives the events in chronological order from all the Streams.

Blocking Event Reception

Here is the sequence for blocking event reception.

 1. The application calls acsGetEventBlock().

acsGetEventBlock() function gets the next event or blocks if no events are

available. The application passes an acsHandle parameter containing the handle

of an open ACS stream or a zero value (indicating that it desires events from any

open ACS stream).

 2. acsGetEventBlock() returns when an event is available.

Chapter 3: Control Services

56 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Non-Blocking Event Reception

Here is the sequence for blocking event reception.

 1. The application calls acsGetEventPoll()

Applications use acsGetEventPoll() to poll for events at their own pace. An

application calls acsGetEventPoll() any time it wants to process an event. The

application passes an acsHandle containing the handle of an open ACS stream or

a zero value (indicating that it desires events from any open ACS stream). In

addition, the numEvents parameter tells the application how many events are on

the queue.

 2. acsGetEventPoll() returns immediately

 a. If one or more events are available on the ACS stream, acsGetEventPoll()

returns the next event from the specified stream (or from any stream, if the

application selected that option).

 b. When the event queue is empty, the function returns immediately with a ―no

message‖ indication.

! IMPORTANT:

The application must receive events (using either the blocking or polling
method) frequently enough so that the event queue does not overflow. TSAPI
will stop acknowledging messages from the Telephony Server when the
queue fills up, ultimately resulting in a loss of the stream. When a message is
available, it does not matter which function an application uses to retrieve it.

A TSAPI Windows application can use an Event Service Routine (ESR) to receive

asynchronous notification of arriving events. The ESR mechanism notifies the

application of arriving events. It does not remove the events from the event queue. The

application must use acsGetEventBlock() or acsGetEventPoll() to receive the

message. The application can use an ESR to trigger a specific action when an event

arrives in the event queue (i.e. post a Windows message for the application). See the

manual page for acsSetESR() for more information about ESR use in specific operating

system environments.

TSAPI makes one other event handling function available to applications:

acsFlushEventQueue(). An application uses acsFlushEventQueue() to flush all

events from an ACS stream event queue (or, if the application selects, from all ACS

stream event queues).

 Specifying TSAPI versions when you open a stream

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 57

Specifying TSAPI versions when you open a stream

As TSAPI evolves over time to support more services, TSAPI will include new functions

and event reports. To ensure that applications written to earlier versions of the system

will continue to operate with newer TSAPI libraries, TSAPI provides version control.

Currently AE Services supports TSAPI Version 2 only.

 NOTE:

A TSAPI version comprises a set of function calls and events. When a new
version of TSAPI is introduced, new names are assigned to TSAPI functions, and
new events are assigned to new event type values. It is the programmer‘s
responsibility to ensure that the program uses only TSAPI functions from the
appropriate version set.

Providing a list of TSAPI versions in the API version parameter

An application provides a list of the TSAPI versions that it is willing to accept in the API

version parameter (apiVer) parameter of the open stream function. See

acsOpenStream() on page 61.

This parameter contains an ASCII string that is formatted with no spaces, as follows:

TSn-n:n

where:

TS is a fixed string value (use uppercase characters) introducing the list of

requested TSAPI versions.

n is a number indicating a requested TSAPI version

: the (colon) character is a separator for list entries.

- the (hyphen) character indicates that a list entry represents a range of versions.

Example

The following examples are equivalent and illustrate how an application specifies that it

can use TSAPI versions 1 and 2:

TS1-2

TS1:2

How the TSAPI version is negotiated

As the TSAPI Service processes the open stream request, it checks to see which of the

requested versions it supports. If it cannot support a requested version, it removes that

version from the list before passing the request on to the next component. The TSAPI

Service opens the stream using the highest (latest) TSAPI version remaining and returns

that version to the application in the ACSOpenStreamConfEvent. Once a stream is

opened, the version is fixed for the duration of the stream.

Chapter 3: Control Services

58 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

If the TSAPI service cannot find a suitable version, the open stream request fails and the

application receives an ACSUniversalFailureConfEvent (see ACS Related Errors on

page 844).

The TSAPI Service returns the selected TSAPI version in the apiVer field of the

ACSOpenStreamConfEvent. The version begins with the letters ST (the S and the T are

intentionally reversed) followed by a single TSAPI version number. If the contents of the

apiVer field do not begin with the letters ST, then the application should assume TSAPI

version 1.

 Requesting private data when you open an ACS stream

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 59

Requesting private data when you open an ACS stream

Although similar in format to the TSAPI version negotiation, the Private Data version

negotiation is independent of TSAPI version negotiation.

 When an application opens a stream to the TSAPI service, the application needs
to indicate to the TSAPI Service what private data version or versions the
application supports. See Requesting private data on page 158.

 If an application does not support private data, the application uses a NULL
pointer to indicate to the TSAPI Service that it does not support private data. This
lets you save the LAN bandwidth that the private data will consume. See
Applications that do not use private data on page 160.

Querying for Available Services

Applications can use the acsEnumServerNames() function to obtain a list of the

advertised service names. The presence of an advertised service name in the list does

not mean that it is available.

Chapter 3: Control Services

60 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

ACS functions and confirmation events

This section describes the following API Control Services (ACS) functions and

confirmation events.

 acsOpenStream() on page 61

 ACSOpenStreamConfEvent on page 68

 acsCloseStream() on page 70

 ACSCloseStreamConfEvent on page 72

 ACSUniversalFailureConfEvent on page 74

 acsAbortStream() on page 76

 acsGetEventBlock() on page 77

 acsGetEventPoll() on page 80

 acsGetFile() (Linux) on page 83

 acsSetESR() (Windows) on page 84

 acsEventNotify() (Windows) on page 86

 acsFlushEventQueue() on page 89

 acsEnumServerNames() on page 91

 acsGetServerID() on page 93

 acsQueryAuthInfo() on page 94

 acsSetHeartbeatInterval() on page 97

 ACSSetHeartbeatIntervalConfEvent on page 99

 ACS Unsolicited Events on page 101

 ACS Data Types on page 105

 CSTA control services and confirmation events on page 110

 CSTA Event Data Types on page 123

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 61

acsOpenStream()

An application uses acsOpenStream() to open an ACS stream to an advertised service,

also known as a Tlink. Generally speaking, an application needs an ACS stream to

access other ACS Control Services or CSTA Services. Thus, an application must call

acsOpenStream() before requesting any other ACS or CSTA service. (One exception

to this rule is acsEnumServerNames().) The function acsOpenStream() immediately

returns an acsHandle; a confirmation event arrives later.

As of Release 4.1.0, AE Services introduces the Alternate Tlinks feature. This feature

allows the TSAPI client library to select an alternate Tlink if the Tlink specified in the

acsOpenStream() request is not available when the procedure is executed. To enable

alternate Tlink selection, you must specify the alternate Tlinks in the TSAPI

Configuration file.

For information about setting up the TSAPI Configuration file, see the Avaya Aura®.

Application Enablement Services TSAPI and CVLAN Client and SDK Installation Guide,

02-300543.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t acsOpenStream(

 ACSHandle_t *acsHandle, /* RETURN */

 InvokeIDType_t invokeIDType, /* INPUT */

 InvokeID_t invokeID, /* INPUT */

 StreamType_t streamType, /* INPUT */

 ServerID_t *serverID, /* INPUT */

 LoginID_t *loginID, /* INPUT */

 Passwd_t *passwd, /* INPUT */

 AppName_t *applicationName, /* INPUT */

 Level_t acsLevelReq /* INPUT */

 Version_t *apiVer, /* INPUT */

 unsigned short sendQSize, /* INPUT */

 unsigned short sendExtraBufs, /* INPUT */

 unsigned short recvQSize, /* INPUT */

 unsigned short recvExtraBufs /* INPUT */

 PrivateData_t *privateData); /* INPUT */

Chapter 3: Control Services

62 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Parameters

acsHandle The acsOpenStream() service request returns this value that identifies

the ACS stream that was opened. TSAPI sets this value so that it is

unique to the ACS stream. Once acsOpenStream() is successful, the

application must use this acsHandle in all other function calls to TSAPI

on this stream. If acsOpenStream() is successful, TSAPI guarantees that

the application has a valid acsHandle. If acsOpenStream() is not

successful, then the function return code gives the cause of the failure.

invokeIDType The application sets the type of invoke identifiers used on the stream
being opened. The possible types are as follows:

 Application-Generated invokeIDs (APP_GEN_ID)

When APP_GEN_ID is selected, the application will provide an

invokeID with every TSAPI function call that requires an invokeID.

TSAPI will return the supplied invokeID value to the application in

the confirmation event for the service request. Application-generated

invokeID values can be any 32-bit value.

 Library generated invokeIDs (LIB_GEN_ID)

When LIB_GEN_ID is selected, the ACS Library will automatically

generate an invokeID and will return its value upon successful

completion of the function call. The value will be the return from the

function call (RetCode_t). Library-generated invokeIDs are always in

the range 1 to 32767.

invokeID The application supplies this handle for matching the acsOpenStream()

service request with its confirmation event. An application supplies a

value for invokeID only when the invokeIDtype parameter is set to

APP_GEN_ID. TSAPI ignores the invokeID parameter when

invokeIDtype parameter is set to LIB_GEN_ID.

streamType The application provides the type of stream in streamType. The possible

values are:

 ST_CSTA - identifies a request as a CSTA call control stream. This

stream can be used for TSAPI service requests and responses which
begin with the prefix csta or CSTA.

 ST_OAM - requests an OAM stream. (The AE Services TSAPI Service

does not support this value).

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 63

serverID The application provides a null-terminated string of maximum size

ACS_MAX_SERVICEID. This string contains the name of an advertised

service (in ASCII format).

Note:

When the TSAPI client configuration file specifies alternate server IDs
(Tlinks) for this serverID, the stream may be opened to one of the
alternate server IDs instead of the requested server ID. Beginning
with AE Services 4.1, an application that requires the actual

serverID for the stream can call acsGetServerID().

loginID The application provides a pointer to a null terminated string of maximum

size ACS_MAX_LOGINID. This string contains the login ID of the user

requesting access to the advertised service given in the serviceID

parameter.

Note:

When the TSAPI client configuration file specifies alternate server IDs

(Tlinks) for the serverID, the loginID and passwd specified by the

application in the acsOpenStream() request should be configured

identically for each AE Server.

passwd The application provides a pointer to a null terminated string of maximum

size ACS_MAX_PASSWORD. This string contains the password of the user

given loginID.

Note:

When the TSAPI client configuration file specifies alternate server IDs

(Tlinks) for the serverID, the loginID and passwd specified by the

application in the acsOpenStream() request should be configured

identically for each AE Server.

applicationName The application provides a pointer to a null terminated string of maximum

size ACS_MAX_APPNAME. This string contains an application name. The

system uses the application name on certain administration and
maintenance status displays.

acsLevelReq This version of TSAPI ignores this parameter.

apiVer An application uses this parameter to specify the TSAPI version.

This parameter contains a string beginning with the characters ―TS‖
followed by an ASCII encoding of one or more version numbers. An
application may use the ―-‖ (hyphen) character to specify a range of
versions and the ―:‖ (colon) character to separate a list of versions. For
example, the string ―TS1-3:5‖ specifies that the application is willing to
accept TSAPI versions 1, 2, 3, or 5.

Note:

All applications should specify Version 2 for the TSAPI Service. See
Specifying TSAPI versions when you open a stream on page 57.

Chapter 3: Control Services

64 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

sendQSize The application specifies in sendQsize the maximum number of outgoing

messages the TSAPI client library will queue before returning

ACSERR_QUEUE_FULL. If the application supplies a zero (0) value, then a

default queue size will be used. Beginning with Release 6.1 of the TSAPI
Windows client library, the default value is 4. Prior to Release 6.1, the
default value was 2.

Note:

The Linux TSAPI client library does not use the sendQSize
parameter.

sendExtraBufs The application specifies the number of additional packet buffers TSAPI

allocates for the send queue. If sendExtraBufs is set to zero (0), the

number of buffers is equal to the queue size (i.e., one buffer per
message).

If you expect messages to exceed the size of a network packet, a
reasonable expectation if you use private data extensively, be sure to
allocate additional buffers.

Also, if your application frequently returns the error ACSERR_NOBUFFERS, it

indicates that the application has not allocated enough buffers.

Note:

The Linux TSAPI client library does not use the sendExtraBufs
parameter.

recvQSize The application specifies the maximum number of incoming messages
the TSAPI Client Library queues before it ceases acknowledgment to the

Telephony Server. TSAPI uses a default queue size when recvQSize is

set to zero (0). Beginning with Release 6.1 of the TSAPI Windows client
library, the default value is 16. Prior to Release 6.1, the default value
was 2.

Note:

The Linux TSAPI client library does not use the recvQSize parameter.

recvExtraBufs The application specifies the number of additional packet buffers that

TSAPI allocates for the receive queue. If recvExtraBufs is set to zero

(0), the number of buffers is equal to the queue size (i.e., one buffer per
message). If messages will exceed the size of a network packet, as in the
case where private data is used extensively, or the application frequently

sees ACSERR_STREAM_FAILED, then the application does not use

recvExtraBufs to allocate enough buffers.

Note:

The Linux TSAPI client library does not use the recvExtraBufs
parameter.

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 65

privateData The application uses this parameter to provide a pointer to a data
structure that contains any implementation-specific initialization. For the
TSAPI Service this pointer is used to specify Avaya Private Data. The
TSAPI protocol does not interpret the data in this structure.

The application provides a NULL pointer when Private Data is not present.

No private data on an open stream request is a request to the TSAPI
Service not to send any private data. For information about negotiating
private data versions, see Requesting private data on page 158.

Chapter 3: Control Services

66 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Return Values

acsOpenStream() returns the following values depending on whether the application is
using library or application-generated invoke identifiers:

 Library-generated invokeIDs - if the function call completes
successfully it will return a positive value, i.e. the invoke identifier. If
the call fails, a negative (<0) error condition will be returned. For
library-generated identifiers the return value will never be zero (0).

 Application-generated invokeIDs - if the function call completes
successfully it will return a zero (0) value. If the call fails, a negative
(<0) error condition will be returned. For application-generated
identifiers the return will never be positive (>0).

The application should always check the ACSOpenStreamConfEvent

message to ensure that the Telephony Server has acknowledged the
acsOpenStream() request.

acsOpenStream() returns the following negative error conditions:

 ACSERR_APIVERDENIED - The requested API version (apiVer) is

invalid or the client library does not support it.

 ACSERR_BADPARAMETER - One or more of the parameters is invalid.

 ACSERR_NODRIVER - No TSAPI Client Library Driver was found or

installed on the system.

 ACSERR_NOSERVER - The advertised service (serverID) is not

available on the network.

 ACSERR_NORESOURCE - There are insufficient resources to open an

ACS stream.

 ACSERR_SSL_INIT_FAILED - This return value indicates that a

secure connection could not be opened because there was a
problem initializing the OpenSSL library.

 ACSERR_SSL_CONNECT_FAILED - This return value indicates that a

stream could not be opened because there was a problem
establishing an SSL connection to the server. It may be that the
server failed to provide a certificate, or that the server certificate is
not signed by a trusted Certificate Authority.

 ACSERR_SSL_FQDN_MISMATCH - This return value indicates that a

stream could not be opened because the fully qualified domain
name (FQDN) in the server certificate does not match the expected
FQDN.

 ACSERR_STREAM_FAILED - the application attempted to open a

stream to a secure (encrypted) Tlink, but the TSAPI client library
(Release 4.0.x or earlier) does not support secure client
connections.

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 67

Comments

An application uses acsOpenStream() to open a network or local communication

channel (ACS stream) with an advertised service (TSAPI Service). The stream will

establish an ACS client/server session between the application and the server. The

application can use the ACS stream to access all the server-provided services (for

example cstaMakeCall, cstaTransferCall, etc.). The acsOpenStream() function

returns an acsHandle for the stream. The application uses the acsHandle to wait for an

ACSOpenStreamConfEvent. The application uses the ACSOpenStreamConfEvent to

determine whether the stream opened successfully. The application then uses the

acsHandle in any further requests that it sends over the stream. An application should

only open one stream for any advertised service.

When an application calls acsOpenStream() the call may block for up to ten (10)

seconds for each AE Services server that appears in the TSAPI client configuration file

while TSAPI obtains names and addresses from the network Name Server.

Applications should not open multiple streams to the same advertised service since this

results in inefficient use of system resources.

Application Notes

The TSAPI Service supports a single CTI link to Avaya Communication Manager. Each

advertised service name is unique on the network.

The TSAPI interface guarantees that the ACSOpenStreamConfEvent is the first event the

application will receive on ACS stream if no errors occurred during the ACS stream

initialization process.

The application is responsible for terminating ACS streams. To do so, an application

either calls acsCloseStream() (and receives the ACSCloseStreamConfEvent), or calls

acsAbortStream(). It is imperative that an application close all active stream(s) during

its exit or cleanup routine in order to free resources in the client and server for other

applications on the network.

The application must be prepared to receive an ACSUniversalFailureConfEvent,

CSTAUniversalFailureConfEvent or an ACSUniversalFailureEvent anytime after

the acsOpenStream() function completes. These events indicate that a failure has

occurred on the stream.

With the Alternate Tlinks feature, the stream may be opened to a different advertised

service than the advertised service that was specified in the acsOpenStream() request.

For more information, see acsGetServerID() on page 93.

Chapter 3: Control Services

68 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

ACSOpenStreamConfEvent

This event is generated in response to the acsOpenStream() function and provides the

application with status information about the request to open an ACS stream with the

TSAPI Service. The application may only perform the ACS functions

acsEventNotify(), acsSetESR(), acsGetEventBlock(), acsGetEventPoll(), and

acsCloseStream() on an acsHandle until this confirmation event has been received.

Syntax

The following structure shows only the relevant portions of the unions for this message.

For more information, see ―CSTA Data Types,‖ Chapter 10 of the Application

Enablement Services TSAPI Programmer’s Reference, 02-300545.

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass;

 EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 ACSOpenStreamConfEvent_t acsopen;

 } u;

 } acsConfirmation;

 } event;

} CSTAEvent_t;

typedef struct ACSOpenStreamConfEvent_t

{

 Version_t apiVer;

 Version_t libVer;

 Version_t tsrvVer;

 Version_t drvrVer;

} ACSOpenStreamConfEvent_t;

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 69

Parameters

acsHandle This is the handle for the ACS stream.

eventClass This is a tag with the value ACSCONFIRMATION, which identifies this

message as an ACS confirmation event.

eventType This is a tag with the value ACS_OPEN_STREAM_CONF, which identifies this

message as an ACSOpenStreamConfEvent.

invokeID This parameter specifies the requested instance of the function or event.
It is used to match a specific function request with its confirmation event.

apiVer This parameter indicates which version of the API was granted. The
version begins with the letters ―ST‖ (the ―S‖ and the ―T‖ are intentionally
reversed. Note that the application supplied string had the letters in the
order ―TS‖) followed by a single TSAPI version number. If the contents of
the apiVer field do not begin with the letters ―ST‖, then the application
should assume TSAPI version 1. See Specifying TSAPI versions when
you open a stream on page 57.

libVer This parameter indicates which version of the Library is running.

tsrvVer This parameter indicates which version of the TSAPI Service is running.

drvrVer This parameter indicates which version of the TSAPI Service Driver is
running.

Comments

This message is an indication that the ACS stream requested by the application via the

acsOpenStream() function is available to provide communication with the TSAPI

Service. The application may now request call control services from the TSAPI Service

on the acsHandle identifying this ACS stream. This message contains the Telephony

Services API, TSAPI Client Library, TSAPI Service, and TSAPI Service Driver versions,

and any Private data returned by the TSAPI Service.

The Private Data in the ACSOpenStreamConfEvent indicates what vendor and version

Private Data the PBX driver will provide on the stream. In the Private Data, the vendor

field will contain the vendor name and the data field will contain a one byte

discriminator, PRIVATE_DATA_ENCODING, followed by an ASCII string identifying the

version of the private data that will be supplied.

Application Notes

The ACSOpenStreamConfEvent is guaranteed to be the first event on the ACS stream

the application will receive if no errors occurred during the ACS stream initialization.

With the Alternate Tlinks feature, the stream may be opened to a different advertised

service than the advertised service that was specified in the acsOpenStream() request.

For more information, see acsGetServerID() on page 93.

Chapter 3: Control Services

70 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

acsCloseStream()

This function closes an ACS stream to the Telephony Server. The application will be

unable to request services from the Telephony Server after the acsCloseStream()

function has returned. The acsHandle is valid on this stream after the

acsCloseStream() function returns, but can only be used to receive events via the

acsGetEventBlock() or acsGetEventPoll() functions. The application must receive

the ACSCloseStreamConfEvent associated with this function call to indicate that the

ACS stream associated with the specified acsHandle has been terminated and to allow

stream resources to be freed.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t acsCloseStream(

 ACSHandle_t acsHandle, /* INPUT */

 InvokeID_t invokeID, /* INPUT */

 PrivateData_t *privateData); /* INPUT */

Parameters

acsHandle

This is the handle for the active ACS stream which is to be closed. Once the

confirmation event associated with this function returns, the handle is no longer valid.

invokeID

A handle provided by the application to be used for matching a specific instance of a

function service request with its associated confirmation event. This parameter is only

used when the Invoke ID mechanism is set for Application-generated IDs in the

acsOpenStream()request. The parameter is ignored by the ACS Library when the

stream is set for Library-generated invoke IDs.

privateData

This points to a data structure which defines any implementation-specific information

needed by the server. The data in this structure is not interpreted by the API Client

Library and can be used as an escape mechanism to provide implementation specific

commands between the application and the TSAPI Service.

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 71

Return Values

This function returns the following values depending on whether the application is using

library or application-generated invoke identifiers:

Library-generated Identifiers - if the function call completes successfully, it will

return a positive value, i.e. the invoke identifier. If the call fails, a negative (<0) error

condition will be returned. For library-generated identifiers, the return will never be

zero (0).

Application-generated Identifiers - if the function call completes successfully, it will

return a zero (0) value. If the call fails, a negative (<0) error condition will be

returned. For application-generated identifiers, the return will never be positive (>0).

The application should always check the ACSCloseStreamConfEvent message to

ensure that the service request has been acknowledged and processed by the

Telephony Server and the switch.

acsCloseStream() returns the negative error conditions below:

ACSERR_BADHDL - This indicates that the acsHandle being used is not a valid

handle for an active ACS stream. No changes occur in any existing streams if a

bad handle is passed with this function.

Comments

Once this function returns, the application must also check the ACSCloseStreamConf-

Event message to ensure that the ACS stream was closed properly and to see if any

Private Data was returned by the server.

No other service request will be accepted to the specified acsHandle after this function

successfully returns. The handle is an active and valid handle until the application has

received the ACSCloseStreamConfEvent.

Application Notes

The Client is responsible for receiving the ACSCloseStreamConfEvent which indicates

resources have been freed.

The application must be prepared to receive multiple events on the ACS stream after the

acsCloseStream() function has completed, but the ACSCloseStreamConfEvent is

guaranteed to be the last event on the ACS stream.

Only the acsGetEventBlock() and acsGetEventPoll() functions can be called after

the acsCloseStream() function has returned successfully.

Chapter 3: Control Services

72 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

ACSCloseStreamConfEvent

This event is generated in response to the acsCloseStream() function and provides

information regarding the closing of the ACS stream The acsHandle is no longer valid

after this event has been received by the application, so the ACSCloseStreamConfEvent

is the last event the application will receive for this ACS stream.

Syntax

The following structure shows only the relevant portions of the unions for this message.

See the TSAPI Specification for a complete description of the event structure.

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass;

 EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 ACSCloseStreamConfEvent_t acsclose;

 } u;

 } acsConfirmation;

 } event;

} CSTAEvent_t;

typedef struct ACSCloseStreamConfEvent_t

{

 Nulltype null;

} ACSCloseStreamConfEvent_t;

Parameters

acsHandle

This is the handle for the opened ACS stream.

eventClass

This is a tag with the value ACSCONFIRMATION, which identifies this message as an ACS

confirmation event.

eventType

This is a tag with the value ACS_CLOSE_STREAM_CONF, which identifies this message as

an ACSCloseStreamConfEvent.

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 73

invokeID

This parameter specifies the requested instance of the function. It is used to match a

specific acsCloseStream() function request with its confirmation event.

Comments

This message indicates that the ACS stream to the TSAPI Service has closed and that

the associated acsHandle is no longer valid. This message contains any Private data

returned by the TSAPI Service.

Chapter 3: Control Services

74 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

ACSUniversalFailureConfEvent

This event can occur at any time in place of a confirmation event for any of the CSTA

functions which have their own confirmation event and indicates a problem in the

processing of the requested function. The ACSUniversalFailureConfEvent does not

indicate a failure or loss of the ACS stream with the TSAPI Service. If the ACS stream

has failed, then an ACSUniversalFailureEvent (unsolicited version of this confirmation

event) is sent to the application, see ACSUniversalFailureEvent on page 101.

Syntax

The following structure shows only the relevant portions of the unions for this message.

See ACS Data Types on page 105 and CSTA Event Data Types on page 123 for a

complete description of the event structure.

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass;

 EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 union

 {

 ACSUniversalFailureConfEvent_t failureEvent;

 } u;

 } acsConfirmation;

 } event;

} CSTAEvent_t;

typedef struct

{

 ACSUniversalFailure_t error;

} ACSUniversalFailureConfEvent_t;

Parameters

acsHandle

This is the handle for the ACS stream.

eventClass

This is a tag with the value ACSCONFIRMATION, which identifies this message as an ACS

confirmation event.

eventType

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 75

This is a tag with the value ACS_UNIVERSAL_FAILURE_CONF, which identifies this

message as an ACSUniversalFailureConfEvent.

error

This parameter indicates the cause value for the failure of the original Telephony

request. These cause values are the same set as those shown for ACSUniversal-

FailureEvent.

Comments

This event will occur anytime a non-telephony problem (no memory, TSAPI Service

Security Database check failed, etc.) is encountered while processing a Telephony

request and is sent in place of the confirmation event that would normally be received for

that function (i.e., CSTAMakeCallConfEvent in response to a cstaMakeCall() request).

If the problem which prevents the telephony function from being processed is telephony

based, then a CSTAUniversalFailureConfEvent will be received instead.

Chapter 3: Control Services

76 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

acsAbortStream()

This function unilaterally closes an ACS stream to the TSAPI Service. The application

will be unable to request services from the TSAPI Service or receive events after the

acsAbortStream() function has returned. The acsHandle is invalid on this stream after

the acsAbortStream() function returns. There is no associated confirmation event for

this function.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t acsAbortStream(

 ACSHandle_t acsHandle, /* INPUT */

 PrivateData_t *privateData); /* INPUT */

Parameters

acsHandle

This is the handle for the active ACS stream which is to be closed. There is no

confirmation event for this function. Once this function returns success, the ACS stream

is no longer valid.

privateData

This points to a data structure which defines any implementation-specific information

needed by the server. The data in this structure is not interpreted by the API Client

Library and can be used as an escape mechanism to provide implementation specific

commands between the application and the TSAPI Service.

Return Values

This function always returns zero (0) if successful.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle for an active

ACS stream. No changes occur in any existing streams if a bad handle is passed

with this function.

Comments

Once this function returns, the ACS stream is dismantled and the acsHandle is invalid.

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 77

acsGetEventBlock()

This function is used when an application wants to receive an event in a Blocking

mode. In the Blocking mode, the application will be blocked until there is an event from

the ACS stream indicated by the acsHandle. If the acsHandle is set to zero (0), then the

application will block until there is an event from any ACS stream opened by this

application. The function will return after the event has been copied into the applications

data space.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t acsGetEventBlock(

 ACSHandle_t acsHandle, /* INPUT */

 void *eventBuf, /* INPUT */

 unsigned short *eventBufSize, /* INPUT/RETURN */

 PrivateData_t *privateData, /* RETURN */

 unsigned short *numEvents); /* RETURN */

Parameters

acsHandle

This is the value of the unique handle to the opened ACS stream. If a handle of zero (0)

is given, then the next message on any of the open ACS streams for this application is

returned.

eventBuf

This is a pointer to an area in the application address space large enough to hold one

incoming event that is received by the application. This buffer should be large enough to

hold the largest event the application expected to receive. Typically the application will

reserve a space large enough to hold a CSTAEvent_t.

eventBufSize

This parameter indicates the size of the user buffer pointed to by eventBuf. If the event

is larger the eventBuf, then this parameter will be returned with the size of the buffer

required to receive the event. The application should call this function again with a larger

buffer.

privateData

This parameter points to a buffer which will receive any private data that accompanies

this event. The length field of the PrivateData_t structure must be set to the size of the

data buffer. If the application does not wish to receive private data, then privateData

should be set to NULL.

numEvents

The library will return the number of events queued for the application on this ACS

stream (not including the current event) via the numEvents parameter. If this parameter

is NULL, then no value will be returned.

Chapter 3: Control Services

78 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Return Values

This function returns a positive acknowledgment or a negative (< 0) error condition.

There is no confirmation event for this function. The positive return value is:

ACSPOSITIVE_ACK

The function completed successfully as requested by the application, and an event

has been copied to the application data space. No errors were detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle for an active

ACS stream. No changes occur in any existing streams if a bad handle is passed

with this function.

ACSERR_UBUFSMALL

The user buffer size indicated in the eventBufSize parameter was smaller than the

size of the next available event for the application on the ACS stream. The

eventBufSize variable has been reset by the API Library to the size of the next

message on the ACS stream. The application should call acsGetEventBlock()

again with a larger event buffer. The ACS event is still on the API Library queue.

Alternatively, this return value may indicate that the private data length indicated in

the privateData parameter was smaller than the size of the private data

accompanying the next available event for the application on the ACS stream. The

API library does not update the value of the eventBufSize variable in this case.

The application should call acsGetEventBlock() again with a larger private data

buffer. The ACS event is still on the API library queue.

Comments

The acsGetEventBlock() and acsGetEventPoll() functions can be intermixed by the

application. For example, if bursty event message traffic is expected, an application may

decide to block initially for the first event and wait until it arrives. When the first event

arrives the blocking function returns, at which time the application can process this event

quickly and poll for the other events which may have been placed in queue while the first

event was being processed. The polling can be continued until an ACSERR_NOMESSAGE is

returned by the polling function. At this time the application can then call the blocking

function again and start the whole cycle over again.

There is no confirmation event for this function.

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 79

Application Notes

The application is responsible for calling the acsGetEventBlock() or

acsGetEventPoll() function frequently enough that the API Client Library does not

overflow its receive queue and refuse incoming events from the Telephony Server.

The TSAPI Service may send the application internal events that are not exposed to the

application. When one of these events arrives, a Linux application that uses poll() or

select() with the file descriptor of an ACS stream will be notified that input is available.

However, because the event has been consumed by the TSAPI library, a subsequent

call to acsGetEventBlock() will block. For this reason, such applications should only

call acsGetEventPoll().

Chapter 3: Control Services

80 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

acsGetEventPoll()

This function is used when an application wants to receive an event in a Non-Blocking

mode. In the Non-Blocking mode the oldest outstanding event from any active ACS

stream will be copied into the applications data space and control will be returned to the

application. If no events are currently queued for the application, the function will return

control immediately to the application with an error code indicating that no events were

available.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t acsGetEventPoll(

 ACSHandle_t acsHandle, /* INPUT */

 void *eventBuf, /* INPUT */

 unsigned short *eventBufSize, /* INPUT/RETURN */

 PrivateData_t *privateData, /* RETURN */

 unsigned short *numEvents); /* RETURN */

Parameters

acsHandle

This is the value of the unique handle to the opened ACS stream. If a handle of zero (0)

is given, then the next message on any of the open ACS streams for this application is

returned.

eventBuf

This is a pointer to an area in the application address space large enough to hold one

incoming event that is received by the application. This buffer should be large enough to

hold the largest event the application expected to receive. Typically the application will

reserve a space large enough to hold a CSTAEvent_t.

eventBufSize

This parameter indicates the size of the user buffer pointed to by eventBuf. If the event

is larger the eventBuf, then this parameter will be returned with the size of the buffer

required to receive the event. The application should call this function again with a larger

buffer.

privateData

This parameter points to a buffer which will receive any private data that accompanies

this event. The length field of the PrivateData_t structure must be set to the size of the

data buffer. If the application does not wish to receive private data, then privateData

should be set to NULL.

numEvents

The library will return the number of events queued for the application on this ACS

stream (not including the current event) via the numEvents parameter. If this parameter

is NULL, then no value will be returned.

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 81

Return Values

This function returns a positive acknowledgment or a negative (< 0) error condition.

There is no confirmation event for this function. The positive return value is:

ACSPOSITIVE_ACK

The function completed successfully as requested by the application, and an event

has been copied to the application data space. No errors were detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle for an active

ACS stream. No changes occur in any existing streams if a bad handle is passed

with this function.

ACSERR_NOMESSAGE

There were no messages available to return to the application.

ACSERR_UBUFSMALL

The user buffer size indicated in the eventBufSize parameter was smaller than the

size of the next available event for the application on the ACS stream. The

eventBufSize variable has been reset by the API Library to the size of the next

message on the ACS stream. The application should call acsGetEventPoll()

again with a larger event buffer. The ACS event is still on the API Library queue.

Alternatively, this return value may indicate that the private data length indicated in

the privateData parameter was smaller than the size of the private data

accompanying the next available event for the application on the ACS stream. The

API library does not update the value of the eventBufSize variable in this case.

The application should call acsGetEventPoll() again with a larger private data

buffer. The ACS event is still on the API library queue.

Comments

When this function is called, it returns immediately, and the user must examine the

return code to determine if a message was copied into the user's data space. If an event

was available, the function will return ACSPOSITIVE_ACK.

If no events existed on the ACS stream for the application, this function will return

ACSERR_NOMESSAGE.

The acsGetEventBlock() and acsGetEventPoll() functions can be intermixed by the

application. For example, if bursty event message traffic is expected, an application may

decide to block initially for the first event and wait until it arrives. When the first event

arrives the blocking function returns, at which time the application can process this event

quickly and poll for the other events which may have been placed in queue while the first

event was being processed. The polling may continue until the ACSERR_NOMESSAGE is

returned by the polling function. At this time the application can then call the blocking

function again and start the whole cycle over again.

There is no confirmation event for this function.

Chapter 3: Control Services

82 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Application Notes

The application is responsible for calling the acsGetEventBlock() or

acsGetEventPoll() function frequently enough that the API Client Library does not

overflow its receive queue and refuses incoming events from the TSAPI Service.

The TSAPI Service may send the application internal events that are not exposed to the

application. When one of these events arrives, a Linux application that uses poll() or

select() with the file descriptor of an ACS stream will be notified that input is available.

However, because the event has been consumed by the TSAPI library, a subsequent

call to acsGetEventPoll() will return ACSERR_NOMESSAGE. The application should not

treat this as an error condition.

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 83

acsGetFile() (Linux)

The acsGetFile() function returns the Linux file descriptor associated with an ACS

stream. This is to enable multiplexing of input sources via, for example, the poll()

system call.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t acsGetFile(ACSHandle_t acsHandle);

Parameters

acsHandle

This is the value of the unique handle to the opened ACS stream whose Linux file

descriptor is to be returned.

Return Values

This function returns either a Linux file descriptor greater than or equal to zero (0), or

ACSERR_BADHDL if the acsHandle being used is not a valid handle for an active ACS

stream.

Application Notes

The acsGetFile() function returns the Linux file descriptor used by an ACS stream.

This enables an application to simultaneously block on the stream and any other file-

oriented input sources by using poll(), select(), XtAddInput() or similar

multiplexing functions. The application should never perform any direct I/O operations on

this file descriptor.

The TSAPI Service may send the application internal events that are not exposed to the

application. When one of these messages arrives on the stream, a call to poll() or

select() will return, indicating that input is available on the stream's file descriptor. A

subsequent call to acsGetEventBlock() will block, however, because the event has

been consumed by the TSAPI client library. For this reason, such applications should

only call acsGetEventPoll().

There is no confirmation event for this function.

Chapter 3: Control Services

84 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

acsSetESR() (Windows)

The acsSetESR() function also allows a Windows application to designate an Event

Service Routine (ESR) that will be called when an incoming event is available.

Syntax

#include <acs.h>

#include <csta.h>

typedef void (*EsrFunc)(unsigned long esrParam)

RetCode_t acsSetESR(

 ACSHandle_t acsHandle, /* INPUT */

 EsrFunc esr, /* INPUT */

 unsigned long esrParam, /* INPUT */

 Boolean notifyAll); /* INPUT */

Parameters

acsHandle

This is the value of the unique handle to the opened stream for which this ESR routine

will apply. Only one ESR is allowed per active acsHandle.

esr

This is a pointer to the ESR (the address of a function). An application passes a NULL

pointer to clear an existing ESR.

esrParam

This is a user-defined parameter which will be passed to the ESR when it is called.

notifyAll

If this parameter is TRUE then the ESR will be called for every event. If it is FALSE then

the ESR will only be called each time the receive queue becomes non-empty, i.e. the

queue count changes from zero (0) to one (1). This option may be used to reduce the

overhead of notification.

Return Values

This function returns a positive acknowledgment or a negative (< 0) error condition.

There is no confirmation event for this function. The positive return value is:

ACSPOSITIVE_ACK

The function completed successfully as requested by the application. No errors

were detected.

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 85

Possible local error returns are (negative returns):

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle for an active

ACS stream. No changes occur in any existing streams if a bad handle is passed

with this function.

Comments

The ESR mechanism can be used by the application to receive an asynchronous

notification of the arrival of an incoming event from the ACS stream. The ESR routine

will receive one user-defined parameter. The ESR should not call TSAPI functions, or

the results will be indeterminate. The ESR should note the arrival of the incoming event,

and complete its operation as quickly as possible. The application must still call

acsGetEventBlock() or acsGetEventPoll() to retrieve the event from the Client API

Library queue.

Use acsSetESR() with care. The ESR code will be executed in the context of a

background thread created by the API Client Library, not an application thread.

If there are already events in the receive queue waiting to be retrieved when

acsSetESR() is called, the ESR will be called for each of them.

The esr passed to the acsSetESR() function will replace the current ESR maintained by

the API Client Library. A NULL esr will disable the current ESR mechanism.

There is no confirmation event for this function.

Chapter 3: Control Services

86 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

acsEventNotify() (Windows)

The acsEventNotify() function allows a Windows application to request that a

message be posted to its application queue when an incoming ACS event is available.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t acsEventNotify(

 ACSHandle_t acsHandle, /* INPUT */

 HWND hwnd, /* INPUT */

 UINT msg, /* INPUT */

 Boolean notifyAll); /* INPUT */

Parameters

acsHandle

This is the value of the unique handle to the opened ACS stream for which event

notification messages will be posted.

hwnd

This is the handle of the window which is to receive event notification messages. If this

parameter is NULL, event notification is disabled.

msg

This is the user-defined message to be posted when an incoming event becomes

available. The wParam and lParam parameters of the message will contain the following

members of the ACSEventHeader_t structure:

wParam acsHandle

HIWORD(lParam) eventClass

LOWORD(lParam) eventType

notifyAll

If this parameter is TRUE then a message will be posted for every event. If it is FALSE

then a message will only be posted each time the receive queue becomes non-empty,

i.e. the queue count changes from zero (0) to one (1). This option may be used to

reduce the overhead of notification, or the likelihood of overflowing the application's

message queue.

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 87

Return Values

This function returns a positive acknowledgment or a negative (< 0) error condition.

There is no confirmation event for this function. The positive return value is:

ACSPOSITIVE_ACK

The function completed successfully as requested by the application. No errors

were detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle for an active

ACS stream. No changes occur in any existing streams if a bad handle is passed

with this function.

Application Notes

This function only enables notification of an incoming event. Use acsGetEventPoll() to

actually retrieve the complete event structure.

If there are already events in the receive queue waiting to be retrieved when

acsEventNotify() is called, a message will be posted for each of them.

The rate of notifications may be reduced by setting notifyAll to FALSE.

There is no confirmation event for this function.

Chapter 3: Control Services

88 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Example

This example uses the acsEventNotify function to enable event notification.

#define WM_TSAPI_EVENT WM_USER + 99

 /* or use RegisterWindowMessage() */

long FAR PASCAL

WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)

{

 /* declare local variables... */

 switch (msg)

 {

 case WM_CREATE:

 /* Application initialization. */

 /*

 * Indicate that the TSAPI client library should

 * post a WM_TSAPI_EVENT message to this window whenever

 * a TSAPI event arrives on the specified acsHandle.

 */

 acsEventNotify (acsHandle, hwnd, WM_TSAPI_EVENT, TRUE);

 /* other initialization, etc... */

 return 0;

 case WM_TSAPI_EVENT:

 /*

 * wParam contains an ACSHandle_t

 * HIWORD(lParam) contains an EventClass_t

 * LOWORD(lParam) contains an EventType_t

 * Dispatch the TSAPI event to a user-defined

 * handler function here.

 */

 return 0;

 /* cases for other Windows messages... */

 }

 return DefWindowProc (hwnd, msg, wParam, lParam);

}

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 89

acsFlushEventQueue()

This function removes all events for the application on an ACS stream associated with

the given handle and maintained by the API Client Library. Once this function returns the

application may receive any new events that arrive on this ACS stream.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t acsFlushEventQueue(ACSHandle_t acsHandle);

Parameters

acsHandle

This is the handle to an active ACS stream. If the acsHandle is zero (0), then TSAPI will

flush all active ACS streams for this application.

Return Values

This function returns a positive acknowledgment or a negative (< 0) error condition.

There is no confirmation event for this function. The positive return value is:

ACSPOSITIVE_ACK

The function completed successfully as requested by the application. No errors

were detected.

Possible local error returns are (negative returns):

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle for an active

ACS stream. No changes occur in any existing streams if a bad handle is passed

with this function.

Comments

Once this function returns the API Client Library will not have any events queued for the

application on the specified ACS stream. The application is ready to start receiving new

events from the TSAPI Service.

There is no confirmation event for this function.

Chapter 3: Control Services

90 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Application Notes

The application should exercise caution when calling this function, since all events from

the TSAPI Service on the associated ACS stream have been discarded. The application

has no way to determine what kinds of events have been destroyed, and may have lost

events that relay important status information from the switch.

This function cannot delete the ACSCloseStreamConfEvent, since this function cannot

be called after the acsCloseStream() function.

The acsFlushEventQueue() function will delete all other events queued to the

application on the ACS stream. The ACSUniversalFailureEvent and the

CSTAUniversalFailureConfEvent, in particular, will be deleted if they are currently

queued to the application.

Do not invoke acsFlushEventQueue() while there any outstanding

acsSetHeartbeatInterval() requests on the ACS stream. This may cause the client

library to close the stream.

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 91

acsEnumServerNames()

This function is used to enumerate the names of all the advertised services of a

specified stream type. This function is synchronous and has no associated confirmation

event.

Syntax

#include <acs.h>

typedef Boolean (*EnumServerNamesCB) (

 char *serverName,
 unsigned long lParam);

RetCode_t acsEnumServerNames(

 StreamType_t streamType, /* INPUT */

 EnumServerNamesCB callback, /* INPUT */
 unsigned long lParam); /* INPUT */

Parameters

streamType

indicates the type of stream requested. The only supported stream type is ST_CSTA.

callback

This is a pointer to a callback function which will be invoked for each of the enumerated

server names, along with the user-defined parameter lParam. If the callback function

returns FALSE (0), enumeration will terminate.

lParam

A user-defined parameter which is passed on each invocation of the callback function.

Return Values

This function returns a positive acknowledgment or a negative (< 0) error condition.

There is no confirmation event for this function. The positive return value is:

ACSPOSITIVE_ACK

The function completed successfully as requested by the application. No errors

were detected.

The following are possible negative error conditions for this function:

ACSERR_UNKNOWN

The request has failed due to unknown network problems.

ACSERR_NOSERVER

The request has failed because the client cannot communicate with the TSAPI

Service. Perhaps the IP address or hostname of the AE Services server is not

configured properly in the TSAPI client configuration file; perhaps there is a network

issue; or perhaps the TSAPI Service is not running.

Chapter 3: Control Services

92 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Comments

This function enumerates all the known advertised services, invoking the callback

function for each advertised service name. The serverName parameter points to

automatic storage; the callback function must make a copy if it needs to preserve this

data. Under Windows, the callback function must be exported and its address obtained

from MakeProcInstance().

An active ACS stream is NOT required to call this function.

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 93

acsGetServerID()

Use acsGetServerID() to get the server ID (TSAPI link name) of the stream.

When a TSAPI client configuration includes Alternate Tlink entries, an acsOpenStream()

request may open a stream to a different server ID than the requested server ID. For

more information on Alternate Tlink entries, see the Avaya Aura® Application

Enablement Services TSAPI and CVLAN Client and SDK Installation Guide, 02-300543.

Use acsGetServerID() to determine the actual server ID for an open stream.

Syntax

#include <acs.h>

RetCode_t acsGetServerID(

 ACSHandle_t acsHandle, /* INPUT */

 ServerID_t *serverID); /* INPUT */

Parameters

acsHandle

This is the handle for the active ACS Stream which is being queried.

Return Values

This service returns one of the following values:

ACSPOSITIVE_ACK

The service request was successful.

ACSERR_BADHDL

The ACS handle is not a valid handle for an active ACS Stream.

ACSERR_BADPARAMETER

The serverID parameter is invalid.

If the service is successful, the client library copies the Tlink name for the stream to the

memory pointed to by the serverID parameter.

Application Notes

This function is only available for the Windows and Linux client libraries, version 4.1 and

later.

There is no confirmation event for this function.

Chapter 3: Control Services

94 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

acsQueryAuthInfo()

Use acsQueryAuthInfo() to determine the login and password requirements when

opening an ACS stream to a particular advertised CSTA service. This function call

places the result of a query in a user-provided structure before returning; there is no

confirmation event.

Syntax

#include <acs.h>

RetCode_t acsQueryAuthInfo(

 ServerID_t *serverID, /* INPUT */

 ACSAuthInfo_t *authInfo); /* RETURN */

Parameters

serverID

The application provides a null-terminated string of maximum size ACS_MAX_SERVICEID.

This string contains the name of an advertised CSTA service (in ASCII format).

authInfo

The application provides a pointer to a pre-allocated structure into which the

acsQueryAuthInfo() returns authentication information about the CSTA service named

in serverID. The ACSAuthInfo_t structure is defined as follows:

typedef enum

{

 REQUIRES_EXTERNAL_AUTH = -1,

 AUTH_LOGIN_ID_ONLY = 0,

 AUTH_LOGIN_ID_IS_DEFAULT = 1,

 NEED_LOGIN_ID_AND_PASSWD = 2,

 ANY_LOGIN_ID = 3

} ACSAuthType_t;

typedef struct

{

 ACSAuthType_t authType;

 LoginID_t authLoginID;

} ACSAuthInfo_t;

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 95

Return Values

acsQueryAuthInfo() returns the negative error conditions below:

ACSERR_BADPARAMETER

One or more of the parameters is invalid.

ACSERR_NODRIVER

No TSAPI Client Library Driver was found or installed on the system.

ACSERR_NOSERVER

The advertised service (serverID) is not available in the network.

ACSERR_NORESOURCE

There are insufficient resources to query the advertised service.

Background

The Telephony Services architecture allows network administrators to grant telephony

privileges to users. Depending on the implementation of a telephony server and its client

libraries, a user may convince telephony servers of his or her identity – authenticate – by

different means.

Version 1 of TSAPI required applications to supply a login name and password when

calling acsOpenStream() – the point at which a telephony server must be convinced of a

user's identity.

Version 2 and future versions offer support for multiple types of authentication. A

telephony service may still require – or simply accept – a login and password, or it may

rely on an external authentication service to establish a user's identity.

The Telephony Services architecture offers support for both methods in any

combination.

Usage

Call acsQueryAuthInfo() to determine the authentication requirements for an

advertised service (PBX Driver). The caller must provide the name of the advertised

service and a pointer to storage into which acsQueryAuthInfo() will place the query

results.

When an application calls acsQueryAuthInfo(), the application may block while the

telephony services library queries the specified service.

Chapter 3: Control Services

96 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Examine authInfo.authType upon return from acsQueryAuthInfo() to determine

what loginID and passwd parameters to supply to acsOpenStream() for the service

queried.

REQUIRES_EXTERNAL_AUTH:

The service specified in the query requires the user to authenticate with an external

authentication service before opening a stream. If authInfo.authType contains

this value, acsOpenStream() will fail for the service queried.

AUTH_LOGIN_ID_ONLY:

The application can only open a stream using the loginID returned in

authInfo.authLoginID.

acsOpenStream() will ignore passwd for the queried service. The loginID must

contain the same value as authInfo.authLoginID. An application should not

collect a password from its user for this service.

AUTH_LOGIN_ID_IS_DEFAULT:

The loginID returned in authInfo.authLoginID is the default user for this

service. If the application subsequently specifies this loginID or a NULL pointer as

loginID to acsOpenStream(), passwd will be ignored and may be NULL.

Alternatively, to open a stream as a different user than authInfo.authLoginID,

the application must supply loginID and passwd to acsOpenStream().

 NOTE:

An application should take care to not collect a password if its user wants to be

identified as authInfo.authLoginID. If an application does not remember the

last loginID selected by its user in a preferences file or other persistent storage,

the application should use authInfo.authLoginID as the default loginID when

prompting its user for login information.

NEED_LOGIN_ID_AND_PASSWD:

The application must supply loginID and passwd to acsOpenStream(). The AE

Services TSAPI Service always sets authInfo.authType to this value.

ANY_LOGIN_ID:

The application may supply any loginID to acsOpenStream(); passwd should not

be collected and will be ignored. Applications should default to

authInfo.authLoginID if it is non-empty.

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 97

acsSetHeartbeatInterval()

Beginning with AE Services 4.1.0, a heartbeat mechanism allows the TSAPI client library

to determine when the TSAPI Service is no longer available.

When an ACS stream is idle, the TSAPI Service sends the client library heartbeat

messages at a regular interval. (The default heartbeat interval is 20 seconds.) If the

TSAPI client library does not receive any messages from the TSAPI Service within two

heartbeat intervals, then the library concludes that the TSAPI Service is no longer

available, and closes the ACS stream.

An application may use acsSetHeartbeatInterval() to change the heartbeat interval

for an individual stream. Valid values for the heartbeat interval are 5 – 60 seconds. The

heartbeat mechanism cannot be disabled.

If an invalid heartbeat interval is requested (less than 5 seconds or greater than 60

seconds), then the request is rejected. Otherwise, when the TSAPI Service receives the

request, it changes the heartbeat interval for the stream and responds with an

ACSSetHeartbeatIntervalConf event.

Syntax

#include <acs.h>

RetCode_t acsSetHeartbeatInterval(

 ACSHandle_t acsHandle, /* INPUT */

 InvokeID_t invokeID, /* INPUT */

 unsigned short heartbeatInterval, /* INPUT */

 PrivateData_t *privateData); /* INPUT */

Parameters

acsHandle

This is the handle to an open ACS Stream whose heartbeat interval is to be changed.

invokeID

A value provided by the application to be used for matching a specific instance of a

service request with its associated confirmation event. This parameter is only used when

the Invoke ID mechanism is set for application-generated invoke IDs in the

acsOpenStream() request. The parameter is ignored by the ACS library when the

stream is set for library-generated invoke IDs.

privateData

This points to a data structure which defines any implementation-specific information

needed by the server. The data in this structure is not interpreted by the client library and

can be used as an escape mechanism to provide implementation specific commands

between the application and the Telephony Server. Currently, AE Services ignores the

value of this parameter.

Chapter 3: Control Services

98 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Return Values

If the stream has library-generated invoke IDs and the function call completes

successfully, acsSetHeartbeatInterval() returns a positive value, i.e. the invoke ID. If

the function call fails, a negative (<0) value is returned.

If the stream has application-generated invoke IDs and the function call completes

successfully, acsSetHeartbeatInterval() returns ACSPOSITIVE_ACK. If the function

call fails, a negative (<0) value is returned.

acsSetHeartbeatInterval() has the following negative return values:

ACSERR_BADHDL - The ACS handle is not a valid handle for an active ACS

Stream.

Application Notes

This function is only available for the Windows and Linux client libraries, version 4.1 and

later.

An application should not invoke acsFlushEventQueue() while there are outstanding

acsSetHeartbeatInterval() requests.

The TSAPI Service will only send a heartbeat event to the TSAPI Client if no other

events have been sent on a stream within the last heartbeat interval. Thus, the TSAPI

heartbeat mechanism will not unduly create unnecessary traffic on the local area

network.

If the TSAPI Client library closes an ACS stream because it has not received any events

for two heartbeat intervals, it notifies the application with an ACSUnsolicited

ACSUniversalFailureEvent with error TSERVER_STREAM_FAILED.

The default heartbeat interval is 20 seconds.

 ACS functions and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 99

ACSSetHeartbeatIntervalConfEvent

This event is generated in response to the acsSetHeartbeatInterval() function and

provides the current heartbeat interval for the ACS Stream.

Syntax

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* ACSCONFIRMATION */

 EventType_t eventType;

 /* ACS_SET_HEARTBEAT_INTERVAL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 ACSSetHeartbeatIntervalConfEvent_t acssetheartbeatinterval;

 } u;

 } acsConfirmation;

 } event;

} CSTAEvent_t;

typedef struct ACSSetHeartbeatIntervalConfEvent_t {

 unsigned short heartbeatInterval;

} ACSSetHeartbeatIntervalConfEvent_t;

Parameters

acsHandle

This is the handle of the ACS Stream whose heartbeat interval has been changed.

eventClass

This is a tag with the value ACSCONFIRMATION, which identifies this message as an ACS

confirmation event.

eventType

This is a tag with the value ACS_SET_HEARTBEAT_INTERVAL_CONF, which identifies this

message as an ACSSetHeartbeatIntervalConfEvent.

Chapter 3: Control Services

100 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

invokeID

This parameter specifies the requested instance of the function. It is used to match a

specific acsSetHeartbeatInterval() function request with its confirmation event.

heartbeatInterval

This parameter provides the current heartbeat interval for the ACS Stream.

 ACS Unsolicited Events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 101

ACS Unsolicited Events

This section describes unsolicited ACS Status Events.

ACSUniversalFailureEvent

This event can occur at any time (unsolicited) and can indicate, among other things, a

failure or loss of the ACS stream with the TSAPI Service.

By contrast, a similarly named event, ACSUniversalFailureConfEvent does not

indicate a loss of the ACS stream.

Syntax

The following structure shows only the relevant portions of the unions for this message.

See ACS Data Types on page 105 and CSTA Event Data Types on page 123 for a

complete description of the event structure.

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* ACSUNSOLICITED */

 EventType_t eventType; /* ACS_UNIVERSAL_FAILURE */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 union

 {

 ACSUniversalFailureEvent_t failureEvent;

 } u;

 } acsUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct {

 ACSUniversalFailure_t error;

} ACSUniversalFailureEvent_t;

Chapter 3: Control Services

102 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Parameters

acsHandle

This is the handle for the ACS stream.

eventClass

This is a tag with the value ACSUNSOLICITED, which identifies this message as an ACS

unsolicited event.

eventType

This is a tag with the value ACS_UNIVERSAL_FAILURE, which identifies this message as

an ACSUniversalFailureEvent.

error

This parameter contains a TSAPI Service operation error (or ―cause value‖), TSAPI

Service security database error, or driver error for the ACS stream given in acsHandle.

 NOTE:

Not all of the errors listed below will occur in an ACS Universal Failure message. Some
of the errors occur only in error conditions generated by the TSAPI Service.

The possible values are:

typedef enum ACSUniversalFailure_t {

 TSERVER_STREAM_FAILED = 0,

 TSERVER_NO_THREAD = 1,

 TSERVER_BAD_DRIVER_ID = 2,

 TSERVER_DEAD_DRIVER = 3,

 TSERVER_MESSAGE_HIGH_WATER_MARK = 4,

 TSERVER_FREE_BUFFER_FAILED = 5,

 TSERVER_SEND_TO_DRIVER = 6,

 TSERVER_RECEIVE_FROM_DRIVER = 7,

 TSERVER_REGISTRATION_FAILED = 8,

 TSERVER_TRACE = 10,

 TSERVER_NO_MEMORY = 11,

 TSERVER_ENCODE_FAILED = 12,

 TSERVER_DECODE_FAILED = 13,

 TSERVER_BAD_CONNECTION = 14,

 TSERVER_BAD_PDU = 15,

 TSERVER_NO_VERSION = 16,

 TSERVER_ECB_MAX_EXCEEDED = 17,

 TSERVER_NO_ECBS = 18,

 TSERVER_NO_SDB = 19,

 TSERVER_NO_SDB_CHECK_NEEDED = 20,

 TSERVER_SDB_CHECK_NEEDED = 21,

 TSERVER_BAD_SDB_LEVEL = 22,

 TSERVER_BAD_SERVERID = 23,

 TSERVER_BAD_STREAM_TYPE = 24,

 TSERVER_BAD_PASSWORD_OR_LOGIN = 25,

 TSERVER_NO_USER_RECORD = 26,

 TSERVER_NO_DEVICE_RECORD = 27,

 TSERVER_DEVICE_NOT_ON_LIST = 28,

 TSERVER_USERS_RESTRICTED_HOME = 30,

 ACS Unsolicited Events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 103

 TSERVER_NO_AWAYPERMISSION = 31,

 TSERVER_NO_HOMEPERMISSION = 32,

 TSERVER_NO_AWAY_WORKTOP = 33,

 TSERVER_BAD_DEVICE_RECORD = 34,

 TSERVER_DEVICE_NOT_SUPPORTED = 35,

 TSERVER_INSUFFICIENT_PERMISSION = 36,

 TSERVER_NO_RESOURCE_TAG = 37,

 TSERVER_INVALID_MESSAGE = 38,

 TSERVER_EXCEPTION_LIST = 39,

 TSERVER_NOT_ON_OAM_LIST = 40,

 TSERVER_PBX_ID_NOT_IN_SDB = 41,

 TSERVER_USER_LICENSES_EXCEEDED = 42,

 TSERVER_OAM_DROP_CONNECTION = 43,

 TSERVER_NO_VERSION_RECORD = 44,

 TSERVER_OLD_VERSION_RECORD = 45,

 TSERVER_BAD_PACKET = 46,

 TSERVER_OPEN_FAILED = 47,

 TSERVER_OAM_IN_USE = 48,

 TSERVER_DEVICE_NOT_ON_HOME_LIST = 49,

 TSERVER_DEVICE_NOT_ON_CALL_CONTROL_LIST = 50,

 TSERVER_DEVICE_NOT_ON_AWAY_LIST = 51,

 TSERVER_DEVICE_NOT_ON_ROUTE_LIST = 52,

 TSERVER_DEVICE_NOT_ON_MONITOR_DEVICE_LIST = 53,

 TSERVER_DEVICE_NOT_ON_MONITOR_CALL_DEVICE_LIST = 54,

 TSERVER_NO_CALL_CALL_MONITOR_PERMISSION = 55,

 TSERVER_HOME_DEVICE_LIST_EMPTY = 56,

 TSERVER_CALL_CONTROL_LIST_EMPTY = 57,

 TSERVER_AWAY_LIST_EMPTY = 58,

 TSERVER_ROUTE_LIST_EMPTY = 59,

 TSERVER_MONITOR_DEVICE_LIST_EMPTY = 60,

 TSERVER_MONITOR_CALL_DEVICE_LIST_EMPTY = 61,

 TSERVER_USER_AT_HOME_WORKTOP = 62,

 TSERVER_DEVICE_LIST_EMPTY = 63,

 TSERVER_BAD_GET_DEVICE_LEVEL = 64,

 TSERVER_DRIVER_UNREGISTERED = 65,

 TSERVER_NO_ACS_STREAM = 66,

 TSERVER_DROP_OAM = 67,

 TSERVER_ECB_TIMEOUT = 68,

 TSERVER_BAD_ECB = 69,

 TSERVER_ADVERTISE_FAILED = 70,

 TSERVER_TDI_QUEUE_FAULT = 72,

 TSERVER_DRIVER_CONGESTION = 73,

 TSERVER_NO_TDI_BUFFERS = 74,

 TSERVER_OLD_INVOKEID = 75,

 TSERVER_HWMARK_TO_LARGE = 76,

 TSERVER_SET_ECB_TO_LOW = 77,

 TSERVER_NO_RECORD_IN_FILE = 78,

 TSERVER_ECB_OVERDUE = 79,

 TSERVER_BAD_PW_ENCRYPTION = 80,

 TSERVER_BAD_TSERV_PROTOCOL = 81,

 TSERVER_BAD_DRIVER_PROTOCOL = 82,

 TSERVER_BAD_TRANSPORT_TYPE = 83,

 TSERVER_PDU_VERSION_MISMATCH = 84,

 TSERVER_VERSION_MISMATCH = 85,

 TSERVER_LICENSE_MISMATCH = 86,

 TSERVER_BAD_ATTRIBUTE_LIST = 87,

 TSERVER_BAD_TLIST_TYPE = 88,

Chapter 3: Control Services

104 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 TSERVER_BAD_PROTOCOL_FORMAT = 89,

 TSERVER_OLD_TSLIB = 90,

 TSERVER_BAD_LICENSE_FILE = 91,

 TSERVER_NO_PATCHES = 92,

 TSERVER_SYSTEM_ERROR = 93,

 TSERVER_OAM_LIST_EMPTY = 94,

 TSERVER_TCP_FAILED = 95,

 TSERVER_TCP_DISABLED = 97,

 TSERVER_REQUIRED_MODULES_NOT_LOADED = 98,

 TSERVER_TRANSPORT_IN_USE_BY_OAM = 99,

 TSERVER_NO_NDS_OAM_PERMISSION = 100,

 TSERVER_OPEN_SDB_LOG_FAILED = 101,

 TSERVER_INVALID_LOG_SIZE = 102,

 TSERVER_WRITE_SDB_LOG_FAILED = 103,

 TSERVER_NT_FAILURE = 104,

 TSERVER_LOAD_LIB_FAILED = 105,

 TSERVER_INVALID_DRIVER = 106,

 TSERVER_REGISTRY_ERROR = 107,

 TSERVER_DUPLICATE_ENTRY = 108,

 TSERVER_DRIVER_LOADED = 109,

 TSERVER_DRIVER_NOT_LOADED = 110,

 TSERVER_NO_LOGON_PERMISSION = 111,

 TSERVER_ACCOUNT_DISABLED = 112,

 TSERVER_NO_NET_LOGON = 113,

 TSERVER_ACCT_RESTRICTED = 114,

 TSERVER_INVALID_LOGON_TIME = 115,

 TSERVER_INVALID_WORKSTATION = 116,

 TSERVER_ACCT_LOCKED_OUT = 117,

 TSERVER_PASSWORD_EXPIRED = 118,

 TSERVER_INVALID_HEARTBEAT_INTERVAL = 119,

 DRIVER_DUPLICATE_ACSHANDLE = 1000,

 DRIVER_INVALID_ACS_REQUEST = 1001,

 DRIVER_ACS_HANDLE_REJECTION = 1002,

 DRIVER_INVALID_CLASS_REJECTION = 1003,

 DRIVER_GENERIC_REJECTION = 1004,

 DRIVER_RESOURCE_LIMITATION = 1005,

 DRIVER_ACSHANDLE_TERMINATION = 1006,

 DRIVER_LINK_UNAVAILABLE = 1007,

 DRIVER_OAM_IN_USE = 1008

} ACSUniversalFailure_t;

 ACS Data Types

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 105

ACS Data Types

This section defines all the data types which are used with the ACS functions and

messages and may repeat data types already shown in the ACS Control Functions.

Refer to the specific commands for any operational differences in these data types. The

ACS data types are type defined in the acs.h header file.

 NOTE:

The definition for ACSHandle_t is client platform specific.

This section includes the following topics:

 ACS Common Data Types on page 106

 ACS Event Data Types on page 109

Chapter 3: Control Services

106 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

ACS Common Data Types

This section specifies the common ACS data types.

typedef int RetCode_t;

#define ACSPOSITIVE_ACK 0 /* Successful function return */

/* Error Codes */

#define ACSERR_APIVERDENIED -1 /* The API Version

 * requested is invalid

 * and not supported by

 * the API Client Library.

 */

#define ACSERR_BADPARAMETER -2 /* One or more of the

 * parameters is invalid.

 */

#define ACSERR_DUPSTREAM -3 /* This return indicates

 * that an ACS stream is

 * already established

 * with the requested server.

 */

#define ACSERR_NODRIVER -4 /* This error return

 * value indicates that

 * no API Client Library

 * Driver was found or

 *installed on the system.

 */

#define ACSERR_NOSERVER -5 /* The requested Server

 * is not present in the

 * network.

 */

#define ACSERR_NORESOURCE -6 /* There are insufficient

 * resources to open an

 * ACS stream.

 */

#define ACSERR_UBUFSMALL -7 /* The user buffer size

 * was smaller than the

 * size of the next

 * available event.

 */

#define ACSERR_NOMESSAGE -8 /* There were no messages

 * available to return to

 * the application.

 */

 ACS Data Types

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 107

#define ACSERR_UNKNOWN -9 /* The ACS stream has

 * encountered an

 * unspecified error.

 */

#define ACSERR_BADHDL -10 /* The ACS Handle is

 * invalid.

 */

#define ACSERR_STREAM_FAILED -11 /* The ACS stream has

 * failed due to

 * network problems.

 * No further

 * operations are

 * possible on this stream.

 */

#define ACSERR_NOBUFFERS -12 /* There were not

 * enough buffers

 * available to place

 * an outgoing message

 * on the send queue.

 * No message has been sent.

 */

#define ACSERR_QUEUE_FULL -13 /* The send queue is

 * full. No message

 * has been sent.

 */

#define ACSERR_SSL_INIT_FAILED -14 /* This return value

 * indicates that a stream

 * could not be opened

 * because initialization of

 * the OpenSSL library

 * failed.

 */

#define ACSERR_SSL_CONNECT_FAILED -15 /* This return value

 * indicates that a stream

 * could not be opened

 * because the SSL connection

 * failed.

 */

#define ACSERR_SSL_FQDN_MISMATCH -16 /* This return value

 * indicates that a stream

 * could not be opened

 * because during the SSL

 * handshake, the fully

 * qualified domain name

 * (FQDN) in the server

 * certificate did not match

 * the expected FQDN*/

 */

Chapter 3: Control Services

108 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

typedef unsigned long InvokeID_t;

typedef enum {

 APP_GEN_ID, /* application will provide invokeIDs;

 * any 4-byte value is legal */

 LIB_GEN_ID /* library will generate invokeIDs in

 * the range 1-32767 */

} InvokeIDType_t;

typedef unsigned short EventClass_t;

/* defines for ACS event classes */

#define ACSREQUEST 0

#define ACSUNSOLICITED 1

#define ACSCONFIRMATION 2

typedef unsigned short EventType_t; /* event types are

 * defined in acs.h

 * and csta.h */

/* defines for ACS event types */

#define ACS_OPEN_STREAM 1

#define ACS_OPEN_STREAM_CONF 2

#define ACS_CLOSE_STREAM 3

#define ACS_CLOSE_STREAM_CONF 4

#define ACS_ABORT_STREAM 5

#define ACS_UNIVERSAL_FAILURE_CONF 6

#define ACS_UNIVERSAL_FAILURE 7

#define ACS_SET_HEARTBEAT_INTERVAL 14

#define ACS_SET_HEARTBEAT_INTERVAL_CONF 15

typedef char Boolean;

typedef char Nulltype;

typedef enum StreamType_t {

 ST_CSTA = 1,

 ST_OAM = 2,

} StreamType_t;

typedef char ServerID_t[49];

typedef char LoginID_t[49];

typedef char Passwd_t[49];

typedef char AppName_t[21];

typedef enum Level_t {

 ACS_LEVEL1 = 1,

 ACS_LEVEL2 = 2,

 ACS_LEVEL3 = 3,

 ACS_LEVEL4 = 4

} Level_t;

typedef char Version_t[21];

 ACS Data Types

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 109

ACS Event Data Types

This section specifies the ACS data types used in the construction of generic

ACSEvent_t structures. See specific event types for detailed descriptions of their event

structures (see also, CSTA Event Data Types on page 123).

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass;

 EventType_t eventType;

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 ACSUniversalFailureEvent_t failureEvent;

 } u;

} ACSUnsolicitedEvent;

typedef struct

{

 InvokeID_t invokeID;

 union

 {

 ACSOpenStreamConfEvent_t acsopen;

 ACSCloseStreamConfEvent_t acsclose;

 ACSSetHeartbeatIntervalConfEvent_t acssetheartbeatinterval;

 ACSUniversalFailureConfEvent_t failureEvent;

 } u;

} ACSConfirmationEvent;

Chapter 3: Control Services

110 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

CSTA control services and confirmation events

This section describes the CSTA functions that the TSAPI Service uses for obtaining

information from Communication Manager. For example, the administered switch

version, software version, offer Type, server type, as well as the set of devices an

application can control, monitor and query. The CSTA control services and confirmation

events discussed in this section are:

 cstaGetAPICaps() on page 111

 CSTAGetAPICapsConfEvent on page 113

 cstaGetDeviceList() on page 116

 CSTAGetDeviceListConfEvent on page 118

 cstaQueryCallMonitor() on page 120

 CSTAQueryCallMonitorConfEvent on page 121

 CSTA control services and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 111

cstaGetAPICaps()

Use the AE Services cstaGetAPICaps() function to obtain the CSTA API function and

event capabilities that are supported on an open CSTA stream. For AE Services the

stream could be a local TSAPI Service or a remote TSAPI Service on a network. If a

stream provides a CSTA service then it also provides the corresponding CSTA

confirmation event.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaGetAPICaps(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID);

Parameters

acsHandle

This is the handle to an active ACS stream. This confirmation event for this service will

provide information about the CSTA services available on this stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a

function service request with its associated confirmation event. This parameter is only

used when the Invoke ID mechanism is set for Application-generated IDs in the

acsOpenStream(). The parameter is ignored by the ACS Library when the stream is set

for Library-generated invoke IDs.

Return Values

This function returns the following values depending on whether the application is using

library or application-generated invoke identifiers:

 Library-generated Identifiers - if the function call completes successfully it will
return a positive value, i.e. the invoke identifier. If the call fails a negative (<0)
error condition will be returned. For library-generated identifiers the return will
never be zero (0).

 Application-generated Identifiers - if the function call completes successfully it will
return a zero (0) value. If the call fails a negative (<0) error condition will be
returned. For application-generated identifiers the return will never be positive
(>0).

The application should always check the CSTAGetAPICapsConfEvent message to

ensure that the service request has been acknowledged and processed by the TSAPI

Service and the switch.

Chapter 3: Control Services

112 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle for an active ACS

stream. No changes occur in any existing streams if a bad handle is passed with this

function.

Comments

If this function returns with ACSPOSITIVE_ACK, the request has been forwarded to the

TSAPI Service, and the application will receive an indication of the extent of CSTA

service support in the CSTAGetAPICapsConfEvent. An active ACS stream is required to

the server before this function is called.

The application may use this command to determine which functions and events are

supported on an open CSTA stream. This will avoid unnecessary negative

acknowledgments from the TSAPI Service when a specific API function or event is not

supported.

 CSTA control services and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 113

CSTAGetAPICapsConfEvent

This event is in response to the cstaGetAPICaps() function and it indicates which

CSTA services are available on the CSTA stream.

Syntax

The following structure shows only the relevant portions of the unions for this message.

See CSTA Event Data Types on page 123 for a complete description of the event

structure.

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTA_CONFIRMATION */

 EventType_t eventType; /* CSTA_GETAPI_CAPS_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAGetAPICapsConfEvent_t getAPIcaps;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAGetAPICapsConfEvent_t

{

 short alternateCall;

 short answerCall;

 short callCompletion;

 short clearCall;

 short clearConnection;

 short conferenceCall;

 short consultationCall;

 short deflectCall;

 short pickupCall;

 short groupPickupCall;

 short holdCall;

 short makeCall;

 short makePredictiveCall;

 short queryMwi;

 short queryDnd;

 short queryFwd;

 short queryAgentState;

 short queryLastNumber;

 short queryDeviceInfo;

 short reconnectCall;

Chapter 3: Control Services

114 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 short retrieveCall;

 short setMwi;

 short setDnd;

 short setFwd;

 short setAgentState;

 short transferCall;

 short eventReport;

 short callClearedEvent;

 short conferencedEvent;

 short connectionClearedEvent;

 short deliveredEvent;

 short divertedEvent;

 short establishedEvent;

 short failedEvent;

 short heldEvent;

 short networkReachedEvent;

 short originatedEvent;

 short queuedEvent;

 short retrievedEvent;

 short serviceInitiatedEvent;

 short transferredEvent;

 short callInformationEvent;

 short doNotDisturbEvent;

 short forwardingEvent;

 short messageWaitingEvent;

 short loggedOnEvent;

 short loggedOffEvent;

 short notReadyEvent;

 short readyEvent;

 short workNotReadyEvent;

 short workReadyEvent;

 short backInServiceEvent;

 short outOfServiceEvent;

 short privateEvent;

 short routeRequestEvent;

 short reRoute;

 short routeSelect;

 short routeUsedEvent;

 short routeEndEvent;

 short monitorDevice;

 short monitorCall;

 short monitorCallsViaDevice;

 short changeMonitorFilter;

 short monitorStop;

 short monitorEnded;

 short snapshotDeviceReq;

 short snapshotCallReq;

 short escapeService;

 short privateStatusEvent;

 short escapeServiceEvent;

 short escapeServiceConf;

 short sendPrivateEvent;

 short sysStatReq;

 short sysStatStart;

 short sysStatStop;

 short changeSysStatFilter;

 short sysStatReqEvent;

 CSTA control services and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 115

 short sysStatReqConf;

 short sysStatEvent;

} CSTAGetAPICapsConfEvent_t;

Parameters

acsHandle

This is the handle for the ACS stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this message as a

CSTA confirmation event.

eventType

This is a tag with the value CSTA_GETAPI_CAPS_CONF, which identifies this message as a

CSTAGetAPICapsConfEvent. For information about the private data associated with the

CSTAGetAPICapsConfEvent see CSTA Get API Capabilities confirmation structures for

Private Data Version 8 on page 161.

getAPIcaps

This structure contains an integer for each possible CSTA capability which indicates

whether the capability is supported. A value of 0 indicates the capability is not supported,

a positive value indicates that it is supported. Note that different capabilities are

supported on different stream versions. This parameter shows what capabilities are

supported on the stream where the confirmation has been received. Streams using other

versions may support a different capability set.

Comments

This event will provide the application with compatibility information for a specific

instance of the TSAPI Service on a command or event basis.

Chapter 3: Control Services

116 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

cstaGetDeviceList()

This is used to obtain the list of Devices that can be controlled, monitored, queried or

routed for the ACS stream indicated by the acsHandle.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaGetDeviceList(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 long index,

 CSTALevel_t level);

Parameters

acsHandle

This is the handle to an active ACS stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a

function service request with its associated confirmation event. This parameter is only

used when the Invoke ID mechanism is set for Application-generated IDs in the

acsOpenStream(). The parameter is ignored by the ACS Library when the stream is set

for Library-generated invoke IDs.

index

The security data base could contain a large number of devices for which a user has

privileges, so this API call will return only CSTA_MAX_GET_DEVICE devices in any one

CSTAGetDeviceListConfEvent, which means several calls to cstaGetDeviceList()

may be necessary to retrieve all the devices. The value of index should be set of -1 the

first time this function is called, and then set to the value of index returned in the

confirmation event. index will be set back to -1 in the CSTAGetDeviceListConfEvent

which contains the last batch of devices.

 CSTA control services and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 117

level

This parameter specifies the class of service for which the user wants to know the set of

devices that can be controlled via this ACS stream. level must be set to one of the

following:

typedef enum CSTALevel_t {

 CSTA_HOME_WORK_TOP = 1,

 CSTA_AWAY_WORKP = 2,

 CSTA_DEVICE_DEVICE_MONITOR = 3,

 CSTA_CALL_DEVICE_MONITOR = 4,

 CSTA_CALL_CONTROL = 5,

 CSTA_ROUTING = 6,

 CSTA_CALL_CALL_MONITOR = 7

} CSTALevel_t;

 NOTE:

The level CSTA_CALL_CALL_MONITOR is not supported by the cstaGetDevice-

List() service. To determine if an ACS stream has permission to do call/call

monitoring, use the API call cstaQueryCallMonitor().

Return Values

This function returns the following values depending on whether the application is using

library or application-generated invoke identifiers:

 Library-generated Identifiers - if the function call completes successfully it will
return a positive value, i.e. the invoke identifier. If the call fails a negative (<0)
error condition will be returned. For library-generated identifiers the return will
never be zero (0).

 Application-generated Identifiers - if the function call completes successfully it will
return a zero (0) value. If the call fails a negative (<0) error condition will be
returned. For application-generated identifiers the return will never be positive
(>0).

The application should always check the CSTAGetDeviceListConfEvent message to

ensure that the service request has been acknowledged and processed by the

Telephony Server and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL

This indicates that the acsHandle being used is not a valid handle for an active

ACS stream. No changes occur in any existing streams if a bad handle is passed

with this function.

Chapter 3: Control Services

118 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

CSTAGetDeviceListConfEvent

This event is in response to the cstaGetDeviceList() function and provides a list of

the devices which can be controlled for the indicated ACS Level. It is also possible to

receive an ACSUniversalFailureConf event in response to a cstaGetDeviceList()

call.

Syntax

The following structure shows only the relevant portions of the unions for this message.

See ACS Data Types on page 105 and CSTA Event Data Types on page 123 for a

complete description of the event structure.

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_GET_DEVICE_LIST_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAGetDeviceListConfEvent_t getDeviceList;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAGetDeviceListConfEvent_t {

 SDBLevel_t driverSdbLevel;

 CSTALevel_t level;

 long index;

 DeviceList devList;

} CSTAGetDeviceListConfEvent_t;

typedef enum SDBLevel_t {

 NO_SDB_CHECKING = -1,

 ACS_ONLY = 1,

 ACS_AND_CSTA_CHECKING = 0

} SDBLevel_t;

typedef struct CSTAGetDeviceList_t {

 long index;

 CSTALevel_t level;

} CSTAGetDeviceList_t;

typedef struct DeviceList {

 short count;

 CSTA control services and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 119

 DeviceID_t device[20];

} DeviceList;

Parameters

acsHandle

This is the handle for the ACS stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this message as an

ACS confirmation event.

eventType

This is a tag with the value CSTA_GET_DEVICE_LIST_CONF, which identifies this message

as a CSTAGetDeviceListConfEvent.

invokeID

This parameter specifies the requested instance of the function. It is used to match a

specific function request with its confirmation events.

driverSdbLevel

This parameter indicates the Security Level with which the Driver registered. Possible

values are:

 NO_SDB_CHECKING - Not Used.

 ACS_ONLY - Check ACSOpenStream requests only

 ACS_AND_CSTA_CHECKING - Check ACSOpenStream and all applicable CSTA

messages

If the SDB database is disabled by administration, and the driver registered with SDB

level ACS_AND_CSTA_CHECKING, the TSAPI Service will return the adjusted (effective)

SDB checking level of ACS_ONLY. No CSTA checking can be done because there is no

database of devices to use for checking the CSTA messages.

index

This parameter indicates to the client application the current index the TSAPI Service is

using for returning the list of devices. The client application should return this value in

the next call to CSTAGetDeviceList to continue receiving devices. A value of (-1)

indicates there are no more devices in the list.

devlist

This parameter is a structure which contains an array of DeviceID_t corresponding to

the devices for this stream.

Chapter 3: Control Services

120 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

cstaQueryCallMonitor()

This function is used to determine if a given ACS stream has permission in the security

database to do call/call monitoring.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaQueryCallMonitor(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID);

Parameters

acsHandle

This is the handle to an active ACS stream.

invokeID

A handle provided by the application to be used for matching a specific instance of a

function service request with its associated confirmation event. This parameter is only

used when the Invoke ID mechanism is set for Application-generated IDs in the

acsOpenStream(). The parameter is ignored by the ACS Library when the stream is set

for Library-generated invoke IDs.

Return Values

This function returns the following values depending on whether the application is using

library or application-generated invoke identifiers:

 Library-generated Identifiers - if the function call completes successfully it will
return a positive value, i.e. the invoke identifier. If the call fails a negative (<0)
error condition will be returned. For library-generated identifiers the return will
never be zero (0).

 Application-generated Identifiers - if the function call completes successfully it will
return a zero (0) value. If the call fails a negative (<0) error condition will be
returned. For application-generated identifiers the return will never be positive
(>0).

The application should always check the CSTAQueryCallMonitorConfEvent message

to ensure that the service request has been acknowledged and processed by the TSAPI

Service and the switch.

The following are possible negative error conditions for this function:

ACSERR_BADHDL - This indicates that the acsHandle being used is not a valid

handle for an active ACS stream. No changes occur in any existing streams if a

bad handle is passed with this function.

 CSTA control services and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 121

CSTAQueryCallMonitorConfEvent

This event is in response to the cstaQueryCallMonitor() function.. It indicates

whether or not the ACS stream has call/call monitoring privileges in the security

database.

Syntax

The following structure shows only the relevant portions of the unions for this message.

See ACS Data Types on page 105 and CSTA Event Data Types on page 123 for a

complete description of the event structure.

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_QUERY_CALL_MONITOR_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAQueryCallMonitorConfEvent_t queryCallMonitor;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAQueryCallMonitorConfEvent_t {

 Boolean callMonitor;

} CSTAQueryCallMonitorConfEvent_t;

Parameters

acsHandle

This is the handle for the ACS stream.

eventClass

This is a tag with the value CSTACONFIRMATION, which identifies this message as an

ACS confirmation event.

eventType

This is a tag with the value CSTA_QUERY_CALL_MONITOR_CONF, which identifies this

message as an CSTAQueryCallMonitorConfEvent.

invokeID

Chapter 3: Control Services

122 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

This parameter specifies the requested instance of the function. It is used to match a

specific function request with its confirmation events.

callMonitor

This parameter indicates whether or not (TRUE or FALSE) the ACS stream has call/call

monitoring privileges in the security database.

 CSTA control services and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 123

CSTA Event Data Types

This section defines all the event data types which are used with the CSTA functions

and messages and may repeat data types already shown in the CSTA Control

Functions. Refer to the specific commands for any operational differences in these data

types. The complete set of CSTA data types is given in ACS Data Types on page 105.

The CSTA data types are type defined in the csta.h header file.

An application always receives a generic CSTAEvent_t event structure. This structure

contains an ACSEventHeader_t structure which contains information common to all

events. This common information includes:

 acsHandle: Specifies the ACS stream the event arrived on.

 eventClass: Identifies the event as an ACS confirmation, ACS unsolicited,

CSTA confirmation, or CSTA unsolicited event.

 eventType: Identifies the specific type of message (CSTA_MAKE_CALL_CONF,

CSTA_HELD event, etc.)

 privateData: Private data defined by the specified driver vendor.

The CSTAEvent_t structure then consists of a union of the four possible eventClass

types; ACS confirmation, ACS unsolicited, CSTA confirmation or CSTA unsolicited

event. Each eventClass type itself consists of a union of all the possible eventTypes for

that class. Each eventClass may contain common information such as invokeID and

monitorCrossRefID.

Chapter 3: Control Services

124 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

/* CSTA Control Services Header File <csta.h> */

#include <acs.h>

/* defines for CSTA event classes */

#define CSTAREQUEST 3

#define CSTAUNSOLICITED 4

#define CSTACONFIRMATION 5

#define CSTAEVENTREPORT 6

typedef struct

{

 InvokeID_t invokeID;

 union

 {

 CSTARouteRequestEvent_t routeRequest;

 CSTARouteRequestExtEvent_t routeRequestExt;

 CSTAReRouteRequest_t reRouteRequest;

 CSTAEscapeSvcReqEvent_t escapeSvcReqeust;

 CSTASysStatReqEvent_t sysStatRequest;

 } u;

} CSTARequestEvent;

typedef struct

{

 union

 {

 CSTARouteRegisterAbortEvent_t registerAbort;

 CSTARouteUsedEvent_t routeUsed;

 CSTARouteUsedExtEvent_t routeUsedExt;

 CSTARouteEndEvent_t routeEnd;

 CSTAPrivateEvent_t privateEvent;

 CSTASysStatEvent_t sysStat;

 CSTASysStatEndedEvent_t sysStatEnded;

 } u;

} CSTAEventReport;

typedef struct

{

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTACallClearedEvent_t callCleared;

 CSTAConferencedEvent_t conferenced;

 CSTAConnectionClearedEvent_t connectionCleared;

 CSTADeliveredEvent_t delivered;

 CSTADivertedEvent_t diverted;

 CSTAEstablishedEvent_t established;

 CSTAFailedEvent_t failed;

 CSTAHeldEvent_t held;

 CSTANetworkReachedEvent_t networkReached;

 CSTAOriginatedEvent_t originated;

 CSTAQueuedEvent_t queued;

 CSTARetrievedEvent_t retrieved;

 CSTAServiceInitiatedEvent_t serviceInitiated;

 CSTATransferredEvent_t transferred;

 CSTA control services and confirmation events

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 125

 CSTACallInformationEvent_t callInformation;

 CSTADoNotDisturbEvent_t doNotDisturb;

 CSTAForwardingEvent_t forwarding;

 CSTAMessageWaitingEvent_t messageWaiting;

 CSTALoggedOnEvent_t loggedOn;

 CSTALoggedOffEvent_t loggedOff;

 CSTANotReadyEvent_t notReady;

 CSTAReadyEvent_t ready;

 CSTAWorkNotReadyEvent_t workNotReady;

 CSTAWorkReadyEvent_t workReady;

 CSTABackInServiceEvent_t backInService;

 CSTAOutOfServiceEvent_t outOfService;

 CSTAPrivateStatusEvent_t privateStatus;

 CSTAMonitorEndedEvent_t monitorEnded;

 } u;

} CSTAUnsolicitedEvent;

typedef struct

{

 InvokeID_t invokeID;

 union

 {

 CSTAAlternateCallConfEvent_t alternateCall;

 CSTAAnswerCallConfEvent_t answerCall;

 CSTACallCompletionConfEvent_t callCompletion;

 CSTAClearCallConfEvent_t clearCall;

 CSTAClearConnectionConfEvent_t clearConnection;

 CSTAConferenceCallConfEvent_t conferenceCall;

 CSTAConsultationCallConfEvent_t consultationCall;

 CSTADeflectCallConfEvent_t deflectCall;

 CSTAPickupCallConfEvent_t pickupCall;

 CSTAGroupPickupCallConfEvent_t groupPickupCall;

 CSTAHoldCallConfEvent_t holdCall;

 CSTAMakeCallConfEvent_t makeCall;

 CSTAMakePredictiveCallConfEvent_t makePredictiveCall;

 CSTAQueryMwiConfEvent_t queryMwi;

 CSTAQueryDndConfEvent_t queryDnd;

 CSTAQueryFwdConfEvent_t queryFwd;

 CSTAQueryAgentStateConfEvent_t queryAgentState;

 CSTAQueryLastNumberConfEvent_t queryLastNumber;

 CSTAQueryDeviceInfoConfEvent_t queryDeviceInfo;

 CSTAReconnectCallConfEvent_t reconnectCall;

 CSTARetrieveCallConfEvent_t retrieveCall;

 CSTASetMwiConfEvent_t setMwi;

 CSTASetDndConfEvent_t setDnd;

 CSTASetFwdConfEvent_t setFwd;

 CSTASetAgentStateConfEvent_t setAgentState;

 CSTATransferCallConfEvent_t transferCall;

 CSTAUniversalFailureConfEvent_t universalFailure;

 CSTAMonitorConfEvent_t monitorStart;

 CSTAChangeMonitorFilterConfEvent_t changeMonitorFilter;

 CSTAMonitorStopConfEvent_t monitorStop;

 CSTASnapshotDeviceConfEvent_t snapshotDevice;

 CSTASnapshotCallConfEvent_t snapshotCall;

 CSTARouteRegisterReqConfEvent_t routeRegister;

 CSTARouteRegisterCancelConfEvent_t routeCancel;

 CSTAEscapeSvcConfEvent_t escapeService;

126 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 CSTASysStatReqConfEvent_t sysStatReq;

 CSTASySStatStartConfEvent_t sysStatStart;

 CSTASysStatStopConfEvent_t sysStatStop;

 CSTAChangeSysStatFilterConfEvent_t changeSysStatFilter;

 CSTAGetAPICapsConfEvent_t getAPICaps;

 CSTAGetDeviceListConfEvent_t getDeviceList;

 CSTAQueryCallMonitorConfEvent_t queryCallMonitor;

 } u;

} CSTAConfirmationEvent;

#define CSTA_MAX_HEAP 1024

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 ACSUnsolicitedEvent acsUnsolicited;

 ACSConfirmationEvent acsConfirmation;

 CSTARequestEvent cstaRequest;

 CSTAUnsolicitedEvent cstaUnsolicited;

 CSTAConfirmationEvent cstaConfirmation;

 } event;

 char heap[CSTA_MAX_HEAP];

} CSTAEvent_t

127 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Chapter 4: CSTA Service Groups supported
by the TSAPI Service

This chapter describes the CSTA Services Groups that the Application Enablement

Services TSAPI Service supports. It includes the following topics:

 Supported Services and Service Groups on page 128

 CSTA Objects on page 133

Chapter 4: CSTA Service Groups supported by the TSAPI Service

128 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Supported Services and Service Groups

The AE Services TSAPI Service supports the service groups defined in Table 6.

Services that are not supported are listed in Table 7.

Table 6: Supported CSTA Services for Communication Manager

Service Group Service Group Definition Supported Service(s)

Call Control The services in this group enable a
telephony client application to control
a call or connection on
Communication Manager. Typical
uses of these services are:

placing calls from a device

controlling a connection for a single
call.

Alternate Call

Answer Call

Clear Call

Clear Connection

Conference Call

Consultation Cal

Consultation-Direct-Agent Call (private)

Consultation Supervisor-Assist Call
(private)

Deflect Call

Hold Call

Make Call

Make Direct-Agent Call (private)

Make Predictive Call

Make Supervisor-Assist Call (private)

Pickup Call

Reconnect Call

Retrieve Call

Selective Listening Hold (private)

Selective Listening Retrieve (private)

Send DTMF Tone (private)

Single Step Conference (private)

Single Step Transfer Call (private)

Transfer Call

Set Feature The services in this group allow a
client application to set switch-
controlled features or values on a
Communication Manager device.

Set Advice Of Charge (private)

Set Agent State

Set Bill Rate (private)

Set Do Not Disturb

Set Forwarding

Set Message Waiting Indicator

 Supported Services and Service Groups

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 129

Table 6: Supported CSTA Services for Communication Manager

Service Group Service Group Definition Supported Service(s)

Query The services in this group allow a
client to query device features and
static attributes of a Communication
Manager device.

Query ACD Split (private)

Query Agent Login (private)

Query Agent State

Query Call Classifier (private)

Query Device Info

Query Device Name

Query Do Not Disturb

Query Forwarding

Query Message Waiting Indicator

Query Time of Day (private)

Query Trunk Group (private)

Query Station Status (private)

Query Universal Call ID (private)

Snapshot The services in this group allow a
client application to take a snapshot
of a call or device on a
Communication Manager server.

Snapshot Call

Snapshot Device

Monitor The services in this group allow a
client application to request and
cancel the reporting of events that
cause a change in the state of a
Communication Manager object.

Change Monitor Filter

Monitor Call

Monitor Calls Via Device

Monitor Device

Monitor Ended Event

Monitor Stop on Call (private)

Monitor Stop

Chapter 4: CSTA Service Groups supported by the TSAPI Service

130 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 6: Supported CSTA Services for Communication Manager

Service Group Service Group Definition Supported Service(s)

Event Report The services in this group provide a
client application with the reports of
events that cause a change in the
state of a call, a connection, or a
device.

Call Event Reports:

 Call Cleared

 Charge Advice (private)

 Connection Cleared

 Conferenced

 Delivered

 Diverted

 Entered Digits (private)

 Established

 Failed

 Held

 Network Reached

 Originated

 Queued

 Retrieved

 Service Initiated

 Transferred

Agent State Event Reports:

 Logged On

 Logged Off

Feature Event Reports:

 Do Not Disturb

 Forwarding

Routing The services in this group allow
Communication Manager to request
and receive routing instructions for a
call from a client application.

Route End Event

Route End Service

Route Register Abort Event

Route Register Cancel Service

Route Register Service

Route Request Service

Route Select Service

Route Used Event

Escape The services in this group allow an
application to request a private
service that is not defined by the
CSTA Standard.

Escape Service

Private Event

Private Status Event

 Supported Services and Service Groups

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 131

Table 6: Supported CSTA Services for Communication Manager

Service Group Service Group Definition Supported Service(s)

Maintenance The services in this group allow an
application to request (1) device
status maintenance events that
provide status information for device
objects, and (2) bi-directional system
status maintenance services that
provide information on the overall
status of the system.

None

System Status The services in this group allow an
application to request system status
information from the TSAPI Service.

System Status Request

System Status Start

System Status Stop

Change System Status Filter

System Status Event

Table 7: Unsupported CSTA Services

Service Group Unsupported Service(s) or Event Report(s)

Call Control Group Pickup Call

Set Feature None

Query Query Last Number

Snapshot None

Monitor None

Event Reports Call Event Reports: None

Agent State Event Reports:

 Not Ready Event

 Ready Event

 Work Not Ready Event

 Work Ready Event

Feature Event Reports:

 Call Info Event

 Message Waiting Event

Routing Re-Route Event

Escape Send Private Event

Chapter 4: CSTA Service Groups supported by the TSAPI Service

132 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 7: Unsupported CSTA Services

Service Group Unsupported Service(s) or Event Report(s)

Maintenance Back in Service Event

Out of Service Event

System Status System Status Request Event

System Status Ended Event

System Status Event Send

 CSTA Objects

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 133

CSTA Objects

Figure 4 illustrates the three types of CSTA objects: Device, Call, and Connection.

Figure 4: CSTA Objects: Device, Call and Connection

Device Call
Connection

The CSTA Device object

The term device refers to both physical devices (stations, trunks, and so on) and logical

devices (VDNs or ACD splits) that are controlled by the switch. Each device is

characterized by a set of attributes. These attributes define the manner in which an

application may observe and manipulate a device. The set of device attributes consists

of:

 Device Type – for more information, see Device Type on page 133

 Device Class – for more information, see Device Class on page 134

 Device Identifier – for more information, see Device Identifier on page 134

Device Type

Table 8 defines the most commonly used Communication Manager devices and their

types:

Table 8: CSTA Device Type Definitions

CSTA Type Definition Communication
Manager Object

Station A traditional telephone device or an
AWOH station extension (for
phantom calls).1 A station is a
physical unit of one or more buttons
and one or more lines.

Station or extension on
Communication Manager.

1
 A call can be originated from an AWOH station or some group extensions (i.e., a plain [non-ACD] hunt

group). This is termed a phantom call. Most calls that can be requested for a physical extension can also be
requested for an AWOH station and the associated event will also be received. If the call is made on behalf
of a group extension, this may not apply. For more information about the phantom call switch feature, refer
to the Avaya MultiVantage Application Enablement Services ASAI Technical Reference.

Chapter 4: CSTA Service Groups supported by the TSAPI Service

134 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 8: CSTA Device Type Definitions

CSTA Type Definition Communication
Manager Object

ACD Group A mechanism that distributes calls
within a switch.

VDN, ACD split, or hunt
group in Communication
Manager.

Trunk A device used to access other
switches.

Trunk

Trunk Group A group of trunks accessed using a
single identifier.

Trunk group

Other A type of device not defined by
CSTA.

Announcement, CTI link
(ASAI), modem pool, etc.

CSTA Device Types that the TSAPI Service does not support

CSTA defines device types that the TSAPI Service does not use:

 ACD Group

 button

 button group

 line

 line group

 operator

 operator group

 station group

Device Class

Different classes of devices can be observed and manipulated within the TSAPI Service

CSTA environment. Common Communication Manager CSTA Device Classes include:

voice and other. The TSAPI Service does not support service requests for the CSTA

data and image classes. The TSAPI Service may return the data class in response to a

query.

Device Identifier

Each device that can be observed and manipulated needs to be referenced across the

CSTA Service boundary. Devices are identified using one or both of the following types

of identifiers:

Static Device Identifier

A static device identifier is stable over time and remains both constant and unique

between calls.

 CSTA Objects

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 135

The static device identifier is known by both the TSAPI application and the

Communication Manager Server. Communication Manager internal extensions are static

device identifiers. These include extensions that uniquely identify any Communication

Manager devices such as stations or AWOH station extensions (for phantom calls), ACD

splits, VDNs, and logical agent login IDs. Valid phone numbers for endpoints external to

Communication Manager Server are also static device identifiers.

 NOTE:

If applicable, access and authorization codes can be specified with the static
device identifier for the called device parameter of the Make Call Service.

The presence of a static device ID in an event does not necessarily mean that the device

is directly connected to the switch.

 NOTE:

If the called device specified in a CSTA Make Call Service request is not an
internal endpoint, the device identifier reported in the event reports for that device
on that call may not be the same. The called device specified in the CSTA Make
Call Service is a dialing digit sequence and it may not represent a true device
identifier. For example, the trunk access code can be specified as part of the
dialing digits in the called device parameter of a CSTA Make Call Service
request. However, the trunk access code will not be part of the device identifier of
the called device in the event reports of that call. In a DCS (Distributed
Communications System) or SDN (Software Defined Network) environment,
even if a true device identifier (such as one with no trunk access code in the
called device parameter) of an external endpoint is specified for the called device
in a CSTA Make Call Service request, Communication Manager may not use the
same device identifier in the event reports for the called device.

Dynamic Device Identifier

When a call is connected through a trunk with an unknown device identifier, a dynamic

trunk identifier is created for the purpose of identifying the external endpoint. This

identifier is not like a static device identifier that an application can store in a database

for later use. An off-PBX endpoint without a known static identifier has a trunk identifier.

 NOTE:

An off-PBX endpoint of an ISDN call may have a known static identifier.

Bear in mind that a trunk identifier does not identify the actual trunk or trunk group to

which the endpoint is connected. The actual trunk and trunk group information, if

available, is provided in the Private Data.

To manipulate and monitor calls that cross a Communication Manager trunk interface,

an application needs to use the trunk identifier. The TSAPI Service preserves trunk

identifiers across conference and transfer operations. The TSAPI Service may use

different dynamic identifiers to represent endpoints connected to the same actual trunk

at different times. A trunk identifier is meaningful to an application only for the duration of

a call and should not be retained and used at a later time, for example, as a phone

number or a station extension. A call identifier and a trunk identifier can comprise a

connection identifier. A trunk identifier has a prefix ‘T‘ and a ‘#‘ within its identifier (for

example, T538#1, T4893#2).

Device ID Type

Chapter 4: CSTA Service Groups supported by the TSAPI Service

136 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

If an application opens an ACS stream with Private Data Version 5 and later, the TSAPI

Service supports CSTA DeviceIDType_t based on information from the switch, network,

or internal information.

 IMPLICIT_PUBLIC (20) - There is no actual numbering and addressing

information about this endpoint received from the network or switch. The device
identifier associated with this endpoint may be a public number. Prefix or escape
digits may be present.

 EXPLICIT_PUBLIC_UNKNOWN (30) - There are two cases for this type:

1) There is no actual numbering and addressing information about this endpoint

received from the network or switch. The network or switch did not provide any

actual numbering or addressing information about this endpoint. The device

identifier is also unknown for this endpoint. An external endpoint without a known

device identifier is most likely to have this type.

2) The numbering and addressing information are provided by the ISDN

interface from the network and the Communication Manager Server that the call

is connected to, but the network and switch have no knowledge about the

number (whether it is international, national, or local) or the endpoint. Prefix or

escape digits may be present.

 EXPLICIT_PUBLIC_INTERNATIONAL (31) - This endpoint has an international

number. The numbering plan and addressing type information are provided by
the ISDN interface from the network and the Communication Manager server the
call is connected to. Prefix or escape digits are not included.

 EXPLICIT_PUBLIC_NATIONAL (32) - This endpoint has a national number. The

numbering plan and addressing type information are provided by the ISDN
interface from the network and the Communication Manager server the call is
connected to. Prefix or escape digits are not included.

 EXPLICIT_PUBLIC_NETWORK_SPECIFIC (33) - This endpoint has a network

specific number. The numbering plan and addressing type information are
provided by the ISDN interface from the network and the Communication
Manager server the call is connected to. The type of network specific number is
used to indicate the administration/service number specific to the serving
network, (e.g., used to access an operator).

 EXPLICIT_PUBLIC_SUBSCRIBER (34) - This endpoint has a network specific

number. The numbering plan and addressing type information are provided by
the ISDN interface from the network and the Communication Manager Server the
call is connected to. Prefix or escape digits are not included.

 EXPLICIT_PUBLIC_ABBREVIATED (35) - This endpoint has an abbreviated

number. The numbering and addressing information are provided by the ISDN
interface from the network and the Communication Manager Server the call is
connected to.

 IMPLICIT_PRIVATE (40) - There is no actual numbering plan and addressing

type information about this endpoint received from the network or switch. It may
be a private number. Prefix or escape digits may be present. An internal endpoint
or an external endpoint across the DCS or private network may have this type.
Note that it is not unusual for an internal endpoint‘s type changing from

 CSTA Objects

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 137

IMPLICIT_PRIVATE to EXPLICIT_PRIVATE_LOCAL_NUMBER when more

information about the endpoint is received from the switch.

 EXPLICIT_PRIVATE_UNKNOWN (50) - This endpoint has a private numbering plan

and the addressing type is unknown. An endpoint is unlikely to have this device
ID type.

 EXPLICIT_PRIVATE_LEVEL3_REGIONAL_NUMBER (51) - This endpoint has a

private numbering plan and its addressing type is level 3 regional. An endpoint is
unlikely to have this device ID type.

 EXPLICIT_PRIVATE_LEVEL2_REGIONAL_NUMBER (52) - This endpoint has a

private numbering plan and its addressing type is level 2 regional. An endpoint is
unlikely to have this device ID type.

 EXPLICIT_PRIVATE_LEVEL1_REGIONAL_NUMBER (53) - This endpoint has a

private numbering plan and its addressing type is level 1 regional. An endpoint is
unlikely to have this device ID type.

 EXPLICIT_PRIVATE_PTN_SPECIFIC_NUMBER (54) - This endpoint has a private

numbering plan and its addressing type is PTN specific. An endpoint is unlikely to
have this device ID type.

 EXPLICIT_PRIVATE_LOCAL_NUMBER (55) - There are two cases for this type:

1) There is no actual numbering plan and addressing type information about this

endpoint received from the switch or network. However, this endpoint has a

device identifier and its type is identified by the TSAPI Service as a local number

or a local endpoint to Communication Manager Server.

2) A local endpoint is one that is directly connected to Communication Manager

Server that the TSAPI Service is connected to. An endpoint that is not directly

connected to a Communication Manager Server and the TSAPI Service, but can

be accessed through the DCS or private network Communication Manager

Server and the TSAPI Service is not a local endpoint. A TSAPI Service local

endpoint normally has a type of either EXPLICIT_PRIVATE_LOCAL_NUMBER or

IMPLICIT_PRIVATE. Note that it is not unusual for an endpoint‘s type to change

from IMPLICIT_PRIVATE to EXPLICIT_PRIVATE_LOCAL_NUMBER when more

information about the endpoint is received from the switch. An internal endpoint

is most likely to have this device ID type in this case.

This endpoint has a private numbering plan and its addressing type is local

number. An endpoint is unlikely to have this device ID type with this case.

 EXPLICIT_PRIVATE_ABBREVIATED (56) - This endpoint has a private numbering

plan and its addressing type is abbreviated. An endpoint is unlikely to have this
device ID type.

 OTHER_PLAN (60) - This endpoint has a type ―none of the above.‖ An endpoint is

unlikely to have this type.

 TRUNK_GROUP_IDENTIFIER (71) - This type is not used by the TSAPI Service.

Chapter 4: CSTA Service Groups supported by the TSAPI Service

138 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Device Identifier Syntax

typedef char DeviceID_t[64];

typedef enum DeviceIDType_t {

 DEVICE_IDENTIFIER = 0,

 IMPLICIT_PUBLIC = 20,

 EXPLICIT_PUBLIC_UNKNOWN = 30,

 EXPLICIT_PUBLIC_INTERNATIONAL = 31,

 EXPLICIT_PUBLIC_NATIONAL = 32,

 EXPLICIT_PUBLIC_NETWORK_SPECIFIC = 33,

 EXPLICIT_PUBLIC_SUBSCRIBER = 34,

 EXPLICIT_PUBLIC_ABBREVIATED = 35,

 IMPLICIT_PRIVATE = 40,

 EXPLICIT_PRIVATE_UNKNOWN = 50,

 EXPLICIT_PRIVATE_LEVEL3_REGIONAL_NUMBER = 51,

 EXPLICIT_PRIVATE_LEVEL2_REGIONAL_NUMBER = 52,

 EXPLICIT_PRIVATE_LEVEL1_REGIONAL_NUMBER = 53,

 EXPLICIT_PRIVATE_PTN_SPECIFIC_NUMBER = 54,

 EXPLICIT_PRIVATE_LOCAL_NUMBER = 55,

 EXPLICIT_PRIVATE_ABBREVIATED = 56,

 OTHER_PLAN = 60,

 TRUNK_IDENTIFIER = 70,

 TRUNK_GROUP_IDENTIFIER = 71

} DeviceIDType_t;

typedef enum DeviceIDStatus_t {

 ID_PROVIDED = 0,

 ID_NOT_KNOWN = 1,

 ID_NOT_REQUIRED = 2

} DeviceIDStatus_t;

typedef struct ExtendedDeviceID_t {

 DeviceID_t deviceID;

 DeviceIDType_t deviceIDType;

 DeviceIDStatus_t deviceIDStatus;

} ExtendedDeviceID_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef ExtendedDeviceID_t SubjectDeviceID_t;

typedef ExtendedDeviceID_t RedirectionDeviceID_t;

 CSTA Objects

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 139

Device History

Beginning with private data version 7, the deviceHistory parameter type specifies a list

of DeviceIDs that were previously associated with the call. A device becomes

associated with the call whenever there is a CSTA connection created at the device for

the call. The association may also result from a relationship between a device and a call

outside the CSTA switching function. A device becomes part of the deviceHistory list

when it is no longer associated with the call (for example: when a call is redirected from

a device, when a call is transferred away from a device, and when a device drops off a

call).

Note:

The device history cannot be guaranteed for events that happened before
monitoring started. Note that the cause value should be EC_NETWORK_-
SIGNAL if an ISDN Redirected Number was provided; otherwise the cause value
is set to match the cause value of the event that was flowed to report the
dropped connection.

Chapter 4: CSTA Service Groups supported by the TSAPI Service

140 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Format of the Device History parameter

Conceptually, the deviceHistory parameter consists of a list of entries, where each

entry contains information about a DeviceID that had previously been associated with

the call, and the list is ordered from the first device that left the call to the device that

most recently left the call. However, for AE Services, the list will contain at most one

entry.

The entry consists of:

Parameter Description

olddeviceID [mandatory – supported] The device that left the call. This
information should be consistent with the subject device in the event
that represented the device leaving the call. For example: the

divertingDevice provided in the Diverted event for that redirection,

the transferring device in the Transferred event for a transfer, or the
clearing device in the Connection Cleared event.

cause [optional – supported] The reason the device left the call or was

redirected. This information should be consistent with the cause

provided in the event that represented the device leaving the call (for
example, the cause provided in the Diverted, Transferred, or
Connection Cleared event).

oldconnectionID [optional – supported] The CSTA ConnectionID that represents the

last ConnectionID associated with the device that left the call. This

information should be consistent with the subject connection in the
event that represented the device leaving the call (for example, the

ConnectionID provided in the Diverted, Transferred, or Connection

Cleared event).

 CSTA Objects

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 141

The value of the device history count parameter

For AE Services, the value of device history count parameter is at most 1.

The device history count parameter indicates the number of entries in the

deviceHistory parameter. AE Services supports only one entry in the deviceHistory

parameter. When the limit of one is reached, a new value replaces the old value (unless

specifically stated otherwise in this document).

Merging calls - DeviceHistory

When merging calls during a conference or transfer, the source for DeviceHistory data

is always the Primary Old Call.

Interactions:

Beginning with private data version 7, the private data accompanying a

CSTAGetAPICapsConfEvent provides a field named devicehistoryCount. This field

indicates the maximum value of the deviceHistory count. For AE Services, this value

is always 1 (one).

The CSTA Call object

Applications can use TSAPI to control and monitor Call behavior, including

establishment and release. There are two types of call attributes:

 Identifier – see Call Identifier (callID) on page 141

 State – see Call State on page 142

Call Identifier (callID)

When a call is initiated, Communication Manager allocates a unique Call Identifier

(callID). Before a call terminates, it may progress through many different states involving

a variety of devices. Although the call identifier may change (as with transfer and

conference, for example), its status as a CSTA object remains the same. A callID first

becomes visible to an application when it appears in an event report or confirmation

event. The allocation of a callID is always reported. Each callID is specified in a

connection identifier parameter.

 NOTE:

The TSAPI interface passes callID parameters within ConnectionID

parameters.

Call Identifier Syntax

typedef struct ConnectionID_t {

 long callID; /* always provided */

 DeviceID_t deviceID; /* set to "0" when only

 * callID is of interest */

 ConnectionID_Device_t devIDType; /* STATIC_ID or DYNAMIC_ID */

} ConnectionID_t;

Chapter 4: CSTA Service Groups supported by the TSAPI Service

142 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Call State

A ―call state‖ is a descriptor (initiated, queued, etc.) that characterizes the state of a call.

Even though a call may assume several different states throughout its duration, it can

only be in a single state at any given time. The set of connection states comprises all of

the possible states a call may assume. Call state is returned by the Snapshot Device

Service for devices that have calls.

The CSTA Connection object

A ―connection,‖ as defined by CSTA, is a relationship that exists between a call and a

device. Many TSAPI Services (Hold Call Service, Retrieve Call Service, and Clear Call

Service, for example) observe and manipulate connections. Connections have the

following attributes:

 Identifier - for more information, see Connection Identifier (ConnectionID) on
page 142.

 State - for more information, see Connection State on page 143.

Connection Identifier (ConnectionID)

A ConnectionID is a combination of Call Identifier (callID) and Device Identifier

(DeviceID). The ConnectionID is unique within a Communication Manager server. An

application cannot use a ConnectionID until it has received it from the TSAPI Service.

This rule prevents an application from fabricating a ConnectionID.

A ConnectionID always contains a callID value. A TSAPI Service ConnectionID may

contain a static or dynamic (for Trunk ID) device identifier. If the callID is the only value

that is present, the DeviceID is set to 0 (with DYNAMIC_ID). The callID of a

ConnectionID assigned to an endpoint on a call may change when the call is

transferred or conferenced, but the DeviceID of the ConnectionID assigned to an

endpoint will not change when the call is transferred or conferenced.

For a call, there are as many Connection Identifiers as there are devices on the call. For

a device, there are as many Connection Identifiers as there are calls at that device.

Connection Identifier Conflict

A device may connect to a call twice. This can happen for external endpoints with the

same calling number from an ISDN network or from an internal device with different line

appearances connected to the same call. In these rare cases, the TSAPI Service

resolves the device identifier conflict in the connection identifiers by replacing one of the

device identifiers with a trunk identifier when two calls that have the same device (this is

not the device conferencing the call) on them are merged by a call conference or

transfer operation.

 NOTE:

The connection identifier of a device on a call can change in this case.

 CSTA Objects

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 143

Connection Identifier Syntax

typedef char DeviceID_t[64];

typedef enum ConnectionID_Device_t {

 STATIC_ID = 0,

 DYNAMIC_ID = 1

} ConnectionID_Device_t;

typedef struct ConnectionID_t {

 long callID;

 DeviceID_t deviceID;

 ConnectionID_Device_t devIDType;

} ConnectionID_t;

Connection State

A connection state is a descriptor (initiated, queued, etc.) that characterizes the state of

a single CSTA connection. Connection states are reported by Snapshots taken of calls

or devices. Changes in connection states are reported as event reports by Monitor

Services.

Figure 5 illustrates a connection state model that shows typical connection state

changes. This connection state model derives from the CSTA connection state model. It

provides an abstract view of various call state transitions that can occur when a call is

either initiated from, or delivered to, a device. Note that this model does not include all

the possible states that may result from interactions with Communication Manager

features, and it does not represent a complete programming model for the call

state/event report/connection state relationship. The Communication Manager Server

also incorporates state transitions that may not be shown.

 NOTE:

It is strongly recommended that applications be event driven. Being state driven,
rather than event driven, may result in an unexpected state transition that the
program has not anticipated. This often occurs because some party on the call
invokes a Communication Manager feature that interacts with the call in a way
that is not part of a typical call flow. The diagram that follows captures only
typical call state transitions. Communication Manager has a large number of
specialized features that interact with calls in many ways.

Chapter 4: CSTA Service Groups supported by the TSAPI Service

144 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

In Figure 5, circles represent connection states. Arrows indicate transitions between

states. A transition from one connection state to another results in the generation of an

event report. The various connection states are defined in Table 9.

Figure 5: AE Services TSAPI Service Sample Connection State Model

Connected

Held

Null

Failed

Initiated

Queued Alerting

 CSTA Objects

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 145

Table 9: TSAPI Service Connection State Definitions

Definition Description

Null No relationship exists between the call and device; a device does not participate in a
call.

Initiated A device is requesting service. Usually, this results in the creation of a call. Often, this
is when a station receives a dial tone and begins to dial.

Alerting A device is alerting (ringing). A call is attempting to become connected to a device.
The term ―active‖ is also used to indicate an alerting (or connected) state.

Connected A device is actively participating in a call, either logically or physically (that is, not
Held). The term ―active‖ is also used to indicate a connected (or alerting) state.

Held A device inactively participates in a call. That is, the device participates logically but
not physically.

Queued Normal state progression has been stalled. Generally, either a device is trying to
establish a connection with a call or a call is trying to establish a connection with a
device.

Failed Normal state progression has been aborted. Generally, either a device is trying to
establish a connection with a call or a call is trying to establish a connection with a
device. A Failed state can result from a failure to connect to the calling device (origin)
or to the called device (destination). A Failed state can also be caused by a failure to
create the call or other factors.

Unknown A device participates in a call, but its state is not known.

Bridged This is a Communication Manager Server private local connection state that is not
defined by CSTA. This state indicates that a call is present at a bridged, simulated
bridged, button TEG, or POOL appearance, and the call is neither ringing nor
connected at the station. The bridged connection state is reported in the private data
of a Snapshot Device Confirmation Event and it has a CSTA null (CS_NULL) state.
Since this is the only time TSAPI Service returns CS_NULL, a device with the null
state in the Snapshot Device Confirmation Event is bridged.

 A device with the bridged state can join the call by either manually answering the call
or the cstaAnswerCall Service. Once a bridged device is connected to a call, its state
becomes connected. After a bridged device becomes connected, it can drop from the
call and become bridged again, if there are other endpoints still on the call.

 Manual drop of a bridged line appearance (from the connected state) from a call will
not cause a Connection Cleared Event.

Chapter 4: CSTA Service Groups supported by the TSAPI Service

146 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Connection State Syntax

typedef enum LocalConnectionState_t {

 CS_NONE = -1,

 CS_NULL = 0,

 CS_INITIATE = 1,

 CS_ALERTING = 2,

 CS_CONNECT = 3,

 CS_HOLD = 4,

 CS_QUEUED = 5,

 CS_FAIL = 6

} LocalConnectionState_t;

 CSTAUniversalFailureConfEvent

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 147

CSTAUniversalFailureConfEvent

The CSTA universal failure confirmation event provides a generic negative response

from the server/switch for a previously requested service. The CSTAUniversalFailure-

ConfEvent will be sent in place of any confirmation event described in each service

function description when the requested function fails. The confirmation events defined

for each service function are only sent when that function completes successfully.

For a listing of common CSTA error messages, see Table 20: Common switch-related

CSTA Service errors -- universalFailure on page 817.

148 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Chapter 5: Avaya TSAPI Service Private Data

This chapter describes the private data features that the Avaya Aura® Application

Enablement Services (AE Services) TSAPI Service provides. Topics include:

 What is private data? on page 149

 What is a private data version? on page 150

 Linking your application to the private data functions on page 151

 Private Data Version 9 Features on page 155

 Private Data Version 8 Features on page 157

 Requesting private data on page 158

 CSTA Get API Capabilities confirmation structures for Private Data Version 8 on
page 161

 Private Data Service sample code on page 162

 Upgrading and maintaining applications that use private data on page 169

 Using the private data header files on page 170

 What is private data?

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 149

What is private data?

Private data is the means for both extending the functionality of any defined CSTA

service and for providing additional functionality altogether. The TSAPI Service uses the

―private data‖ mechanism to provide applications with access to special features of

Avaya Communication Manager.

Private data may be defined for each CSTA service request, CSTA confirmation event

and CSTA unsolicited event. In concrete terms, Avaya is free to privately define a

specific 'extension message' to be carried along with any CSTA message.

The set of fields in a CSTA message is called a protocol data unit, or PDU. So each

CSTA message defines a PDU. The set of fields that accompany a particular CSTA

PDU, representing the extended functionality that Avaya provides for that CSTA PDU,

defines a the private Avaya protocol data unit or private PDU corresponding to that

CSTA PDU.

The CSTA PDUs, as supported by TSAPI service, are defined by ECMA-180 and are

unchanging in content. The way Avaya extends the functionality of a CSTA event is by

promising to provide an enhanced private PDU to accompany that CSTA PDU; for

example, when sending the CSTA PDU for the Delivered Event

(CSTADeliveredEvent_t), Avaya can provide ISDN User-To-User Information (UUI) and

other data in a private PDU called ATTDeliveredEvent_t (the ATT prefix is present for

historical reasons).

Chapter 5: Avaya TSAPI Service Private Data

150 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

What is a private data version?

Private data allows a PBX or switch manufacturer to extend the base set of TSAPI

capabilities. Over time, a PBX manufacturer may choose to further enhance the

capabilities that are available using private data.

A private data version defines a fixed set of these capabilities. More specifically, it

defines a set of escape services and private event parameters for CSTA events. This

lets the application developer know exactly which services and private data items are

available. Having the ability to negotiate a specific private data version ensures that an

application written for an earlier release of AE Services will continue to operate with

newer releases.

Each private data version is designated by a number (for example, private data version 9

or PDV 9). With the latest product release of the Application Enablement Services (AE

Services 6.1) an application may ask the TSAPI service to provide data defined for

private data versions 2 through 9. Newer features and content are provided with higher

numbered private data versions. Private data versioning is inclusive. If you negotiate

private data version 9, you have access to all the capabilities of previous private data

versions.

It is important to note, however, that the confirmation event to a request will always be

returned in the latest format available within the private data version negotiated, even if

the request is sent in the format of a previous data version. For example, if an

application negotiates private data version 9 for the stream and sends a request using a

private data version 4 format, then the confirmation event will be returned in the latest

format available for that event up to and including private data version 9. If the

application, in this example, needed to ensure that confirmation event was returned in a

format no later than private data version 4, then it should have initially negotiated private

data version 4 for the stream, not version 9.

See Table 10 for a summary history of private data versions.

Table 10: History of Private Data Versions

Product Supported private data versions

Avaya Computer Telephony PDV 2 through 6

Application Enablement Services 3.0 PDV 2 through 6

Application Enablement Services 3.1 PDV 2 through 7

Application Enablement Services 4.0 PDV 2 through 7

Application Enablement Services 4.1 PDV 2 through 8

Application Enablement Services 6.1 PDV 2 through 9

 Linking your application to the private data functions

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 151

Linking your application to the private data functions

AE Services defines the mechanism for private data in a dynamically linked or shared

library file, which contains private data encoding and decoding functions. For Windows

clients, this file is ATTPRIV32.DLL. For Linux clients, this file is libattpriv.so. If your

application uses private data, you must link to this file.

Chapter 5: Avaya TSAPI Service Private Data

152 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Summary of TSAPI Service Private Data

Table 11 summarizes private data features provided by the AE Services TSAPI Service.

The features listed as PDV 9 in the right column are new features for Release 6.1 of the

TSAPI Service. For more information previous version of private data, see Appendix B:

Summary of Private data support on page 845.

Table 11: Private Data Summary

Private Data Feature Initial Private
Data Version

Consult Mode in Held, Service Initiated, and Originated Events PDV 9

UCID in Single Step Transfer Call Confirmation event PDV 9

Single Step Transfer Call PDV 8

Calling Device in Failed Event PDV 8

Enhanced Monitor Calls via Device

 NOTE:

To get this PDV 7 capability you must upgrade to either AE Services 3.1.4
(Service Pack Release) or AE Services 4.1.

PDV7

Network Call Redirection for Routing PDV 7

Redirecting Number Information Element (presented through DeviceHistory) PDV 7

Query Device Name for Attendants PDV 7

Increased Aux Reason Codes PDV 7

Enhanced GetAPICaps Version PDV 7

Pending Work Mode and Pending Reason Code in Set Agent State and Query
Agent State

PDV 6

Trunk Group and Trunk Member Information in Delivered Event and Established
Event regardless of whether Calling Party is Available

PDV 6

Trunk Group Information in Route Request Events regardless of whether Calling
Party is Available

PDV 6

Trunk Group Information for Every Party in Transferred Events and Conferenced
Events

PDV 6

User-to-User Info (UUI) is increased from 32 to 96 bytes PDV 6

Support Detailed DeviceIDType_t in Events PDV 5

 Summary of TSAPI Service Private Data

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 153

Table 11: Private Data Summary

Private Data Feature Initial Private
Data Version

Set Bill Rate PDV 5

Flexible Billing in Delivered Event, Established Event, and Route Request PDV 5

Call Originator Type in Delivered Event, Established Event, and Route Request PDV 5

Selective Listening Hold PDV 5

Selective Listening Retrieve PDV 5

Set Advice of Charge PDV 5

Charge Advice Event PDV 5

Reason Code in Set Agent State, Query Agent State, and Logout Event PDV 5

27-Character Display Query Device Name Confirmation PDV 5

Unicode Device ID in Events PDV 5

Trunk Group and Trunk Member Information in Network Reached Event PDV 5

Universal Call ID (UCID) in Events PDV 5

Single Step Conference PDV 5

Distributing Device in Conferenced, Delivered, Established, and Transferred
Events

PDV 4

Private Capabilities in cstaGetAPICaps Confirmation Private Data PDV 4

Deflect Call PDV 3

Pickup Call PDV 3

Originated Event Report PDV 3

Agent Logon Event Report PDV 3

Reason for Redirection in Alerting Event Report PDV 3

Agent, Split, Trunk, VDN Measurements Query PDV 3

Device Name Query PDV 3

Send DTMF Tone PDV 3

Chapter 5: Avaya TSAPI Service Private Data

154 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 11: Private Data Summary

Private Data Feature Initial Private
Data Version

Priority, Direct Agent, Supervisor Assist Calling PDV 2

Enhanced Call Classification PDV 2

Trunk, Classifier Queries PDV 2

LAI in Events PDV 2

Launching Predictive Calls from Split PDV 2

Application Integration with Expert Agent Selection PDV 2

User-to-User Info (Reporting and Sending) PDV 2

Multiple Notification Monitors (two on ACD/VDN) PDV 2

Launching Predictive Calls from VDN PDV2

Multiple Outstanding Route Requests for One Call PDV 2

Answering Machine Detection PDV 2

Established Event for Non-ISDN Trunks PDV 2

Provided Prompter Digits on Route Select PDV 2

Requested Digit Selection PDV 2

VDN Return Destination (Serial Calling) PDV 2

Prompted Digits in Delivered Events PDV 1

 Private Data Version 9 Features

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 155

Private Data Version 9 Features

AE Services Release 6.1 provides the following new features with Private Data Version

9:

 Consult Mode for Held, Service Initiated, and Originated Events

 UCID in Single Step Transfer Call Confirmation Event

Consult Mode for Held, Service Initiated, and Originated Events

Private data version 9 adds private data to the CSTA Held event and augments the

private data for the CSTA Originated and CSTA Service Initiated events. Beginning with

private data version 9:

 The private data that may accompany any of these events will indicate if the
event occurred as a result of a Conference or Transfer button press at the
telephone set. (This capability requires Avaya Communication Manager 6.0.1
with Service Pack 1, or later.) If so, the consult mode reported in private data will

be set to ATT_CM_CONFERENCE or ATT_CM_TRANSFER, as appropriate.

 The private data that may accompany the CSTA Originated event will indicate if
the event occurred as a result of the cstaConsultationCall() service. If so, the

consult mode reported in private data will be set to ATT_CM_CONSULTATION.

typedef enum ATTConsultMode_t {

 ATT_CM_NONE = 0,

 ATT_CM_CONSULTATION = 1,

 ATT_CM_TRANSFER = 2,

 ATT_CM_CONFERENCE = 3,

 ATT_CM_NOT_PROVIDED = 4

} ATTConsultMode_t;

typedef struct ATTHeldEvent_t {

 ATTConsultMode_t consultMode;

} ATTHeldEvent_t;

typedef struct ATTServiceInitiatedEvent_t {

 ATTUCID_t ucid;

 ATTConsultMode_t consultMode;

} ATTServiceInitiatedEvent_t;

typedef struct ATTOriginatedEvent_t {

 DeviceID_t logicalAgent;

 ATTUserToUserInfo_t userInfo;

 ATTConsultMode_t consultMode;

} ATTOriginatedEvent_t;

Chapter 5: Avaya TSAPI Service Private Data

156 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

UCID in Single Step Transfer Call Confirmation Event

A Universal Call ID (UCID) is a unique call identifier across all switches in the network.

When one call is transferred to another, Avaya Communication Manager selects the

UCID from one of the two calls as the UCID for the new, transferred call.

For private data version 8, an application that performed the Single Step Transfer Call

service could obtain the UCID for the new call from private data in the CSTA Transferred

event, but not from the Single Step Transfer Call confirmation event. This required the

application to monitor the transferring device.

Beginning with private data version 9, an application that performs the Single Step

Transfer Call service can obtain the UCID for the new call directly from the Single Step

Transfer Call confirmation event.

typedef char ATTUCID_t[64];

typedef struct ATTSingleStepTransferCallConfEvent_t {

 ConnectionID_t transferredCall;

 ATTUCID_t ucid;

} ATTSingleStepTransferCallConfEvent_t;

 Private Data Version 8 Features

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 157

Private Data Version 8 Features

AE Services Release 4.1, provides the following new features for Private Data Version 8.

 Single Step Transfer Call – see Single Step Transfer Call on page 157.

 Calling Device in Failed Event – see Calling Device in Failed Event on page 157.

 New Get API Capabilities confirmation event – see CSTA Get API Capabilities
confirmation structures for Private Data Version 8 on page 161.

 A new private data parameter, flowPredictiveCallEvents, for the
CSTAMonitorCallsViaDevice service. For more information, see Monitor Calls
Via Device Service on page 478.

Single Step Transfer Call

The Single Step Transfer Call service transfers an existing connection to another device,

and it performs this transfer in a single step. This means that the device transferring the

call does not have to place the existing call on hold before issuing the Single Step

Transfer Call service. For a service description, see Single Step Transfer Call (Private

Data Version 8 and later) on page 334.

Calling Device in Failed Event

The Failed Event includes the Calling Device, if available.

typedef struct ATTFailedEvent_t {

 DeviceHistory_t deviceHistory;

 CallingDeviceID_t callingDevice;

} ATTFailedEvent_t;

Chapter 5: Avaya TSAPI Service Private Data

158 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Requesting private data

To request a specific version, or versions, of private data, an application allocates buffer

space for working with private data, and it must pass negotiation information in the

private data parameter of acsOpenStream(). Here are a few tips for reading Sample

code for requesting private data on page 159.

 To indicate that the private data is to negotiate the version, the application sets
the vendor field in the Private Data structure to the null-terminated string

―VERSION‖.

 The application specifies the acceptable vendor(s) and version(s) in the data field
of the private data. The data field contains a one byte manifest constant

PRIVATE_DATA_ENCODING followed by a null-terminated ASCII string containing a

list of vendors and versions.

 When opening a TSAPI version 2 stream, an application should provide a list of
supported private data versions in the data portion of the private data buffer. The

AE Services TSAPI SDK provides the attMakeVersionString() function to

simplify formatting this list. The sample code illustrates how to format the private
data buffer to request private data version 3 through 9.

 Requesting private data

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 159

Sample code for requesting private data

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

#include <string.h>

/* Define local variables */

RetCode_t rc; /* Function return code */

ACSHandle_t acsHandle; /* ACS handle from Open Stream request */

ATTPrivateData_t privateData; /* Buffer for private data version

 * negotiation */

/* Prepare the private data buffer for version negotiation */

strcpy(privateData.vendor, "VERSION");

privateData.data[0]= PRIVATE_DATA_ENCODING;

/*

 * Now encode the requested private data versions.

 * The parameters below specify that any of the private data versions

 * in the range 3 through 9 are acceptable to this application.

 * Note that private data accompanying the ACS Open Stream Confirmation

 * event will indicate specifically which version was negotiated for

 * this stream.

 */

if (attMakeVersionString("3-9", &privateData.data[1]) > 0)

{

 /* attMakeVersionString() succeeded */

 privateData.length = strlen(&privateData.data[1]) + 2;

}

else

{

 /* attMakeVersionString() failed */

 privateData.length = 0;

}

/* Ask to open a TSAPI Service stream with private data */

rc = acsOpenStream(

 &acsHandle,

 LIB_GEN_ID, /* let the library generate invoke IDs */

 (Invoke_id_t)0, /* send '0' (arbitrary) as the Invoke ID */

 ST_CSTA, /* stream type */

 &serverID, /* TLINK name like "AVAYA#CM1#CSTA#SERVER1" */

 &loginID, /* login ID for authentication*/

 &passwd, /* password */

 (AppName_t *)"MyApp", /* Application name */

 ACS_LEVEL1, /* ACS level */

 (Version_t *)"TS2", /* requested TSAPI version */

 (WORD)0, /* send queue size – use default size*/

 (WORD)5, /* send queue extra buffers */

 (WORD)50, /* receive queue size */

 (WORD)5, /* receive queue extra buffers */

 (ATTPrivateData_t *)&privateData /* formatted private data */

);

Chapter 5: Avaya TSAPI Service Private Data

160 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

if (rc < 0)

{

 /* acsOpenStream() failed */

 return;

}

/* Wait for the ACS Open Stream Confirmation event */

Applications that do not use private data

An application that does not use Private Data should not pass any private data to the

acsOpenStream() request.

The TSAPI Service interprets the lack of private data in the open stream request to

mean that the application does not want private data. The TSAPI Service will then refrain

from sending private data on that stream. This will saves LAN bandwidth that the private

data would otherwise consume.

 CSTA Get API Capabilities confirmation structures for Private Data Version 8

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 161

CSTA Get API Capabilities confirmation structures for Private
Data Version 8

The TSAPI Service provides information about version-dependent private services and

events in the CSTAGetAPICaps Confirmation private data interface. For Private Data

Version 8 the ATTGetAPICapsConfirmation Event has been updated to include the

singleStepTransfer field.

Field Description

unsigned char singleStepTransfer;

 NOTE:

This field was previously named

reserved1.

Indicates whether the single step transfer call
feature is available.

Code for the ATTGetAPICapsConfEvent - PDV 8

The ATT_Private_Identifiers.h file, which is provided in the AE Services TSAPI

SDK contains the code for ATTGetAPICapsConfEvent. Here is the code for the

ATTGetAPICapsConfEvent.

typedef struct ATTGetAPICapsConfEvent_t {

 char switchVersion[65];

 unsigned char sendDTMFTone;

 unsigned char enteredDigitsEvent;

 unsigned char queryDeviceName;

 unsigned char queryAgentMeas;

 unsigned char querySplitSkillMeas;

 unsigned char queryTrunkGroupMeas;

 unsigned char queryVdnMeas;

 unsigned char singleStepConference;

 unsigned char selectiveListeningHold;

 unsigned char selectiveListeningRetrieve;

 unsigned char setBillingRate;

 unsigned char queryUCID;

 unsigned char chargeAdviceEvent;

 unsigned char singleStepTransfer;

 unsigned char monitorCallsViaDevice;

 unsigned char deviceHistoryCount;

 char adminSoftwareVersion[256];

 char softwareVersion[256];

 char offerType[256];

 char serverType[256];

} ATTGetAPICapsConfEvent_t;

Chapter 5: Avaya TSAPI Service Private Data

162 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Service sample code

To retrieve private data return parameters from Communication Manager, the application

must specify a pointer to a private data buffer as a parameter to either the

acsGetEventBlock() or acsGetEventPoll() request.

When Communication Manager returns the private data, the application passes the

address to attPrivateData() for decoding.

The following coding examples depict how these operations are carried out.

 Sample Code - Make Direct Agent Call on page 163

 Sample Code - Set Agent State on page 165

 Sample Code - Query ACD Split on page 167

 Private Data Service sample code

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 163

Sample Code - Make Direct Agent Call

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * Make Direct Agent Call - from "1000" to ACD Agent extension "1001"

 * - ACD agent must be logged into split "2000"

 * - no User to User info

 * - not a priority call

 */

ACSHandle_t acsHandle; /* An opened ACS Stream Handle */

InvokeID_t invokeID = 1; /* Application-generated invoke

 * ID */

DeviceID_t calling = "1000"; /* Call originator, an on-PBX

 * extension */

DeviceID_t called = "1001"; /* Call destination, an ACD

 * Agent extension */

DeviceID_t split = "2000"; /* ACD Agent is logged into

 * this split */

Boolean priorityCall = FALSE; /* Not a priority call */

RetCode_t rc; /* Return code for service

 * requests */

CSTAEvent_t cstaEvent; /* CSTA event buffer */

unsigned short eventBufSize; /* CSTA event buffer size */

unsigned short numEvents; /* Number of events queued */

ATTPrivateData_t privateData; /* ATT service request private

 * data buffer */

/* Format private data for the subsequent cstaMakeCall() request */

rc = attDirectAgentCall(&privateData, &split, priorityCall, NULL);

if (rc < 0)

{

 /* Some kind of failure, handle error here. */

}

/* Invoke cstaMakeCall() with the formatted private data */

rc = cstaMakeCall(acsHandle, invokeID, &calling, &called,

 (PrivateData_t *)&privateData);

if (rc != ACSPOSITIVE_ACK)

{

 /* Some kind of failure, handle error here. */

}

Chapter 5: Avaya TSAPI Service Private Data

164 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

/* cstaMakeCall() succeeded. Wait for the confirmation event. */

/* Initialize buffer sizes before calling acsGetEventBlock() */

eventBufSize = sizeof(cstaEvent);

privateData.length = ATT_MAX_PRIVATE_DATA;

rc = acsGetEventBlock(acsHandle, (void *)&cstaEvent,

 &eventBufSize, (PrivateData_t *)&privateData, &numEvents);

if (rc != ACSPOSITIVE_ACK)

{

 /* Some kind of failure, handle error here. */

}

/* Is this the event that we are waiting for? */

if ((cstaEvent.eventHeader.eventClass == CSTACONFIRMATION) &&

 (cstaEvent.eventHeader.eventType == CSTA_MAKE_CALL_CONF))

{

 if (cstaEvent.event.cstaConfirmation.invokeID == 1)

 {

 /* Invoke ID matches, cstaMakeCall() is confirmed. */

 }

 else

 {

 /* Wrong invoke ID, need to wait for another event */

 }

}

else

{

 /* Wrong event, need to wait for another event */

}

 Private Data Service sample code

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 165

Sample Code - Set Agent State

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * Set Agent State - Request to log in an ACD agent with initial work

 * mode of "Auto-In".

 */

ACSHandle_t acsHandle; /* An opened ACS Stream Handle */

InvokeID_t invokeID = 1; /* Application-generated invoke

 * ID */

DeviceID_t device = "1000"; /* Device associated with ACD

 * agent */

AgentMode_t agentMode = AM_LOG_IN; /* Requested Agent Mode */

AgentID_t agentID = "3000"; /* Agent login identifier */

AgentGroup_t agentGroup = "2000"; /* ACD split to log Agent into */

AgentPassword_t *agentPassword = NULL; /* No password */

RetCode_t rc; /* Return code for service

 * requests */

CSTAEvent_t cstaEvent; /* CSTA event buffer */

unsigned short eventBufSize; /* CSTA event buffer size */

unsigned short numEvents; /* Number of events queued */

ATTPrivateData_t privateData; /* ATT service request private

 * data buffer */

ATTEvent_t attEvent; /* Private data event structure */

/*

 * Format private data for the subsequent cstaSetAgentState() request

 */

rc = attV6SetAgentState(&privateData, WM_AUTO_IN, 0, TRUE);

if (rc < 0)

{

 /* Some kind of failure, handle error here. */

}

/* Invoke cstaSetAgentState() with the formatted private data */

rc = cstaSetAgentState(acsHandle, invokeID, &device, agentMode,

 &agentID, &agentGroup, agentPassword,

 (PrivateData_t *)&privateData);

if (rc != ACSPOSITIVE_ACK)

{

 /* Some kind of failure, handle error here. */

}

/* cstaSetAgentState() succeeded. Wait for the confirmation event. */

/* Initialize buffer sizes before calling acsGetEventBlock() */

eventBufSize = sizeof(cstaEvent);

privateData.length = ATT_MAX_PRIVATE_DATA;

rc = acsGetEventBlock(acsHandle, (void *)&cstaEvent,

Chapter 5: Avaya TSAPI Service Private Data

166 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 &eventBufSize, (PrivateData_t *)&privateData, &numEvents);

if (rc != ACSPOSITIVE_ACK)

{

 /* Some kind of failure, handle error here. */

}

/* Is this the event that we are waiting for? */

if ((cstaEvent.eventHeader.eventClass == CSTACONFIRMATION) &&

 (cstaEvent.eventHeader.eventType == CSTA_SET_AGENT_STATE_CONF))

{

 if (cstaEvent.event.cstaConfirmation.invokeID == 1)

 {

 /* Invoke ID matches, cstaSetAgentState() is confirmed. */

 /* See if the confirmation event includes private data. */

 if (privateData.length > 0)

 {

 /*

 * The confirmation event contains private data.

 * Decode it.

 */

 if (attPrivateData(&privateData, &attEvent) !=

 ACSPOSITIVE_ACK)

 {

 /* Handle decoding error here. */

 }

 if (attEvent.eventType == ATT_SET_AGENT_STATE_CONF)

 {

 /*

 * See whether the requested change is pending

 */

 ATTSetAgentStateConfEvent_t *setAgentStateConf;

 setAgentStateConf =

 &privateData.u.setAgentState;

 if (setAgentStateConf->isPending == TRUE)

 {

 /* The request is pending */

 }

 }

 }

 }

}

 Private Data Service sample code

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 167

Sample Code - Query ACD Split

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * Query ACD Split via cstaEscapeService()

 */

ACSHandle_t acsHandle; /* An opened ACS Stream Handle */

InvokeID_t invokeID = 1; /* Application-generated invoke

 * ID */

DeviceID_t device = "1000"; /* Device associated with ACD

 * agent */

RetCode_t rc; /* Return code for service

 * requests */

CSTAEvent_t cstaEvent; /* CSTA event buffer */

unsigned short eventBufSize; /* CSTA event buffer size */

unsigned short numEvents; /* Number of events queued */

ATTPrivateData_t privateData; /* ATT service request private

 * data buffer */

ATTEvent_t attEvent; /* Private data event structure */

ATTQueryAcdSplitConfEvent_t /* Query ACD Split confirmation

 *queryAcdSplitConf; * event pointer */

/*

 * Format private data for the subsequent cstaEscapeService() request

 */

rc = attQueryAcdSplit(&privatedata, &deviceID);

if (rc < 0)

{

 /* Some kind of failure, handle error here. */

}

/* Invoke cstaEscapeService() with the formatted private data */

rc = cstaEscapeService(acsHandle, invokeID,

 (PrivateData_t *)&privateData);

if (rc != ACSPOSITIVE_ACK)

{

 /* Some kind of failure, handle error here. */

}

/*

 * cstaEscapeService() succeeded. Now wait for the confirmation event.

 *

 * To retrieve private data accompanying the confirmation event,

 * the application must provide a pointer to a private data buffer as

 * a parameter to either an acsGetEventBlock() or acsGetEventPoll()

 * request. After receiving an event, the application passes the

 * address of the private data buffer to attPrivateData() for decoding.

 */

Chapter 5: Avaya TSAPI Service Private Data

168 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

/* Initialize buffer sizes before calling acsGetEventBlock() */

eventBufSize = sizeof(cstaEvent);

privateData.length = ATT_MAX_PRIVATE_DATA;

rc = acsGetEventBlock(acsHandle, (void *)&cstaEvent,

 &eventBufSize, (PrivateData_t *)&privateData, &numEvents);

if (rc != ACSPOSITIVE_ACK)

{

 /* Some kind of failure, handle error here. */

}

/* Is this the event that we are waiting for? */

if ((cstaEvent.eventHeader.eventClass == CSTACONFIRMATION) &&

 (cstaEvent.eventHeader.eventType == CSTA_ESCAPE_SVC_CONF))

{

 if (cstaEvent.event.cstaConfirmation.invokeID == 1)

 {

 /* Invoke ID matches, cstaEscapeService() is confirmed. */

 /* See if the confirmation event includes private data. */

 if (privateData.length > 0)

 {

 /*

 * The confirmation event contains private data.

 * Decode it.

 */

 if (attPrivateData(&privateData, &attEvent) !=

 ACSPOSITIVE_ACK)

 {

 /* Handle decoding error here. */

 }

 if (attEvent.eventType == ATT_QUERY_ACD_SPLIT_CONF)

 {

 queryAcdSplitConf =

 (ATTQueryAcdSplitConfEvent_t *)

 &attEvent.u.queryAcdSplit;

 /* Process event field values here */

 }

 }

 else

 {

 /* Error - no private data in confirmation event */

 }

 }

}

 Upgrading and maintaining applications that use private data

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 169

Upgrading and maintaining applications that use private data

Private data version control refers to the method the TSAPI Service uses for maintaining

multiple versions of private data. Private data version control provides you with a means

of selecting the version of private data that is compatible with your application. If your

applications use private data, be sure to read the following sections.

 Using the private data header files on page 170

 The attpdefs.h file -- PDU names and numbers on page 170

 The attpriv.h file -- other related PDU elements on page 171

 Upgrading PDV 8 applications to PDV 9 on page 172

 Upgrading PDV 7 applications to PDV 8 on page 174

 Upgrading PDV 6 applications to PDV 7 on page 175

 Maintaining a PDV 8 application in a PDV 9 environment on page 176

 Maintaining a PDV 7 application in a PDV 8 environment on page 177

 Recompiling against the same SDK on page 178

 NOTE:

The AE Services 6.1 TSAPI Service is at PDV 9. Any TSAPI applications developed
with the AE Services Release 6.1 TSAPI service should be written against PDV 9.

Chapter 5: Avaya TSAPI Service Private Data

170 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Using the private data header files

The private data header files (attpdefs.h and attpriv.h) are two important tools for using

private data.

The attpdefs.h file -- PDU names and numbers

The attpdefs.h file contains the definitions of the Protocol Data Units (PDUs) that are

used for private data version control. Each PDU in the attpdefs.h file has a PDU number

associated with it. The PDU numbers with the highest values represent the latest version

of private data for a given service, confirmation event, or unsolicited event. Here are a

few examples of #define statements in the attpdefs.h file to illustrate this point.

#define ATT_FAILED 141 – the private PDU value representing the highest private

data version for the Failed event, which is Private Data Versions 8 and 9. (This event

did not change for PDV 9).

#define ATTV7_FAILED 137 – the private PDU value representing the previous private

data version for the Failed event, which is Private Data Version 7. (There was no private

data associated with the Failed event prior to PDV 7.)

#define ATT_QUERY_DEVICE_NAME_CONF 125 – the private PDU value representing the

highest private data version of the Query Device Name confirmation event, which is

Private Data Version 7. (This event did not change for PDV 8 or PDV 9.)

#define ATTV6_QUERY_DEVICE_NAME_CONF 89 – the private PDU value representing

the previous private data versions of the Query Device Name service, which is Private

Data Versions 5 and 6.

#define ATTV4_QUERY_DEVICE_NAME_CONF 50 – the private PDU value representing

the previous private data versions of the Query Device Name service, which is Private

Data Versions 2 through 4.

#define ATT_ROUTE_SELECT 126 – the private PDU value representing highest private

data version of the Route Select service, which is Private Data Versions 7 through 9.

(This service did not change for PDV 8 or PDV 9.)

#define ATTV6_ROUTE_SELECT 116 – the private PDU value representing the previous

private data version of the Route Select service, PDV 6.

#define ATTV5_ROUTE_SELECT 43 – the private PDU value representing the previous

private data versions of the Route Select service, which is Private Data Versions 2

through 5.

 Using the private data header files

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 171

The attpriv.h file -- other related PDU elements

The attpriv.h file contains the PDU structures for the PDUs that are defined in the

attpdefs.h file.

Table 12 contains examples from both header files. Here are a few fundamental points

to notice about the elements in the private data header files:

 PDU names without version qualifiers (ATT_QUERY_DEVICE_NAME_CONF)

represent the highest version of private data. PDU names with version qualifiers

(ATTV6_QUERY_DEVICE_NAME_CONF) indicate an earlier version (or versions) of

private data.

 PDU structure names without version qualifiers

(ATTQueryDeviceNameConfEvent_t) represent the highest version of private

data. PDU structure names with version qualifiers

(ATTV6QueryDeviceNameConfEvent_t) indicate an earlier version (or versions)

of private data.

 PDU union member names without version qualifiers (queryDeviceName)

represent the highest version of private data. PDU union member names with

version qualifiers (v6queryDeviceName) indicate an earlier version (or versions)

of private data.

 Function names behave differently.

– Function names for service requests use a version qualifier to denote the
highest version of private data for that particular service. For example, Route

Select attV7RouteSelect(), Make Call (attV6MakeCall()). The only time

a function name is unqualified is when it is initially introduced. When you
request the latest private data version you always get the highest version of a
service request.

Table 12: Elements in private data header files

PDU name and number attpdefs.h

Related elements in attpriv.h

ATT_QUERY_DEVICE_NAME_CONF 125

 ATTQueryDeviceNameConfEvent_t

(structure name)

 queryDeviceName (union member name)

ATTV6_QUERY_DEVICE_NAME_CONF 89

 ATTV6QueryDeviceNameConfEvent_t

(structure name)

 v6queryDeviceName (union member

name)

ATT_ROUTE_SELECT 126

 ATTRouteSelect_t (structure name)

 routeSelectReq (union member name)

 attV7RouteSelect() (function name)

ATTV6_ROUTE_SELECT 116 ATTV6RouteSelect_t (structure name)

 v6routeSelectReq (union member

name)

 attV6RouteSelect()(function name)

Chapter 5: Avaya TSAPI Service Private Data

172 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Upgrading PDV 8 applications to PDV 9

If you have an existing application that was developed to PDV 8, and you want to take

advantage of PDV 9 functionality, you will need to update your application to take

advantage of the PDV 9 features, and then recompile your application with the PDV 9

SDK. The following steps outline the high level tasks necessary for upgrading a PDV 8

application to PDV 9:

 1. Make sure you have installed the AE Services 6.1 TSAPI SDK. Whenever you

recompile your PDV 9 applications, you must use the AE Services 6.1 TSAPI SDK,

which supports PDV 9.

 2. Use Table 24: Private Data Version 9 features, services, and events on page 846

to help you determine what PDV 9 functionality you want to incorporate into your

application.

 3. Make the following coding level changes to your application:

 ATT Held Event private data:

– Add logic to handle private data with event type ATT_HELD that may

accompany a CSTA Held event.

 ATT Originated Event private data:

– Replace all references to event type ATT_ORIGINATED with event type

ATTV8_ORIGINATED. (The event type ATT_ORIGINATED represents private

data for the highest private data version, now 9.)

– Replace all references to structure name ATTOriginatedEvent_t with

structure name ATTV8OriginatedEvent_t. (The structure name ATT-

OriginatedEvent_t now represents private data version 9.)

– Replace all references to the ATTEvent_t union member u.originated-

Event with u.v8originatedEvent. (The union member u.originated-

Event now represents private data version 9.)

– Add logic to handle private data with event type ATT_ORIGINATED that

may accompany a CSTA Originated event.

 ATT Service Initiated Event private data:

– Replace all references to event type ATT_SERVICE_INITIATED with event

type ATTV8_SERVICE_INITIATED. (The event type ATT_SERVICE_-

INITIATED represents private data for the highest private data version,

now 9.)

– Replace all references to structure name ATTServiceInitiatedEvent_t

with structure name ATTV8ServiceInitiatedEvent_t. (The structure

name ATTServiceInitiatedEvent_t now represents private data

version 9.)

– Replace all references to the ATTEvent_t union member u.service-

Initiated with u.v8serviceInitiated. (The union member

u.serviceInitiated now represents private data version 9.)

 Using the private data header files

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 173

– Add logic to handle private data with event type ATT_SERVICE_INITIATED

that may accompany a CSTA Service Initiated event.

 ATT Single Step Transfer Call Confirmation Event private data:

– Replace all references to event type ATT_SINGLE_STEP_TRANSFER_-

CALL_CONF with event type ATTV8_SINGLE_STEP_TRANSFER_CALL_CONF.

(The event type ATT_SINGLE_STEP_TRANSFER_CALL_CONF represents

private data for the highest private data version, now 9.)

– Replace all references to structure name ATTSingleStepTransferCall-

ConfEvent_t with structure name ATTV8SingleStepTransferCall-

ConfEvent_t. (The structure name ATTSingleStepTransferCallConf-

Event_t now represents private data version 9.)

– Replace all references to the ATTEvent_t union member u.ssTransfer-

CallConf with u.v8ssTransferCallConf. (The union member u.ss-

TransferCallConf now represents private data version 9.)

– Add logic to handle private data with event type ATT_SINGLE_STEP_-

TRANSFER_CALL_CONF that may accompany a CSTA Escape Service

confirmation event.

 4. Change acsOpenStream to negotiate PDV 9. See Requesting private data on page

158.

 5. Recompile your application with the AE Services 6.1 TSAPI SDK, which supports

private data versions 2 through 9.

Chapter 5: Avaya TSAPI Service Private Data

174 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Upgrading PDV 7 applications to PDV 8

If you have an existing application that was developed to PDV 7, and you want to take

advantage of PDV 8 functionality, you will need to update your application to take

advantage of the PDV 8 features, and then recompile your application with the PDV 8

SDK. The following steps outline the high level tasks necessary for upgrading a PDV 7

application to PDV 8:

 1. Make sure you have installed the AE Services 4.x or 5.x TSAPI SDK. Whenever

you recompile your PDV 8 applications, you must use the AE Services 4.x or 5.x

TSAPI SDK, which support PDV 8.

 NOTE:

If you are upgrading a PDV 7 application to PDV 8 only as an intermediate step
before upgrading your application to PDV 9, then you may complete this
procedure using the AE Services 6.1 TSAPI SDK. However, your compiled
application may not behave correctly until you have also completed the
procedure ―Upgrading PDV 8 applications to PDV 9‖.

 2. Use Table 25: Private Data Version 8 features, services, and events on page 847

to help you determine what PDV 9 functionality you want to incorporate into your

application.

 3. Make the following coding level changes to your application:

 ATT Failed Event private data:

– Replace all references to event type ATT_FAILED with event type

ATTV7_FAILED. (The event type ATT_FAILED represents private data for

the highest private data version. For this SDK version, the highest private
data version is 8.)

– Replace all references to structure name ATTFailedEvent_t with

structure name ATTV7FailedEvent_t. (For this SDK version, the

structure name ATTFailedEvent_t represents private data version 8.)

– Replace all references to the ATTEvent_t union member u.failedEvent

with u.v7failedEvent. (For this SDK version, the union member

u.failedEvent represents private data version 8.)

– Add logic to handle private data with event type ATT_FAILED that may

accompany a CSTA Failed event.

 Single Step Transfer Call Service:

– Add logic to use this new escape service.

 4. Change acsOpenStream to negotiate PDV 8. See Requesting private data on page

158.

 5. Recompile your application with the AE Services 4.x or 5.x TSAPI SDK, which

supports private data versions 2 through 8.

 Using the private data header files

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 175

Upgrading PDV 6 applications to PDV 7

If you have an existing application that was developed to PDV 6, and you want to take

advantage of PDV 7 functionality, you will need to need to update your application to

take advantage of the PDV 7 features, and then recompile your application with the PDV

7 SDK. The following steps outline the high level tasks necessary for upgrading a PDV 6

application to PDV 7.

 1. Make sure you have installed the AE Services 3.1 TSAPI SDK. Whenever you

recompile your PDV 7 applications, you must use the AE Services 3.1 TSAPI SDK,

which supports PDV 7.

 NOTE:

If you are upgrading a PDV 6 application to PDV 7 only as an intermediate step
before upgrading your application to PDV 8, then you may complete this
procedure using the AE Services 4.x or 5.x TSAPI SDK. However, your
compiled application may not behave correctly until you have also completed the
procedure ―Upgrading PDV 7 applications to PDV 8‖.

 2. Use Table 26: Private Data Version 7 features on page 850 to help you determine

what PDV 7 functionality you want to incorporate into your application.

 3. Make the coding level changes in your application, as follows:

 Wherever your code includes references to the private data function

name for the Route Select service, you must change it to

attV7RouteSelect().

 4. Change acsOpenStream to negotiate PDV 7. See Requesting private data on page

158.

 5. Recompile your application with AE Services 3.1 TSAPI SDK, which supports

private data versions 2 through 7.

Chapter 5: Avaya TSAPI Service Private Data

176 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Maintaining applications that use prior versions of private data

Programming environments that support a mix of applications often include applications

that are written to different private data versions. Although the recommended practice is

to upgrade your applications to the latest private data version, there might be cases

where you need to maintain older applications.

Maintaining a PDV 8 application in a PDV 9 environment

To maintain a PDV 8 application in an AE Services 6.1 PDV 9 environment, you will

need to make coding level changes to your application, and then recompile your

application with the PDV 9 library. The following steps outline the high level tasks

necessary for maintaining a PDV 8 application in a PDV 9 environment.

 1. Make sure you have installed the AE Services 6.1 TSAPI SDK.

 2. Make the coding level changes in your application.

 Change any private data PDU names, along with their corresponding PDU

structure names, and union member names in your application as indicated

in the following table.

If your code contains these PDUs and
structure member names

Rename them as follows:

ATT_ORIGINATED

ATTOriginatedEvent_t

originatedEvent

ATTV8_ORIGINATED

ATTV8OriginatedEvent_t

v8originatedEvent

ATT_SERVICE_INITIATED

ATTServiceInitiatedEvent_t

serviceInitiated

ATTV8_SERVICE_INITIATED

ATTV8ServiceInitiatedEvent_t

v8serviceInitiated

ATT_SINGLE_STEP_TRANSFER_CALL_CONF

ATTSingleStepTransferCallConfEvent_t

ssTransferCallConf

ATTV8_SINGLE_STEP_TRANSFER_CALL_CONF

ATTV8SingleStepTransferCallConfEvent_t

v8ssTransferCallConf

 3. Recompile your application with AE Services 6.1 TSAPI SDK.

Things you do not need to change in your code

If you are maintaining a PDV 8 application in a PDV 9 environment, you do not need to

change the following.

 The open stream request. Your applications will continue to negotiate a PDV 8
stream.

 Using the private data header files

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 177

Maintaining a PDV 7 application in a PDV 8 environment

To maintain a PDV 7 application in an AE Services 4.x PDV 8 environment you will need

to make coding level changes to your application, and then recompile your application

with the PDV 8 library. The following steps outline the high level tasks necessary for

maintaining a PDV 7 application in a PDV 8 environment.

 1. Make sure you have installed the AE Services 4.x or AE Services 5.x TSAPI SDK.

 2. Make the coding level changes in your application.

 Change any private data PDU names, along with their corresponding PDU

structure names, and union member names in your application as indicated

in the following table.

If your code contains these PDUs and
structure member names

Rename them as follows:

ATT_FAILED

ATTFailedEvent_t

failedEvent

ATTV7_FAILED

ATTV7FailedEvent_t

v7failedEvent

 3. Recompile your application with AE Services 4.x or AE Services 5.x TSAPI SDK.

Things you do not need to change in your code

If you are maintaining a PDV 7 application in a PDV 8 environment, you do not need to

change the following.

 The open stream request. Your applications will continue to negotiate a PDV 7
stream.

178 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Recompiling against the same SDK

If you have an existing application that was developed with an earlier version of the

SDK, and you do not foresee making use of capabilities available in newer private data

versions, then you may simply continue to compile your application with the earlier

version of the SDK.

For example if you need to change your program for a bug fix, and you are not changing

any private data related code, you would recompile it with the original SDK. If you

developed the application with the PDV 6 SDK, you would recompile with the PDV 6

SDK, as opposed to a PDV 7 SDK. As long as you use this method to recompile, you do

not have to make any private data related coding changes.

179 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Chapter 6: Call Control Service Group

The Call Control Service Group provides services that enable a TSAPI application to

control a call or connection on Communication Manager. These services are typically

used for placing calls from a device and controlling any connection on a single call as

the call moves through Communication Manager.

Tip:

Although client applications can manipulate switch objects, Call Control Services
do not provide Event Reports as objects change state. To monitor switch object
state changes (that is, to receive CSTA Event Report Services from a switch), a
client must request a CSTA Monitor Service for an object before it requests Call
Control Services for that object.

This chapter includes the following topics:

 Graphical Notation Used in the Diagrams on page 180

 Alternate Call Service on page 190

 Answer Call Service on page 194

 Clear Call Service on page 198

 Clear Connection Service on page 200

 Conference Call Service on page 207

 Consultation Call Service on page 213

 Consultation Direct-Agent Call Service on page 222

 Consultation Supervisor-Assist Call Service on page 232

 Deflect Call Service on page 241

 Hold Call Service on page 245

 Make Call Service on page 249

 Make Direct-Agent Call Service on page 262

 Make Predictive Call Service on page 272

 Make Supervisor-Assist Call Service on page 284

 Pickup Call Service on page 293

 Reconnect Call Service on page 297

 Retrieve Call Service on page 303

 Send DTMF Tone Service (Private Data Version 4 and Later) on page 307

 Selective Listening Hold Service (Private Data Version 5 and Later) on page 314

 Selective Listening Retrieve Service (Private Data Version 5 and Later) on page 320

 Single Step Conference Call Service (Private Data Version 5 and Later) on page 325

 Single Step Transfer Call (Private Data Version 8 and later) on page 334

 Transfer Call Service on page 340

Chapter 6: Call Control Service Group

180 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Graphical Notation Used in the Diagrams

The diagrams in this chapter use the following graphical notation.

 Boxes represent devices and D1, D2, and D3 represent DeviceIDs.

 Circles represent calls and C1, C2, and C3 represent CallIDs.

 Lines represent connections between a call and a device; and C1-D1, C1-D2,
C2- D3, etc., represent ConnectionIDs.

 The absence of a line is equivalent to a connection in the Null connection state.

 Labels in boxes and circles represent call and device instances.

 Labels on lines represent a connection state using the following key:

a = Alerting

c = Connected

f = Failed

h = Held

i = Initiated

q = Queued

a/h = Alerting or Held

* = Unspecified

 Grayed boxes represent devices in a call unaffected by the service or event
report.

 White boxes and circles represent devices and calls affected by the service or
event report.

 The parameters for the function call of the service are indicated in bold italic font.

 Graphical Notation Used in the Diagrams

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 181

Alternate Call Service

The Alternate Call Service provides a compound action of the Hold Call Service followed

by Retrieve Call Service/Answer Call. The Alternate Call Service places an existing

activeCall (C1- D1) at a device to another device (D2) on hold and, in a combined

action, retrieves/establishes a held/delivered otherCall (C2-D1) between the same

device D1 and another device (D3) as the active call. Device D2 can be considered as

being automatically placed on hold immediately prior to the retrieval/establishment of the

held/alerting call to device D3. A successful service request will cause the held/alerting

call to be swapped with the active call.

Answer Call Service

The Answer Call Service is used to answer an incoming call (C1) that is alerting a device

(D1) with the connection alertingCall (C1-D1). This service is typically used with

telephones that have attached speakerphone units to establish the call in a hands-free

operation. The Answer Call Service can also be used to retrieve a call (C1) that is held

by a device (D1) with the connection alertingCall (C1-D1).

Chapter 6: Call Control Service Group

182 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Clear Call Service

This service will cause each device associated with a call (C1) to be released and the

ConnectionIDs (and their components) to be freed.

Clear Connection Service

This service releases the specified connection, call (C1-D3), and its ConnectionID

instance from the designated call (C1). The result is as if the device had hung up on the

call. The phone does not have to be physically returned to the switch hook, which may

result in silence, dial tone, or some other condition. Generally, if only two connections

are in the call, the effect of cstaClearConnection() is the same as cstaClearCall().

Note that it is likely that the call (C1) is not cleared by this service if it is some type of

conference.

 Graphical Notation Used in the Diagrams

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 183

Conference Call Service

This service provides the conference of an existing heldCall (C1-D1) and another

activeCall (C2-D1) at the same device. The two calls are merged into a single call

(C3) and the two connections (C1-D1, C2-D1) at the conferencing device (D1) are

resolved into a single connection, newCall (C3-D1), in the Connected state.

Consultation Call Service

The Consultation Call Service will provide the compound action of the Hold Call Service

followed by Make Call Service. This service places an active activeCall (C1-D1) at a

device (D1) on hold and initiates a new call from the same device D1 to another

calledDevice (D3). The result is the connection newCall (C2-D1).

Chapter 6: Call Control Service Group

184 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Consultation Direct-Agent Call Service

The Consultation Direct-Agent Call Service will provide the compound action of the Hold

Call Service followed by Make Direct-Agent Call Service. This service places an active

activeCall (C1-D1) at a device (D1) on hold and initiates a new direct-agent call from

the same device D1 to another calledDevice (D3). The result is the connection

newCall (C2-D1).

Consultation Supervisor-Assist Call Service

The Consultation Supervisor-Assist Call Service will provide the compound action of the

Hold Call Service followed by Make Supervisor-Assist Call Service. This service places

an active activeCall (C1-D1) at a device (D1) on hold and initiates a new supervisor-

assist call from the same device D1 to another calledDevice (D3). The result is the

connection newCall (C2-D1).

 Graphical Notation Used in the Diagrams

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 185

Deflect Call Service

The Deflect Call Service redirects an alerting call (C1) at a device (D1) with the

connection deflectCall to a new destination, either on-PBX or off-PBX.

Hold Call Service

The Hold Call Service places a call (C1) at a device (D1) with the connection

activeCall (C1-D1) on hold. The effect is as if the specified party depressed the hold

button on the device or flashed the switch hook to locally place the call on hold. The call

is usually in the active state. This service maintains a relationship between the holding

device (D1) and the held call (C1) that lasts until the call is retrieved from the hold status

or until the call is cleared.

Make Call Service

The Make Call Service originates a call between two devices designated by the

application. When the service is initiated, the callingDevice (D1) is prompted (if

necessary), and when that device acknowledges, a call to the calledDevice (D2) is

originated. A call is established as if D1 had called D2, and the result is the connection

newCall (C1-D1).

Chapter 6: Call Control Service Group

186 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Make Direct-Agent Call Service

The Make Direct-Agent Call Service originates a call between two devices: a user station

and an ACD agent logged into a specified split. When the service is initiated, the

callingDevice (D1) is prompted (if necessary), and when that device acknowledges, a

call to the calledDevice (D2) is originated. A call is established as if D1 had called D2,

and the result is the connection newCall (C1-D1).

The Make Direct Agent Call Service should be used only in the following two situations:

 Direct Agent Calls in a non-EAS environment

 Direct Agent Calls in an Expert Agent Selection (EAS) environment only when it
is required to ensure that these calls against a skill other than that skill specified
for these measurements on Avaya Communication Manager for that agent.

Preferably in an EAS environment, Direct Agent Calls can be made using the Make Call

service and specifying an Agent login-ID as the destination device. In this case Direct

Agent Calls will be measured against the skill specified or those measurements on the

Avaya Communication Manager for that agent.

Make Predictive Call Service

The Make Predictive Call Service originates a Switch-Classified call between two

devices. The service attempts to create a new call and establish a connection with the

calledDevice (D2) first. The client is returned with the connection newCall (C1-D2).

 Graphical Notation Used in the Diagrams

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 187

Make Supervisor-Assist Call Service

The Make Supervisor-Assist Call Service originates a supervisor-assist call between two

devices: an ACD agent station and another station (typically a supervisor). When the

service is initiated, the callingDevice (D1) is prompted (if necessary), and when that

device acknowledges, a call to the calledDevice (D2) is originated. A call is established

as if D1 had called D2, and the result is the connection newCall (C1-D1).

Pickup Call Service

The Pickup Call Service takes an alerting call (C1) at a device (D1) with the connection

deflectCall to another on-PBX device.

Reconnect Call Service

The Reconnect Call Service allows a client to disconnect an existing connection

activeCall (C2- D1) from a call and then retrieve/establish a previously held/delivered

connection heldCall (C1- D1).

Chapter 6: Call Control Service Group

188 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Retrieve Call Service

The service restores a held connection heldCall (C1-D1) to the Connected state

(active).

Single Step Conference Call

The Single Step Conference Call service collapses the two steps of the conference call

process into one.

D1

(conferencing)

D1

(conferencing)

C1
D2

D3

(to join)

D2

D3

(to join)

C1

Before After

* * * *

a,c,f,
n,q

By specifying D3 as the destination for a single step conference involving call C1, the

connection D3C1 is created in exactly the same way as if any of the devices already in

C1 had placed a new call to D3 using the Make Call service. The difference is that all of

the devices already in C1 remain in the call.

 Graphical Notation Used in the Diagrams

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 189

Single Step Transfer Call

The Single Step Transfer Call service transfers an existing connection to another device.

This transfer is performed in a single step. This means that the device transferring the

call does not have to place the existing call on hold before issuing the Single Step

Transfer Call service.

The connection being transferred may be in the Alerting, Connected, Held, or Queued

state.

D1

(transferring)

D1

(conferencing)

C1
D2

C3

Before After

* * *

a,c,f,
n,q

(transferred)

D3

(transfer to)

D2

(transferred)

D3

(transfer to)

This service drops D1 from the call it is transferring (C1), places a new call (C3) to the

transfer-to device (D3) and merges the remaining devices from C1 into C3. When the

service request is complete the result appears as if D2 had used the Make Call Service

to call D3 directly. This state of connection D3C3 is the same as described for the called

connection after successful completion of a Make Call service.

Transfer Call Service

This service provides the transfer of a heldCall (C1-D1) with an activeCall (C2-D1)

at the same device (D1). The transfer service merges two calls (C1, C2) with

connections (C3-D2, C3-D3) at a single common device (D1) into one call (C3). Also,

both of the connections to the common device become Null and their connectionIDs

are released. When the transfer completes, the common device (D1) is released from

the calls (C1, C2). A callID, newCall (C3) that specifies the resulting new call for the

transferred call is provided.

Chapter 6: Call Control Service Group

190 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Alternate Call Service

Summary

 Direction: Client to Switch

 Function: cstaAlternateCall()

 Confirmation Event: CSTAAlternateCallConfEvent

 Service Parameters: activeCall, otherCall

 Ack Parameters: noData

 Nak Parameters: universalFailure

Functional Description:

The Alternate Call Service allows a client to put an existing active call (activeCall) on

hold and then either answer an alerting (or bridged) call or retrieve a previously held call

(otherCall) at the same station. It provides the compound action of the Hold Call

Service followed by an Answer Call Service or a Retrieve Call Service.

The Alternate Call Service request is acknowledged (Ack) by the switch if the switch is

able to put the activeCall on hold and either

 connect the specified alerting otherCall, either by forcing the station off-hook

(turning the speakerphone on) or waiting up to five seconds for the user to go off-
hook, or

 retrieve the specified held otherCall.

The request is negatively acknowledged if the switch:

 fails to put activeCall on hold (for example, if the call is in alerting state),

 fails to connect the alerting otherCall (for example, if the call dropped), or

 fails to retrieve the held otherCall.

If the request is negatively acknowledged, the TSAPI Service will attempt to put the

activeCall to its original state, if the original state is known by the TSAPI Service

before the service request. If the original state is unknown, there is no recovery for the

activeCall’s original state.

 Alternate Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 191

Service Parameters:

activeCall [mandatory] A valid connection identifier that indicates the

callID and the station extension (STATIC_ID). The deviceID

in activeCall must contain the station extension of the

controlling device. The local connection state of the call can be
either active or held.

otherCall [mandatory] A valid connection identifier that indicates the

callID and the station extension (STATIC_ID). The deviceID

in otherCall must contain the station extension of the

controlling device. The local connection state of the call can be
alerting, bridged, or held.

Ack Parameters:

 None for this service.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA
Service errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) – An invalid

device identifier or extension is specified in activeCall or

otherCall.

 INVALID_CSTA_CONNECTION_IDENTIFIER (13) – An

incorrect callID, an incorrect deviceID, or dynamic device

ID type is specified in activeCall or otherCall.

 GENERIC_STATE_INCOMPATIBILITY (21) – The

otherCall station user did not go off-hook within five

seconds and is not capable of being forced off-hook.

 INVALID_OBJECT_STATE (22) – The otherCall is not in

the alerting, connected, held, or bridged state.

 INVALID_CONNECTION_ID_FOR_ACTIVE_CALL (23) – The

controlling deviceID in activeCall and otherCall is

different.

 NO_ACTIVE_CALL (24) – The activeCall to be put on

hold is not currently active (in alerting state, for example) so
it cannot be put on hold.

Chapter 6: Call Control Service Group

192 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 NO_CALL_TO_ANSWER (28) – The otherCall was

redirected to coverage within the five- second interval.

 GENERIC_SYSTEM_RESOURCE_AVAILABILITY (31) – The

client attempted to add a seventh party (otherCall) to a

call with six active parties.

 RESOURCE_BUSY (33) – User at the otherCall station is

busy on a call or there is no idle appearance available. It is
also possible that the switch is busy with another CSTA
request. This can happen when two TSAPI Services are
issuing requests (for example, Hold Call, Retrieve Call,
Clear Connection, etc.) to the same device.

 OUTSTANDING_REQUEST_LIMIT_EXCEEDED (44) – The

client attempted to put a third party (activeCall) on hold

(two parties are on hold already) on an analog station.

 MISTYPED_ARGUMENT_REJECTION (74) – DYNAMIC_ID is

specified in activeCall or otherCall.

Detailed Information:

See Detailed Information in the ―Answer Call Service‖ section and Detailed Information

in the ―Hold Call Service‖ section in this chapter.

 Alternate Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 193

Syntax

#include <acs.h>

#include <csta.h>

/* cstaAlternateCall() - Service Request */

RetCode_t cstaAlternateCall(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 ConnectionID_t *activeCall, /* devIDType = STATIC_ID */

 ConnectionID_t *otherCall, /* devIDType = STATIC_ID */

 PrivateData_t *privateData);

/* CSTAAlternateCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ALTERNATE_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAAlternateCallConfEvent_t alternateCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAAlternateCallConfEvent_t {

 Nulltype null;

} CSTAAlternateCallConfEvent_t;

Chapter 6: Call Control Service Group

194 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Answer Call Service

Summary

 Direction: Client to Switch

 Function: cstaAnswerCall()

 Confirmation Event: CSTAAnswerCallConfEvent

 Service Parameters: alertingCall

 Ack Parameters: noData

 Nak Parameters: universalFailure

Functional Description

The Answer Call Service allows a client application to request to answer a ringing or

bridged call (alertingCall) present at a station. Answering a ringing or bridged call

means to connect a call by forcing the station off-hook if the user is on-hook, or cutting

the call through to the headset or handset if the user is off-hook (listening to dial tone or

being in the off-hook idle state). The effect is as if the station user selected the call

appearance of the alerting or bridged call and went off-hook.

The deviceID in alertingCall must contain the station extension of the endpoint to be

answered on the call. Typically, the application will obtain the connection identifier of the

alerting call from a Delivered Event Report received by the application prior to this

making request.

The Answer Call Service can be used to answer a call present at any station type (for

example, analog, DCP, H.323, and SIP).

The Answer Call Service request is acknowledged (Ack) by the switch if the switch is

able to connect the specified call either by forcing the station off-hook (turning on the

speakerphone) or waiting up to five seconds for the user to go off-hook. Answering a call

that is already connected or in the held state will result in a positive acknowledgment

and, if the call was held, the call becomes connected.

Service Parameters:

alertingCall [mandatory] A valid connection identifier that indicates the callID and the

station extension (STATIC_ID).

Ack Parameters:

 None for this service.

 Answer Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 195

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this event

may contain the following error values, or one of the error values
described in Table 20: Common switch-related CSTA Service errors --
universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier or extension is specified in alertingCall.

 INVALID_CSTA_CONNECTION_IDENTIFIER (13) An incorrect

callID or an incorrect deviceID is specified.

 GENERIC_STATE_INCOMPATIBILITY (21) The station user did not

go off-hook within five seconds and is not capable of being forced
off-hook.

 INVALID_OBJECT_STATE (22) The specified connection at the

station is not in the alerting, connected, held, or bridged state.

 NO_CALL_TO_ANSWER (28) The call was redirected to coverage

within the five-second interval.

 GENERIC_SYSTEM_RESOURCE_AVAILABILITY (31) The client

attempted to add a seventh party to a call with six active parties.

 RESOURCE_BUSY (33) The user at the station is busy on a call or

there is no idle appearance available.

 MISTYPED_ARGUMENT_REJECTION (74) DYNAMIC_ID is specified

in alertingCall.

Detailed Information:

 Multifunction Station Operation - For a multifunction station user, this service will
be successful in the following situations:

– The user‘s state is being alerted on-hook. For example, the user can either
be forced off-hook or is manually taken off-hook within five seconds of the
request. The switch will select the ringing call appearance.

– The user is off-hook idle. The switch will select the alerting call appearance
and answer the call.

– The user is off-hook listening to dial tone. The switch will drop the dial tone
call appearance and answer the alerting call on the alerting call appearance.

A held call will be answered (retrieved) on the held call appearance, provided
that the user is not busy on another call. This service is not recommended to

retrieve a held call. The cstaRetrieveCall() Service should be used instead.

A bridged call will be answered on the bridged call appearance, provided that the
user is not busy on another call, or the exclusion feature is not active for the call.

Chapter 6: Call Control Service Group

196 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

An ACB, PCOL, or TEG call will be answered on a free call appearance,
provided that the user is not busy on another call.

If the station is active on a call (talking), listening to reorder/intercept tone, or
does not have an idle call appearance (for ACB, ICOM, PCOL, or TEG calls) at
the time the switch receives the Answer Call Service request, the request will be
denied.

 Analog Station Operation - For an analog station user, the service will be
successful only under the following circumstances:

– The user is being alerted on-hook (and is manually taken off-hook within five
seconds).

– The user is off-hook idle (or listening to dial tone) with a call waiting. The
switch will drop the dial tone (if any) and answer the call waiting call.

– The user is off-hook idle (or listening to dial tone) with a held call (soft or
hard). The switch will drop the dial tone (if any) and answer the specified held
call (there could be two held calls at the set, one soft-held and one hard-
held).

An analog station may only have one or two held calls when invoking the Answer
Call Service on a call. If there are two held calls, one is soft-held, the other hard-
held. Answer Call Service on any held call (in the absence of another held call
and with an off- hook station) will reset the switch-hook flash counter to zero, as if
the user had manually gone on-hook and answered the alerting/held call. Answer
Call Service on a hard-held call (in the presence of another, soft-held call and
with an off-hook station) will leave the switch-hook flash counter unchanged.
Thus, the user may use subsequent switch-hook flashes to effect a conference
operation between the previously soft-held call and the active call (reconnected
from the hard-held call). Answer Call Service on a hard-held call in the presence
of another soft-held call and with the station on-hook will be denied. This is
consistent with manual operation because when the user goes on-hook with two
held calls, one soft-held and one hard-held, the user is again alerted, goes off-
hook, and the soft-held call is retrieved.

If the station is active on a call (talking) or listening to reorder/intercept tone at
the time the Answer Call Service is requested, the request will be denied

(RESOURCE_BUSY).

 Answer Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 197

Syntax

#include <acs.h>

#include <csta.h>

/* cstaAnswerCall() - Service Request */

RetCode_t cstaAnswerCall(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 ConnectionID_t *alertingCall, /* devIDType = STATIC_ID */

 PrivateData_t *privateData);

/* CSTAAnswerCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ANSWER_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAAnswerCallConfEvent_t answerCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAAnswerCallConfEvent_t {

 Nulltype null;

} CSTAAnswerCallConfEvent_t;

Chapter 6: Call Control Service Group

198 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Clear Call Service

Summary

 Direction: Client to Switch

 Function: cstaClearCall()

 Confirmation Event: CSTAClearCallConfEvent

 Service Parameters: call

 Ack Parameters: noData

 Nak Parameters: universalFailure

Functional Description:

The Clear Call Service disconnects all connections from the specified call and

terminates the call itself. All connection identifiers previously associated with the call are

no longer valid.

Service Parameters:

call [mandatory] A valid connection identifier that indicates the call to be
cleared. The deviceID of call is optional. If it is specified, it is ignored.

Ack Parameters:

 None for this service.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 NO_ACTIVE_CALL (24) The callID of the connectionID

specified in the request is invalid.

Detailed Information:

 Switch operation - After a successful Clear Call Service request:

– Every station dropped will be in the off-hook idle state.

– Any lamps associated with the call are off.

– Displays are cleared.

 Clear Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 199

– Auto-answer analog stations do not receive dial tone.

– Manual-answer analog stations receive dial tone.

Syntax

#include <acs.h>

#include <csta.h>

/* cstaClearCall() - Service Request */

RetCode_t cstaClearCall(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 ConnectionID_t *call, /* deviceID, devIDType ignored */

 PrivateData_t *privateData);

/* CSTAClearCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_CLEAR_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAClearCallConfEvent_t clearCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAClearCallConfEvent_t {

 Nulltype null;

} CSTAClearCallConfEvent_t;

Chapter 6: Call Control Service Group

200 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Clear Connection Service

Summary

 Direction: Client to Switch

 Function: cstaClearConnection()

 Confirmation Event: CSTAClearConnectionConfEvent

 Private Data Functions: attV6ClearConnection() (private data versions 6 and

later), attClearConnection() (private data versions 2 and later)

 Service Parameters: call

 Private Parameters: dropResource, userInfo

 Ack Parameters: noData

 Nak Parameters: universalFailure

Functional Description

The Clear Connection Service disconnects the specified device from the designated call.

The connection is left in the Null state. The connection identifier is no longer associated

with the call. The party to be dropped may be a station or a trunk.

A connection in the alerting state cannot be cleared.

Service Parameters

call [mandatory] A valid connection identifier that indicates the endpoint to be
disconnected.

 Clear Connection Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 201

Private Parameters:

dropResource [optional] Specifies the resource to be dropped from the call. The

available resources are DR_CALL_CLASSIFIER and DR_TONE_GENERATOR.

The tone generator is any Communication Manager applied denial tone
that is timed by the switch.

userInfo [optional] Contains user-to-user information. This parameter allows an
application to associate caller information, up to 32 (private data versions
2-5) or 96 (private data versions 6 and later) bytes, with a call. This
information may be a customer number, credit card number, alphanumeric
digits, or a binary string.

It is propagated with the call when the call is dropped and passed to the

application in a Connection Cleared Event Report. A NULL indicates this

parameter is not present.

 NOTE:

An application using private data version 5 or earlier can only
receive a maximum of 32 bytes of data in userInfo, regardless of
the size of the data sent by the switch.

 The following UUI protocol types are supported:

 UUI_NONE - There is no data provided in the data parameter.

 UUI_USER_SPECIFIC - The content of the data parameter is a binary

string. The correct size (maximum of 32 or 96 bytes) of data must be
specified in the size parameter.

 UUI_IA5_ASCII - The content of the data parameter must be a null-

terminated IA5 (ASCII) character string. The correct size (maximum of
32 or 96 bytes excluding the null terminator) of data must be specified
in the size parameter.

Ack Parameters:

 None for this service.

Chapter 6: Call Control Service Group

202 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 GENERIC_UNSPECIFIED (0) The specified data provided for the

userInfo parameter exceeds the maximum allowable size. For

private data versions 2-5, the maximum length of userInfo is 32

bytes. Beginning with private data version 6, the maximum length

of userInfo was increased to 96 bytes. See the description of the

userInfo parameter.

 INVALID_OBJECT_STATE (22) The specified connection at the

station is not currently active (in alerting or held state) so it cannot
be dropped.

 NO_ACTIVE_CALL (24) The connectionID contained in the

request is invalid. CallID may be incorrect.

 NO_CONNECTION_TO_CLEAR (27) The connectionID contained

in the request is invalid. CallID may be correct, but deviceID is

wrong.

 RESOURCE_BUSY (33) The switch is busy with another CSTA

request. This can happen when two AE Services servers are
issuing requests (for example, Hold Call, Retrieve Call, Clear
Connection, etc.) to the same device.

 Clear Connection Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 203

Detailed Information:

 Analog Stations - The auto-answer analog stations do not receive dial tone after
a Clear Connection request. The manual answer analog stations receive dial
tone after a Clear Connection request.

 Bridged Call Appearance - Clear Connection Service is not permitted on parties
in the bridged state and may also be more restrictive if the principal of the bridge
has an analog station or the exclusion option is in effect from a station associated
with the bridge or PCOL.

 Drop Button Operation - The operation of this button is not changed with the
Clear Connection Service.

 Switch Operation - When a party is dropped from an existing conference call with
three or more parties (directly connected to the switch), the other parties remain
on the call. Generally, if this was a two-party call, the entire call is dismantled.
This is the case for typical voice processing. There is a Communication Manager
feature "Return VDN Destination" where this is not true. In general, this feature
will not be encountered in typical call processing

 NOTE:

Only connected parties can be dropped from a call. Held, bridged, and alerting
parties cannot be dropped by the Clear Connection Service.

 Temporary Bridged Appearance - The Clear Connection Service request is
denied for a temporary bridged appearance that is not connected on the call.

Chapter 6: Call Control Service Group

204 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaClearConnection() - Service Request */

RetCode_t cstaClearConnection(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 ConnectionID_t *call, /* devIDType = STATIC_ID or

 * DYNAMIC_ID */

 PrivateData_t *privateData);

/* CSTAClearConnectionConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_CLEAR_CONNECTION_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAClearConnectionConfEvent_t clearConnection;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAClearConnectionConfEvent_t {

 Nulltype null;

} CSTAClearConnectionConfEvent_t;

 Clear Connection Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 205

Private Data Version 6 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attV6ClearConnection() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attV6ClearConnection (

 ATTPrivateData_t *privateData,

 ATTDropResource_t dropResource, /* DR_NONE indicates

 * no dropResource

 * specified */

 ATTUserToUserInfo_t *userInfo); /* NULL indicates

 * no userInfo

 * specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTDropResource_t {

 DR_NONE = -1, /* indicates not specified */

 DR_CALL_CLASSIFIER = 0, /* call classifier to be dropped */

 DR_TONE_GENERATOR = 1 /* tone generator to be dropped */

} ATTDropResource_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

Chapter 6: Call Control Service Group

206 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 2-5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attClearConnection() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attClearConnection (

 ATTPrivateData_t *privateData,

 ATTDropResource_t dropResource, /* DR_NONE indicates

 * no dropResource

 * specified */

 ATTV5UserToUserInfo_t *userInfo); /* NULL indicates

 * no userInfo

 * specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTDropResource_t {

 DR_NONE = -1, /* indicates not specified */

 DR_CALL_CLASSIFIER = 0, /* call classifier to be dropped */

 DR_TONE_GENERATOR = 1 /* tone generator to be dropped */

} ATTDropResource_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

 Conference Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 207

Conference Call Service

Summary

 Direction: Client to Switch

 Function: cstaConferenceCall()

 Confirmation Event: CSTAConferenceCallConfEvent

 Private Data Confirmation Event: ATTConferenceCallConfEvent (private data

version 5 and later)

 Service Parameters: heldCall, activeCall

 Ack Parameters: newCall, connList

 Ack Private Parameters: ucid

 Nak Parameters: universalFailure

Functional Description

This service provides the conference of an existing held call (heldCall) and another

active or proceeding call (alerting, queued, held, or connected) (activeCall) at a

device, provided that heldCall and activeCall are not both in the alerting state at the

controlling device. The two calls are merged into a single call and the two connections at

the conference-controlling device are resolved into a single connection in the connected

state. The pre-existing CSTA connectionID associated with the device creating the

conference is released, and a new callID for the resulting conferenced call is provided.

Service Parameters:

heldCall [mandatory] Must be a valid connection identifier for the call that is on
hold at the controlling device and is to be conferenced with the

activeCall. The deviceID in heldCall must contain the station

extension of the controlling device.

activeCall [mandatory] Must be a valid connection identifier for the call that is
active or proceeding at the controlling device and that is to be

conferenced with the heldCall. The deviceID in activeCall must

contain the station extension of the controlling device.

Chapter 6: Call Control Service Group

208 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Ack Parameters:

newCall [mandatory - partially supported] A connection identifier specifies the
resulting new call identifier for the calls that were conferenced at the
conference-controlling device. This connection identifier replaces the
two previous call identifiers at that device.

connList [optional - supported] Specifies the devices on the resulting newCall.

This includes a count of the number of devices in the new call and a

list of up to six connectionIDs and up to six deviceIDs that define

each connection in the call.

 If a device is on-PBX, the extension is specified. The extension
consists of station or group extensions. Group extensions are
provided when the conference is to a group and the conference
completes before the call is answered by one of the group
members (TEG, PCOL, hunt group, or VDN extension). It may
contain alerting extensions.

 The static deviceID of a queued endpoint is set to the split

extension of the queue.

 If a party is off-PBX, then its static device identifier or its previously
assigned trunk identifier is specified.

Ack Private Parameters:

ucid [optional] Specifies the Universal Call ID (UCID) of newCall. The UCID

is a unique call identifier across switches and the network. A valid

UCID is a null-terminated ASCII character string. If there is no UCID

associated with this call, the ucid contains the ATT_NULL_UCID (a 20-

character string of all zeros). This parameter is supported by private
data version 5 and later only.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier or extension is specified in heldCall or activeCall.

 INVALID_CSTA_CONNECTION_IDENTIFIER (13) The controlling

deviceID in heldCall or activeCall has not been specified

correctly.

 Conference Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 209

 GENERIC_STATE_INCOMPATIBILITY (21) Both calls are alerting,

both calls are being service-observed, or an active call is in a
vector processing stage.

 INVALID_OBJECT_STATE (22) The connections specified in the

request are not in valid states for the operation to take place. For
example, it does not have one call active and one call in the held
state as required.

 INVALID_CONNECTION_ID_FOR_ACTIVE_CALL (23) The callID

or deviceID in activeCall or heldCall has not been specified

correctly.

 RESOURCE_BUSY (33) The switch is busy with another CSTA

request. This can happen when two AE Services servers are
issuing requests (for example, Hold Call, Retrieve Call, Clear
Connection, Conference Call, etc.) to the same device.

 CONFERENCE_MEMBER_LIMIT_EXCEEDED (38) The request

attempted to add a seventh party to an existing six-party
conference call. If a station places a six-party conference call on
hold and another party adds yet another station (so that there are
again six active parties on the call - the Communication Manager
limit), then the station with the call on hold will not be able to
retrieve the call.

 MISTYPED_ARGUMENT_REJECTION (74) DYNAMIC_ID is specified

in heldCall or activeCall.

Detailed Information:

 Analog Stations - Conference Call Service will only be allowed if one call is held
and the second is active (talking). Calls on hard-hold or alerting cannot be
affected by a Conference Call Service. An analog station will support Conference
Call Service even if the ―switch-hook flash‖ field on the Communication Manager
system administered form is set to ―no‖. A ―no‖ in this field disables the switch-
hook flash function, meaning that a user cannot conference, hold, or transfer a
call from his/her phone set, and cannot have the call waiting feature administered
on the phone set.

 Bridged Call Appearance - Conference Call Service is not permitted on parties in
the bridged state and may also be more restrictive if the principal of the bridge
has an analog station or the exclusion option is in effect from a station associated
with the bridge or PCOL.

Chapter 6: Call Control Service Group

210 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaConferenceCall() - Service Request */

RetCode_t cstaConferenceCall(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 ConnectionID_t *heldCall, /* devIDType = STATIC_ID */

 ConnectionID_t *activeCall, /* devIDType = STATIC_ID */

 PrivateData_t *privateData);

/* CSTAConferenceCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_CONFERENCE_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAConferenceCallConfEvent_t conferenceCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct ExtendedDeviceID_t {

 DeviceID_t deviceID;

 DeviceIDType_t deviceIDType;

 DeviceIDStatus_t deviceIDStatus;

} ExtendedDeviceID_t;

typedef ExtendedDeviceID_t SubjectDeviceID_t;

typedef struct Connection_t {

 ConnectionID_t party;

 Conference Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 211

 SubjectDeviceID_t staticDevice;

} Connection_t;

typedef struct ConnectionList_t {

 unsigned int count;

 Connection_t *connection;

} ConnectionList_t;

typedef struct CSTAConferenceCallConfEvent_t {

 ConnectionID_t newCall;

 ConnectionList_t connList;

} CSTAConferenceCallConfEvent_t;

Chapter 6: Call Control Service Group

212 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 5 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * ATTConferenceCallConfEvent - Service Response Private Data

 * (for private data version 5 and later)

 */

typedef struct

{

 ATTEventType_t eventType; /* ATT_CONFERENCE_CALL_CONF */

 union

 {

 ATTConferenceCallConfEvent_t conferenceCall;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTConferenceCallConfEvent_t

{

 ATTUCID_t ucid;

} ATTConferenceCallConfEvent_t;

 Consultation Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 213

Consultation Call Service

Summary

 Direction: Client to Switch

 Function: cstaConsultationCall()

 Confirmation Event: CSTAConsultationCallConfEvent

 Private Data Function: attV6ConsultationCall() (private data version 6 and

later), attConsultationCall() (private data version 2 and later)

 Private Data Confirmation Event: ATTConsultationCallConfEvent (private data

version 5 and later)

 Service Parameters: activeCall, calledDevice

 Private Parameters: destRoute, priorityCalling, userInfo

 Ack Parameters: newCall

 Ack Private Parameters: ucid

 Nak Parameters: universalFailure

Functional Description:

The Consultation Call Service places an existing active call (activeCall) at a device on

hold and initiates a new call (newCall) from the same controlling device. This service

provides the compound action of the Hold Call Service followed by Make Call Service.

The Consultation Call service has the important special property of associating the

Communication Manager Original Call Information (OCI) from the call being placed on

hold with the call being originated. This allows an application running at the consultation

desktop to pop a screen using information associated with the call placed on hold. This

is an important operation in call centers where an agent calls a specialist for consultation

about a call in progress.

The Consultation Call Service request is acknowledged (Ack) by the switch if the switch

is able to put the activeCall on hold and initiate a new call.

The request is negatively acknowledged if the switch:

 fails to put activeCall on hold (for example, call is in alerting state), or

 fails to initiate a new call (for example, invalid parameter).

If the request is negatively acknowledged, the TSAPI Service will attempt to put the

activeCall to its original state, if the original state is known by the TSAPI Service

before the service request. If the original state is unknown, there is no recovery for the

activeCall’s original state.

Chapter 6: Call Control Service Group

214 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Service Parameters:

activeCall [mandatory] A valid connection identifier that indicates the connection to
be placed on hold. This party must be in the active (talking) state or

already held. The device associated with the activeCall must be a

station. If the party specified in the request refers to a trunk device, the

request will be denied. The deviceID in activeCall must contain the

station extension of the controlling device.

calledDevice [mandatory] Must be a valid on-PBX extension or off-PBX number. On-
PBX extension may be a station extension, VDN, split, hunt group,

announcement extension, or logical agent‘s login ID. The calledDevice

may include TAC/ARS/AAR information for off-PBX numbers. Trunk
Access Code, Authorization Codes, and Force Entry of Account Codes

can be specified with the calledDevice as if they were entered from the

voice terminal using the keypad.

Private Parameters:

destRoute [optional] Specifies the TAC/ARS/AAR information for an off-PBX

destination, if the information is not included in the calledDevice. A NULL

indicates this parameter is not specified. A TAC should not be used when
the trunk is an ISDN trunk.

priority-

Calling
[mandatory] Specifies the priority of the call. Values are On (TRUE) or Off

(FALSE). If On is selected, a priority call is attempted for an on-PBX

calledDevice. Note that Communication Manager does not permit

priority calls to certain types of extensions (such as VDNs).

 Consultation Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 215

userInfo [optional] Contains user-to-user information. This parameter allows an
application to associate caller information, up to 32 (private data versions
2-5) or 96 (private data versions 6 and later) bytes, with a call. This
information may be a customer number, credit card number,
alphanumeric digits, or a binary string.

It is propagated with the call whether the call is made to a destination on
the local switch or to a destination on a remote switch over PRI trunks.
The switch sends the UUI in the ISDN SETUP message over the PRI
trunk to establish the call. The local and the remote switch include the

UUI in the Delivered Event Report and in the CSTARouteRequestEvent

to the application. A NULL indicates this parameter is not present.

 NOTE:

An application using private data version 5 or earlier can only
receive a maximum of 32 bytes of data in userInfo, regardless of
the size of the data sent by the switch.

The following UUI protocol types are supported:

 UUI_NONE - There is no data provided in the data parameter.

 UUI_USER_SPECIFIC - The content of the data parameter is a binary

string. The correct size (maximum of 32 or 96 bytes) of data must be
specified in the size parameter.

 UUI_IA5_ASCII - The content of the data parameter must be a null-

terminated IA5 (ASCII) character string. The correct size (maximum
of 32 or 96 bytes excluding the null terminator) of data must be
specified in the size parameter.

Ack Parameters:

newCall [mandatory] A connection identifier indicates the connection between the

controlling device and the new call. The newCall parameter contains the

callID of the call and the station extension of the controlling device.

Ack Private Parameters:

ucid [optional] Specifies the Universal Call ID (UCID) of newCall. The UCID is a

unique call identifier across switches and the network. A valid UCID is a

null-terminated ASCII character string. If there is no UCID associated with

this call, the ucid contains the ATT_NULL_UCID (a 20-character string of

all zeros). This parameter is supported by private data version 5 and later
only.

Chapter 6: Call Control Service Group

216 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 GENERIC_UNSPECIFIED (0) The specified data provided for the

userInfo parameter exceeds the maximum allowable size. For

private data versions 2-5, the maximum length of userInfo was

32 bytes. Beginning with private data version 6, the maximum

length of userInfo was increased to 96 bytes. See the

description of the userInfo parameter.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier or extension is specified in activeCall.

 INVALID_CSTA_CONNECTION_IDENTIFIER (13) The connection

identifier contained in the request is invalid or does not
correspond to a station.

 NO_ACTIVE_CALL (24) The party to be put on hold is not

currently active (for example, in alerting state) so it cannot be put
on hold.

 GENERIC_STATE_INCOMPATIBILITY (21) (CS0/18) The

originator does not go off-hook within five seconds after
originating the call and cannot be forced off-hook.

 RESOURCE_BUSY (33) The switch is busy with another CSTA

request. This can happen when two AEI Services servers are
issuing requests (for example, Hold Call, Retrieve Call, Clear
Connection, etc.) to the same device.

 OUTSTANDING_REQUEST_LIMIT_EXCEEDED (44) The client

attempted to put a third party (two parties are on hold already) on
hold at an analog station.

 MISTYPED_ARGUMENT_REJECTION (74) DYNAMIC_ID is specified

in activeCall.

Detailed Information:

See Detailed Information in the ―Hold Call Service‖ section and Detailed Information in

the ―Make Call Service‖ section.

 Consultation Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 217

Syntax

#include <acs.h>

#include <csta.h>

/* cstaConsultationCall() - Service Request */

RetCode_t cstaConsultationCall(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 ConnectionID_t *activeCall, /* devIDType = STATIC_ID */

 DeviceID_t *calledDevice,

 PrivateData_t *privateData);

/* CSTAConsultationCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_CONSULTATION_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAConsultationCallConfEvent_t consultationCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAConsultationCallConfEvent_t {

 ConnectionID_t newCall;

} CSTAConsultationCallConfEvent_t;

Chapter 6: Call Control Service Group

218 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 6 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attV6ConsultationCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attV6ConsultationCall(

 ATTPrivateData_t *privateData,

 DeviceID_t *destRoute, /* NULL indicates not

 * specified */

 Boolean priorityCalling, /* TRUE = On, FALSE = Off */

 ATTUserToUserInfo_t *userInfo); /* NULL indicates no

 * userInfo specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

/*

 * ATTConsultationCallConfEvent - Service Response Private Data

 * (private data version 5 and later)

 */

typedef struct

 Consultation Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 219

{

 ATTEventType_t eventType; /* ATT_CONSULTATION_CALL_CONF */

 union

 {

 ATTConsultationCallConfEvent_t consultationCall;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTConsultationCallConfEvent_t

{

 ATTUCID_t ucid;

} ATTConsultationCallConfEvent_t;

Chapter 6: Call Control Service Group

220 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 2-5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attConsultationCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attConsultationCall(

 ATTPrivateData_t *privateData,

 DeviceID_t *destRoute, /* NULL indicates not

 * specified */

 Boolean priorityCalling; /* TRUE = On, FALSE = Off */

 ATTV5UserToUserInfo_t *userInfo); /* NULL indicates no

 * userInfo specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

/*

 * ATTConsultationCallConfEvent - Service Response Private Data

 * (private data version 5 and later)

 */

typedef struct

{

 ATTEventType_t eventType; /* ATT_CONSULTATION_CALL_CONF */

 Consultation Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 221

 union

 {

 ATTConsultationCallConfEvent_t consultationCall;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTConsultationCallConfEvent_t

{

 ATTUCID_t ucid;

} ATTConsultationCallConfEvent_t;

Chapter 6: Call Control Service Group

222 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Consultation Direct-Agent Call Service

Summary

 Direction: Client to Switch

 Function: cstaConsultationCall()

 Confirmation Event: CSTAConsultationCallConfEvent

 Private Data Function: attV6DirectAgentCall() (private data version 6 and

later), attDirectAgentCall() (private data version 2 and later)

 Private Data Confirmation Event: ATTConsultationCallConfEvent (private

data version 5 and later)

 Service Parameters: activeCall, calledDevice

 Private Parameters: split, priorityCalling, userInfo

 Ack Parameters: newCall

 Ack Private Parameters: ucid

 Nak Parameters: universalFailure

Functional Description:

The Consultation Direct-Agent Call Service places an existing active call (activeCall)

at a device on hold and initiates a new direct-agent call (newCall) from the same

controlling device. This service provides the compound action of the Hold Call Service

followed by Make Direct-Agent Call Service.

Like the Consultation Call Service, the Consultation Direct-Agent Call service has the

important special property of associating the Communication Manager Original Call

Information (OCI) from the call being placed on hold with the call being originated. This

allows an application running at the consultation desktop to pop a screen using

information associated with the call placed on hold. This is an important operation in call

centers where an agent calls a specialist for consultation about a call in progress.

The Consultation Direct-Agent Call Service request is acknowledged by the switch if the

switch is able to put the activeCall on hold and initiates a new direct-agent call.

The request is negatively acknowledged if the switch:

 Fails to put activeCall on hold (for example, call is in alerting state), or

 Fails to initiate a new direct-agent call (for example, invalid parameter).

If the request is negatively acknowledged, the TSAPI Service will attempt to put the

activeCall into the active state, if it was in the active or held state.

The Consultation Direct-Agent Call Service should be used only in the following two

situations:

 Consultation Direct-Agent Calls in a non-EAS environment

 Consultation Direct-Agent Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 223

 Consultation Direct-Agent Calls in an Expert Agent Selection (EAS) environment
only when it is required to ensure that these calls against a skill other than that
skill specified for these measurements on the Communication Manager for that
agent.

Preferably in an EAS environment, Consultation Direct-Agent Calls can be made using

the Make Call service and specifying an Agent login-ID as the destination device. In this

case Consultation Direct-Agent Calls will be measured against the skill specified or

those measurements on the Communication Manager for that agent.

Service Parameters:

activeCall [mandatory] A valid connection identifier that indicates the connection to
be placed on hold. This party must be in the active (talking) state or

already held. The device associated with the activeCall must be a

station. If the party specified in the request refers to a trunk device, the

request will be denied. The deviceID in activeCall must contain the

station extension of the controlling device.

calledDevice [mandatory] Must be a valid ACD agent extension. The agent at
calledDevice must be logged in.

Chapter 6: Call Control Service Group

224 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Parameters:

split [mandatory] Contains a valid split extension. The agent at

calledDevice must be logged into this split.

priorityCalling [mandatory] Specifies the priority of the call. Values are On (TRUE) or

Off (FALSE). If On is selected, a priority call is attempted for an on-PBX

calledDevice. Note that Communication Manager does not permit

priority calls to certain types of extensions (such as VDNs).

userInfo [optional] Contains user-to-user information. This parameter allows the
application to associate caller information, up to 32 (private data
versions 2-5) or 96 (private data versions 6 and later) bytes, with a call.
It may be a customer number, credit card number, alphanumeric digits,
or a binary string.

It is propagated with the call whether the call is made to a destination
on the local switch or to a destination on a remote switch over PRI
trunks. The switch sends the UUI in the ISDN SETUP message over
the PRI trunk to establish the call. The local and the remote switch
include the UUI in the Delivered Event Report and in the

CSTARouteRequestEvent to the application. A NULL indicates this

parameter is not present.

 NOTE:

An application using private data version 5 or earlier can only
receive a maximum of 32 bytes of data in userInfo, regardless
of the size of the data sent by the switch.

The following UUI protocol types are supported:

 UUI_NONE - There is no data provided in the data parameter.

 UUI_USER_SPECIFIC - The content of the data parameter is a

binary string. The correct size (maximum of 32 or 96 bytes) of data
must be specified in the size parameter.

 UUI_IA5_ASCII - The content of the data parameter must be a null-

terminated IA5 (ASCII) character string. The correct size (maximum
of 32 or 96 bytes excluding the null terminator) of data must be
specified in the size parameter.

Ack Parameters:

newCall [mandatory] A connection identifier indicates the connection between the

controlling device and the new call. The newCall parameter contains the

callID of the call and the station extension of the controlling device.

 Consultation Direct-Agent Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 225

Ack Private Parameters:

ucid [optional] Specifies the Universal Call ID (UCID) of newCall. The UCID is

a unique call identifier across switches and the network. A valid UCID is a

null-terminated ASCII character string. If there is no UCID associated with

this call, the ucid contains the ATT_NULL_UCID (a 20-character string of

all zeros). This parameter is supported by private data version 5 and
later only.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 GENERIC_UNSPECIFIED (0) The specified data provided for the

userInfo parameter exceeds the maximum allowable size. For

private data versions 2-5, the maximum length of userInfo was

32 bytes. Beginning with private data version 6, the maximum

length of userInfo was increased to 96 bytes. See userInfo on

page 224.

 GENERIC_UNSPECIFIED (0) (CS3/11, CS3/15) Agent is not a

member of the split or agent is not currently logged into the split.

 VALUE_OUT_OF_RANGE (3) (CS0/100, CS0/96) The split

contains an invalid value, or invalid information element contents
were detected.

 INVALID_CALLING_DEVICE (5) (CS3/27) The callingDevice is

out of service or not administered correctly on the switch.

 PRIVILEGE_VIOLATION_ON_CALLED_DEVICE (9) (CS0/21,

CS0/52) The COR check for completing the call failed, or the call

was attempted over a trunk that the originator has restricted from
use.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier or extension is specified in activeCall, the

calledDevice is an invalid station extension, or the split does not

contain a valid hunt group extension.

 INVALID_CSTA_CONNECTION_IDENTIFIER (13) The connection

identifier contained in the request is invalid or does not correspond
to a station.

 INVALID_DESTINATION (14) (CS3/24) The call was answered

by an answering machine.

Chapter 6: Call Control Service Group

226 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 INVALID_OBJECT_TYPE (18) (CS0/58, CS3/80) There is

incompatible bearer service for the originating or destination
address. For example, the originator is administered as a data
hotline station or the destination is a data station. Call options are
incompatible with this service.

 GENERIC_STATE_INCOMPATIBILITY (21) (CS0/18) The

originator does not go off-hook within five seconds after originating
the call and cannot be forced off-hook.

 INVALID_OBJECT_STATE (22) (CS0/98) Request (message) is

incompatible with call state

 NO_ACTIVE_CALL (24) The party to be put on hold is not currently

active (for example, in alerting state) so it cannot be put on hold.

 RESOURCE_BUSY (33) (CS0/17) The user is busy on another call

and cannot originate this call. The switch is busy with another
CSTA request. This can happen when two AE Services servers
are issuing requests (for example, Hold Call, Retrieve Call, Clear
Connection, Make Call, etc.) for the same device.

 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILTY (41) (CS0/50)

Service or option not subscribed/provisioned (Answering Machine
Detection must be enabled).

 OUTSTANDING_REQUEST_LIMIT_EXCEEDED (44) The client

attempted to put a third party (two parties are on hold already) on
hold on an analog station.

 MISTYPED_ARGUMENT_REJECTION (74) DYNAMIC_ID is specified

in activeCall.

Detailed Information:

See Detailed Information in the "Hold Call Service" section and Detailed Information in

the "Make Direct-Agent Call Service" section in this chapter.

 Consultation Direct-Agent Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 227

Syntax

#include <acs.h>

#include <csta.h>

/* cstaConsultationCall() - Service Request */

RetCode_t cstaConsultationCall (

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 ConnectionID_t *activeCall, /* devIDType = STATIC_ID */

 DeviceID_t *calledDevice,

 PrivateData_t *privateData);

/* CSTAConsultationCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_CONSULTATION_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAConsultationCallConfEvent_t consultationCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAConsultationCallConfEvent_t {

 ConnectionID_t newCall;

} CSTAConsultationCallConfEvent_t;

Chapter 6: Call Control Service Group

228 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 6 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attV6DirectAgentCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attV6DirectAgentCall(

 ATTPrivateData_t *privateData,

 DeviceID_t *split, /* NULL indicates not

 * specified */

 Boolean priorityCalling, /* TRUE = On, FALSE = Off */

 ATTUserToUserInfo_t *userInfo); /* NULL indicates no

 * userInfo specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

/*

 * ATTConsultationCallConfEvent - Service Response Private Data

 * (private data version 5 and later)

 */

typedef struct

 Consultation Direct-Agent Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 229

{

 ATTEventType_t eventType; /* ATT_CONSULTATION_CALL_CONF */

 union

 {

 ATTConsultationCallConfEvent_t consultationCall;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTConsultationCallConfEvent_t

{

 ATTUCID_t ucid;

} ATTConsultationCallConfEvent_t;

Chapter 6: Call Control Service Group

230 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 2-5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attDirectAgentCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attDirectAgentCall(

 ATTPrivateData_t *privateData,

 DeviceID_t *split, /* NULL indicates not

 * specified */

 Boolean priorityCalling, /* TRUE = On, FALSE = Off */

 ATTV5UserToUserInfo_t *userInfo); /* NULL indicates no

 * userInfo specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

/*

 * ATTConsultationCallConfEvent - Service Response Private Data

 * (private data version 5 and later)

 */

typedef struct

{

 ATTEventType_t eventType; /* ATT_CONSULTATION_CALL_CONF */

 Consultation Direct-Agent Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 231

 union

 {

 ATTConsultationCallConfEvent_t consultationCall;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTConsultationCallConfEvent_t

{

 ATTUCID_t ucid;

} ATTConsultationCallConfEvent_t;

Chapter 6: Call Control Service Group

232 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Consultation Supervisor-Assist Call Service

Summary

 Direction: Client to Switch

 Function: cstaConsultationCall()

 Confirmation Event: CSTAConsultationCallConfEvent

 Private Data Function: attV6SupervisorAssistCall() (private data version 6

and later), attSupervisorAssistCall() (private data version 2 and later)

 Private Data Confirmation Event: ATTConsultationCallConfEvent

 Service Parameters: activeCall, calledDevice

 Private Parameters: split, userInfo

 Ack Parameters: newCall

 Ack Private Parameters: ucid

 Nak Parameters: universalFailure

Functional Description:

The Consultation Supervisor-Assist Call Service places an existing active call

(activeCall) at a device on hold and initiates a new supervisor-assist call (newCall)

from the same controlling device. This service provides the compound action of the Hold

Call Service followed by Make Supervisor-Assist.

Like the Consultation Service, the Consultation Supervisor-Assist Call service has the

important special property of associating the Communication Manager Original Call

Information (OCI) from the call being placed on hold with the call being originated. This

allows an application running at the consultation desktop to pop a screen using

information associated with the call placed on hold. This is an important operation in call

centers where an agent calls a specialist for consultation about a call in progress.

The Consultation Supervisor-Assist Call Service request is acknowledged (Ack) by the

switch if the switch is able to put the active call on hold and initiates a new supervisor-

assist call.

The request is negatively acknowledged if the switch:

 Fails to put activeCall on hold (for example, call is in alerting state), or

 Fails to initiate a new direct-agent call (for example, invalid parameter).

If the request is negatively acknowledged, the TSAPI Service will attempt to put the

activeCall into the active state, if it was in the active or held state.

 Consultation Supervisor-Assist Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 233

Service Parameters:

activeCall [mandatory] A valid connection identifier that indicates the connection to
be placed on hold. This party must be in the active (talking) state or

already held. The device associated with the activeCall must be a

station. If the party specified in the request refers to a trunk device, the

request will be denied. The deviceID in activeCall must contain the

station extension of the controlling device.

calledDevice [mandatory] Must be a valid ACD agent extension. The agent at
calledDevice must be logged in.

Private Parameters:

split [mandatory] Contains a valid split extension. The agent at calledDevice

must be logged into this split.

userInfo [optional] Contains user-to-user information. This parameter allows the
application to associate caller information, up to 32 (private data versions 2-
5) or 96 (private data versions 6 and later) bytes, with a call. It may be a
customer number, credit card number, alphanumeric digits, or a binary
string.

It is propagated with the call whether the call is made to a destination on the
local switch or to a destination on a remote switch over PRI trunks. The
switch sends the UUI in the ISDN SETUP message over the PRI trunk to
establish the call. The local and the remote switch include the UUI in the

Delivered Event Report and in the CSTARouteRequestEvent to the

application. A NULL indicates this parameter is not present.

 NOTE:

An application using private data version 5 or earlier can only receive

a maximum of 32 bytes of data in userInfo, regardless of the size of

the data sent by the switch.

 The following UUI protocol types are supported:

 UUI_NONE - There is no data provided in the data parameter.

 UUI_USER_SPECIFIC - The content of the data parameter is a binary

string. The correct size (maximum of 32 or 96 bytes) of data must be
specified in the size parameter.

 UUI_IA5_ASCII - The content of the data parameter must be a null-

terminated IA5 (ASCII) character string. The correct size (maximum of 32
or 96 bytes excluding the null terminator) of data must be specified in the
size parameter.

Chapter 6: Call Control Service Group

234 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Ack Parameters:

newCall [mandatory] A connection identifier indicates the connection between the

controlling device and the new call. The newCall parameter contains the

callID of the call and the station extension of the controlling device.

Ack Private Parameters:

ucid [optional] Specifies the Universal Call ID (UCID) of newCall. The UCID is

a unique call identifier across switches and the network. A valid UCID is
a null-terminated ASCII character string. If there is no UCID associated

with this call, the ucid contains the ATT_NULL_UCID (a 20-character

string of all zeros). This parameter is supported by private data version 5
and later only.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 GENERIC_UNSPECIFIED (0) The specified data provided for the

userInfo parameter exceeds the maximum allowable size. For

private data versions 2-5, the maximum length of userInfo was

32 bytes. Beginning with private data version 6, the maximum

length of userInfo was increased to 96 bytes. See the description

of the userInfo parameter on page 233.

 GENERIC_UNSPECIFIED (0) (CS3/11, CS3/15) The agent is not

a member of the split or the agent is not currently logged in split.

 VALUE_OUT_OF_RANGE (3) (CS0/100, CS0/96) The split

contains an invalid value or invalid information element contents
was detected.

 INVALID_CALLING_DEVICE (5) (CS3/27) The callingDevice is

out of service or not administered correctly on the switch.

 PRIVILEGE_VIOLATION_ON_CALLED_DEVICE (9) (CS0/21,

CS0/52) The COR check for completing the call failed. The call

was attempted over a trunk that the originator has restricted from
use.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier or extension is specified in activeCall, the

calledDevice is an invalid station extension, or the split does not

contain a valid hunt group extension.

 Consultation Supervisor-Assist Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 235

 INVALID_CSTA_CONNECTION_IDENTIFIER (13) The connection

identifier contained in the request is invalid or does not correspond
to a station.

 INVALID_DESTINATION (14) (CS3/24) The call was answered

by an answering machine.

 INVALID_OBJECT_TYPE (18) (CS0/58, CS3/80) There is

incompatible bearer service for the originating or destination
address. For example, the originator is administered as a data
hotline station or the destination is a data station. Call options are
incompatible with this service.

 GENERIC_STATE_INCOMPATIBILITY (21) (CS0/18) The

originator does not go off-hook within five seconds after originating
the call and cannot be forced off-hook.

 INVALID_OBJECT_STATE (22) (CS0/98) Request (message) is

incompatible with the call state.

 NO_ACTIVE_CALL (24) The party to be put on hold is not currently

active (for example, in alerting state) so it cannot be put on hold.

 RESOURCE_BUSY (33) (CS0/17) The user is busy on another call

and cannot originate this call. The switch is busy with another
CSTA request. This can happen when two AE Services servers
are issuing requests (for example, Hold Call, Retrieve Call, Clear
Connection, Make Call, etc.) to the same device.

 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILTY (41) (CS0/50)

Service or option not subscribed/provisioned (Answering Machine
Detection must be enabled).

 OUTSTANDING_REQUEST_LIMIT_EXCEEDED (44) The client

attempted to put a third party on hold on an analog station when
two parties are already on hold.

 MISTYPED_ARGUMENT_REJECTION (74) DYNAMIC_ID is specified

in activeCall.

Detailed Information:

See Detailed Information in the "Hold Call Service" section and Detailed Information in

the "Make Supervisor-Assist Call Service" section in this chapter.

Chapter 6: Call Control Service Group

236 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaConsultationCall() - Service Request */

RetCode_t cstaConsultationCall (

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 ConnectionID_t *activeCall, /* devIDType = STATIC_ID */

 DeviceID_t *calledDevice,

 PrivateData_t *privateData);

/* CSTAConsultationCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_CONSULTATION_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAConsultationCallConfEvent_t consultationCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAConsultationCallConfEvent_t {

 ConnectionID_t newCall;

} CSTAConsultationCallConfEvent_t;

 Consultation Supervisor-Assist Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 237

Private Data Version 6 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attV6SupervisorAssistCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attV6SupervisorAssistCall(

 ATTPrivateData_t *privateData,

 DeviceID_t *split, /* mandatory.

 * NULL indicates not

 * specified */

 ATTUserToUserInfo_t *userInfo); /* NULL indicates no

 * userInfo specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

/*

 * ATTConsultationCallConfEvent - Service Response Private Data

 * (private data version 5 and later)

 */

typedef struct

Chapter 6: Call Control Service Group

238 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

{

 ATTEventType_t eventType; /* ATT_CONSULTATION_CALL_CONF */

 union

 {

 ATTConsultationCallConfEvent_t consultationCall;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTConsultationCallConfEvent_t {

 ATTUCID_t ucid;

} ATTConsultationCallConfEvent_t;

 Consultation Supervisor-Assist Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 239

Private Data Version 2-5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attSupervisorAssistCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attSupervisorAssistCall(

 ATTPrivateData_t *privateData,

 DeviceID_t *split, /* mandatory.

 * NULL indicates not

 * specified */

 ATTV5UserToUserInfo_t *userInfo); /* NULL indicates no

 * userInfo specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

/*

 * ATTConsultationCallConfEvent - Service Response Private Data

 * (private data version 5 and later)

 */

typedef struct

{

 ATTEventType_t eventType; /* ATT_CONSULTATION_CALL_CONF */

Chapter 6: Call Control Service Group

240 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 union

 {

 ATTConsultationCallConfEvent_t consultationCall;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTConsultationCallConfEvent_t {

 ATTUCID_t ucid;

} ATTConsultationCallConfEvent_t;

 Deflect Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 241

Deflect Call Service

Summary

 Direction: Client to Switch

 Function: cstaDeflectCall()

 Confirmation Event: CSTADeflectCallConfEvent

 Service Parameters: deflectCall, calledDevice

 Ack Parameters: noData

 Nak Parameters: universalFailure

Functional Description:

This service redirects an alerting call at a device to a new destination, either on-PBX or

off-PBX. The call at the redirecting device is dropped after a successful redirection. An

application may redirect an alerting call (at different devices) any number of times until

the call is answered or dropped by the caller.

The service request is positively acknowledged if the call has successfully redirected for

an on-PBX destination. For an off-PBX destination, this does not imply a successful

redirection. It indicates that the switch attempted to redirect the call to the off-PBX

destination and subsequent call progress events or tones may indicate redirection

success or failure.

If the service request is negatively acknowledged, the call remains at the redirecting

device and the calledDevice is not involved in the call.

Service Parameters:

deflectCall [mandatory] Specifies the connectionID of the call that is to be

redirected to another destination. The call must be in the alerting state at
the device. The device must be a valid voice station extension.

calledDevice [mandatory] Specifies the destination to which the call is redirected. The
destination can be an on-PBX or off-PBX endpoint. For on-PBX

endpoints, the calledDevice may be stations, queues, announcements,

VDNs, or logical agent extensions.

Ack Parameters:

 None for this service.

Chapter 6: Call Control Service Group

242 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 PRIVILEGE_VIOLATION_ON_CALLED_DEVICE (9) (CS3/42)

The request has failed for one of the following reasons:

– An attempt was made to deflect a call back to the call
originator or to the deflecting device itself.

– An attempt was made to deflect a call on the calledDevice of

a cstaMakePredictiveCall() request.

 INVALID_OBJECT_STATE (22) (3/63)

The request has failed for one of the following reasons:

– An invalid callID or device identifier is specified in

deflectCall.

– The deflectCall is not in alerting state.

– Attempted to deflect the call while it is in vector processing.

 PRIVILEGE_VIOLATION_ON_SPECIFIED_DEVICE (8) (CS3/43)

The request has failed for one of the following reasons:

– An invalid calledDevice was specified.

– There are toll restrictions on the calledDevice.

– There are COR restrictions on the calledDevice.

– The calledDevice is a remote access extension.

– There is a call origination restriction on the deflecting device.

– The call is in vector processing.

 RESOURCE_BUSY (33) (CS0/17) A call redirected to a busy

station, a station that has call forwarding active, or a TEG group
with one or more members busy will be rejected with this error.

 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY (41) (CS0/50)

This service was requested on a Communication Manager
administered with a release earlier than G3V4.

 GENERIC_OPERATION (1) (CS0/111) This service was requested

on a queued call or protocol error in the request.

 Deflect Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 243

Detailed Information:

 Administration Without Hardware - A call cannot be redirected to/from an AWOH
station. However, if the AWOH station is forwarded to a real physical station, the
call can be redirected to/from such a station, if it is being alerted.

 Attendants - Calls on attendants cannot be redirected.

 Auto Call Back - ACB calls cannot be redirected by the cstaDeflectCall

service from the call originator.

 Bridged Call Appearance - A call may be redirected away from a primary
extension or from a bridged station. When that happens, the call is redirected
away from the primary and all bridged stations.

 Call Waiting - A call may be redirected while waiting at a busy analog set.

 Deflect From Queue - This service will not redirect a call from a queue to a new
destination.

 Delivered Event - If the calling device or call is monitored, an application
subsequently receives Delivered (or Network Reached) Event when redirection
succeeds.

 Diverted Event - If the redirecting device is monitored by the

cstaMonitorDevice() service or the call is monitored by the

cstaMonitorCallsViaDevice() service, the monitor will receive a Diverted

Event when the call is successfully redirected, but there will be no Diverted Event

for a monitor created with the cstaMonitorCall() service.

 Loop Back - A call cannot be redirected to the call originator or to the redirecting
device itself.

 Off-PBX Destination - If the call is redirected to an off-PBX destination, the caller
will hear call progress tones. There may be conditions (for example, trunk not
available) that will prevent the call from being placed. The call is nevertheless
routed in those cases, and the caller receives busy or reorder treatment. An
application may subsequently receive Failed, Call Cleared, or Connection
Cleared Events if redirection fails.

– If trunk-to-trunk transfer is disallowed by the switch administration, redirection
of an incoming trunk call to an off-PBX destination will fail.

 Priority and Forwarded Calls - Priority and forwarded calls are allowed to be

redirected with cstaDeflectCall.

Chapter 6: Call Control Service Group

244 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaDeflectCall() - Service Request */

RetCode_t cstaDeflectCall(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 ConnectionID_t *deflectCall,

 DeviceID_t *calledDevice,

 PrivateData_t *privateData);

/* CSTADeflectCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_DEFLECT_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTADeflectCallConfEvent_t deflectCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTADeflectCallConfEvent_t {

 Nulltype null;

} CSTADeflectCallConfEvent_t;

 Hold Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 245

Hold Call Service

Summary

 Direction: Client to Switch

 Function: cstaHoldCall()

 Confirmation Event: CSTAHoldCallConfEvent

 Service Parameters: activeCall, reservation

 Ack Parameters: noData

 Nak Parameters: universalFailure

Functional Description:

The Hold Call Service places a call on hold at a PBX station. The effect is as if the

specified party depressed the hold button on his or her multifunction station to locally

place the call on hold, or performed a switch-hook flash on an analog station.

Service Parameters:

activeCall [mandatory] A valid connection identifier that indicates the connection to be
placed on hold. This party must be in the active (talking) state or already

held. The device associated with the activeCall must be a station. If the

party specified in the request refers to a trunk device, the request will be

denied. The deviceID in activeCall must contain the station extension of

the controlling device.

reservation [optional - not supported] Specifies whether the facility is reserved for reuse
by the held call. Communication Manager always allows a party to reconnect

to a held call. It is recommended that the application always supply TRUE. In

actuality, the TSAPI Service ignores the application-supplied value for this
parameter.

Ack Parameters:

 None for this service.

Chapter 6: Call Control Service Group

246 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier or extension is specified in activeCall.

 INVALID_CSTA_CONNECTION_IDENTIFIER (13) The connection

identifier contained in the request is invalid or does not
correspond to a station.

 NO_ACTIVE_CALL (24) The party to be put on hold is not

currently active (for example, it is in the alerting state) so it cannot
be put on hold.

 RESOURCE_BUSY (33) The switch is busy with another CSTA

request. This can happen when two AEI Services servers are
issuing requests (for example, Hold Call, Retrieve Call, Clear
Connection, etc.) for the same device.

 OUTSTANDING_REQUEST_LIMIT_EXCEEDED (44) The client

attempted to put a third party on hold (two parties are on hold
already) on an analog station.

 MISTYPED_ARGUMENT_REJECTION (74) DYNAMIC_ID is specified

in activeCall.

Detailed Information:

 Analog Stations - An analog station cannot switch between a soft-held call and
an active call from the voice set. However, with the Hold Call Service, this is
possible by placing the active call on hard-hold and retrieving the soft-held call.
The Hold Call Service places a call on conference and/or transfer hold. If that
device already had a conference and/or transfer held call and the Hold Call
Service is requested, the active call will be placed on hard-hold (unless there is
call-waiting, in which case the request is denied).

 NOTE:

A maximum of two calls may be in a held state at the same time. A request to
have a third call on hold on the same analog station will be denied.

 Bridged Call Appearance – The Hold Call Service is not permitted on parties in
the bridged state and may also be more restrictive if the principal of the bridge
has an analog station or the exclusion option is in effect from a station associated
with the bridge or PCOL.

 Hold Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 247

 Busy Verification of Terminals - A Hold Call Service request will be denied if
requested for the verifying user‘s station.

 Held State - If the party is already on hold on the specified call when the switch
receives the request, a positive request acknowledgment is returned.

 Music on Hold - Music on Hold (if administered and available) will be given to a
party placed on hold from the other end either manually or via the Hold Call
Service.

 Switch Operation - After a party is placed on hold through a Hold Call Service
request, the user will not receive dial tone regardless of the type of phone device.
Thus, subsequent calls must be placed by selecting an idle call appearance or
through the Make Call Service request.

Chapter 6: Call Control Service Group

248 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaHoldCall() - Service Request */

RetCode_t cstaHoldCall(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 ConnectionID_t *activeCall, /* devIDType = STATIC_ID */

 Boolean reservation, /* not supported – defaults

 * to TRUE */

 PrivateData_t *privateData);

/* CSTAHoldCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_HOLD_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAHoldCallConfEvent_t holdCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAHoldCallConfEvent_t {

 Nulltype null;

} CSTAHoldCallConfEvent_t;

 Make Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 249

Make Call Service

Summary

 Direction: Client to Switch

 Function: cstaMakeCall()

 Confirmation Event: CSTAMakeCallConfEvent

 Private Data Function: attV6MakeCall() (private data version 6 and later),

attMakeCall() (private data version 2 and later)

 Private Data Confirmation Event: ATTMakeCallConfEvent (private data version 5

and later)

 Service Parameters: callingDevice, calledDevice

 Private Parameters: destRoute, priorityCalling, userInfo

 Ack Parameters: newCall

 Ack Private Parameters: ucid

 Nak Parameters: universalFailure

Functional Description:

The Make Call Service originates a call between two devices. The service attempts to

create a new call and establish a connection with the originating device

(callingDevice). The Make Call Service also provides a connection identifier

(newCall) that indicates the connection of the originating device in the

CSTAMakeCallConfEvent.

The client application uses this service to set up a call on behalf of a station extension

(calling party) to either an on- or off-PBX endpoint (calledDevice). This service can be

used by many types of applications such as Office Automation, Messaging, and

Outbound Call Management (OCM) for Preview Dialing.

All trunk types (including ISDN-PRI) are supported as facilities for reaching called

endpoints for outbound calls. Call progress feedback is reported as events to the

application via Monitor Services. Answer Supervision or Call Classifier is not used for

this service.

For the originator to place the call, the callingDevice must have an available call

appearance for call origination and must not be in the talking (active) state on any call

appearances. The originator is allowed to have a call(s) on hold or alerting at the device.

For a digital voice terminal without a speakerphone, when the switch selects the

available call appearance for call origination, the red and green status lamps of the call

appearance will light. The originator must go off-hook within five seconds. If the call is

placed for an analog station without a speakerphone, the user must either be idle or off-

hook with dial tone, or go off-hook within five seconds after the Make Call request. In

either case, the request will be denied if the station fails to go off-hook within five

seconds.

Chapter 6: Call Control Service Group

250 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

The originator may go off-hook and receive dial tone first, and then issue the Make Call

Service request for that station. The switch will originate the call on the same call

appearance and callID to establish the call.

If the originator is off-hook busy, the call cannot be placed and the request is denied

(RESOURCE_BUSY). If the originator is unable to originate for other reasons (see the Nak

parameter universalFailure), the switch denies the request.

Service Parameters:

callingDevice [mandatory] Must be a valid station extension or, for phantom calls, an
AWOH (administered without hardware) station extension.

 NOTE:

A call can be originated from an AWOH station or some group
extensions (that is, a plain [non-ACD] hunt group). This is termed
a phantom call. Most calls that can be requested for a physical
extension can also be requested for an AWOH station and the
associated events will also be received. If the call is made on
behalf of a group extension, this may not apply. For more
information, see ―Phantom Call,‖ in the Avaya MultiVantage
Application Enablement Services, Release 3.1, ASAI Technical
Reference, Issue 2, 03-300549.

calledDevice [mandatory] Must be a valid on-PBX extension or off-PBX number. An
on-PBX extension may be a station extension, VDN, split, hunt group,
announcement extension, or logical agent‘s login ID. The calledDevice
may include TAC/ARS/AAR information for off-PBX numbers. Trunk
Access Code, Authorization Codes, and Force Entry of Account Codes
can be specified with the calledDevice as if they were entered from the
voice terminal using the keypad.

 Make Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 251

Private Parameters:

destRoute [optional] Specifies the TAC/ARS/AAR information for an off-PBX

destination, if the information is not included in the calledDevice. A

NULL indicates that this parameter is not specified. A TAC should not

be used when the trunk is an ISDN trunk.

priorityCalling [mandatory] Specifies the priority of the call. Values are "On" (TRUE)

or "Off" (FALSE). If On is selected, a priority call is attempted for an on-

PBX calledDevice. Note that Communication Manager does not

permit priority calls to certain types of extensions (such as VDNs).

userInfo [optional] Contains user-to-user information. This parameter allows
the application to associate caller information, up to 32 (private data
versions 2-5) or 96 (private data versions 6 and later) bytes, with a
call. It may be a customer number, credit card number, alphanumeric
digits, or a binary string.

It is propagated with the call whether the call is made to a destination
on the local switch or to a destination on a remote switch over PRI
trunks. The switch sends the UUI in the ISDN SETUP message over
the PRI trunk to establish the call. The local and the remote switch
include the UUI in the Delivered Event Report and in the

CSTARouteRequestEvent to the application. A NULL indicates this

parameter is not present.

 NOTE:

An application using private data version 5 or earlier can only

receive a maximum of 32 bytes of data in userInfo,

regardless of the size of the data sent by the switch.

 The following UUI protocol types are supported:

 UUI_NONE - There is no data provided in the data parameter.

 UUI_USER_SPECIFIC - The content of the data parameter is a

binary string. The correct size (maximum of 32 or 96 bytes) of data
must be specified in the size parameter.

 UUI_IA5_ASCII - The content of the data parameter must be a

null-terminated IA5 (ASCII) character string. The correct size
(maximum of 32 or 96 bytes excluding the null terminator) of data
must be specified in the size parameter.

Ack Parameters:

newCall [mandatory] A connection identifier that indicates the connection

between the originating device and the call. The newCall parameter

contains the callID of the call and the station extension of the

callingDevice.

Chapter 6: Call Control Service Group

252 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Ack Private Parameters:

ucid [optional] Specifies the Universal Call ID (UCID) of newCall. The UCID is

a unique call identifier across switches and the network. A valid UCID is a

null-terminated ASCII character string. If there is no UCID associated with

this call, the ucid contains the ATT_NULL_UCID (a 20-character string of

all zeros). This parameter is supported by private data version 5 and later
only.

Nak Parameters:

universalFailure A Make Call request will be denied if the request fails before the call
is attempted by the PBX.

 If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA
Service errors -- universalFailure on page 817.

 GENERIC_UNSPECIFIED (0) The specified data provided for the

userInfo parameter exceeds the maximum allowable size. For

private data versions 2-5, the maximum length of userInfo is 32
bytes. Beginning with private data version 6, the maximum

length of userInfo is 96 bytes. See the description of the

userInfo parameter on page 251.

 INVALID_CALLING_DEVICE (5) The callingDevice is out of

service or not administered correctly in the switch.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier or extension is specified in callingDevice.

 GENERIC_STATE_INCOMPATIBILITY (21) The originator does

not go off-hook within five seconds after originating the call and
cannot be forced off-hook.

 RESOURCE_BUSY (33) The user is busy on another call and

cannot originate this call, or the switch is busy with another
CSTA request. This can happen when two AE Services servers
are issuing requests (for example, Hold Call, Retrieve Call,
Clear Connection, Make Call, etc.) for the same device.

 Make Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 253

Detailed Information:

 VDN - Priority calls cannot be made to VDNs. Do not set priorityCalling to

TRUE when the calledDevice is a VDN.

 AAR/ARS - The AAR/ARS features are accessible by an application through

Make Call Service. The calledDevice may include TAC/ARS/AAR information

for off-PBX numbers (the switch uses only the first 32 digits as the number).
However, it is recommended that, in situations where multiple applications
(TSAPI applications and other applications) use ARS trunks, ARS Routing Plans
be administered using partitioning to guarantee use of certain trunks to the
Telephony Services API application. Each partition should be dedicated to a
particular application (this is enforced by the switch).

– If the application wants to obtain trunk availability information when ARS/AAR

is used (in the calledDevice), it must query the switch about all trunk groups

in the ARS partition dedicated. The application may not use the ARS/AAR
code in the query to obtain trunk availability information.

– When using ARS/AAR, the switch does not tell the application which
particular trunk group was selected for a given call.

– Care must be given to the proper administration of this feature, particularly
the FRLs. If these are not properly assigned, calls may be denied despite
trunk availability.

– The switch does not attempt to validate the ARS/AAR code prior to placing
the call.

– ARS must be subscribed in Communication Manager if outbound calls are
made over ISDN-PRI facilities.

 ACD Destination - When the destination is an agent login ID or an ACD split,
ACD call delivery rules apply. If an ACD agent‘s extension is specified in the

calledDevice, the call is delivered to that ACD agent as a personal call, not a

direct agent call.

 ACD Originator – The Make Call Service cannot have an ACD Split as the

callingDevice.

 Analog Stations - A maximum of three calls (one soft-held, one hard-held, and
one active2) may be present at the same time at an analog station. In addition,
the station may have a call waiting call.

– A request to have more than three calls present will be denied. For example,
if an analog station user has three calls present and another call waiting, the
user cannot place the active call on hold or answer the call. The only
operations allowed are drop the active call or transfer/conference the soft-
held and active waiting call.

2 An active party/connection/call is a party/connection/call at the connected state. The user of an

active party/connection/call usually has an active talk path and is talking or listening on the call.

Chapter 6: Call Control Service Group

254 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 Announcement Destination - Announcement calledDevices are treated like on-

PBX station users.

 Attendants - The attendant group is not supported for the Make Call Service. It

may never be specified as the callingDevice and in some cases cannot be the

calledDevice.

 Authorization Codes - If applicable, the originator will be prompted for
authorization codes through the phone. The access codes and authorization

codes can also be included in the calledDevice, if applicable, as if they were

entered from the originator‘s voice terminal.

 Bridged Call Appearance – The Make Call Service will always originate the call at
the primary extension number of a user having a bridged appearance. For a call
to originate at the bridged call appearance of a primary extension, that user must
be off-hook at that bridged appearance at the time the Make Call Service is
requested.

 Call Classification - All call-progress audible tones are provided to the originating
user at the calling device (except that the user does not hear dial tone or touch
tones). For OCM preview dialing applications, final call classification is done by

the station user staffing the callingDevice (who hears call progress tones and

manually records the result). If the call was placed to a VDN extension, the
originator will hear whatever has been programmed for the vector associated
with that VDN.

 Call Coverage Path Containing VDNs – The Make Call Service is permitted to
follow the VDN in the coverage path, provided that the coverage criteria have
been met.

 Call Destination - If the calledDevice is an on-PBX station, the user at the

station will receive alerting. The user is alerted according to the call type (ACD or
normal). Call delivery depends on the call type, station type, station administered
options (manual/auto answer, call waiting, etc.), and station‘s talk state.

For example, for an ACD call, if the user is off-hook idle, and in auto-answer
mode, the call is cut-through immediately. If the user is off-hook busy and has a
multifunction- function set, the call will alert a free appearance. If the user is off-
hook busy and has an analog set, and the user has "call waiting", the analog
station user is given the "call waiting tone". If the user is off-hook busy on an
analog station and does not have "call waiting", the calling endpoint will hear
busy. If the user is off-hook, alerting is started.

 Call Forwarding All Calls - A Make Call Service request to a station

(calledDevice) with the Call Forwarding All Calls feature active will redirect to

the "forwarded to" station.

 Class of Restrictions (COR) - The Make Call Service is originated by using the
originator‘s COR. A call placed to a called endpoint whose COR does not allow
the call to end will return intercept treatment to the calling endpoint and the

Failed Event Report with the error PRIVILEGE_VIOLATION_ON_CALLED_DEVICE

(9).

 Class of Service (COS) - The Class of Service for the callingDevice is never

checked for the Make Call Service.

 Make Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 255

 Data Calls - Data calls cannot be originated via the Make Call Service.

 DCS - A call made by the Make Call Service over a DCS network is treated as an
off-PBX call.

 Display - If the callingDevice has a display set, the display will show the

extension and name of the calledDevice, if the calledDevice is on-PBX, or the

name of the trunk group, if the calledDevice is off-PBX. If the calledDevice is

on-PBX, normal display interactions apply for calledDevice with displays.

 Forced Entry of Account Codes – A Make Call Service request to trunk groups
with the Forced Entry of Account Codes feature assigned is allowed. It is up to

the user at the callingDevice to enter the account codes via the touch-tone

pad. The account code may not be provided via TSAPI. If the originator of such a
call is logged into an adjunct-controlled split (and therefore has the voice set
locked), such a user will be unable to enter the required codes and will eventually
get denial treatment.

 Hot Line - A Make Call Service request made on behalf of a station that has the
Hot Line feature administered will be denied.

 Last Number Dialed - The calledDevice in a Make Call Service request

becomes the last number dialed for the calledDevice until the next call

origination from the callingDevice. Therefore, the user can use the "last

number dialed" button to originate a call to the destination provided in the last
Make Call Service request.

 Logical Agents - The callingDevice may contain a logical agent‘s login ID or a

logical agent‘s physical station. If a logical agent‘s login ID is specified and the
logical agent is logged in, the call is originated from the agent‘s station extension
associated with the agent‘s login ID. If a logical agent‘s login ID is specified and
the logical agent is not logged in, the call is denied with error

INVALID_CALLING_DEVICE.

– If the calledDevice contains a logical agent‘s login ID, the call is originated

as if the call had been dialed from the callingDevice to the requested login

ID. If the callingDevice and the calledDevice CORs permit, the call is

treated as a direct agent call; otherwise, the call is treated as a personal call
to the requested agent.

 Night Service – A Make Call Service request to a split in night service will go to
night service.

 Personal Central Office Line (PCOL) - For a Make Call Service request
originated at the PCOL call appearance of a primary extension, that user must be
off-hook on the PCOL call appearance at the time the service is requested.

 PRI - An outgoing call over a PRI facility provides call feedback events from the
network.

 Priority Calling - The user can originate a priority call by going off-hook, dialing
the feature access code for priority calling, and requesting the Make Call Service.

 Send All Calls (SAC) – The Make Call Service can be requested for a station

(callingDevice) that has SAC activated. SAC has no effect on the

callingDevice for the cstaMakeCall request.

Chapter 6: Call Control Service Group

256 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 Single-Digit Dialing – The Make Service request accepts single-digit dialing (for
example, 0 for operator).

 Skill Hunt Groups – The Make Call Service cannot have a skill hunt group

extension as the callingDevice.

 Station Message Detail Recording (SMDR) - Calls originated by an application
via the Make Call Service are marked with the condition code "B".

 Switch Operation - Once the call is successfully originated, the switch will not
drop it regardless of outcome. The only exception is the denial outcome, which
results in the intercept tone being played for 30 seconds after the call is

disconnected. The originating station user or application drops cstaMakeCall()

calls either by going on-hook or via CSTA call control services. For example, if
the application places a call to a busy destination, the originator will be busy until
he/she normally drops or until the application sends a Clear Call or Clear
Connection Service to drop the call.

 Terminating Extension Group (TEG) - Make Call Service requests cannot have

the TEG group extension as the callingDevice. TEGs can only receive calls,

not originate them.

 VDN – VA DN cannot be the callingDevice of a Make Call Service request, but

it can be the calledDevice.

 VDN Destination - When the calledDevice is a VDN extension, vector

processing rules apply.

 Make Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 257

Syntax

#include <acs.h>

#include <csta.h>

/* cstaMakeCall() - Service Request */

RetCode_t cstaMakeCall(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 DeviceID_t *callingDevice,

 DeviceID_t *calledDevice,

 PrivateData_t *privateData);

/* CSTAMakeCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_MAKE_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAMakeCallConfEvent_t makeCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAMakeCallConfEvent_t {

 Nulltype null;

} CSTAMakeCallConfEvent_t;

Chapter 6: Call Control Service Group

258 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 6 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/(

 * attV6MakeCall() - Service Request Private Data Formatting Function

*/

RetCode_t attV6MakeCall(

 ATTPrivateData_t *privateData,

 DeviceID_t *destRoute, /* NULL indicates not

 * specified */

 Boolean priorityCalling, /* TRUE = On, FALSE = Off */

 ATTUserToUserInfo_t *userInfo); /* NULL indicates no

 * userInfo specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

/*

 * ATTMakeCallConfEvent - Service Response Private Data

 * (private data version 5 and later)

*/

typedef struct

{

 Make Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 259

 ATTEventType_t eventType; /* ATT_MAKE_CALL_CONF */

 union

 {

 ATTMakeCallConfEvent_t makeCall;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTMakeCallConfEvent_t {

 ATTUCID_t ucid;

} ATTMakeCallConfEvent_t;

Chapter 6: Call Control Service Group

260 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 2-5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* attMakeCall() - Service Request Private Data Formatting Function */

RetCode_t attMakeCall(

 ATTPrivateData_t *privateData,

 DeviceID_t *destRoute, /* NULL indicates not

 * specified */

 Boolean priorityCalling, /* TRUE = On, FALSE = Off */

 ATTV5UserToUserInfo_t *userInfo); /* NULL indicates no

 * userInfo specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */}

ATTUUIProtocolType_t;

/*

 * ATTMakeCallConfEvent - Service Response Private Data

 * (private data version 5 and later)

*/

typedef struct

{

 ATTEventType_t eventType; /* ATT_MAKE_CALL_CONF */

 union

 {

 ATTMakeCallConfEvent_t makeCall;

 Make Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 261

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTMakeCallConfEvent_t {

 ATTUCID_t ucid;

} ATTMakeCallConfEvent_t;

Chapter 6: Call Control Service Group

262 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Make Direct-Agent Call Service

Summary

 Direction: Client to Switch

 Function: cstaMakeCall()

 Confirmation Event: CSTAMakeCallConfEvent

 Private Data Function: attV6DirectAgentCall() (private data version 6 and

later), attDirectAgentCall() (private data version 2 and later)

 Private Data Confirmation Event: ATTMakeCallConfEvent (private data version 5

and later)

 Service Parameters: callingDevice, calledDevice

 Private Parameters: split, priorityCalling, userInfo

 Ack Parameters: newCall

 Ack Private Parameters: ucid

 Nak Parameters: universalFailure

Functional Description:

The Make Direct-Agent Call Service is a special variation of the Make Call Service. The

Make Direct-Agent Call Service originates a call between two devices: a user station and

an ACD agent logged into a specified split. The service attempts to create a new call and

establish a connection with the originating device (callingDevice). The Direct-Agent

Call service also provides a CSTA connection Identifier (newCall) that indicates the

connection of the originating device in the CSTAMakeCallConfEvent.

This type of call may be used by applications whenever the application decides that the

call originator should talk to a specific ACD agent. The application must specify the split

extension (via database lookup) to which the calledDevice (ACD agent) is logged in.

Direct-Agent calls can be tracked by Call Management Service (CMS) through the split

measurements.

 Make Direct-Agent Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 263

Service Parameters:

callingDevice [mandatory] Must be a valid station extension or an AWOH station
extension (for phantom calls).

 NOTE:

A call can be originated from an AWOH station or some group
extensions (that is, a plain [non-ACD] hunt group). This is termed
a phantom call. Most calls that can be requested for a physical
extension can also be requested for an AWOH station and the
associated event will also be received. If the call is made on
behalf of a group extension, this may not apply. For more
information, see "Phantom Call," in the Avaya MultiVantage
Application Enablement Services, Release 3.1, ASAI Technical
Reference, Issue 2, 03-300549.

This parameter may contain a logical agent‘s login ID (Logical Direct-
Agent Call) or an agent‘s physical station extension. If the

callingDevice contains a logical agent‘s login ID and the logical agent

is logged in, the direct-agent call is originated from the agent‘s station. If

the callingDevice contains a logical agent‘s login ID and the logical

agent is not logged in, the direct-agent call is denied. The Logical Direct-
Agent Call is only available when the Expert Agent Selection (EAS)
feature is enabled on Communication Manager.

calledDevice [mandatory] Must be a valid ACD agent extension. The agent at

calledDevice must be logged in. If calledDevice is a logical agent‘s

ID, it is already treated by Communication Manager as a direct-agent
call and, in this case, private data should not be used. Doing so would

result in error INVALID_CSTA_DEVICE_IDENTIFIER (12).

Chapter 6: Call Control Service Group

264 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Parameters:

split [mandatory] Contains a valid split extension. The agent at

calledDevice must be logged into this split.

priorityCalling [mandatory] Specifies the priority of the call. Values are On (TRUE) or

Off (FALSE). If On is selected, a priority call is attempted for an on-PBX

calledDevice. Note that Communication Manager does not permit

priority calls to certain types of extensions (such as VDNs).

userInfo [optional] Contains user-to-user information. This parameter allows
the application to associate caller information, up to 32 (private data
versions 2-5) or 96 (private data versions 6 and later) bytes, with a call.
It may be a customer number, credit card number, alphanumeric digits,
or a binary string.

It is propagated with the call. The switch sends the UUI in the

Delivered Event Report to the application. A NULL indicates that this

parameter is not present.

 NOTE:

An application using private data version 5 or earlier can only
receive a maximum of 32 bytes of data in userInfo, regardless
of the size of the data sent by the switch.

 The following UUI protocol types are supported:

 UUI_NONE - There is no data provided in the data parameter.

 UUI_USER_SPECIFIC - The content of the data parameter is a

binary string. The correct size (maximum of 32 or 96 bytes) of data
must be specified in the size parameter.

 UUI_IA5_ASCII - The content of the data parameter must be a

null-terminated IA5 (ASCII) character string. The correct size
(maximum of 32 or 96 bytes excluding the null terminator) of data
must be specified in the size parameter.

Ack Parameters:

newCall [mandatory] A connection identifier that indicates the connection between

the originating device and the call. The newCall parameter contains the

callID of the call and the station extension of the callingDevice.

 Make Direct-Agent Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 265

Ack Private Parameters:

ucid [optional] Specifies the Universal Call ID (UCID) of newCall. The UCID

is a unique call identifier across switches and the network. A valid UCID
is a null-terminated ASCII character string. If there is no UCID associated

with this call, the ucid contains the ATT_NULL_UCID (a 20-character

string of all zeros). This parameter is supported by private data version 5
and later only.

Nak Parameters:

universalFailure A Make Direct-Agent Call request will be denied if the request fails
before the call is attempted by the PBX.

 If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 GENERIC_UNSPECIFIED (0) The specified data provided for the

userInfo parameter exceeds the maximum allowable size. For

private data versions 2-5, the maximum length of userInfo was

32 bytes. Beginning with private data version 6, the maximum

length of userInfo is 96 bytes. See the description of the

userInfo parameter on page 264.

 GENERIC_UNSPECIFIED (0) (CS3/11, CS3/15) The agent is

not a member of the split or the agent is not currently logged into
the split.

 VALUE_OUT_OF_RANGE (3) (CS0/100, CS0/96) The split

contains an invalid value, or invalid information element contents
were detected.

 INVALID_CALLING_DEVICE (5) (CS3/27) The callingDevice

is out of service or not administered correctly on the switch.

 PRIVILEGE_VIOLATION_ON_CALLED_DEVICE (9) (CS0/21,

CS0/52) The COR check for completing the call failed, or the call

was attempted over a trunk that the originator has restricted from
use.

 INVALID_DESTINATION (14) (CS3/24) The call was answered

by an answering machine.

 INVALID_OBJECT_STATE (22) (CS0/98) The request is

incompatible with call state.

Chapter 6: Call Control Service Group

266 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 INVALID_CSTA_DEVICE_IDENTIFIER (12) (CS0/28) The split

does not contain a valid hunt group extension, or the
callingDevice or calledDevice is an invalid station extension.

 INVALID_OBJECT_TYPE (18) (CS0/58, CS3/80) The request

has failed for one of the following reasons:

– There is an incompatible bearer service for the originating or
destination address (for example, the originator is
administered as a data hotline station or the destination is a
data station).

– Call options are incompatible with this service.

 GENERIC_STATE_INCOMPATIBILITY (21) (CS0/18) The

originator does not go off-hook within five seconds after
originating the call and cannot be forced off-hook.

 RESOURCE_BUSY (33) (CS0/17) The user is busy on another

call and cannot originate this call. The switch is busy with another
CSTA request. This can happen when two AE Services servers
are issuing requests (for example, Hold Call, Retrieve Call, Clear
Connection, Make Call, etc.) for the same device.

 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILTY (41) (CS0/50)

Service or option not subscribed/provisioned (Answering Machine
Detection must be enabled).

Detailed Information:

See also, Detailed Information for related information about the Make Call Service.

 Display - If the calledDevice has a display set, it will show the specified split‘s

name and extension. If the destination ACD agent has a display, it will show the
name of the originator and the name of the specified split.

 Logical Agents - The callingDevice may contain a logical agent‘s login ID or a

logical agent‘s physical station. If a logical agent‘s login ID is specified and the
logical agent is logged in, the call originates from the agent‘s station extension
associated with the agent‘s login ID. If a logical agent‘s login ID is specified and
the logical agent is not logged in, the call is denied with the error

INVALID_CALLING_DEVICE.

 Make Direct-Agent Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 267

Syntax

#include <acs.h>

#include <csta.h>

/* cstaMakeCall() - Service Request */

RetCode_t cstaMakeCall(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 DeviceID_t *callingDevice,

 DeviceID_t *calledDevice,

 PrivateData_t *privateData);

/* CSTAMakeCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_MAKE_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAMakeCallConfEvent_t makeCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAMakeCallConfEvent_t {

 Nulltype null;

} CSTAMakeCallConfEvent_t;

Chapter 6: Call Control Service Group

268 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 6 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attV6DirectAgentCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attV6DirectAgentCall(

 ATTPrivateData_t *privateData,

 DeviceID_t *split, /* NULL indicates not

 * specified */

 Boolean priorityCalling, /* TRUE = On, FALSE = Off */

 ATTUserToUserInfo_t *userInfo); /* NULL indicates no

 * userInfo specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

/*

 * ATTMakeCallConfEvent - Service Response Private Data

 * (private data version 5 and later)

*/

typedef struct

 Make Direct-Agent Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 269

{

 ATTEventType_t eventType; /* ATT_MAKE_CALL_CONF */

 union

 {

 ATTMakeCallConfEvent_t makeCall;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTMakeCallConfEvent_t

{

 ATTUCID_t ucid;

} ATTMakeCallConfEvent_t;

Chapter 6: Call Control Service Group

270 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 2-5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attDirectAgentCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attDirectAgentCall(

 ATTPrivateData_t *privateData,

 DeviceID_t *split, /* NULL indicates not

 * specified */

 Boolean priorityCalling, /* TRUE = On, FALSE = Off */

 ATTV5UserToUserInfo_t *userInfo); /* NULL indicates no

 * userInfo specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

/*

 * ATTMakeCallConfEvent - Service Response Private Data

 * (private data version 5 and later)

*/

typedef struct

{

 ATTEventType_t eventType; /* ATT_MAKE_CALL_CONF */

 Make Direct-Agent Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 271

 union

 {

 ATTMakeCallConfEvent_t makeCall;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTMakeCallConfEvent_t

{

 ATTUCID_t ucid;

} ATTMakeCallConfEvent_t;

Chapter 6: Call Control Service Group

272 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Make Predictive Call Service

Summary

 Direction: Client to Switch

 Function: cstaMakePredictiveCall()

 Confirmation Event: CSTAMakePredictiveCallConfEvent

 Private Data Function: attV6MakePredictiveCall() (private data version 6 and

later), attMakePredictiveCall() (private data version 2 and later)

 Private Data Confirmation Event: ATTMakePredictiveCallConfEvent (private

data version 5 and later)

 Service Parameters: callingDevice, calledDevice, allocationState

 Private Parameters: priorityCalling, maxRings, answerTreat, destRoute,
userInfo

 Ack Parameters: newCall

 Ack Private Parameters: ucid

 Nak Parameters: universalFailure

Functional Description:

The Make Predictive Call Service originates a Switch-Classified call between two

devices. The service attempts to create a new call and establish a connection with the

terminating (called) device first. The Make Predictive Call service also provides a CSTA

Connection Identifier that indicates the connection of the terminating device. The call will

be dropped if the call is not answered after the maximum ring cycle has expired. When

Communication Manager is administered to return a classification, the classification

appears in the Established event.

Predictive dial calls cannot use TAC dialing to either access trunks or to make outbound

calls - TAC dialing will be blocked by Communication Manager.

 Make Predictive Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 273

Service Parameters:

callingDevice [mandatory] Must be a valid local extension number associated with
an ACD split, hunt group, or announcement, a VDN in an EAS
environment, or an AWOH station extension (for phantom calls).

 NOTE:

A call can be originated from an AWOH station or some group
extensions (that is, a plain [non-ACD] hunt group). This is
termed a phantom call. Most calls that can be requested for a
physical extension can also be requested for an AWOH station
and the associated event will also be received. If the call is
made on behalf of a group extension, this may not apply. For
more information, see "Phantom Call," in the Avaya
MultiVantage Application Enablement Services, Release 3.1,
ASAI Technical Reference, Issue 2, 03-300549.

calledDevice [mandatory] Must be a valid on-PBX extension or off-PBX number. An

on-PBX extension must be a station extension. The calledDevice

may include ARS/AAR information for off-PBX numbers. Authorization
Codes and Force Entry of Account Codes can be specified with the

calledDevice as if they were entered from the voice terminal using

the keypad.

allocationState [optional - partially supported] Specifies the condition in which the call

attempts to connect to the caller (callingDevice). Only

AS_CALL_ESTABLISHED is supported, meaning that Communication

Manager will attempt to connect the call to the callingDevice only

when the calledDevice enters the connected state.

If AS_CALL_DELIVERED is specified, it will be ignored and default to

AS_CALL_ESTABLISHED.

Private Parameters:

priorityCalling [mandatory] Specifies the priority of the call. Values are On (TRUE) or

Off (FALSE). If On is selected, a priority call is attempted for an on-

PBX calledDevice. Note that Communication Manager does not

permit priority calls to certain types of extensions (such as VDNs).

maxRings [optional] Specifies the number of rings that are allowed before
classifying the call as no answer. The minimum is two; the maximum
is 15. If an out-of-range value is specified, it defaults to 10.

Chapter 6: Call Control Service Group

274 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

answerTreat [mandatory] Specifies the call treatment when an answering machine
is detected.

 AT_NONE - Treatment follows the switch answering machine

detection administration.

 AT_DROP - Drops the call if an answering machine is detected.

 AT_CONNECT - Connects the call to the calling device if an

answering machine is detected.

 AT_NO_TREATMENT - Indicates that answering machine detection

will not be applied to the call.

destRoute [optional] Specifies the TAC/ARS/AAR information for off-PBX

destinations if the information is not included in the calledDevice. A

NULL indicates that this parameter is not specified. A TAC should not

be used when the trunk is an ISDN trunk.

userInfo [optional] Contains user-to-user information. This parameter allows
the application to associate caller information, up to 32 (private data
versions 2-5) or 96 (private data versions 6 and later) bytes, with a
call. It may be a customer number, credit card number, alphanumeric
digits, or a binary string.

It is propagated with the call whether the call is made to a destination
on the local switch or to a destination on a remote switch over PRI

trunks. The switch sends the UUI in the ISDN SETUP message over

the PRI trunk to establish the call. The local and the remote switch
include the UUI in the Delivered Event Report and in the

CSTARouteRequestEvent to the application. A NULL indicates that this

parameter is not present.

 NOTE:

An application using private data version 5 or earlier can only
receive a maximum of 32 bytes of data in userInfo, regardless
of the size of the data sent by the switch.

 The following UUI protocol types are supported:

 UUI_NONE - There is no data provided in the data parameter.

 UUI_USER_SPECIFIC - The content of the data parameter is a

binary string. The correct size (maximum of 32 or 96 bytes) of data
must be specified in the size parameter.

 UUI_IA5_ASCII - The content of the data parameter must be a

null-terminated IA5 (ASCII) character string. The correct size
(maximum of 32 or 96 bytes excluding the null terminator) of data
must be specified in the size parameter.

 Make Predictive Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 275

Ack Parameters:

newCall [mandatory] A connection identifier that indicates the connection

between the originating device and the call. The newCall parameter

contains the callID of the call and the station extension of the

callingDevice.

Ack Private Parameters:

ucid [optional] Specifies the Universal Call ID (UCID) of newCall. The UCID

is a unique call identifier across switches and the network. A valid UCID
is a null-terminated ASCII character string. If there is no UCID associated

with this call, the ucid contains the ATT_NULL_UCID (a 20-character

string of all zeros). This parameter is supported by private data version 5
and later only.

Chapter 6: Call Control Service Group

276 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure A Make Predictive Call request will be denied if the request fails
before the call is attempted by the PBX.

 If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 GENERIC_UNSPECIFIED (0) The specified data provided for the

userInfo parameter exceeds the maximum allowable size. For

private data versions 2-5, the maximum length of userInfo is 32

bytes. Beginning with private data version 6, the maximum length

of userInfo is 96 bytes. See the description the userInfo

parameter on page 274.

 VALUE_OUT_OF_RANGE (3) (CS0/100, CS0/96) Invalid

information element contents were detected.

 INVALID_CALLING_DEVICE (5) (CS3/27) The callingDevice is

out of service or not administered correctly on the switch.

 PRIVILEGE_VIOLATION_ON_CALLED_DEVICE (9) (CS0/21,

CS0/52) The request has failed for one of the following reasons:

– The service request attempted to use a Trunk Access Code
(TAC) to access a PRI trunk (only AAR/ARS feature access
codes may be used to place a switch-classified call over a PRI
trunk).

– The COR check for completing the call failed. The call was
attempted over a trunk that the originator has restricted from
use.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) (CS0/28) The

callingDevice is neither a split nor an announcement extension.

 INVALID_OBJECT_TYPE (18) (CS0/58, CS3/80) There is

incompatible bearer service for the originating or destination
address. For example, the originator is administered as a data
hotline station or the destination is a data station. Call options are
incompatible with this service.

 INVALID_OBJECT_STATE (22) (CS0/98) The request is

incompatible with the call state.

 Make Predictive Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 277

 GENERIC_SYSTEM_RESOURCE_AVAILABILITY (31) (CS3/22)

One of the following conditions existed when the switch attempted
to make the call:

– No Call classifier available

– No time slot available

– No trunk available

– Queue full

 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILTY (41) (CS0/50)

Service or option not subscribed/provisioned. Answer Machine
Detection is requested, but AMD is not enabled on the switch.

Chapter 6: Call Control Service Group

278 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Detailed Information

 The CSTAMakePredictiveCallConfEvent is sent to the application immediately

after the switch accepts the cstaMakePredictiveCall() request and attempts

to call the destination. The application receives a call ID in the

CSTAMakePredictiveCallConfEvent. The application can monitor the outbound

call and receives events of the call when the switch tries to connect the
destination. When the outbound call is monitored, the call ID in the reported
events remains unchanged when the destination answers and when the switch
connects the calling device (normally this is a VDN or an ACD Split); that is, the
call ID remains unchanged until the call is conferenced or transferred.

 The callingDevice and the calledDevice in the event reports resulting from

the outbound call monitored by cstaMonitorCall() (using the call ID reported

in the CSTAMakePredictiveCallConfEvent) are the same as those specified in

the cstaMakePredictiveCall() request. However, this is different from the

callingDevice and calledDevice in the events reported from the

CSTAMonitorCallsViaDevice of the VDN/ACD Split or the

cstaMonitorDevice() of the agent station. These monitors have an inbound

call view instead of an outbound call view. Thus, the callingDevice is the

calledDevice specified in the cstaMakePredictiveCall() request. The

calledDevice is the callingDevice specified in the

cstaMakePredictiveCall() request.

 If a client application wants to receive events for answering machine detection,

the client application should establish a call monitor using cstaMonitorCall()

after the application receives a confirmation for the cstaMakePredictiveCall()

request.

 For predictive calls whose source is a VDN that has a first step in its vector, an

adjunct route request requires a cstaMonitorCallsViaDevice() to be placed

on the VDN to guarantee correct UUI treatment when new UUI is entered in the

route selection step. The applied monitor allows the UUI entered for the

cstaMakePredictiveCall() request to show in the original call information UUI,

while showing the UUI entered in the route select to show in the UUI field.

 NOTE:

Consider using enhanced VDN monitors for predictive calling applications.
For more information, see Monitor Calls Via Device Service on page 478.

 Make Predictive Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 279

Syntax

#include <acs.h>

#include <csta.h>

/* cstaMakePredictiveCall() - Service Request */

RetCode_t cstaMakePredictiveCall (

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 DeviceID_t *callingDevice,

 DeviceID_t *calledDevice,

 AllocationState_t allocationState,

 PrivateData_t *privateData);

typedef enum AllocationState_t {

 AS_CALL_DELIVERED = 0, /* Not supported */

 AS_CALL_ESTABLISHED = 1

} AllocationState_t;

/* CSTAMakePredictiveCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_MAKE_PREDICTIVE_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAMakePredictiveCallConfEvent_t makePredictiveCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAMakePredictiveCallConfEvent_t

{

 ConnectionID_t newCall;

} CSTAMakePredictiveCallConfEvent_t;

Chapter 6: Call Control Service Group

280 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 6 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attV6MakePredictiveCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attV6MakePredictiveCall(

 ATTPrivateData_t *privateData,

 Boolean priorityCalling, /* TRUE = On, FALSE = Off */

 short maxRings, /* if less than 2 or greater

 * than 15, 10 is used */

 ATTAnswerTreat_t answerTreat, /* AT_NO_TREATMENT, AT_NONE,

 * AT DROP, or AT_CONNECT */

 DeviceID_t *destRoute, /* NULL indicates not

 * specified */

 ATTUserToUserInfo_t *userInfo); /* NULL indicates no

 * userInfo specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

typedef enum ATTAnswerTreat_t {

 AT_NO_TREATMENT = 0, /* no answering machine detection */

 Make Predictive Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 281

 AT_NONE = 1, /* treatment follows switch admin. */

 AT_DROP = 2, /* drop call if ans. mach. detected */

 AT_CONNECT = 3 /* connect call if ans. mach. detected */

} ATTAnswerTreat_t;

/*

 * ATTMakePredictiveCallConfEvent - Service Response Private Data

 * (private data version 5 and later)

 */

typedef struct

{

 ATTEventType_t eventType; /* ATT_MAKE_PREDICTIVE_CALL_CONF */

 union

 {

 ATTMakePredictiveCallConfEvent_t makePredictiveCall;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTMakePredictiveCallConfEvent_t {

 ATTUCID_t ucid;

} ATTMakePredictiveCallConfEvent_t;

Chapter 6: Call Control Service Group

282 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 2-5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attMakePredictiveCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attMakePredictiveCall(

 ATTPrivateData_t *privateData,

 Boolean priorityCalling, /* TRUE = On, FALSE = Off */

 short maxRings, /* if less than 2 or greater

 * than 15, 10 is used */

 ATTAnswerTreat_t answerTreat, /* AT_NO_TREATMENT, AT_NONE,

 * AT DROP, or AT_CONNECT */

 DeviceID_t *destRoute, /* NULL indicates not

 * specified */

 ATTV5UserToUserInfo_t *userInfo); /* NULL indicates no

 * userInfo specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

typedef enum ATTAnswerTreat_t {

 AT_NO_TREATMENT = 0, /* no answering machine detection */

 AT_NONE = 1, /* treatment follows switch admin. */

 AT_DROP = 2, /* drop call if ans. mach. detected */

 Make Predictive Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 283

 AT_CONNECT = 3 /* connect call if ans. mach. detected */

} ATTAnswerTreat_t;

/*

 * ATTMakePredictiveCallConfEvent - Service Response Private Data

 * (private data version 5 and later)

 */

typedef struct

{

 ATTEventType_t eventType; /* ATT_MAKE_PREDICTIVE_CALL_CONF */

 union

 {

 ATTMakePredictiveCallConfEvent_t makePredictiveCall;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTMakePredictiveCallConfEvent_t

{

 ATTUCID_t ucid;

} ATTMakePredictiveCallConfEvent_t;

Chapter 6: Call Control Service Group

284 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Make Supervisor-Assist Call Service

Summary

 Direction: Client to Switch

 Function: cstaMakeCall()

 Confirmation Event: CSTAMakeCallConfEvent

 Private Data Function: attV6SupervisorAssistCall() (private data version 6

and later), attSupervisorAssistCall() (private data version 2 and later)

 Private Data Confirmation Event: ATTMakeCallConfEvent (private data version 5

and later)

 Service Parameters: callingDevice, calledDevice

 Private Parameters: split, userInfo

 Ack Parameters: newCall

 Ack Private Parameters: ucid

 Nak Parameters: universalFailure

Functional Description:

The Make Supervisor-Assist Call Service is a special variation of the Make Call Service.

This service originates a call between two devices: an ACD agent‘s extension and

another station extension (typically a supervisor). The service attempts to create a new

call and establish a connection with the originating (calling) device. The Supervisor-

Assist Call service also provides a CSTA Connection Identifier that indicates the

connection of the originating device.

A call of this type is measured by CMS as a supervisor-assist call and is always a priority

call.

This type of call is used by the application whenever an agent wants to consult with the

supervisor. The agent must be logged into the specified ACD split to use this service.

 Make Supervisor-Assist Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 285

Service Parameters:

callingDevice [mandatory] Must be a valid ACD agent extension or an AWOH station
extension (for phantom calls). The agent must be logged in.

 NOTE:

A call can be originated from an AWOH station or some group
extensions (that is, a plain [non-ACD] hunt group). This is termed
a phantom call. Most calls that can be requested for a physical
extension can also be requested for an AWOH station and the
associated event will also be received. If the call is made on
behalf of a group extension, this may not apply. For more
information, see "Phantom Call," in the Avaya MultiVantage
Application Enablement Services, Release 3.1, ASAI Technical
Reference, Issue 2, 03-300549.

calledDevice [mandatory] Must be a valid on-PBX station extension (excluding VDNs,
splits, off-PBX DCS and UDP extensions).

Private Parameters:

split [mandatory] Specifies the ACD agent‘s split extension. The agent at

callingDevice must be logged into this split.

userInfo [optional] Contains user-to-user information. This parameter allows the
application to associate caller information, up to 32 (private data versions
2-5) or 96 (private data versions 6 and later) bytes, with a call. It may be a
customer number, credit card number, alphanumeric digits, or a binary

string. It is propagated with the call. The switch sends the UUI in the

Delivered Event Report to the application. A NULL indicates that this

parameter is not present.

 NOTE:

An application using private data version 5 or earlier can only

receive a maximum of 32 bytes of data in userInfo, regardless of

the size of the data sent by the switch.

 The following UUI protocol types are supported:

 UUI_NONE - There is no data provided in the data parameter.

 UUI_USER_SPECIFIC - The content of the data parameter is a binary

string. The correct size (maximum of 32 or 96 bytes) of data must be

specified in the size parameter.

 UUI_IA5_ASCII - The content of the data parameter must be a null-

terminated IA5 (ASCII) character string. The correct size (maximum of

32 or 96 bytes excluding the null terminator) of data must be

specified in the size parameter.

Chapter 6: Call Control Service Group

286 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Ack Parameters:

newCall [mandatory] A connection identifier that indicates the connection

between the originating device and the call. The newCall parameter

contains the callID of the call and the station extension of the

callingDevice.

Ack Private Parameters:

ucid [optional] Specifies the Universal Call ID (UCID) of newCall. The UCID is

a unique call identifier across switches and the network. A valid UCID is a
null-terminated ASCII character string. If there is no UCID associated

with this call, the ucid contains the ATT_NULL_UCID (a 20-character

string of all zeros). This parameter is supported by private data version 5
and later only.

Nak Parameters:

universalFailure A Make Supervisor-Assist Call request will be denied if the request
fails before the call is attempted by the PBX.

 If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 GENERIC_UNSPECIFIED (0) The specified data provided for the

userInfo parameter exceeds the maximum allowable size. For

private data versions 2-5, the maximum length of userInfo is 32

bytes. Beginning with private data version 6, the maximum length
of userInfo is 96 bytes. See the userInfo parameter on page 285.

 GENERIC_UNSPECIFIED (0) (CS3/11, CS3/15) The agent is not

a member of the split or the agent is not currently logged into the
split.

 VALUE_OUT_OF_RANGE (3) (CS0/100, CS0/96) The split

contains an invalid value or invalid information element contents
were detected.

 INVALID_CALLING_DEVICE (5) (CS3/27) The callingDevice is

out of service or not administered correctly on the switch.

 PRIVILEGE_VIOLATION_ON_CALLED_DEVICE (9) (CS0/21,

CS0/52) The COR check for completing the call failed. The call

was attempted over a trunk that the originator has restricted from
use.

 Make Supervisor-Assist Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 287

 INVALID_DESTINATION (14) (CS3/24) The call was answered

by an answering machine.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) (CS0/28) The

request has failed for one of the following reasons:

– The split does not contain a valid hunt group extension.

– The callingDevice or calledDevice is an invalid station

extension.

 INVALID_OBJECT_TYPE (18) (CS0/58, CS3/80) There is

incompatible bearer service for the originating or destination
address. For example, the originator is administered as a data
hotline station or the destination is a data station. Call options are
incompatible with this service.

 GENERIC_STATE_INCOMPATIBILITY (21) (CS0/18) The

originator does not go off-hook within five seconds after originating
the call and cannot be forced off-hook.

 INVALID_OBJECT_STATE (22) (CS0/98) The request is

incompatible with the call state.

 RESOURCE_BUSY (33) (CS0/17) The user is busy on another call

and cannot originate this call. The switch is busy with another
CSTA request. This can happen when two AE Services servers
are issuing requests (for example, Hold Call, Retrieve Call, Clear
Connection, Make Call, etc.) for the same device.

 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILTY (41) (CS0/50)

Service or option not subscribed/provisioned (Answering Machine
Detection must be enabled).

Detailed Information:

See Detailed Information in the "Make Call Service" section in this chapter.

Chapter 6: Call Control Service Group

288 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaMakeCall() - Service Request */

RetCode_t cstaMakeCall(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 DeviceID_t *callingDevice,

 DeviceID_t *calledDevice,

 PrivateData_t *privateData);

/* CSTAMakeCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_MAKE_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAMakeCallConfEvent_t makeCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAMakeCallConfEvent_t {

 Nulltype null;

} CSTAMakeCallConfEvent_t;

 Make Supervisor-Assist Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 289

Private Data Version 6 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attV6SupervisorAssistCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attV6SupervisorAssistCall(

 ATTPrivateData_t *privateData,

 DeviceID_t *split, /* mandatory.

 * NULL indicates not

 * specified */

 ATTUserToUserInfo_t *userInfo); /* NULL indicates no

 * userInfo specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

/*

 * ATTMakeCallConfEvent - Service Response Private Data

 * (private data version 5 and later)

*/

typedef struct

Chapter 6: Call Control Service Group

290 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

{

 ATTEventType_t eventType; /* ATT_MAKE_CALL_CONF */

 union

 {

 ATTMakeCallConfEvent_t makeCall;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTMakeCallConfEvent_t {

 ATTUCID_t ucid;

} ATTMakeCallConfEvent_t;

 Make Supervisor-Assist Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 291

Private Data Version 2-5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attSupervisorAssistCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attSupervisorAssistCall(

 ATTPrivateData_t *privateData,

 DeviceID_t *split, /* mandatory.

 * NULL indicates not

 * specified */

 ATTV5UserToUserInfo_t *userInfo); /* NULL indicates no

 * userInfo specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

/*

 * ATTMakeCallConfEvent - Service Response Private Data

 * (private data version 5 and later)

*/

typedef struct

{

 ATTEventType_t eventType; /* ATT_MAKE_CALL_CONF */

Chapter 6: Call Control Service Group

292 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 union

 {

 ATTMakeCallConfEvent_t makeCall;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTMakeCallConfEvent_t {

 ATTUCID_t ucid;

} ATTMakeCallConfEvent_t;

 Pickup Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 293

Pickup Call Service

Summary

 Direction: Client to Switch

 Function: cstaPickupCall()

 Confirmation Event: CSTAPickupCallConfEvent

 Service Parameters: deflectCall, calledDevice

 Ack Parameters: noData

 Nak Parameters: universalFailure

Functional Description:

This service redirects an alerting call at a device to another on-PBX device (which could

be on a different switch in a DCS environment). The call at the alerting device is dropped

after a successful redirection. An application may deflect an alerting call any number of

times until the call is answered or is dropped by the caller.

The service request is positively acknowledged if the call has been successfully

redirected to the calledDevice.

If the service request is negatively acknowledged, the call remains at the alerting device

and the calledDevice is not involved in the call.

Service Parameters:

deflectCall [mandatory] Specifies the connectionID of the call that is to be redirected

to another destination. The call must be in alerting state at the device. The
device must be a valid voice station extension.

calledDevice [mandatory] Specifies the destination of the call. The destination must be an

on-PBX endpoint. The calledDevice may be stations, queues,

announcements, VDNs, or logical agent extension. Note that the

calledDevice can be a device within a DCS environment.

Ack Parameters:

 None for this service.

Chapter 6: Call Control Service Group

294 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in

this event may contain the following error values, or one of the
error values described in Table 20: Common switch-related
CSTA Service errors -- universalFailure on page 817.

 PRIVILEGE_VIOLATION_ON_CALLED_DEVICE (9) (CS3/42)

The request has failed for one of the following reasons:

– The service attempted to redirect a call back to the call
originator or to the alerting device itself.

– The service attempted to redirect a call on the

calledDevice of a cstaMakePredictiveCall() service

request.

 INVALID_OBJECT_STATE (22) (3/63) The request has failed

for one of the following reasons:

– An invalid callID or device identifier is specified in

deflectCall.

– The deflectCall is not at alerting state.

– The service attempted to redirect the call while in vector
processing.

 INVALID_DESTINATION (14) (CS3/43) The request has failed

for one of the following reasons:

– An invalid destination was specified.

– There are toll restrictions on the destination.

– There are COR restrictions on the destination.

– The destination is a remote access extension.

– There is a call origination restriction on the redirecting
device.

– The call is in vector processing.

 RESOURCE_BUSY (33) (CS0/17) The calledDevice is busy.

 GENERIC_OPERATION (1) (CS0/111) This service is requested

on a queued call or protocol error in the request.

 Pickup Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 295

Detailed Information

 Administration Without Hardware - A call cannot be redirected from/to an AWOH
station. However, if the AWOH station is forwarded to a real physical station, the
call can be redirected from/to such a station, if it is being alerted.

 Attendants - Calls on attendants cannot be redirected.

 Auto Call Back - ACB calls cannot be redirected by the cstaPickupCall()

service from the call originator.

 Bridged Call Appearance - A call may be redirected away from a primary
extension or from a bridged station. When that happens, the call is redirected
away from the primary and all bridged stations.

 Call Forwarding, Cover All, Send All Calls - Call redirection to a station with Call
Forwarding/Cover All/Send All Calls active can be picked up.

 Call Waiting - A call may be redirected while waiting at a busy analog set.

 cstaDeflectCall() - The cstaPickupCall() Service is similar to the

cstaDeflectCall() service, except that the calledDevice must be an on-PBX

device. Note that the calledDevice can be a device within a DCS environment.

 Deflect From Queue - This service will not redirect a call from a queue to a new
destination.

 Delivered Event - If the calling device or call is monitored, an application
subsequently receives a Delivered (or Network Reached) Event when redirection
succeeds.

 Diverted Event - If the redirecting device is monitored by a

cstaMonitorDevice() or the call is monitored by a

cstaMonitorCallsViaDevice(), the monitor will receive a Diverted Event when

the call is successfully redirected, but there will be no Diverted Event for a

cstaMonitorCall association.

 Loop Back - A call cannot be redirected back to call originator or to the
redirecting device itself.

 Off-PBX Destination - If the call is redirected to an off-PBX destination, the caller
will hear call progress tones. Some conditions (for example, trunk not available)
may prevent the call from being placed. The call is nevertheless routed in those
cases, and the caller receives busy or reorder treatment. An application may
subsequently receive Failed, Call Cleared, and Connection Cleared Events if
redirection fails.

 NOTE:

If trunk-to-trunk transfer is disallowed by switch administration, redirection of
an incoming trunk call to an off-PBX destination will fail.

 Priority and Forwarded Calls - Priority and forwarded calls are allowed to be

redirected with cstaPickupCall().

Chapter 6: Call Control Service Group

296 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaPickupCall() - Service Request */

RetCode_t cstaPickupCall(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 ConnectionID_t *deflectCall,

 DeviceID_t *calledDevice,

 PrivateData_t *privateData);

/* CSTAPickupCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_PICKUP_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAPickupCallConfEvent_t pickupCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAPickupCallConfEvent_t {

 Nulltype null;

} CSTAPickupCallConfEvent_t;

 Reconnect Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 297

Reconnect Call Service

Summary

 Direction: Client to Switch

 Function: cstaReconnectCall()

 Confirmation Event: CSTAReconnectCallConfEvent

 Private Data Function: attV6ReconnectCall() (private data version 6 and

later), attReconnectCall() (private data version 2 and later)

 Service Parameters: activeCall, heldCall

 Private Parameters: dropResource, userInfo

 Ack Parameters: noData

 Nak Parameters: universalFailure

Functional Description:

The Reconnect Call Service allows a client to disconnect (drop) an existing connection

from a call and then reconnect a previously held connection or answer an alerting (or

bridged) call at the same device. It provides the compound action of the Clear

Connection Service followed by the Retrieve Call Service or the Answer Call Service.

The Reconnect Call Service request is acknowledged (Ack) by the switch if the switch is

able to retrieve the specified held heldCall or answer the specified alerting heldCall.

The request is negatively acknowledged if switch fails to retrieve or answer heldCall.

The switch continues to retrieve or answer heldCall, even if it fails to drop activeCall.

 NOTE:

A race condition may exist between human operation and the application

request. The activeCall may be dropped before the service request is received

by the switch. Since a station can have only one active call, the reconnect

operation continues when the switch fails to drop the activeCall. If the

activeCall cannot be dropped because a wrong connection is specified and

there is another call active at the station, the retrieve heldCall operation will fail.

If the request is negatively acknowledged, the activeCall will not be in the active state,

if it was in the active state.

Chapter 6: Call Control Service Group

298 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Service Parameters:

activeCall [mandatory] A valid connection identifier that indicates the callID and the

station extension (STATIC_ID). The deviceID in activeCall must contain

the station extension of the controlling device. The local connection state of
the call must be connected.

heldCall [mandatory] A valid connection identifier that indicates the callID and the

station extension (STATIC_ID). The deviceID in heldCall must contain the

station extension of the controlling device. The local connection state of the
call can be alerting, bridged, or held.

Private Parameters:

dropResource [optional] Specifies the resource to be dropped from the call. The

available resources are and DR_CALL_CLASSIFIER and

DR_TONE_GENERATOR. The tone generator is any Communication Manager

applied denial tone that is timed by the switch.

userInfo [optional] Contains user-to-user information. This parameter allows the
application to associate caller information, up to 32 (private data versions
2-5) or 96 (private data versions 6 and later) bytes, with a call. It may be a
customer number, credit card number, alphanumeric digits, or a binary
string.

It is propagated with the call when the call is dropped and passed to the

application in a Connection Cleared Event Report. A NULL indicates that

this parameter is not present.

 NOTE:

An application using private data version 5 or earlier can only

receive a maximum of 32 bytes of data in userInfo, regardless of

the size of the data sent by the switch.

 The following UUI protocol types are supported:

 UUI_NONE - There is no data provided in the data parameter.

 UUI_USER_SPECIFIC - The content of the data parameter is a binary

string. The correct size (maximum of 32 or 96 bytes) of data must be

specified in the size parameter.

 UUI_IA5_ASCII - The content of the data parameter must be a null-

terminated IA5 (ASCII) character string. The correct size (maximum of

32 or 96 bytes excluding the null terminator) of data must be

specified in the size parameter.

Ack Parameters:

 None for this service.

 Reconnect Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 299

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA
Service errors -- universalFailure on page 817.

 GENERIC_UNSPECIFIED (0) The specified data provided for the

userInfo parameter exceeds the maximum allowable size. For

private data versions 2-5, the maximum length of userInfo is

32 bytes. Beginning with private data version 6, the maximum

length of userInfo is 96 bytes. See the description of the

userInfo parameter on page 298.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier or extension is specified in heldCall.

 INVALID_CSTA_CONNECTION_IDENTIFIER (13) An incorrect

callID or an incorrect deviceID is specified in heldCall.

 GENERIC_STATE_INCOMPATIBILITY (21) The station user did

not go off-hook for heldCall within five seconds and is not

capable of being forced off-hook.

 INVALID_CONNECTION_ID_FOR_ACTIVE_CALL (23) The

controlling deviceIDs in activeCall and heldCall are

different.

 INVALID_OBJECT_STATE (22) The request has failed for one

of the following reasons:

– The specified activeCall at the station is not currently in

the connected state so it cannot be dropped. The

Reconnect Call Service operation stops and the heldCall

will not be retrieved.

– The specified heldCall at the station is not in the alerting,

connected, held, or bridged state.

 NO_CALL_TO_ANSWER (28) The call was redirected to coverage

within the five-second interval.

 GENERIC_SYSTEM_RESOURCE_AVAILABILITY (31) The

request has failed for one of the following reasons:

– The switch is busy with another CSTA request. This can
happen when two AE Services servers are issuing requests
(for example, Clear Connection, etc.) for the same device.

– The client attempted to add a seventh party to a call with six
active parties.

Chapter 6: Call Control Service Group

300 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 RESOURCE_BUSY (33) The station is busy on a call or there are

no idle appearances available.

 MISTYPED_ARGUMENT_REJECTION (74) DYNAMIC_ID is

specified in heldCall.

Detailed Information:

See the Detailed Information in the "Answer Call Service" section, Detailed Information

in the "Clear Connection Service" section and Detailed Information in the "Retrieve Call

Service" section in this chapter.

Syntax

#include <acs.h>

#include <csta.h>

/* cstaReconnectCall() - Service Request */

RetCode_t cstaReconnectCall(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 ConnectionID_t *heldCall, /* devIDType = STATIC_ID */

 ConnectionID_t *activeCall, /* devIDType = STATIC_ID */

 PrivateData_t *privateData);

/* CSTAReconnectCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_RECONNECT_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAReconnectCallConfEvent_t reconnectCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAReconnectCallConfEvent_t {

 Nulltype null;

} CSTAReconnectCallConfEvent_t;

 Reconnect Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 301

Private Data Version 6 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attV6ReconnectCall() - Service Request Private Data

 * Formatting Function

*/

RetCode_t attV6ReconnectCall(

 ATTPrivateData_t *privateData,

 ATTDropResource_t dropResource, /* DR_NONE indicates

 * no dropResource

 * specified */

 ATTUserToUserInfo_t *userInfo); /* NULL indicates

 * no userInfo

 * specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTDropResource_t {

 DR_NONE = -1, /* indicates not specified */

 DR_CALL_CLASSIFIER = 0, /* call classifier to be dropped */

 DR_TONE_GENERATOR = 1 /* tone generator to be dropped */

} ATTDropResource_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

Chapter 6: Call Control Service Group

302 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 2-5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attReconnectCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attReconnectCall(

 ATTPrivateData_t *privateData,

 ATTDropResource_t dropResource, /* DR_NONE indicates

 * no dropResource

 * specified */

 ATTV5UserToUserInfo_t *userInfo); /* NULL indicates

 * no userInfo

 * specified */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTDropResource_t {

 DR_NONE = -1, /* indicates not specified */

 DR_CALL_CLASSIFIER = 0, /* call classifier to be dropped */

 DR_TONE_GENERATOR = 1 /* tone generator to be dropped */

} ATTDropResource_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

 Retrieve Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 303

Retrieve Call Service

Summary

 Direction: Client to Switch

 Function: cstaRetrieveCall()

 Confirmation Event: CSTARetrieveCallConfEvent

 Service Parameters: heldCall

 Ack Parameters: noData

 Nak Parameters: universalFailure

Functional Description:

The Retrieve Call Service connects an on-PBX held connection.

Service Parameters:

heldCall [mandatory] A valid connection identifier that indicates the endpoint to be

connected. The deviceID in heldCall must contain the station

extension of the endpoint.

Ack Parameters:

 None for this service.

Chapter 6: Call Control Service Group

304 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier or extension is specified in heldCall.

 INVALID_CSTA_CONNECTION_IDENTIFIER (13) The

connectionID contained in the request is invalid.

 GENERIC_STATE_INCOMPATIBILITY (21) The user was on-hook

when the request was made and he/she did not go off-hook within
five seconds (call remains on hold).

 NO_ACTIVE_CALL (24) The specified call at the station is cleared

so it cannot be retrieved.

 NO_HELD_CALL (25) The specified connection at the station is not

in the held state (for example, it is in the alerting state) so it cannot
be retrieved.

 RESOURCE_BUSY (33) The switch is busy with another CSTA

request. This can happen when two AE Services servers are
issuing requests (for example, Hold Call, Retrieve Call, Clear
Connection, Conference Call, etc.) for the same device.

 CONFERENCE_MEMBER_LIMIT_EXCEEDED (38) The client

attempted to add a seventh party to a six-party conference call.

 MISTYPED_ARGUMENT_REJECTION (74) DYNAMIC_ID is specified

in heldCall.

 Retrieve Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 305

Detailed Information:

 Active State - If the party is already retrieved on the specified call when the
switch receives the request, a positive acknowledgment is returned.

 Bridged Call Appearance – The Retrieve Call Service is not permitted on parties
in the bridged state and may also be more restrictive if the principal of the bridge
has an analog station or the exclusion option is in effect from a station associated
with the bridge or PCOL.

 Hold State - Normally, the party to be retrieved has been placed on hold from the
station or via the Hold Call Service.

 Switch Operation - A party may be retrieved only to the same call from which it
had been put on hold, as long as there is no other active call at the user‘s station.

– If the user is on-hook (in the held state), the switch must be able to force the
station off- hook or the user must go off-hook within five seconds after
requesting a Retrieve Call Service. If one of the above conditions is not met,

the request is denied (GENERIC_STATE_INCOMPATIBILITY) and the party

remains held.

– If the user is listening to dial tone when a request for the Retrieve Call
Service is received, the dial tone will be dropped and the user is reconnected
to the held call.

– If the user is listening to any other kind of tone (for example, denial) or is busy
talking on another call, the Retrieve Call Service request is denied

(RESOURCE_BUSY).

Chapter 6: Call Control Service Group

306 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaRetrieveCall() - Service Request */

RetCode_t cstaRetrieveCall(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 ConnectionID_t *heldCall, /* devIDType = STATIC_ID */

 PrivateData_t *privateData);

/* CSTARetrieveCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_RETRIEVE_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTARetrieveCallConfEvent_t retrieveCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTARetrieveCallConfEvent_t {

 Nulltype null;

} CSTARetrieveCallConfEvent_t;

 Send DTMF Tone Service (Private Data Version 4 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 307

Send DTMF Tone Service (Private Data Version 4 and Later)

Summary

 Direction: Client to Switch

 Function: cstaEscapeService()

 Confirmation Event: CSTAEscapeSvcConfEvent

 Private Data Function: attSendDTMFToneExt() (private data version 5 and

later), attSendDTMFTone() (private data version 4 and later)

 Service Parameters: noData

 Private Parameters: sender, receivers, tones, toneDuration, pauseDuration

 Ack Parameters: noData

 Nak Parameters: universalFailure

Functional Description:

The Send DTMF Tone Service sends a sequence of DTMF tones (maximum of 32) on

behalf of an on-PBX endpoint to endpoints on the call. The endpoints receiving the

DTMF signal can be on-PBX or off-PBX. To send the DTMF tones, the call must be in an

established state.

The allowed DTMF tones are digits 0-9 and # and *. Through such a tone sequence, an

application could interact with far-end applications, such as automated bank tellers,

automated attendants, voice mail systems, database systems, paging services, and so

forth.

A CSTA Escape Service Confirmation event will be returned to the application when the

service request has been accepted or when transmission of the DTMF tones has

started. No event or indication will be provided to the application when the transmission

of the DTMF tones is completed.

Service Parameters:

 None for this service.

Chapter 6: Call Control Service Group

308 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Parameters:

sender [mandatory] Specifies the connectionID of the endpoint on whose

behalf DTMF tones are to be sent. This connectionID can be for an on-

PBX endpoint or an off-PBX endpoint (via trunk connection) on the call.

receivers [optional - not supported] A list of up to five connectionIDs that can

receive the DTMF tones. If this list is empty (NULL or the count is 0), all

parties on the call will receive the DTMF tones, if eligible (that is, the
voice path allows the party to receive the signals). This parameter is
reserved for future use. If present, it will be ignored.

tones [mandatory] DTMF sequence to be generated. The maximum length of
the tone sequence is 32. The allowed DTMF tones are specified as a
null-terminated ASCII string containing only the digits 0-9, ‘#‘ and ‘*. Any
other character in tones is invalid and will cause the request to be
denied.

toneDuration [optional] Specifies the number of one hundredth of a second (for
example, 10 means 1/10 of a second) used to control the tone duration.
The only valid values for the duration are 6 through 35 (one hundredths
of a second).

pauseDuration [optional] Specifies the number of one hundredth of a second used to
control the pause duration. The only valid values are 4 through 10 (one
hundredths of a second)

Ack Parameters:

 None for this service.

 Send DTMF Tone Service (Private Data Version 4 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 309

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 VALUE_OUT_OF_RANGE (3) (CS0/100) The tones parameter

has length equal to 0 or greater than 32 or invalid characters are
specified in tones. Also, could indicate that parameter values for
either toneDuration or pauseDuration were incorrectly set.

 OBJECT_NOT_KNOWN (4) (CS0/96) A mandatory parameter

value is missing.

 INVALID_CSTA_DEVICE_IDENTIFIER (13) (CS0/28) An invalid

deviceID is specified in sender.

 INVALID_OBJECT_STATE (22) (CS0/98, CS3/63) The service

is requested on a call that is currently receiving a switch-provided
tone, such as dial tone, busy tone, ringback tone, intercept tone,
Music-on-Hold/Delay, etc. The call must be in an established
state in order to send DTMF tones.

 NO_ACTIVE_CALL (24) (CS3/86) An invalid callID is specified

in sender or receivers.

Chapter 6: Call Control Service Group

310 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Detailed Information:

 * And # Characters - If * and/or # characters are present, they will not be
interpreted as termination characters or have any other transmission control
function.

 AUDIX - AUDIX analog line ports connected to the Communication Manager will
be able to receive DTMF tones generated by this service. However, embedded
AUDIX or embedded AUDIX configured to emulate an analog line port interface
is not supported.

 Call State - This service may be requested for any active call. This service will be
denied when this feature is requested on a call that is currently receiving any
switch-provided tone, such as busy, ringback, intercept, music-on-hold, etc.

 Connection State - A sender must have an active voice path to the call. A sender
in the alerting or held local state cannot send DTMF tones. A receiver must have
an active voice path to the sender. A receiver in the held local state will not
receive the tones, although the switch will attempt to send the tones.

 DTMF Receiver - Only parties connected to the switch via analog line ports,
analog trunk ports (including tie trunks), or digital trunk ports (including ISDN
trunk ports) can be receivers.

 DTMF Sender - Any voice station or (incoming) trunk caller on an active call can
be a sender. DTMF tones will be sent to all parties (receivers) with proper
connection type except the sender.

 Multiple Send DTMF Tone Requests - An application can send tones on behalf of
different endpoints in a conference call such that DTMF tone sequences overlap
or interfere with each other. An application is responsible for ensuring that it does
not ask for multiple send DTMF tone requests from multiple parties on the same
call at nearly the same time.

 Unsupported DTMF Tones - Tones corresponding to characters A, B, C, D are
not supported by this service.

 Tone Cadence and Level - The application can only control the sequence of
DTMF tones. The cadence and levels at which the tones are generated will be
controlled by Communication Manager system administration and/or current
defaults for the tone receiving ports, rather than by the application. When DTMF
tones are sent to a multi-receiver call, the receivers may hear DTMF sequence
with differing cadences.

 Send DTMF Tone Service (Private Data Version 4 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 311

Syntax

#include <acs.h>

#include <csta.h>

/* cstaEscapeService() - Service Request */

RetCode_t cstaEscapeService(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTAEscapeSvcConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ESCAPE_SVC_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAEscapeSvcConfEvent_t escapeService;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {

 Nulltype null;

} CSTAEscapeSvcConfEvent_t;

Chapter 6: Call Control Service Group

312 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 5 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attSendDTMFToneExt() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attSendDTMFToneExt(

 ATTPrivateData_t *privateData,

 ConnectionID_t *sender, /* mandatory

 * NULL is treated as

 * not specified */

 ATTConnIDList_t *receivers, /* ignored - reserved

 * for future use.

 * Tones are sent to

 * all parties. */

 char *tones, /* mandatory

 * NULL is treated as

 * not specified */

 short toneDuration, /* tone duration */

 short pauseDuration); /* pause duration */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTConnIDList_t

{

 unsigned int count;

 ConnectionID_t *pParty;

} ATTConnIDList_t;

 Send DTMF Tone Service (Private Data Version 4 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 313

Private Data Version 4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attSendDTMFTone() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attSendDTMFTone(

 ATTPrivateData_t *privateData,

 ConnectionID_t *sender, /* mandatory

 * NULL is treated as

 * not specified */

 ATTV4ConnIDList_t *receivers, /* ignored - reserved

 * for future use.

 * Tones are sent to

 * all parties. */

 char *tones, /* mandatory

 * NULL is treated as

 * not specified */

 short toneDuration, /* tone duration */

 short pauseDuration); /* pause duration */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

#define ATT_MAX_RECEIVERS 5 /* Max receivers for touch tones */

typedef struct ATTV4ConnIDList_t

{

 unsigned short count; /* 0 means not specified

 * (send to all parties) */

 ConnectionID_t party[ATT_MAX_RECEIVERS];

} ATTV4ConnIDList_t;

Chapter 6: Call Control Service Group

314 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Selective Listening Hold Service (Private Data Version 5 and
Later)

Summary

 Direction: Client to Switch

 Function: cstaEscapeService()

 Confirmation Event: CSTAEscapeSvcConfEvent

 Private Data Function: attSelectiveListeningHold() (private data version 5

and later)

 Service Parameters: noData

 Private Parameters: subjectConnection, allParties, selectedParty

 Ack Parameters: noData

 Nak Parameters: universalFailure

Functional Description:

The Selective Listening Hold Service allows a client application to prevent a specific

party on a call from hearing anything said by another specific party or all other parties on

the call. It allows a client application to put a party‘s (subjectConnection) listening path

to a selected party (selectedParty) on listen-hold, or all parties on an active call on

listen-hold. The selected party or all parties may be stations or trunks. A party that has

been listen-held may continue to talk and be heard by other connected parties on the

call since this service does not affect the talking or listening path of any other party. A

party will be able to hear parties on the call from which it has not been listen-held, but

will not be able to hear any party from which it has been listen-held.

See the Selective Listening Retrieve Service to allow the listen-held party to be retrieved

(i.e., to again hear the other party or parties on the call).

Service Parameters:

 None for this service.

 Selective Listening Hold Service (Private Data Version 5 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 315

Private Parameters:

subjectConnection [mandatory] Specifies the connectionID of the party who will not

hear the voice from all other parties or a single party specified in the

selectedParty. This connectionID can be an on-PBX endpoint or

an off-PBX endpoint (via trunk connection) on the call.

allParties [mandatory] Specifies that either all parties‘ or a single party‘s
listening path is to be held from the subjectConnection party.

 TRUE - the listening paths of all parties on the call will be held from

the subjectConnection party. This prevents the

subjectConnection from listening to all other parties on the call.

The subjectConnection endpoint can still talk and be heard by all

other connected parties on the call. The selectedParty parameter

is ignored.

 FALSE - the listening path of the subjectConnection party will be

held from the selectedParty party. This prevents the

subjectConnection from listening to all other parties on the call.

The subjectConnection endpoint can still talk and be heard by all

other connected parties on the call. The selectedParty parameter

must be specified.

selectedParty [optional] A connectionID whose voice will not be heard by the

subjectConnection party. If allParties is FALSE, a

connectionID must be specified. If allParties is TRUE, the

connectionID in this parameter is ignored.

Ack Parameters:

 None for this service.

Chapter 6: Call Control Service Group

316 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 VALUE_OUT_OF_RANGE (3) (CS0/100) A party specified is not

part of the call or is in the wrong state (e.g., a two-party call with
the selectedParty still in the alerting state).

 OBJECT_NOT_KNOWN (4) (CS0/96) A mandatory parameter is

missing.

 INVALID_CSTA_DEVICE_IDENTIFIER (13) (CS0/28) The party

specified is not supported by this service (e.g., announcements,
extensions without hardware, etc).

 INVALID_OBJECT_STATE (22) (CS0/98) The request to listen-

hold from all parties is not granted because there are no other
eligible parties on the call (including any that were previously
listen-held).

 NO_ACTIVE_CALL (24) (CS3/63) An invalid callID is specified.

 GENERIC_SYSTEM_RESOURCE_AVAILABILITY (31) (CS3/40)

Switch capacity has been exceeded.

 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY (41)

(CS0/50) This service has not been administratively enabled on

the switch.

 Selective Listening Hold Service (Private Data Version 5 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 317

Detailed Information:

 Announcements - A party cannot be listen-held from an announcement. When a
request is made to listen-hold all parties on a call, and there are more parties
than just the announcement, the other parties will be listen-held, but the
announcement will not. When the only other party on the call is an
announcement, the request will fail.

 Attendants -This feature will not work with attendants.

 Call Vectoring - A call cannot be listen-held while in vector processing.

 Conference and Transfer Call - When two calls are conferenced/transferred, the
listen-held state of one party (A) from another party (B) in the resulting call is
determined as follows:

– If party A was listen-held from party B in at least one of the original calls prior
to the conference/transfer, party A will remain listen-held from party B in the
resulting call.

– Otherwise party A will not be listen-held from party B.

When the request is received for a multi-party conference and one of the parties
is still alerting, the request will be positively acknowledged and the alerting party
will be listen-held upon answering.

 Converse Agent - A converse agent may be listen-held. While in this state, the
converse agent will hear any DTMF digits that might be sent by the switch (as
specified by the switch administration).

 DTMF Receiver - When a party has been listen-held while DTMF digits are being
transmitted by the same switch (as a result of the Send DTMF service), the
listen-held party will still hear the DTMF digits. However, the listen-held party will
not hear the DTMF digits if the digits are sent by another switch.

 Hold Call - A party that is listen-held may be put on hold and retrieved as usual.
A party that is already on hold and is being listen-held will be listen-held after
having been retrieved. The service request on a held party will be positively
acknowledged.

 Music On Hold - Music on Hold ports may not be listen-held (connection is not
addressable). If a party is being listen-held from all other parties (while listening
to Music on Hold), the party will still hear the Music on Hold.

 Park/Unpark Call - A call with parties listen-held may be parked. When the call is
unparked, the listening paths that were previously held will remain on listen-hold.

 Retrieve Call - If a listen-held party goes on hold and then is retrieved, all
listening paths that were listen-held will remain listen-held.

 Switch Administration - The ASAI Link Plus Capabilities customer option must be
enabled (set to ‗y‘) on Communication Manager in order to use this feature.

Chapter 6: Call Control Service Group

318 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaEscapeService() - Service Request */

RetCode_t cstaEscapeService(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTAEscapeSvcConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ESCAPE_SVC_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAEscapeSvcConfEvent_t escapeService;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {

 Nulltype null;

} CSTAEscapeSvcConfEvent_t;

 Selective Listening Hold Service (Private Data Version 5 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 319

Private Data Version 5 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attSelectiveListeningHold() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attSelectiveListeningHold(

 ATTPrivateData_t *privateData,

 ConnectionID_t *subjectConnection,

 Boolean allParties,

 ConnectionID_t *selectedParty);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTSelectiveListeningHoldConfEvent - Service Response */

typedef struct ATTSelectiveListeningHoldConfEvent_t {

 Nulltype null;

} ATTSelectiveListeningHoldConfEvent_t;

Chapter 6: Call Control Service Group

320 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Selective Listening Retrieve Service (Private Data Version 5 and
Later)

Summary

 Direction: Client to Switch

 Function: cstaEscapeService()

 Confirmation Event: CSTAEscapeSvcConfEvent

 Private Data Function: attSelectiveListeningRetrieve()

 Service Parameters: noData

 Private Parameters: subjectConnection, allParties, selectedParty

 Ack Parameters: noData

 Nak Parameters: universalFailure

Functional Description:

The Selective Listening Retrieve Service allows a client application to retrieve a party

(subjectConnection) from listen-hold for another party (selectedParty) or for all

parties that were previously being listen-held.

Service Parameters:

 None for this service.

 Selective Listening Retrieve Service (Private Data Version 5 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 321

Private Parameters:

subjectConnection [mandatory] Specifies the connectionID of the party whose listening

path will be reconnected to all parties or to the party specified by

selectedParty. This connectionID can be an on-PBX endpoint or

an off-PBX endpoint (via trunk connection) on the call.

allParties [mandatory] Specifies that either all parties‘ or a single party‘s

listening path is to be reconnected from the subjectConnection

party.

 TRUE - the listening paths of all parties on the call will be

reconnected from the subjectConnection party. This allows the

subjectConnection endpoint to be able to listen to all other parties

on the call. The selectedParty parameter is ignored.

 FALSE - the listening path of the subjectConnection party will be

reconnected from the selectedParty party. This allows the

subjectConnection endpoint be able to listen to selectedParty

party. The selectedParty parameter must be specified.

selectedParty [optional] A connectionID whose listening path will be retrieved

from listen-held by the subjectConnection party. If allParties is

FALSE, connectionIDs must be specified. If allParties is TRUE,

the connectionID in this parameter is ignored.

Ack Parameters:

 None for this service.

Chapter 6: Call Control Service Group

322 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA
Service errors -- universalFailure on page 817.

 VALUE_OUT_OF_RANGE (3) (CS0/100) A party specified is

not part of the call or is in the wrong state (e.g., a two-party
call with the selectedParty still in the alerting state).

 OBJECT_NOT_KNOWN (4) (CS0/96) A mandatory parameter is

missing.

 INVALID_CSTA_DEVICE_IDENTIFIER (13) (CS0/28) The

party specified is not supported by this feature (e.g.,
announcements, extensions without hardware, etc).

 NO_ACTIVE_CALL (24) (CS3/63) An invalid callID is

specified.

 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY (41)

(CS0/50) This service has not been administratively enabled

on the switch.

Detailed Information:

See Detailed Information in the "Selective Listening Hold Service" section in this chapter

for details.

 Selective Listening Retrieve Service (Private Data Version 5 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 323

Syntax

#include <acs.h>

#include <csta.h>

/* cstaEscapeService() - Service Request */

RetCode_t cstaEscapeService(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTAEscapeSvcConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ESCAPE_SVC_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAEscapeSvcConfEvent_t escapeService;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {

 Nulltype null;

} CSTAEscapeSvcConfEvent_t;

Chapter 6: Call Control Service Group

324 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 5 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attSelectiveListeningRetrieve() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attSelectiveListeningRetrieve(

 ATTPrivateData_t *privateData,

 ConnectionID_t *subjectConnection,

 Boolean allParties,

 ConnectionID_t *selectedParty);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTSelectiveListeningRetrieveConfEvent - Service Response */

typedef struct ATTSelectiveListeningRetrieveConfEvent_t {

 Nulltype null;

} ATTSelectiveListeningRetrieveConfEvent_t;

 Single Step Conference Call Service (Private Data Version 5 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 325

Single Step Conference Call Service (Private Data Version 5 and
Later)

Summary

 Direction: Client to Switch

 Function: cstaEscapeService()

 Confirmation Event: CSTAEscapeSvcConfEvent

 Private Data Function: attSingleStepConferenceCall() (private data version

5 and later)

 Private Data Confirmation Event: ATTSingleStepConferenceCallConfEvent

 Service Parameters: noData

 Private Parameters: activeCall, deviceToBeJoin, participationType,
alertDestination

 Ack Parameters: noData

 Ack Private Parameters: newCall, connList, ucid

 Nak Parameters: universalFailure

Functional Description:

The Single Step Conference Call Service will join a new device to an existing call. This

service can be repeated to make n-device conference calls (subject to switching function

limits). Currently, Communication Manager supports six (6) parties on a call.

 NOTE:

The Single Step Conference Call Service is not supported for ISDN BRI stations.

Service Parameters:

 None for this service.

Chapter 6: Call Control Service Group

326 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Parameters:

activeCall [mandatory] A pointer to a connection identifier in the call to which a
new device is to be added. This can be any connection on the call.

deviceToBeJoin [mandatory] A pointer to the device identifier that is to be added to
the call. This must be either a physical station extension of any type
or an extension administered without hardware (AWOH), but not a
group extension.

Physical stations may be connected locally (analog, DCP, etc.) or
remotely as Off-Premises stations. AWOH extensions count towards
the maximum parties in a call. Trunks cannot be directly added to a
call via this feature. Group extensions (e.g., hunt groups, PCOLs,
TEGs, etc.) may not be added.

participationType [optional] Specifies the type of participation for the added device in
the resulting call. Possible values are:

 PT_ACTIVE - the added device actively participates in the

resulting conference call. The added device can listen and talk.

 PT_SILENT - the added device can listen but cannot actively

participate (cannot talk) in the resulting conferenced call. Thus
the other parties on the call will be unaware that the added device
has joined the call (there will be no display updates). This option
is useful for applications that may desire to silently conference in
devices (e.g., service observing).

 If a party that was added to the call via the Single Step

Conference Call Service with participation type PT_SILENT holds

the call and then conferences in another party, the original

PT_SILENT status of the party is negated (which means the party

would then be heard by all other parties).

alertDestination [optional - partially supported] Specifies whether or not the
deviceToBeJoin is to be alerted.

 TRUE - deviceToBeJoin will be alerted (with Delivered event)

before it joins the call.

 NOTE:

The value "TRUE" is not supported in the current release. If it is

specified, the service request will fail with

VALUE_OUT_OF_RANGE.

 FALSE - deviceToBeJoin will connect to the existing call without

the device being alerted (no Delivered event). Only the value
"FALSE" is supported in the current release.

 Single Step Conference Call Service (Private Data Version 5 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 327

Ack Parameters:

 None for this service.

Ack Private Parameters:

newCall [mandatory] A connectionID specifies the callID and the deviceID

of the joining device. The callID is the same callID as specified in

the service request; that is, the callID of the resulting call is not

changed.

connList [optional - supported] Specifies the devices on the resulting newCall.

This includes a count of the number of devices in the conferenced call

and a list of connectionIDs and deviceIDs that define each

connection in the call.

 If a device is on-PBX, the extension is specified. The extension
consists of station or group extensions. Group extensions are
provided when the conference is to a group and the conference
completes before the call is answered by one of the group members
(TEG, PCOL, hunt group, or VDN extension). A group extension may
contain alerting or bridged extensions.

 The static deviceID of a queued endpoint is set to the split extension

of the queue.

If a party is off-PBX, then its static device identified or its previously
assigned trunk identifier is specified.

ucid [optional - supported] Specifies the Universal Call ID (UCID) of

newCall. The UCID is a unique call identifier across switches and the

network. A valid UCID is a null-terminated ASCII character string. If
there is no UCID associated with this call, the ucid contains the

ATT_NULL_UCID (a 20-character string of all zeros). This parameter is

supported by private data version 5 and later only.

Chapter 6: Call Control Service Group

328 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 VALUE_OUT_OF_RANGE (3) (CS0/100) An unsupported was

specified or an out-of-range value is specified for a parameter.

 OBJECT_NOT_KNOWN (4) (CS0/96) A mandatory parameter is

missing.

 INVALID_CALLED_DEVICE (6) (CS0/28) The deviceToBeJoin is

not a valid station or an AWOH extension, or an invalid callID is

specified

 INVALID_CALLING_DEVICE (CS3/27) The deviceToBeJoin was

on-hook when the Single Step Conference Call service was

initiated. The deviceToBeJoin should be in off-hook/auto-answer

condition.

 PRIVILEGE_VIOLATION_ON_SPECIFIED_DEVICE (8) (CS3/43)

The class of restriction on deviceToBeJoin was violated.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) (CS0/28) The

deviceToBeJoin is not a valid identifier.

 INVALID_FEATURE (15) (CS3/63) This feature is not supported

on the switch.

 INVALID_OBJECT_TYPE (18) (CS0/58) The call has conference

restrictions due to any of the data-related features (e.g., data
restriction, privacy, manual exclusion, etc.).

 GENERIC_STATE_INCOMPATIBILITY (21) (CS0/18) The

deviceToBeJoin cannot be forced off-hook and it did not go off-

hook within 5 seconds.

 INVALID_OBJECT_STATE (22) (CS0/98) The request was made

with option PT_ACTIVE while the call was in vector processing.

 RESOURCE_BUSY (33) (CS0/17) The deviceToBeJoin is busy or

not in the idle state.

 CONFERENCE_MEMBER_LIMIT_EXCEEDED (38) (CS3/42) The

maximum allowed number of parties on the call has been reached.

 Single Step Conference Call Service (Private Data Version 5 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 329

Detailed Information:

 Bridged Call Appearance - A principal station with bridged call appearance can
be single step conferenced into a call. Stations with bridged call appearance to
the principal have the same bridged call appearance behavior, that is, if
monitored, the station will receive Established and Conferenced Events when it
joins the call. The station will not receive a Delivered Event.

 Call and Device Monitoring Event Sequences - A successful

attSingleStepConferenceCall() request will generate an Established Event

followed by a Conferenced Event for call monitors and for device monitors of all

devices that are involved in the newCall. The Established Event reports the

connection state change of the deviceToBeJoin and the Conferenced Event

reports the result of the attSingleStepConferenceCall() request. All call-

associated information (e.g., original calling and called device, UUI, collected

digits, etc.) is reported in the Conferenced Event and Established Event. In both

events, the cause value is EC_ACTIVE_MONITOR if PT_ACTIVE was specified in

the attSingleStepConferenceCall() request, and EC_SILENT_MONITOR if

PT_SILENT was specified. The confController and addedParty parameters in

the Conferenced Event have the same device ID as deviceToBeJoin.

The single step conference call event sequences are similar to the two-step
conference call event sequences with one exception. Since the added party is
alerted in the two-step conference call, a Delivered Event is generated. In a

single-step conference call scenario, however; the deviceToBeJoin is added

onto the call without alerting. Therefore, no Delivered Event is generated.

 Call State - The call into which a station is to be conferenced with the Single Step
Conference Call Service may be in any state, except the following situation: If the

call is in vector processing and the PT_ACTIVE option is specified in the request,

the request will be denied with INVALID_OBJECT_STATE. This eliminates

interactions with vector steps such as "collect" when a party joins the call and is

able to talk. If the PT_SILENT is specified, the request will be accepted.

 Dropping Recording Device - If single-step conference is used to add a recording
device into a call, the application has the responsibility of dropping the recording
device and/or call when appropriate. Communication Manager cannot distinguish
between recording devices and real stations, so if a recording device is left on a
call with only one other party, Communication Manager will leave that call up
forever, (or until one of those parties drops).

 Drop Button and Last Added Party - A party added by the Single Step
Conference Call Service will never be considered as the "last added party" on the
call. Thus, parties added through the Single Step Conference Call Service cannot
be dropped by using the Drop button.

 Primary Old Call in Conferenced Event - Since the activeCall and the newCall

parameters contain the same callID, there is no meaningful primaryOldCall in

the Conferenced Event. The callID in primaryOldCall will have the value 0

and the deviceID will have the value "0" with type DYNAMIC.

 Remote Agent Trunk to Trunk Conference/Transfer - In this type of application,
an incoming call from an external caller is routed to a remote agent. The remote

Chapter 6: Call Control Service Group

330 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

agent wants to transfer the call to another agent (also remote). Upon the agent‘s
transfer request at the desktop, an application may use the Single Step
Conference Call Service to join a local device into this trunk-to-trunk call. This
local device need not be a physical station; it may be a station AWOH. Having
added the local station into the call, the application can hold the call and make a
call to the new agent, and then transfer the call. The caller is now connected to
the second remote agent, and the local station (physical or AWOH) that was
used to accomplish the transfer is no longer on the call.

 State of Added Station - A station to be conferenced into a call must be idle. A
station is considered idle when it has an idle call appearance for call origination.
If a station is off-hook idle when the Single Step Conference Call Service is
received, the station is immediately conferenced in. If a station is on-hook idle
and it may be forced off-hook, it will be forced off-hook and immediately
conferenced in. If a station is on-hook idle and it may not be forced off-hook, the
switch will wait 5 seconds for the user to go off-hook. If the user does not go off-
hook within 5 seconds, then a negative acknowledgment with

GENERIC_STATE_INCOMPATIBILITY is sent.

 Security - As long as it is allowed by switch administration, an application can
add a party onto a call with the Single Step Conference Call Service without any
audible signal or visual display to the existing parties on the call. If security is a
concern, proper switch administration must be performed.

 Single Step Conference Call Service (Private Data Version 5 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 331

Syntax

#include <acs.h>

#include <csta.h>

/* cstaEscapeService() - Service Request */

RetCode_t cstaEscapeService(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTAEscapeSvcConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ESCAPE_SVC_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAEscapeSvcConfEvent_t escapeService;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {

 Nulltype null;

} CSTAEscapeSvcConfEvent_t;

Chapter 6: Call Control Service Group

332 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 5 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attSingleStepConferenceCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attSingleStepConferenceCall(

 ATTPrivateData_t *privateData,

 ConnectionID_t *activeCall, /* mandatory */

 DeviceID_t *deviceToBeJoin, /* mandatory */

 ATTParticipationType_t participationType,

 Boolean alertDestination);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTParticipationType_t {

 PT_ACTIVE = 1,

 PT_SILENT = 0

} ATTParticipationType_t;

/*

 * ATTSingleStepConferenceCallConfEvent – Service Response Private Data

 */

typedef struct

{

 ATTEventType_t eventType;

 /* ATT_SINGLE_STEP_CONFERENCE_CALL_CONF */

 union

 {

 ATTSingleStepConferenceCallConfEvent_t ssconference;

 } u;

} ATTEvent_t;

typedef struct Connection_t {

 ConnectionID_t party;

 SubjectDeviceID_t staticDevice;

} Connection_t;

typedef struct ConnectionList_t {

 Single Step Conference Call Service (Private Data Version 5 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 333

 unsigned int count;

 Connection_t *connection;

} ConnectionList_t;

typedef char ATTUCID_t[64];

typedef struct ATTSingleStepConferenceCallConfEvent_t {

 ConnectionID_t newCall;

 ConnectionList_t connList;

 ATTUCID_t ucid;

} ATTSingleStepConferenceCallConfEvent_t;

Chapter 6: Call Control Service Group

334 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Single Step Transfer Call (Private Data Version 8 and later)

Summary

 Direction: Client to Switch

 Function: cstaEscapeService()

 Confirmation Event: CSTAEscapeSvcConfEvent

 Private Data Function: attSingleStepTransferCall()

 Private Data Confirmation Event: ATTSingleStepTransferCallConfEvent

(private data version 9 and later), ATTV8SingleStepTransferCallConfEvent

(private data version 8)

 Service Parameters: noData

 Private Parameters: activeCall, transferredTo

 Ack Parameters: noData

 Ack Private Parameters: transferredCall, ucid (private data version 9 and

later)

 Nak Parameters: universalFailure

Functional Description:

The Single Step Transfer Call service transfers an existing connection to another device.

This transfer is performed in a single step. This means that the device transferring the

call does not have to place the existing call on hold before issuing the Single Step

Transfer Call service request.

The connection being transferred may be in the Alerting, Connected, Held, or Queued

state.

Service Parameters:

 None for this service.

Private Parameters:

activeCall [mandatory] A pointer to the connection identifier of the active call
which is to be transferred.

transferredTo [mandatory] A pointer to the destination address to which the call will
be transferred.

Ack Parameters:

 None for this service.

 Single Step Transfer Call (Private Data Version 8 and later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 335

Ack Private Parameters:

transferredCall [mandatory] Specifies the connection ID for the destination of the
transferred call.

ucid [optional - supported] Specifies the Universal Call ID (UCID) of

newCall. The UCID is a unique call identifier across switches and

the network. A valid UCID is a null-terminated ASCII character
string. If there is no UCID associated with this call, the ucid contains

the ATT_NULL_UCID (a 20-character string of all zeros). This

parameter is only supported for private data version 9 and later.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 OBJECT_NOT_KNOWN (4) (CS0/96) The activeCall does not

contain a call ID, or transferredTo is not set.

 INVALID_CALLED_DEVICE (6) (CS0/28) The transferredTo

device is not a valid transfer destination. It might be blocked by the
transferring device‘s Class of Restriction (COR).

 INVALID_CSTA_DEVICE_IDENTIFIER (12) (CS0/28) The

transferring device is not a valid extension.

 INVALID_CSTA_CONNECTION_IDENTIFIER (13) The request failed

for one of the following reasons:

– The call id in activeCall is not an active call id.

– The call id in activeCall is not present at the transferring

device.

 GENERIC_STATE_INCOMPATIBILITY (21) The active call is

alerting.

 INVALID_OBJECT_STATE (22) (CS0/98) The active call is

alerting at the transferring device.

Chapter 6: Call Control Service Group

336 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 RESOURCE_BUSY (33) (CS0/17) The request failed for one of the

following reasons:

– The transferring device does not have an available call
appearance, or the call appearance is restricted from
originating a new call.

– The switch is busy with another CSTA request. This can
happen when two AE Services servers are issuing requests
(for example, Hold Call, Retrieve Call, Clear Connection, etc.)
for the same device, or if any of the transfer participants is a
subject of another Single Step Transfer Call service request
that is in progress.

 Single Step Transfer Call (Private Data Version 8 and later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 337

Syntax

#include <acs.h>

#include <csta.h>

/* cstaEscapeService() - Service Request */

RetCode_t cstaEscapeService(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTAEscapeSvcConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ESCAPE_SVC_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAEscapeSvcConfEvent_t escapeService;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {

 Nulltype null;

} CSTAEscapeSvcConfEvent_t;

Chapter 6: Call Control Service Group

338 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 9 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attSingleStepTransferCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attSingleStepTransferCall(

 ATTPrivateData_t *privateData,

 ConnectionID_t *activeCall, /* mandatory */

 DeviceID_t *transferredTo); /* mandatory */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/*

 * ATTSingleStepTransferCallConfEvent - Private Data Service Response

 */

typedef struct

{

 ATTEventType_t eventType;

 /* ATT_SINGLE_STEP_TRANSFER_CALL_CONF */

 union

 {

 ATTSingleStepTransferCallConfEvent_t ssTransferCallConf;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTSingleStepTransferCallConfEvent_t {

 ConnectionID_t transferredCall;

 ATTUCID_t ucid;

} ATTSingleStepTransferCallConfEvent_t;

 Single Step Transfer Call (Private Data Version 8 and later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 339

Private Data Version 8 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attSingleStepTransferCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attSingleStepTransferCall(

 ATTPrivateData_t *privateData,

 ConnectionID_t *activeCall, /* mandatory */

 DeviceID_t *transferredTo); /* mandatory */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/*

 * ATTV8SingleStepTransferCallConfEvent - Private Data Service Response

 */

typedef struct

{

 ATTEventType_t eventType;

 /* ATTV8_SINGLE_STEP_TRANSFER_CALL_CONF */

 union

 {

 ATTV8SingleStepTransferCallConfEvent_t v8ssTransferCallConf;

 } u;

} ATTEvent_t;

typedef struct ATTV8SingleStepTransferCallConfEvent_t {

 ConnectionID_t transferredCall;

} ATTV8SingleStepTransferCallConfEvent_t;

Chapter 6: Call Control Service Group

340 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Transfer Call Service

Summary

 Direction: Client to Switch

 Function: cstaTransferCall()

 Confirmation Event: CSTATransferCallConfEvent

 Private Data Confirmation Event: ATTTransferCallConfEvent (private data

version 5 and later)

 Service Parameters: heldCall, activeCall

 Ack Parameters: newCall, connList

 Ack Private Parameters: ucid

 Nak Parameters: universalFailure

Functional Description:

This service provides the transfer of an existing held call (heldCall) and another active

or proceeding call (alerting, queued, held, or connected) (activeCall) at a device,

provided that heldCall and activeCall are not both in the alerting state at the

controlling device. The Transfer Call Service merges two calls with connections at a

single common device into one call. Also, both of the connections to the common device

become Null and their connectionIDs are released. A connectionID that specifies the

resulting new connection for the transferred call is provided.

Service Parameters:

heldCall [mandatory] Must be a valid connection identifier for the call that is on
hold at the controlling device and is to be transferred to the

activeCall. The deviceID in heldCall must contain the station

extension of the controlling device.

activeCall [mandatory] Must be a valid connection identifier of an active or

proceeding call at the controlling device to which the heldCall is to

be transferred. The deviceID in activeCall must contain the station

extension of the controlling device.

 Transfer Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 341

Ack Parameters:

newCall [mandatory - partially supported] A connection identifier that specifies
the resulting new call identifier for the transferred call.

connList [optional - supported] Specifies the devices on the resulting new call.
This includes a count of the number of devices in the new call and a list

of up to six connectionIDs and up to six deviceIDs that define each

connection in the call.

 If a device is on-PBX, the extension is specified. The extension
consists of station or group of extensions. Group extensions are
provided when the conference is to a group and the conference
completes before the call is answered by one of the group members
(TEG, PCOL, hunt group, or VDN extension). A group extension may
contain alerting extensions.

 The static deviceID of a queued endpoint is set to the split

extension of the queue.

 If a party is off-PBX, then its static device identifier or its previously
assigned trunk identifier is specified.

Ack Private Parameters:

ucid [optional] Specifies the Universal Call ID (UCID) of newCall. The

UCID is a unique call identifier across switches and the network. A
valid UCID is a null-terminated ASCII character string. If there is no

UCID associated with this call, the ucid contains the ATT_NULL_UCID

(a 20-character string of all zeros). This parameter is supported by
private data version 5 and later only.

Chapter 6: Call Control Service Group

342 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA
Service errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier or extension was specified in heldCall or

activeCall.

 INVALID_CSTA_CONNECTION_IDENTIFIER (13) The

controlling deviceID in activeCall or heldCall has not been

specified correctly.

 GENERIC_STATE_INCOMPATIBILITY (21) The request failed

for one of the following reasons:

– Both calls are alerting.

– Both calls are being service-observed.

– An active call is in a vector-processing stage.

 INVALID_OBJECT_STATE (22) The connections specified in

the request are not in valid states for the operation to take
place. For example, the transferring device does not have one
active call and one held call as required.

 INVALID_CONNECTION_ID_FOR_ACTIVE_CALL (23) The

callID in activeCall or heldCall has not been specified

correctly.

 RESOURCE_BUSY (33) The switch is busy with another CSTA

request. This can happen when two AE Services servers are
issuing requests (for example, Hold Call, Retrieve Call, Clear
Connection, Transfer Call, etc.) for the same device.

 CONFERENCE_MEMBER_LIMIT_EXCEEDED (38) The request

attempted to add a seventh party to an existing six-party
conference call.

 MISTYPED_ARGUMENT_REJECTION (74) DYNAMIC_ID is

specified in heldCall or activeCall.

 Transfer Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 343

Detailed Information:

 Analog Stations – The Transfer Call Service will only be allowed if one call is held
and the second is active (talking). Calls on hard-held or that are alerting cannot
be affected by the Transfer Call Service.

– An analog station will support the Transfer Call Service even if the "switch-
hook flash" field on the Communication Manager system administered form is
set to "no." A "no" in this field disables the switch- hook flash function,
meaning that a user cannot conference, hold, or transfer a call from his/her
phone set, and cannot have the call waiting feature administered on the
phone set.

– Bridged Call Appearance – The Transfer Call Service is not permitted on
parties in the bridged state and may also be more restrictive if the principal of
the bridge has an analog station or the exclusion option is in effect from a
station associated with the bridge or PCOL.

– Trunk to Trunk Transfer - Existing rules for trunk-to-trunk transfer from a
station user will remain unchanged for application monitored calls. In such
cases, a transfer requested via the Transfer Call Service will be denied.
When this feature is enabled, application monitored calls transferred from
trunk to trunk will be allowed, but there will be no further event reports (except
for the Network Reached, Established, or Connection Cleared Event Reports
sent to the application).

Chapter 6: Call Control Service Group

344 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaTransferCall() - Service Request */

RetCode_t cstaTransferCall(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 ConnectionID_t *heldCall, /* devIDType = STATIC_ID */

 ConnectionID_t *activeCall, /* devIDType = STATIC_ID */

 PrivateData_t *privateData);

/* CSTATransferCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_TRANSFER_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTATransferCallConfEvent_t transferCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct Connection_t {

 ConnectionID_t party;

 SubjectDeviceID_t staticDevice;

} Connection_t;

typedef struct ConnectionList_t {

 unsigned int count;

 Connection_t *connection;

} ConnectionList_t;

typedef struct CSTATransferCallConfEvent_t {

 ConnectionID_t newCall;

 ConnectionList_t connList;

} CSTATransferCallConfEvent_t;

 Transfer Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 345

Private Data Version 5 and Later Syntax

/*

 * ATTTransferCallConfEvent - Service Response Private Data

 * (private data version 5 and later)

 */

typedef struct

{

 ATTEventType_t eventType; /* ATT_TRANSFER_CALL_CONF */

 union

 {

 ATTTransferCallConfEvent_t transferCall;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTTransferCallConfEvent_t

{

 ATTUCID_t ucid;

} ATTTransferCallConfEvent_t;

346 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Chapter 7: Set Feature Service Group

The Set Feature Service Group provides services that allow a client application to set

switch-controlled features or values associated with a Communication Manager device.

The following sections describe the Set Feature services supported by AE Services:

 Set Advice of Charge Service (Private Data Version 5 and Later) on page 347

 Set Agent State Service on page 351

 Set Billing Rate Service (Private Data Version 5 and Later) on page 362

 Set Do Not Disturb Feature Service on page 367

 Set Forwarding Feature Service on page 370

 Set Message Waiting Indicator (MWI) Feature Service on page 374

 Set Advice of Charge Service (Private Data Version 5 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 347

Set Advice of Charge Service (Private Data Version 5 and Later)

Summary

 Direction: Client to Switch

 Function: cstaEscapeService()

 Confirmation Event: CSTAEscapeSvcConfEvent

 Private Data Function: attSetAdviceOfCharge()

 Service Parameters: noData

 Private Parameters: flag

 Ack Parameters: noData

 Ack Private Parameters: noData

 Nak Parameters: universalFailure

Functional Description

This service enables Communication Manager to support the collection of charging units

over ISDN Primary Rate Interfaces. See Detailed Information for more information about

this feature.

To receive Charge Advice Events, an application must first turn the Charge Advice Event

feature on using the Set Advice of Charge Service (Private Data V5).

When the Charge Advice Event feature is turned on, a trunk group monitored by a

cstaMonitorDevice(), a station monitored by a cstaMonitorDevice(), or a call

monitored by a cstaMonitorCall() or cstaMonitorCallsViaDevice() will provide

Charge Advice Events. However, this will not occur if the Charge Advice Event is filtered

out by the privateFilter in the monitor request and its confirmation event.

Service Parameters:

 None for this service.

Private Parameters:

flag [mandatory] Specify the flag for turning the feature on or off. A value of

TRUE will turn the feature on and a value of FALSE will turn the feature off.

If the feature is already turned on, subsequent requests to turn the
feature on again will receive positive acknowledgements. If the feature is
already turned off, subsequent requests to turn the feature off again will
receive positive acknowledgements.

Chapter 7: Set Feature Service Group

348 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Ack Parameters:

 None for this service.

Ack Private Parameters:

 None for this service.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 INVALID_FEATURE (15) The Set Advice of Charge Service is not

supported by the switch.

 VALUE_OUT_OF_RANGE (3) The flag parameter value is invalid.

Detailed Information:

 The result of a successful Set Advice of Charge Service request applies to an

ACS Stream. This means that any monitor using the same acsHandle will be

affected. An application must use the private filter to filter out Advice of Charge
Events if these events are not useful to the application.

 If this feature is heavily used, it will reduce the maximum Busy Hour Call
Completions (BHCC) for Avaya Communication Manager.

 If more than 100 calls are in a call clearing state waiting for charging information,
the oldest record will not receive final charge information. In this case a value of

0 and a cause value of EC_NETWORK_CONGESTION will be reported in the Advice of

Charge Event.

 For information about administering the switch for using Advice of Charge, see
"Administering Advice of Charge for ASAI Charging Event," in Appendix A of the
Avaya MultiVantage Application Enablement Services ASAI Technical
Reference, 03-300549.

 Set Advice of Charge Service (Private Data Version 5 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 349

Syntax

#include <acs.h>

#include <csta.h>

/* cstaEscapeService() - Service Request */

RetCode_t cstaEscapeService(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTAEscapeSvcConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ESCAPE_SVC_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAEscapeSvcConfEvent_t escapeService;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {

 Nulltype null;

} CSTAEscapeSvcConfEvent_t;

Chapter 7: Set Feature Service Group

350 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attSetAdviceOfCharge() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attAdviceOfCharge(

 ATTPrivateData *privateData,

 Boolean flag);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

 Set Agent State Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 351

Set Agent State Service

Summary

 Direction: Client to Switch

 Function: cstaSetAgentState()

 Confirmation Event: CSTASetAgentStateConfEvent

 Private Data Function: attV6SetAgentState (private data version 6 and later),

attSetAgentStateExt (private data version 5 and later), attSetAgentState

(private data version 2 and later)

 Service Parameters: device, agentMode, agentID, agentGroup,
agentPassword

 Private Parameters: workMode, reasonCode (private data version 5 and later),

enablePending (private data version 6 and later)

 Ack Parameters: noData

 Ack Private Parameters: isPending

 Nak Parameters: universalFailure

Functional Description:

This service allows a client to log an ACD agent into or out of an ACD Split and to

specify a change of work mode for an ACD agent.

Chapter 7: Set Feature Service Group

352 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Service Parameters:

device [mandatory] Specifies the agent extension. This must be a valid on-PBX
station extension for an ACD agent.

agentMode [mandatory - partially supported] Specifies whether to log an Agent into
or out of an ACD split, or to change of work mode for an Agent logged
into an ACD split:

 AM_LOG_IN - Log in the Agent. This does not imply that the Agent is

ready to accept calls. The initial mode for the ACD agent can be set

via the workMode private parameter. If the workMode private

parameter is not supplied, the initial work mode for the ACD agent
will be set to "Auxiliary-Work Mode".

 AM_LOG_OUT - Log an Agent out of a specific ACD split. The Agent

will be unable to accept additional calls for the ACD split.

 AM_NOT_READY - Change the work mode for an Agent logged into an

ACD split to "Not Ready" (equivalent to the Communication Manager
"Auxiliary-Work Mode"), indicating that the Agent is occupied with
some task other than serving a call.

 AM_READY - Change the work mode for Agent logged into an ACD

split to "Ready". An Agent in the Ready state is ready to accept calls

or is currently busy with an ACD call. The workMode private

parameter may be used to set the ACD agent work mode to "Auto-In-

Work Mode" or "Manual-In-Work Mode". If the workMode private

parameter is not supplied, the ACD agent work mode will be set to
"Auto-In-Work Mode".

 AM_WORK_NOT_READY - Change the work mode for an Agent logged

into an ACD split to "Work Not Ready" (equivalent to Communication
Manager "After-Call-Work Mode"). An Agent in the Work Not Ready
state is occupied with the task of serving a call after the call has
disconnected, and the Agent is not ready to accept additional calls
for the ACD split.

 AM_WORK_READY - A change to "Work Ready" is not currently

supported for Communication Manager.

agentID [optional] Specifies the Agent login identifier for the ACD agent. This

parameter is mandatory when the agentMode parameter is AM_LOG_IN;

otherwise it is ignored. An agentID containing a Logical Agent‘s login

Identifier can be used to log in a Logical Agent (Expert Agent Selection
[EAS] environment) when paired with the agentPassword.

agentGroup [mandatory] Specifies the ACD agent split to use to log in, log out, or
change the agent work mode to "Not Ready", "Ready" or "Work Not
Ready". In an Expert Agent Selection (EAS) environment, the

agentGroup parameter is ignored and in that case is optional.

 Set Agent State Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 353

agentPassword [optional - partially supported] Specifies a password that allows an ACD
agent to log into an ACD Split. This service parameter is only used if

agentMode is set to AM_LOG_IN; otherwise it is ignored. The

agentPassword can be used to log in a Logical Agent (with EAS) when

included with the Logical Agent‘s login Identifier, the agentID.

Private Parameters:

workMode [optional] Specifies the work mode for the agent as Auxiliary- Work

Mode (WM_AUX_WORK), After-Call-Work Mode (WM_AFT_CALL), Auto-In

Mode (WM_AUTO_IN), or Manual- In-Work Mode (WM_MANUAL_IN) based

on the agentMode service parameter as follows:

 AM_LOG_IN - The workMode private parameter specifies the initial

work mode for the ACD agent. Valid values include "Auxiliary-Work
Mode" (Default), "After-Call-Work Mode", "Auto-In Mode", or "Manual-
In Mode".

 AM_LOG_OUT - The workMode is ignored.

 AM_NOT_READY - The workMode is ignored.

 AM_READY - The workMode private parameter specifies the work mode

for the ACD agent. Valid values include "Auto-In-Work Mode"
(Default), or "Manual-In-Work Mode".

 AM_WORK_NOT_READY - The workMode is ignored.

 AM_WORK_READY - The workMode is ignored.

reasonCode [optional] Specifies the reason for a work mode change to WM_AUX_WORK

or the logged-out (AM_LOG_OUT) state.

Beginning with private data version 7, valid reason codes range from 0 to
99. A value of 0 indicates that the reason code is not available. The
meaning of the codes 1 through 99 is defined by the application.

Private data versions 5 and 6 support reason codes 1 through 9. A value
of 0 indicates that the reason code is not available. The meaning of the
code (1-9) is defined by the application.

Private data versions 4 and earlier do not support reason codes.

Chapter 7: Set Feature Service Group

354 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

enablePending [optional] Specifies whether the requested change can be made
pending.

A value of TRUE will enable the pending feature. If the agent is busy on a

call when an attempt is made to change the agentMode to AM_NOT_READY

or AM_WORK_NOT_READY, and enablePending is set to TRUE, the change

will be made pending and will take effect as soon as the agent clears the
call. The request will be acknowledged (Ack).

If enablePending is not set to TRUE and the agent is busy on a call, the

requested change will not be made pending and the request will not be
acknowledged (Nak).

Note:

Subsequent requests may override a pending change and only
the most recent pending change will take effect when the call is

cleared. The enablePending parameter applies to the

reasonCode when the request is to change the agentMode to

AM_NOT_READY.

This parameter is supported by private data versions 6 and later.

Ack Parameters:

 None for this service.

Ack Private Parameters:

isPending [optional] If isPending is set to TRUE, the requested change in

workMode is pending. Otherwise, the requested change took effect

immediately.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 GENERIC_UNSPECIFIED (0) The service attempted to log out an

ACD agent who is already logged out, to log an ACD agent into a
split of which they are not a member, or to log an ACD agent in
with an incorrect password.

 GENERIC_OPERATION (1) The service attempted to log in an ACD

agent that is already logged in.

 Set Agent State Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 355

 VALUE_OUT_OF_RANGE (3) The service failed for one of the

following reasons:

– The workMode private parameter is not valid for the agentMode

(see Table 13).

– The reason code is outside of the acceptable range (1- 9 or 1-
99). (CS0/100).

 OBJECT_NOT_KNOWN (4) The service request did not specify a

valid on-PBX station for the ACD agent in device, the agentGroup

or device parameters were NULL, or the agentID parameter was

NULL when agentMode was set to AM_LOG_IN.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier has been specified in device.

 INVALID_FEATURE (15) The feature is not available for the

agentGroup, or the enablePending feature is not available for the

switch version.

 INVALID_OBJECT_TYPE (18) (CS3/80) A reason code was

specified, but the specified workMode was not WM_AUX_WORK, or

agentMode was not AM_LOG_OUT.

 GENERIC_STATE_INCOMPATIBILITY (21) A work mode change

was requested for a non-ACD agent, or the Agent station is
maintenance busy or out of service.

 INVALID_OBJECT_STATE (22) The Agent is already logged into

another split, or the maximum number of agents are already
logged in.

 GENERIC_SYSTEM_RESOURCE_AVAILABILITY (31) The request

cannot be completed due to lack of available switch resources.

 RESOURCE_BUSY (33) The service attempted to log in an ACD

agent that is currently on a call.

Chapter 7: Set Feature Service Group

356 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Detailed Information:

 A request to log in an ACD agent (agentMode is AM_LOG_IN) that does not

include the private parameter workMode will set the initial Agent work state to

Auxiliary-Work Mode (Not Ready).

 The AM_WORK_READY agentMode is not supported by Communication Manager.

 The agentPassword service parameter applies only for requests to log in an

ACD agent (agentMode is AM_LOG_IN). In all other cases, it is ignored. The

agentPassword can be used to log in a Logical Agent (in an Expert Agent

Selection [EAS] environment) when included with the Logical Agent‘s login

Identifier, the agentID.

 Valid combinations of the agentMode service parameter and the workMode,

reasonCode, and enablePending private parameters are shown in Table 13.

Table 13: agentMode Service Parameter and Associated Private Parameters

agentMode workMode Reason
code

enablePending

AM_LOG_IN WM_AUX_WORK (default) 1-99 NA

WM_AFTCAL_WK ignored

WM_AUTO_IN ignored

WM_MANUAL_IN ignored

AM_LOG_OUT WM_AUX_WORK (default) 1-99 NA

WM_AFTCAL_WK ignored

WM_AUTO_IN ignored

WM_MANUAL_IN ignored

AM_NOT_READY NA 1-99 TRUE/FALSE

AM_READY WM_AUTO_IN (default)

WM_MANUAL_IN

NA NA

AM_WORK_NOT_READY NA NA TRUE/FALSE

 attSetAgentStateExt() and attSetAgentState() do not accept the

enablePending parameter. These functions will never cause the requested work

mode change to be made pending.

 Subsequent pending work mode requests supersede any earlier requests.

 Set Agent State Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 357

Syntax

#include <acs.h>

#include <csta.h>

/* cstaSetAgentState() - Service Request */

RetCode_t cstaSetAgentState(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 DeviceID_t *device,

 AgentMode_t agentMode,

 AgentID_t *agentID,

 AgentGroup_t *agentGroup,

 AgentPassword_t *agentPassword,

 PrivateData_t *privateData);

typedef char DeviceID_t[64];

typedef enum AgentMode_t {

 AM_LOG_IN = 0,

 AM_LOG_OUT = 1,

 AM_NOT_READY = 2,

 AM_READY = 3,

 AM_WORK_NOT_READY = 4,

 AM_WORK_READY = 5

} AgentMode_t;

typedef char AgentID_t[32];

typedef DeviceID_t AgentGroup_t;

typedef char AgentPassword_t[32];

/* CSTASetAgentStateConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_SET_AGENT_STATE_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

Chapter 7: Set Feature Service Group

358 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 union

 {

 CSTASetAgentStateConfEvent_t setAgentState;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTASetAgentStateConfEvent_t {

 Nulltype null;

} CSTASetAgentStateConfEvent_t;

 Set Agent State Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 359

Private Data Version 6 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attV6SetAgentState() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attV6SetAgentState(

 ATTPrivateData_t *privateData,

 ATTWorkMode_t workMode,

 long reasonCode, /* 1-9 for private data

 * version 6, 1-99 for

 * version 7 and

 * later */

 Boolean enablePending); /* TRUE = enabled */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTWorkMode_t

{

 WM_NONE = -1, /* not specified */

 WM_AUX_WORK = 1, /* Auxiliary Work Mode*/

 WM_AFTCAL_WK = 2, /* After Call Work Mode*/

 WM_AUTO_IN = 3, /* Auto In Mode*/

 WM_MANUAL_IN = 4 /* Manual In Mode*/

} ATTWorkMode_t;

/* ATTSetAgentStateConfEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_SET_AGENT_STATE_CONF */

 union

 {

 ATTSetAgentStateConfEvent_t setAgentState;

 }u;

} ATTEvent_t;

typedef struct ATTSetAgentStateConfEvent_t {

 unsigned char isPending; /* TRUE if request is pending */

} ATTSetAgentStateConfEvent_t;

Chapter 7: Set Feature Service Group

360 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* attSetAgentStateExt() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attSetAgentStateExt(

 ATTPrivateData_t *privateData,

 ATTWorkMode_t workMode,

 long reasonCode); /* single digit 1-9 */

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTWorkMode_t

{

 WM_NONE = -1, /* not specified */

 WM_AUX_WORK = 1, /* Auxiliary Work Mode*/

 WM_AFTCAL_WK = 2, /* After Call Work Mode*/

 WM_AUTO_IN = 3, /* Auto In Mode*/

 WM_MANUAL_IN = 4 /* Manual In Mode*/

} ATTWorkMode_t;

 Set Agent State Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 361

Private Data Versions 2-4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* attSetAgentState() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attSetAgentState(

 ATTPrivateData_t *privateData,

 ATTWorkMode_t workMode);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTWorkMode_t

{

 WM_NONE = -1, /* not specified */

 WM_AUX_WORK = 1, /* Auxiliary Work Mode*/

 WM_AFTCAL_WK = 2, /* After Call Work Mode*/

 WM_AUTO_IN = 3, /* Auto In Mode*/

 WM_MANUAL_IN = 4 /* Manual In Mode*/

} ATTWorkMode_t;

Chapter 7: Set Feature Service Group

362 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Set Billing Rate Service (Private Data Version 5 and Later)

Summary

 Direction: Client to Switch

 Function: cstaEscapeService()

 Confirmation Event: CSTAEscapeSvcConfEvent

 Private Data Function: attSetBillRate()

 Service Parameters: noData

 Private Parameters: call, billType, billRate

 Ack Parameters: noData

 Nak Parameters: universalFailure

Functional Description:

This service supports the AT&T MultiQuest 900 Vari-A-Bill Service to change the rate for

an incoming 900-type call. The client application can request this service at any time

after the call has been answered and before the call is cleared.

Service Parameters:

 None for this service.

 Set Billing Rate Service (Private Data Version 5 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 363

Private Parameters:

call [mandatory] Specifies the call to which the billing rate is to be applied.

This is a connection identifier, but only the callID is used. The

deviceID of the call is ignored.

billType [mandatory] Specifies the rate treatment for the call and can be one of
the following:

 BT_NEW_RATE

 BT_FLAT_RATE (time independent)

 BT_PREMIUM_CHARGE (i.e., a flat charge in addition to the existing

rate)

 BT_PREMIUM_CREDIT (i.e., a flat negative charge in addition to the

existing rate)

 BT_FREE_CALL

billRate [mandatory] Specifies the rate according to the treatment indicated by

billType. If FREE_CALL is specified, billRate is ignored. This is a

floating point number. The rate should not be less than $0 and a
maximum is set for each 900-number as part of the provisioning process
(in the 4E switch)

Ack Parameters:

 None for this service.

Chapter 7: Set Feature Service Group

364 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA
Service errors -- universalFailure on page 817.

 INVALID_CSTA_CONNECTION_IDENTIFIER (13) An invalid

connection identifier has been specified in call.

 VALUE_OUT_OF_RANGE (3) (CS0/96) An invalid value has

been specified in the request.

 INVALID_OBJECT_STATE (22) (CS0/98) The request was

attempted before the call was answered.

 RESOURCE_BUSY (33) (CS0/47) The switch limit for

unconfirmed requests has been reached.

 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY (41)

(CS0/29) The user has not subscribed to the Set Billing Rate

Service feature.

Detailed Information:

None

 Set Billing Rate Service (Private Data Version 5 and Later)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 365

Syntax

#include <acs.h>

#include <csta.h>

/* cstaEscapeService() - Service Request */

RetCode_t cstaEscapeService(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTAEscapeSvcConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ESCAPE_SVC_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAEscapeSvcConfEvent_t escapeService;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {

 Nulltype null;

} CSTAEscapeSvcConfEvent_t;

Chapter 7: Set Feature Service Group

366 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attSetBillRate() - Service Request Private Data Formatting Function

 */

RetCode_t attSetBillRate(

 ATTPrivateData *privateData,

 ConnectionID_t *call,

 ATTBillType_t billType,

 float billRate);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef enum ATTBillType_t {

 BT_NEW_RATE = 16,

 BT_FLAT_RATE = 17,

 BT_PREMIUM_CHARGE = 18,

 BT_PREMIUM_CREDIT = 19,

 BT_FREE_CALL = 24

} ATTBillType_t;

 Set Do Not Disturb Feature Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 367

Set Do Not Disturb Feature Service

Summary

 Direction: Client to Switch

 Function: cstaSetDoNotDisturb()

 Confirmation Event: CSTASetDndConfEvent

 Service Parameters: device, doNotDisturb

 Ack Parameters: noData

 Nak Parameters: universalFailure

Functional Description:

This service turns on or off the Communication Manager Send All Calls (SAC) feature for

a user station.

Service Parameters:

device [mandatory] Must be a valid on-PBX station extension that supports the
SAC feature.

doNotDisturb [mandatory] Specifies either "On" (TRUE) or "Off" (FALSE).

Ack Parameters:

 None for this service.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA
Service errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier has been specified in device.

 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY (41) The

user has not subscribed to the Send All Calls (SAC) feature.

Chapter 7: Set Feature Service Group

368 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Detailed Information:

 DCS – The SAC feature may not be requested by this service for an off-PBX
DCS extension.

 Logical Agents – The SAC feature may not be requested by this service for
logical agent login IDs. If a login ID is specified, the request will be denied

(INVALID_CSTA_DEVICE_IDENTIFIER). The SAC feature may be requested by

this service on behalf of a logical agent‘s station extension. In an Expert Agent
Selection (EAS) environment, if the call is made to a logical agent ID, call
coverage follows the path administered for the logical agent ID, and not the
coverage path of the physical set from which the agent is logged in. SAC cannot
be activated by a CSTA request for the logical agent ID.

 Send All Calls (SAC) - This Communication Manager feature allows users to
temporarily direct all incoming calls to coverage regardless of the assigned Call
Coverage redirection criteria. Send All Calls also allows covering users to
temporarily remove their voice terminals from the coverage path. SAC is used
only in conjunction with the Call Coverage feature. Details of how SAC is used in
conjunction with the Call Coverage are documented in the Avaya Aura
Communication Manager Feature Description, 555-230-201.

 Set Do Not Disturb Feature Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 369

Syntax

#include <acs.h>

#include <csta.h>

/* cstaSetDoNotDisturb() - Service Request */

RetCode_t cstaSetDoNotDisturb(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 DeviceID_t *device,

 Boolean doNotDisturb, /* TRUE = On, FALSE = Off */

 PrivateData_t *privateData);

typedef char DeviceID_t[64];

typedef char Boolean;

/* CSTASetDndConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_SET_DND_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTASetDndConfEvent_t setDnd;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTASetDndConfEvent_t {

 Nulltype null;

} CSTASetDndConfEvent_t;

Chapter 7: Set Feature Service Group

370 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Set Forwarding Feature Service

Summary

 Direction: Client to Switch

 Function: cstaSetForwarding()

 Confirmation Event: CSTASetFwdConfEvent

 Service Parameters: device, forwardingType, forwardingOn,
forwardingDestination

 Ack Parameters: noData

 Nak Parameters: universalFailure

Functional Description:

The Set Forwarding Service sets the Communication Manager Call Forwarding feature

on or off for a user station. For Communication Manager, this service only supports the

Immediate type of forwarding.

Service Parameters:

device [mandatory] Specifies the station on which the Call Forwarding feature is
to be set. It must be a valid on-PBX station extension that supports the
Call Forwarding feature.

forwardingType [mandatory - partial] Specifies the type of forwarding to set or clear. Only
FWD_IMMEDIATE is supported. Any other types will be denied.

forwardingOn [mandatory] Specifies "On" (TRUE) or "Off" (FALSE).

forwarding-

Destination
[mandatory] Specifies the station extension to which the calls are to be

forwarded. It is mandatory if forwardingOn is set to TRUE. It is ignored

by Communication Manager if the forwardingOn is set to FALSE.

Ack Parameters:

 None for this service.

 Set Forwarding Feature Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 371

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA
Service errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier has been specified for device or forwarding-

Destination.

 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY (41) The

user is not subscribed to the Call Forwarding feature.

Detailed Information:

 DCS - The Call Forwarding feature may not be activated by this service for an
off-PBX DCS extension.

 Logical Agents - Call Forwarding may not be requested by this service for logical
agent login IDs. If a login ID is specified as the forwarding destination, the

request will be denied (INVALID_CSTA_DEVICE_IDENTIFIER). Call Forwarding

may be requested on behalf of a logical agent‘s station extension.

 Communication Manager Call Forwarding All Calls - This feature allows all calls
to an extension number to be forwarded to a selected internal extension number,
external (off-premises) number, the attendant group, or a specific attendant. It
supports only the CSTA forwarding type "Immediate."

 Activation and Deactivation - Activation and deactivation from the station and a
client application may be intermixed.

Chapter 7: Set Feature Service Group

372 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaSetForwarding() - Service Request */

RetCode_t cstaSetForwarding(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 DeviceID_t *device,

 ForwardingType_t forwardingType, /* must be FWD_IMMEDIATE */

 Boolean forwardingOn, /* TRUE = On, FALSE = Off */

 DeviceID_t *forwardingDestination,

 PrivateData_t *privateData);

typedef char DeviceID_t[64];

typedef enum ForwardingType_t {

 FWD_IMMEDIATE = 0, /* The only supported type */

 FWD_BUSY = 1, /* Not supported */

 FWD_NO_ANS = 2, /* Not supported */

 FWD_BUSY_INT = 3, /* Not supported */

 FWD_BUSY_EXT = 4, /* Not supported */

 FWD_NO_ANS_INT = 5, /* Not supported */

 FWD_NO_ANS_EXT = 6 /* Not supported */

} ForwardingType_t;

typedef char Boolean;

/* CSTASetFwdConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_SET_FWD_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 Set Forwarding Feature Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 373

 CSTASetFwdConfEvent_t setFwd;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTASetFwdConfEvent_t {

 Nulltype null;

} CSTASetFwdConfEvent_t;

Chapter 7: Set Feature Service Group

374 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Set Message Waiting Indicator (MWI) Feature Service

Summary

 Direction: Client to Switch

 Function: cstaSetMsgWaitingInd()

 Confirmation Event: CSTASetMwiConfEvent

 Service Parameters: device, messages

 Ack Parameters: noData

 Nak Parameters: universalFailure

Functional Description:

This service sets the Message Waiting Indicator (MWI) on or off for a user station.

Service Parameters:

device [mandatory] Must be a valid on-PBX station extension that supports
the MWI feature.

messages [mandatory] Specifies either "On" (TRUE) or "Off" (FALSE).

Ack Parameters:

 None for this service.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error value, or one of the error
values described in Table 20: Common switch-related CSTA
Service errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier has been specified in device.

 Set Message Waiting Indicator (MWI) Feature Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 375

Detailed Information:

 Adjunct Messages - When a client application has turned on a station‘s MWI and
the station user retrieves the message using the station display, then the station
display will show "You have adjunct messages."

 MWI Status Sync - To keep the MWI synchronized with other applications, a
client application must use this service to update the MWI whenever the TSAPI
link between the switch and the AE Services server comes up from a cold start.

An application can query the MWI status using the cstaQueryMsgWaitingInd()

Service.

 System Starts - System cold starts will cause the switch to lose the MWI status.
Hot starts (PE interchange) and warm starts will not affect the MWI status.

 Voice (Synthesized) Message Retrieval - A recording, "Please call message
center for more messages," will be used for the case when the MWI has been
activated by the application through this service.

376 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaSetMsgWaitingInd() - Service Request */

RetCode_t cstaSetMsgWaitingInd(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 DeviceID_t *device,

 Boolean messages, /* TRUE = On, FALSE = Off */

 PrivateData_t *privateData);

typedef char DeviceID_t[64];

typedef char Boolean;

/* CSTASetMwiConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_SET_MWI_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTASetMwiConfEvent_t setMwi;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTASetMwiConfEvent_t {

 Nulltype null;

} CSTASetMwiConfEvent_t;

377 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Chapter 8: Query Service Group

The Query Service Group provides services that allow a client application to query the

switch to provide the state of device features and to retrieve static attributes of a device.

The following sections describe the Query services supported by AE Services:

 Query ACD Split Service on page 378

 Query Agent Login Service on page 382

 Query Agent State Service on page 389

 Query Call Classifier Service on page 398

 Query Device Info on page 402

 Query Device Name Service on page 409

 Query Do Not Disturb Service on page 416

 Query Forwarding Service on page 418

 Query Message Waiting Indicator Service on page 422

 Query Station Status Service on page 426

 Query Time of Day Service on page 430

 Query Trunk Group Service on page 434

 Query Universal Call ID Service (Private) on page 438

Chapter 8: Query Service Group

378 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Query ACD Split Service

Summary

 Direction: Client to Switch

 Function: cstaEscapeService()

 Confirmation Event: CSTAEscapeSvcConfEvent

 Private Data Function: attQueryAcdSplit()

 Private Data Confirmation Event: ATTQueryAcdSplitConfEvent

 Service Parameters: noData

 Private Parameters: device

 Ack Parameters: noData

 Ack Private Parameters: availableAgents, callsInQueue, agentsLoggedIn

 Nak Parameters: universalFailure

Functional Description

The Query ACD Split service provides the number of ACD agents available to receive

calls through the split, the number of calls in queue, and the number of agents logged in.

The number of calls in queue does not include direct-agent calls.

Service Parameters

 None for this service.

Private Parameters:

device [mandatory] Must be a valid ACD split extension.

Ack Parameters:

 None for this service.

Ack Private Parameters:

availableAgents [mandatory] Specifies the number of ACD agents available to receive
calls through the specified split.

callsInQueue [mandatory] Specifies the number of calls in queue (not including
direct-agent calls).

agentsLoggedIn [mandatory] Specifies the number of ACD agents logged in.

 Query ACD Split Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 379

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier has been specified in device.

Detailed Information:

None for this service.

Chapter 8: Query Service Group

380 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaEscapeService() - Service Request */

RetCode_t cstaEscapeService(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTAEscapeSvcConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ESCAPE_SVC_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAEscapeSvcConfEvent_t escapeService;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {

 Nulltype null;

} CSTAEscapeSvcConfEvent_t;

 Query ACD Split Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 381

Private Data Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attQueryAcdSplit() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attQueryAcdSplit(

 ATTPrivateData_t *privateData,

 DeviceID_t *device);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTQueryAcdSplitConfEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_QUERY_ACD_SPLIT_CONF */

 union

 {

 ATTQueryAcdSplitConfEvent_t queryAcdSplit;

 }u;

} ATTEvent_t;

typedef struct ATTQueryAcdSplitConfEvent_t {

 short availableAgents; /* number of agents available

 * to receive calls */

 short callsInQueue; /* number of calls in queue */

 short agentsLoggedIn; /* number of agents logged in */

} ATTQueryAcdSplitConfEvent_t;

Chapter 8: Query Service Group

382 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Query Agent Login Service

Summary

 Direction: Client to Switch

 Function: cstaEscapeService()

 Confirmation Event: CSTAEscapeSvcConfEvent

 Event Report: CSTAPrivateEvent

 Private Data Function: attQueryAgentLogin()

 Private Data Confirmation Event: ATTQueryAgentLoginConfEvent

 Private Data Event Report: ATTQueryAgentLoginResp

 Service Parameters: noData

 Private Parameters: device

 Ack Parameters: noData

 Ack Private Parameters: privEventCrossRefID

 Private Event Parameters: privEventCrossRefID, list

 Nak Parameters: universalFailure

Functional Description

The Query Agent Login Service provides the extension of each ACD agent logged into

the specified ACD split. This service is unlike most other services because the

confirmation event provides a unique private event cross reference ID that associates a

subsequent CSTAPrivateEvent (containing the actual ACD agent login data) with the

original request. The private event cross reference ID is the only data returned in the

confirmation event. After returning the confirmation event, the service returns a

sequence of CSTAPrivateEvents. Each CSTAPrivateEvent contains the private event

cross reference ID, and a list. The list contains the number of extensions in the

message, and up to 10 extensions of ACD agents logged into the ACD split.

The entire sequence of CSTAPrivateEvents may contain a large volume of information

(up to the maximum number of logged-in agents allowed in an ACD Split). The service

provides the private event cross reference ID in case an application has issued multiple

Query Agent Login requests. The final CSTAPrivateEvent specifies that it contains zero

extensions and serves to inform the application that no more messages will be sent in

response to this query.

Service Parameters:

 None for this service.

 Query Agent Login Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 383

Private Parameters:

device [mandatory] Must be a valid ACD split extension.

Ack Parameters:

 None for this service.

Ack Private Parameters:

privEventCrossRefID Contains a unique handle to identify subsequent
CSTAPrivateEvents associated with this request.

Private Event Parameters:

privEventCrossRefID [mandatory] The handle to the query agent login request for
which this CSTAPrivateEvent is reported.

list [mandatory] A list structure with the following information: the
count (0 - 10) of how many extensions are in the message and
an array of up to 10 extensions. A count value of 0 indicates that
there are no additional CSTAPrivateEvents for the query.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error value, or one of the error values
described in Table 20: Common switch-related CSTA Service errors -
- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier has been specified in device.

Chapter 8: Query Service Group

384 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Detailed Information:

 A single Query Agent Login service request may result in multiple

CSTAPrivateEvents returned to the client after the return of the confirmation

event. All messages are contained in the private data of the

CSTAPrivateEvents.

 This service uses a private event cross reference ID to provide a way for clients

to correlate incoming CSTAPrivateEvents with an original Query Agent Login

request.

 Each separate CSTAPrivateEvent may contain up to 10 extensions.

 Each separate CSTAPrivateEvent contains a number indicating how many

extensions are in the message. The last CSTAPrivateEvent has the number set

to zero.

 The service receives each response message from the switch and passes it to

the application in a CSTAPrivateEvent. The application must be prepared to

receive and deal with a potentially large number of extensions received in

multiple CSTAPrivateEvents after it receives the confirmation event.

 Query Agent Login Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 385

Syntax

#include <acs.h>

#include <csta.h>

/* cstaEscapeService() - Service Request */

RetCode_t cstaEscapeService(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTAEscapeSvcConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ESCAPE_SVC_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAEscapeSvcConfEvent_t escapeService;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {

 Nulltype null;

} CSTAEscapeSvcConfEvent_t;

/* CSTAPrivateEvent - Private event for reporting data */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAEVENTREPORT */

 EventType_t eventType; /* CSTA_PRIVATE */

} ACSEventHeader_t;

Chapter 8: Query Service Group

386 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 union

 {

 CSTAPrivateEvent_t privateEvent;

 } u;

 } cstaEventReport;

 } event;

} CSTAEvent_t;

typedef struct CSTAPrivateEvent_t {

 Nulltype null;

} CSTAPrivateEvent_t;

 Query Agent Login Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 387

Private Data Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attQueryAgentLogin() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attQueryAgentLogin(

 ATTPrivateData_t *privateData,

 DeviceID_t *device);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTQueryAgentLoginConfEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_QUERY_AGENT_LOGIN_CONF */

 union

 {

 ATTQueryAgentLoginConfEvent_t queryAgentLogin;

 } u;

} ATTEvent_t;

typedef long ATTPrivEventCrossRefID_t;

typedef struct ATTQueryAgentLoginConfEvent_t {

 ATTPrivEventCrossRefID_t privEventCrossRefID;

} ATTQueryAgentLoginConfEvent_t;

/* ATTQueryAgentLoginResp – CSTA Private Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_QUERY_AGENT_LOGIN_RESP */

 union

 {

 ATTQueryAgentLoginResp_t queryAgentLoginResp;

 } u;

} ATTEvent_t;

Chapter 8: Query Service Group

388 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

typedef struct ATTQueryAgentLoginResp_t {

 ATTPrivEventCrossRefID_t privEventCrossRefID;

 struct {

 unsigned short count; /* number of extensions in

 * device[] */

 DeviceID_t device[10]; /* up to 10 extensions */

 } list;

} ATTQueryAgentLoginResp_t;

 Query Agent State Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 389

Query Agent State Service

Summary

 Direction: Client to Switch

 Function: cstaQueryAgentState()

 Confirmation Event: CSTAQueryAgentStateConfEvent

 Private Data Function: attQueryAgentState()

 Private Data Confirmation Event: ATTQueryAgentStateConfEvent (private data

versions 6 and later), ATTV5QueryAgentStateConfEvent (private data version

5), ATTV4QueryAgentStateConfEvent (private data versions 2-4)

 Service Parameters: device

 Private Parameters: split

 Ack Parameters: agentState

 Ack Private Parameters: workMode, talkState, reasonCode (private data

version 5 and later), pendingWorkMode, pendingReasonCode (private data

version 6 and later)

 Nak Parameters: universalFailure

Functional Description:

This service provides the agent state of an ACD agent. The agent‘s state is returned in

the CSTA agentState parameter. The private talkState parameter indicates if the

agent is idle or busy. The private workMode parameter has the agent‘s work mode as

defined by Avaya Communication Manager. The private reasonCode has the agent‘s

reasonCode if one is set. The private pendingWorkMode and pendingReasonCode have

the work mode and reason code that will take effect as soon as the agent‘s current call is

terminated.

Service Parameters:

device [mandatory] Must be a valid agent extension or a logical agent ID.

Private Parameters:

split [optional] If specified, it must be a valid ACD split extension. This
parameter is optional in an Expert Agent Selection (EAS)
environment, but it is mandatory in a non-EAS environment.

Chapter 8: Query Service Group

390 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Ack Parameters:

agentState [mandatory - partially supported] The ACD agent state. Agent state
will be one of the following values:

 AG_NULL - The agent is logged out of the device/ACD split.

 AG_NOT_READY - The agent is occupied with some task other than

that of serving a call.

 AG_WORK_NOT_READY - The agent is occupied with after call work.

The agent should not receive additional ACD calls in this state.

 AG_READY - The agent is available to accept calls or is currently

busy with an ACD call.

 Communication Manager does not support the AG_WORK_READY

state.

 Query Agent State Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 391

Ack Private Parameters:

workMode [optional] This parameter provides the agent work mode as defined
by Avaya Communication Manager. Valid values include:

 WM_AUTO_IN - Indicates that the agent work mode is Auto-In. The

agent is allowed to receive a new call immediately after

disconnecting from the previous call. The talkState parameter

indicates whether the agent is busy or idle.

 WM_MANUAL_IN - Indicates that the agent work mode is Manual-

In. The agent is automatically changed to the WM_AFTCAL_WK

state immediately after disconnecting from the previous call.

 WM_AFTCAL_WK - Indicates that the agent work mode is After Call

Work. (A Query Agent State service request for an agent in this

work mode returns an agentState parameter value of

AG_WORK_NOT_READY.)

 WM_AUX_WORK - Indicates that the agent work mode is Auxiliary

Work. (A Query Agent State service request on an agent in this

work mode returns an agentState parameter value of AG_

NOT_READY.)

talkState [optional] The talkState parameter provides the actual readiness of

the agent. Valid values are:

 TS_ON_CALL - Indicates that the agent is occupied with serving a

call

 TS_IDLE - Indicates that the agent is ready to accept calls.

reasonCode [optional] Specifies the reason for change of work mode to
WM_AUX_WORK or the logged-out (AM_LOG_OUT) state.

Beginning with private data version 7, valid reason codes range from
0 to 99. A value of 0 indicates that the reason code is not available.
The meaning of the codes 1 through 99 is defined by the application.

Private data versions 5 and 6 support reason codes 1 through 9. A
value of 0 indicates that the reason code is not available. The
meaning of the code (1-9) is defined by the application.

Private data versions 4 and earlier do not support reason codes.

pendingWorkMode [optional] Specifies the work mode which will take effect when the
agent gets off the call. If no work mode is pending then
pendingWorkMode will be set to WM_NONE (-1).

pendingReasonCode [optional] Specifies the pending reason code which will take effect
when the agent gets off the call. A value of 0 indicates that the
pending reason code is not available.

Chapter 8: Query Service Group

392 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error value, or one of the error values
described in Table 20: Common switch-related CSTA Service errors -
- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier has been specified in device.

 Query Agent State Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 393

Detailed Information:

 Communication Manager does not support the AG_WORK_READY state for

agentState.

 Except when the agentState has the value AG_NULL, all confirmation events

include private parameters for the agent workMode and talkState. The actual

readiness of the agent depends on values for these private parameters. In

particular, the value for talkState determines if the agent is busy on a call or

ready to accept calls.

 The Communication Manager Agent Work Mode to CSTA Agent State Mapping
is as follows:

Communication Manager Agent
Work Mode

CSTA Agent State (workMode)

Agent not logged in NULL

WM_AUX_WORK AG_NOT_READY

WM_AFTCAL_WORK AG_WORK_NOT_READY

WM_AUTO_IN AG_READY (workMode = WM_AUTO_IN)

WM_MANUAL_IN AG_READY (workMode = WM_MANUAL_IN)

 If the agent workMode is WM_AUTO_IN, the Query Agent State service always

returns AG_READY. The agent is immediately made available to receive a new call

after disconnecting from the previous call.

Agent Activity agentState talkState

Ready to accept calls AG_READY TS_IDLE

Occupied with a call AG_READY TS_ON_CALL

Disconnected from call AG_READY TS_IDLE

Chapter 8: Query Service Group

394 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaQueryAgentState() - Service Request */

RetCode_t cstaQueryAgentState(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 DeviceID_t *device,

 PrivateData_t *privateData);

/* CSTAQueryAgentStateConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_QUERY_AGENT_STATE_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAQueryAgentStateConfEvent_t queryAgentState;

 }u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAQueryAgentStateConfEvent_t {

 AgentState_t agentState;

} CSTAQueryAgentStateConfEvent_t;

typedef enum AgentState_t {

 AG_NOT_READY = 0,

 AG_NULL = 1,

 AG_READY = 2,

 AG_WORK_NOT_READY = 3,

 AG_WORK_READY = 4 /* Not supported */

} AgentState_t;

 Query Agent State Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 395

Private Data Version 6 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attQueryAgentState() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attQueryAgentState(

 ATTPrivateData_t *privateData,

 DeviceID_t *split);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTQueryAgentStateConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATT_QUERY_AGENT_STATE_CONF */

 union

 {

 ATTQueryAgentStateConfEvent_t queryAgentState;

 } u;

} ATTEvent_t;

typedef enum ATTWorkMode_t {

 WM_NONE = -1, /* No work mode is pending */

 WM_AUX_WORK = 1, /* Auxiliary Work Mode*/

 WM_AFTCAL_WK = 2, /* After Call Work Mode*/

 WM_AUTO_IN = 3, /* Auto In Mode*/

 WM_MANUAL_IN = 4 /* Manual In Mode*/

} ATTWorkMode_t;

typedef enum ATTTalkState_t {

 TS_ON_CALL = 0,

 TS_IDLE = 1

} ATTTalkState_t;

typedef struct ATTQueryAgentStateConfEvent_t {

 ATTWorkMode_t workMode;

 ATTTalkState_t talkState;

 long reasonCode;

 ATTWorkMode_t pendingWorkMode;

 long pendingReasonCode;

} ATTQueryAgentStateConfEvent_t;

Chapter 8: Query Service Group

396 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attQueryAgentState() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attQueryAgentState(

 ATTPrivateData_t *privateData,

 DeviceID_t *split);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTV5QueryAgentStateConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATTV5_QUERY_AGENT_STATE_CONF */

 union

 {

 ATTV5QueryAgentStateConfEvent_t v5queryAgentState;

 } u;

} ATTEvent_t;

typedef enum ATTWorkMode_t {

 WM_NONE = -1, /* No work mode is pending */

 WM_AUX_WORK = 1, /* Auxiliary Work Mode*/

 WM_AFTCAL_WK = 2, /* After Call Work Mode*/

 WM_AUTO_IN = 3, /* Auto In Mode*/

 WM_MANUAL_IN = 4 /* Manual In Mode*/

} ATTWorkMode_t;

typedef enum ATTTalkState_t {

 TS_ON_CALL = 0,

 TS_IDLE = 1

} ATTTalkState_t;

typedef struct ATTV5QueryAgentStateConfEvent_t {

 ATTWorkMode_t workMode;

 ATTTalkState_t talkState;

 long reasonCode;

} ATTV5QueryAgentStateConfEvent_t;

 Query Agent State Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 397

Private Data Versions 2-4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attQueryAgentState() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attQueryAgentState(

 ATTPrivateData_t *privateData,

 DeviceID_t *split);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTV4QueryAgentStateConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATTV4_QUERY_AGENT_STATE_CONF */

 union

 {

 ATTV4QueryAgentStateConfEvent_t v4queryAgentState;

 } u;

} ATTEvent_t;

typedef enum ATTWorkMode_t {

 WM_NONE = -1, /* No work mode is pending */

 WM_AUX_WORK = 1, /* Auxiliary Work Mode*/

 WM_AFTCAL_WK = 2, /* After Call Work Mode*/

 WM_AUTO_IN = 3, /* Auto In Mode*/

 WM_MANUAL_IN = 4 /* Manual In Mode*/

} ATTWorkMode_t;

typedef enum ATTTalkState_t {

 TS_ON_CALL = 0,

 TS_IDLE = 1

} ATTTalkState_t;

typedef struct ATTV4QueryAgentStateConfEvent_t {

 ATTWorkMode_t workMode;

 ATTTalkState_t talkState;

} ATTV4QueryAgentStateConfEvent_t;

Chapter 8: Query Service Group

398 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Query Call Classifier Service

Summary

 Direction: Client to Switch

 Function: cstaEscapeService()

 Confirmation Event: CSTAEscapeSvcConfEvent

 Private Data Function: attQueryCallClassifier()

 Private Data Confirmation Event: ATTQueryCallClassifierConfEvent

 Service Parameters: noData

 Private Parameters: noData

 Ack Parameters: noData

 Ack Private Parameters: numAvailPorts, numInUsePorts

 Nak Parameters: universalFailure

Functional Description:

This service provides the number of "idle" and "in-use" call classifier (e.g., TN744) ports.

The "in use" number is a snapshot of the call classifier port usage.

Service Parameters:

 None for this service.

Private Parameters:

 None for this service.

Ack Parameters:

 None for this service.

Ack Private Parameters:

numAvailPorts [mandatory] The number of available ports.

numInUsePorts [mandatory] The number of "in use" ports.

 Query Call Classifier Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 399

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may one of the error values described in Table 20: Common
switch-related CSTA Service errors -- universalFailure on page 817.

Detailed Information:

None for this service.

Chapter 8: Query Service Group

400 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaEscapeService() - Service Request */

RetCode_t cstaEscapeService(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTAEscapeSvcConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ESCAPE_SVC_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAEscapeSvcConfEvent_t escapeService;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {

 Nulltype null;

} CSTAEscapeSvcConfEvent_t;

 Query Call Classifier Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 401

Private Data Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attQueryCallClassifier() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attQueryCallClassifier(

 ATTPrivateData_t *privateData);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTQueryCallClassifierConfEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_QUERY_CALL_CLASSIFIER_CONF */

 union

 {

 ATTQueryCallClassifierConfEvent_t queryCallClassifier;

 } u;

} ATTEvent_t;

typedef struct ATTQueryCallClassifierConfEvent_t {

 short numAvailPorts; /* number of available ports */

 short numInUsePorts; /* number of ports in use */

} ATTQueryCallClassifierConfEvent_t;

Chapter 8: Query Service Group

402 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Query Device Info

Summary

 Direction: Client to Switch

 Function: cstaQueryDeviceInfo()

 Confirmation Event: CSTAQueryDeviceInfoConfEvent

 Private Data Confirmation Event: ATTQueryDeviceInfoConfEvent (private data

version 5 and later), ATTV4QueryDeviceInfoConfEvent (private data versions 2-

4)

 Service Parameters: device

 Ack Parameters: device, deviceType, deviceClass

 Ack Private Parameters: extensionClass, associatedDevice (private data

version 5 and later), associatedClass

 Nak Parameter: universalFailure

Functional Description:

This service provides the class and type of a device. The class is one of the following

attributes: voice, data, image, or other. The type is one of the following attributes:

station, ACD, ACD Group, or other. The extension class is provided in the CSTA private

data.

Service Parameters:

device [mandatory] Must be a valid on-PBX station extension.

Ack Parameters:

device [optional - supported] Normally this is the same ID specified in the device

parameter in the request. See associatedDevice and

associatedClass below.

deviceType [mandatory] The device type (mapped from the Communication Manager
extension class).

deviceClass [mandatory] The device class (mapped from the Communication
Manager extension class).

 Query Device Info

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 403

Ack Private Parameters:

extensionClass [mandatory] The Communication Manager Extension Class for the
device.

associatedDevice [optional] If the device specified in the request is a physical device of
a logical agent who is logged in, the logical ID of that agent is
returned in this parameter. Similarly, if the device specified in the
request is the logical ID of a logged-in agent, the physical device ID
of that agent is returned in this parameter. Otherwise, an empty
string is returned. This parameter is supported by private data
version 5 and later only.

associatedClass [optional] The Communication Manager Extension Class for the

associatedDevice. Its value is EC_LOGICAL_AGENT if the

associatedDevice is a device ID of a logical agent; otherwise its

value is EC_OTHER. This parameter is supported by private data

version 5 and later only.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error value, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier has been specified in device.

Chapter 8: Query Service Group

404 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Detailed Information:

The deviceType and deviceClass parameters are mapped from the Communication

Manager extension class as follows:

Communication Manager Extension Class CSTA Device Class CSTA Device Type

VDN Voice
3
 ACD Group

Hunt Group (ACD Split) Voice ACD Group

Announcement Voice Other

Data extension Data Station

Voice extension - Analog Voice Station

Voice extension - Proprietary Voice Station

Voice extension - BRI Voice Station

Logical Agent Voice Other

CTI Data Other

Other (modem pool, etc.) Other Other

3
 There is an additional private data qualifier that indicates if it is a VDN.

 Query Device Info

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 405

Syntax

#include <acs.h>

#include <csta.h>

/* cstaQueryDeviceInfo() - Service Request */

RetCode_t cstaQueryDeviceInfo(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 DeviceID_t *device,

 PrivateData_t *privateData);

/* CSTAQueryDeviceInfoConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_QUERY_DEVICE_INFO_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAQueryDeviceInfoConfEvent_t queryDeviceInfo;

 }u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAQueryDeviceInfoConfEvent_t {

 DeviceID_t device;

 DeviceType_t deviceType;

 DeviceClass_t deviceClass;

} CSTAQueryDeviceInfoConfEvent_t;

/* Device Types */

typedef enum DeviceType_t {

 DT_STATION = 0,

 DT_LINE = 1, /* not expected for Avaya CM */

Chapter 8: Query Service Group

406 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 DT_BUTTON = 2, /* not expected for Avaya CM */

 DT_ACD = 3,

 DT_TRUNK = 4, /* not expected for Avaya CM */

 DT_OPERATOR = 5, /* not expected for Avaya CM */

 DT_STATION_GROUP = 16, /* not expected for Avaya CM */

 DT_LINE_GROUP = 17, /* not expected for Avaya CM */

 DT_BUTTON_GROUP = 18, /* not expected for Avaya CM */

 DT_ACD_GROUP = 19,

 DT_TRUNK_GROUP = 20, /* not expected for Avaya CM */

 DT_OPERATOR_GROUP = 21, /* not expected for Avaya CM */

 DT_OTHER = 255

} DeviceType_t;

typedef unsigned char DeviceClass_t;

/* Device Classes */

#define DC_VOICE 0x80

#define DC_DATA 0x40

#define DC_IMAGE 0x20 /* not expected for Avaya CM */

#define DC_OTHER 0x10

 Query Device Info

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 407

Private Data Version 5 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTQueryDeviceInfoConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATT_QUERY_DEVICE_INFO_CONF */

 union

 {

 ATTQueryDeviceInfoConfEvent_t queryDeviceInfo;

 } u;

} ATTEvent_t;

typedef struct ATTQueryDeviceInfoConfEvent_t {

 ATTExtensionClass_t extensionClass;

 ATTExtensionClass_t associatedClass;

 DeviceID_t associatedDevice;

} ATTQueryDeviceInfoConfEvent_t;

typedef enum ATTExtensionClass_t {

 EC_VDN = 0,

 EC_ACD_SPLIT = 1,

 EC_ANNOUNCEMENT = 2,

 EC_DATA = 4,

 EC_ANALOG = 5,

 EC_PROPRIETARY = 6,

 EC_BRI = 7,

 EC_CTI = 8,

 EC_LOGICAL_AGENT = 9,

 EC_OTHER = 10

} ATTExtensionClass_t;

Chapter 8: Query Service Group

408 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Versions 2-4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV4QueryDeviceInfoConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATTV4_QUERY_DEVICE_INFO_CONF */

 union

 {

 ATTV4QueryDeviceInfoConfEvent_t v4queryDeviceInfo;

 } u;

} ATTEvent_t;

typedef struct ATTV4QueryDeviceInfoConfEvent_t {

 ATTExtensionClass_t extensionClass;

} ATTV4QueryDeviceInfoConfEvent_t;

typedef enum ATTExtensionClass_t {

 EC_VDN = 0,

 EC_ACD_SPLIT = 1,

 EC_ANNOUNCEMENT = 2,

 EC_DATA = 4,

 EC_ANALOG = 5,

 EC_PROPRIETARY = 6,

 EC_BRI = 7,

 EC_CTI = 8,

 EC_LOGICAL_AGENT = 9,

 EC_OTHER = 10

} ATTExtensionClass_t;

 Query Device Name Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 409

Query Device Name Service

Summary

 Direction: Client to Switch

 Function: cstaEscapeService()

 Confirmation Event: CSTAEscapeSvcConfEvent

 Private Data Function: attQueryDeviceName()

 Private Data Confirmation Event: ATTQueryDeviceNameConfEvent (private data

version 7 and later), ATTV6QueryDeviceNameConfEvent (private data versions 5

and 6), ATTV4QueryDeviceNameConfEvent (private data versions 2-4)

 Service Parameters: noData

 Private Parameters: device

 Ack Parameters: noData

 Ack Private Parameters: deviceType, device, name, uname

 Nak Parameter: universalFailure

Functional Description:

The Query Device Name service allows an application to query the switch to determine

the name associated with a device. The name is retrieved from the Communication

Manager Integrated Directory Database.

This service allows an application to identify the names administered in Communication

Manager for device extension numbers without maintaining its own database.

Service Parameters:

 None for this service.

Private Parameters:

device [mandatory] Must be a valid device extension.

Ack Parameters:

 None for this service.

Chapter 8: Query Service Group

410 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Ack Private Parameters:

deviceType [mandatory] Specifies the device type of the device:

 ATT_DT_UNKNOWN - unknown

 ATT_DT_ACD_SPLIT - ACD Split (Hunt Group)

 ATT_DT_ANNOUNCEMENT - announcement

 ATT_DT_DATA - data extension

 ATT_DT_LOGICAL_AGENT - logical agent

 ATT_DT_STATION - station extension

 ATT_DT_TRUNK_ACCESS_CODE - Trunk Access Code

 ATT_DT_VDN - VDN

 ATT_DT_OTHER – The device type is something other than any

of the device types listed above.

 If no name is administered in Communication Manager for the

device, the attQueryDeviceName() service sets the deviceType

to ATT_DT_UNKNOWN.

device [mandatory] Specifies the extension number of the device.

 NOTE:

If no name is administered in Communication Manager for

the device, the attQueryDeviceName() service sets the

device parameter to the empty string (―‖).

 Query Device Name Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 411

name [mandatory] Specifies the associated name of the device. This is a
string of 1-15 ASCII characters for private data versions 2-4. This is
a string of 1-27 ASCII characters for private data version 5 and later
only.

 NOTE:

If no name is administered in Communication Manager for

the device, the attQueryDeviceName() service sets the

name parameter to the empty string (―‖).

 The name of a device is administered in Communication Manager.
Non-standard 8-bit OPTREX characters supported on the displays
of the 84xx series terminals may be reported in the name
parameter. The 84xx terminal displays supports a limited number of
non-standard characters (in addition to the standard 7-bit ASCII
display characters), including Katakana, graphical characters, and
Eurofont (European-type) characters. The tilde (~) character is not
defined in the OPTREX set and is used as the toggle character
(turn on/off 8-bit character set) to indicate subsequent characters
are to have the high-bit set (turned off by a following ~ character, if
any). If non-standard 8-bit OPTREX characters are administered in
the switch for the device, then the tilde (~) character will be
reported in its name. An application needs to map the non-standard
8-bit OPTREX characters to their proper printable characters.

uname [mandatory] Specifies the associated name of the device in
Unicode. This parameter is supported by private data version 5 and
later only.

 NOTE:

If no name is administered in Communication Manager for

the device, the attQueryDeviceName() service sets the

uname parameter to the empty string (―‖).

Chapter 8: Query Service Group

412 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in

this event may contain the following error values, or one of the
error values described in Table 20: Common switch-related
CSTA Service errors -- universalFailure on page 817.

 VALUE_OUT_OF_RANGE (3) (CS0/100) An invalid

parameter value has been specified.

 OBJECT_NOT_KNOWN (4) (CS0/96) A mandatory

parameter is missing.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) (CS0/28) An

invalid device identifier has been specified in device.

Detailed Information:

 Incomplete Names – For private data versions 2-4, the names returned by this
service may not be the full names since the private data confirmation event has a
limit of 15 characters for the name.

 Security - Communication Manager does not provide security mechanisms for
this service.

 Traffic Control - The application is responsible for controlling the message traffic
on the CTI link. An application should minimize traffic by requesting device
names only when needed. This service is not intended for use by an application
to create its own copy of the Integrated Directory database. If the number of
outstanding requests reaches the switch limit, the response time may be as long
as 30 seconds.

 Query Device Name Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 413

Syntax

#include <acs.h>

#include <csta.h>

/* cstaEscapeService() - Service Request */

RetCode_t cstaEscapeService(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTAEscapeSvcConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ESCAPE_SVC_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAEscapeSvcConfEvent_t escapeService;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {

 Nulltype null;

} CSTAEscapeSvcConfEvent_t;

Chapter 8: Query Service Group

414 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 5 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attQueryDeviceName() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attQueryDeviceName(

 ATTPrivateData_t *privateData,

 DeviceID_t *device);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTQueryDeviceNameConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATT_QUERY_DEVICE_NAME_CONF */

 union

 {

 ATTQueryDeviceNameConfEvent_t queryDeviceName;

 } u;

} ATTEvent_t;

typedef struct ATTQueryDeviceNameConfEvent_t {

 ATTDeviceType_t deviceType;

 DeviceID_t device;

 DeviceID_t name; /* 1–27 ASCII character string */

 ATTUnicodeDeviceID uname; /* name in Unicode */

} ATTQueryDeviceNameConfEvent_t;

typedef enum ATTDeviceType_t

{

 ATT_DT_UNKNOWN = 0,

 ATT_DT_ACD_SPLIT = 1,

 ATT_DT_ANNOUNCEMENT = 2,

 ATT_DT_DATA = 3,

 ATT_DT_LOGICAL_AGENT = 4,

 ATT_DT_STATION = 5,

 ATT_DT_TRUNK_ACCESS_CODE = 6,

 ATT_DT_VDN = 7

}ATTDeviceType_t;

typedef struct ATTUnicodeDeviceID {

 unsigned short count;

 short value[64];

} ATTUnicodeDeviceID;

 Query Device Name Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 415

Private Data Versions 2-4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

RetCode_t attQueryDeviceName(

 ATTPrivateData_t *privateData,

 DeviceID_t *device);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTV4QueryDeviceNameConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATTV4_QUERY_DEVICE_NAME_CONF */

 union

 {

 ATTV4QueryDeviceNameConfEvent_t v4queryDeviceName;

 } u;

} ATTEvent_t;

typedef struct ATTV4QueryDeviceNameConfEvent_t {

 ATTDeviceType_t deviceType;

 DeviceID_t device;

 char name[16]; /* 1–15 ASCII character string */

} ATTV4QueryDeviceNameConfEvent_t;

typedef enum ATTDeviceType_t

{

 ATT_DT_UNKNOWN = 0,

 ATT_DT_ACD_SPLIT = 1,

 ATT_DT_ANNOUNCEMENT = 2,

 ATT_DT_DATA = 3,

 ATT_DT_LOGICAL_AGENT = 4,

 ATT_DT_STATION = 5,

 ATT_DT_TRUNK_ACCESS_CODE = 6,

 ATT_DT_VDN = 7

}ATTDeviceType_t;

Chapter 8: Query Service Group

416 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Query Do Not Disturb Service

Summary

 Direction: Client to Switch

 Function: cstaQueryDoNotDisturb()

 Confirmation Event: CSTAQueryDndConfEvent

 Service Parameters: device

 Ack Parameters: doNotDisturb

 Nak Parameter: universalFailure

Functional Description:

This service provides the status of the send all calls feature expressed as on or off at a

device. The status will always be reported as off when the extension does not have a

coverage path.

Service Parameters:

device [mandatory] Must be a valid on-PBX station extension that supports the
send all calls (SAC) feature.

Ack Parameters:

doNotDisturb [mandatory] Status of the send all calls feature expressed as on (TRUE)

or off (FALSE).

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error value, or one of the error
values described in Table 20: Common switch-related CSTA
Service errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier has been specified in device.

Detailed Information:

None for this service.

 Query Do Not Disturb Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 417

Syntax

#include <acs.h>

#include <csta.h>

/* cstaQueryDoNotDisturb() - Service Request */

RetCode_t cstaQueryDoNotDisturb(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 DeviceID_t *device,

 PrivateData_t *privateData);

/* CSTAQueryDndConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_QUERY_DND_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAQueryDndConfEvent_t queryDnd;

 }u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAQueryDndConfEvent_t {

 unsigned char doNotDisturb; /* TRUE = on, FALSE = off */

} CSTAQueryDndConfEvent_t;

Chapter 8: Query Service Group

418 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Query Forwarding Service

Summary

 Direction: Client to Switch

 Function: cstaQueryForwarding()

 Confirmation Event: CSTAQueryFwdConfEvent

 Service Parameters: device

 Ack Parameters: forward

 Nak Parameter: universalFailure

Functional Description:

This service provides the status and forward-to-number of the Call Forwarding feature

for a device. The status is expressed as on or off. For this service, Communication

Manager supports only one Forwarding Type (Immediate). Thus, the on/off indicator is

only specified for the Immediate type. The Call Forwarding feature may be turned on for

many types (Communication Manager redirection criteria), and the actual forward type is

dependent on how the feature is administered in Communication Manager.

Service Parameters:

device [mandatory] Must be a valid on-PBX station extension that supports the
Call Forwarding feature.

Ack Parameters:

forward [mandatory] This is a list of forwarding parameters. The list contains a
count of how many items are in the list. Since Communication Manager
stores only one forwarding address, the count is one. Each element in

the list contains the following: forwardingType, forwardingOn, and

forwardDN. For Communication Manager, forwardingType will always

be FWD_IMMEDIATE; forwardingOn will indicate the feature status (TRUE

indicates on, FALSE indicates off); and forwardDN will contain the

forward-to-number.

 Query Forwarding Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 419

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error value, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier has been specified in device.

Detailed Information:

Communication Manager supports only one CSTA Forwarding Type: Immediate. Thus,

each response contains information for the Immediate type.

Chapter 8: Query Service Group

420 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaQueryForwarding() - Service Request */

RetCode_t cstaQueryForwarding(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 DeviceID_t *deviceID,

 PrivateData_t *privateData);

/* CSTAQueryFwdConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_QUERY_FWD_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAQueryFwdConfEvent_t queryFwd;

 }u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAQueryFwdConfEvent_t {

 ListForwardParameters_t forward;

} CSTAQueryFwdConfEvent_t;

typedef struct ListForwardParameters_t {

 unsigned short count; /* will be at most 1 */

 ForwardingInfo_t param[7];

} ListForwardParameters_t;

typedef struct ForwardingInfo_t {

 ForwardingType_t forwardingType; /* FWD_IMMEDIATE */

 Query Forwarding Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 421

 unsigned char forwardingOn; /* TRUE = on, FALSE = off */

 DeviceID_t forwardDN;

} ForwardingInfo_t;

typedef enum ForwardingType_t {

 FWD_IMMEDIATE = 0, /* this is the only type supported */

 FWD_BUSY = 1, /* not supported */

 FWD_NO_ANS = 2, /* not supported */

 FWD_BUSY_INT = 3, /* not supported */

 FWD_BUSY_EXT = 4, /* not supported */

 FWD_NO_ANS_INT = 5, /* not supported */

 FWD_NO_ANS_EXT = 6 /* not supported */

} ForwardingType_t;

Chapter 8: Query Service Group

422 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Query Message Waiting Indicator Service

Summary

 Direction: Client to Switch

 Function: cstaQueryMsgWaitingInd()

 Confirmation Event: CSTAQueryMwiConfEvent

 Private Data Confirmation Event: ATTQueryMwiConfEvent

 Service Parameters: device

 Ack Parameters: messages

 Ack Private Parameters: applicationType

 Nak Parameter: universalFailure

Functional Description:

The Query Message Waiting Indicator Service provides status of the message waiting

indicator for a device expressed as on or off. The applications that turn the indicator on

(that is, ASAI, Property Management, Message Center, Voice Processing, and Leave

Word Calling) are reported in the private data.

Service Parameters:

device [mandatory] Must be a valid on-PBX station extension that supports the
Message Waiting Indicator (MWI) feature.

Ack Parameters:

messages [mandatory] Indicates the on/off status (TRUE indicates on, FALSE

indicates off) of the MWI for this device.

Ack Private Parameters:

applicationType [mandatory] Indicates the applications that turned on the MWI for the
device

 Query Message Waiting Indicator Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 423

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error value, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier has been specified in device.

Detailed Information:

 Application Type - The private data member applicationType is a bit map

where one bit is set for each application that turned on the indicator. Multiple
applications may turn on the indicator. The applications represented are:
CTI/ASAI, Property Management (PMS), Message Center (MCS), Voice
Messaging, and Leave Word Calling (LWC).

To find out which applications turned on the indicator, the application must use a
bit mask as shown in the following table:

bit: 8 7 6 5 4 3 2 1

Application N/A N/A N/A CTI/ASAI
(i.e., DLG,
CVLAN, or
TSAPI)

LWC PMS Voice MCS

 Setting MWI Status - An application can set the MWI status through the

cstaSetMsgWaitingInd() Service.

 System Starts - System cold starts cause the switch to lose the MWI status.
Other types of restart do not affect the MWI status.

Chapter 8: Query Service Group

424 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaQueryMsgWaitingInd() - Service Request */

RetCode_t cstaQueryMsgWaitingInd(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 DeviceID_t *device,

 PrivateData_t *privateData);

/* CSTAQueryMwiConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_QUERY_MWI_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAQueryMwiConfEvent_t queryMwi;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAQueryMwiConfEvent_t {

 unsigned char messages; /* TRUE = on, FALSE = off */

} CSTAQueryMwiConfEvent_t;

 Query Message Waiting Indicator Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 425

Private Data Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTQueryMwiConfEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_QUERY_MWI_CONF */

 union

 {

 ATTQueryMwiConfEvent_t queryMwi;

 }u;

} ATTEvent_t;

typedef struct ATTQueryMwiConfEvent_t

{

 ATTMwiApplication_t applicationType;

} ATTQueryMwiConfEvent_t;

typedef unsigned char ATTMwiApplication_t;

#define AT_MCS 0x01 /* bit 1 */

#define AT_VOICE 0x02 /* bit 2 */

#define AT_PROPMGT 0x04 /* bit 3 */

#define AT_LWC 0x08 /* bit 4 */

#define AT_CTI 0x10 /* bit 5 */

Chapter 8: Query Service Group

426 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Query Station Status Service

Summary

 Direction: Client to Switch

 Function: cstaEscapeService()

 Confirmation Event: CSTAEscapeSvcConfEvent

 Private Data Function: attQueryStationStatus()

 Private Data Confirmation Event: ATTQueryStationStatusConfEvent

 Service Parameters: noData

 Private Parameters: device

 Ack Parameters: noData

 Ack Private Parameters: stationStatus

 Nak Parameter: universalFailure

Functional Description:

The Query Station Status service provides state of a station: idle or busy. The "busy"

state is returned if the station is active with a call. The "idle" state is returned if the

station is not active with any call.

Service Parameters:

 None for this service.

Private Parameters:

device [mandatory] Must be a valid station device.

Ack Parameters:

 None for this service.

Ack Private Parameters:

stationStatus [mandatory] Specifies the busy/idle state (TRUE indicates busy, FALSE

indicates idle) of the station.

 Query Station Status Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 427

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error value, or one of the error
values described in Table 20: Common switch-related CSTA
Service errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier has been specified in device.

Detailed Information:

None for this service.

Chapter 8: Query Service Group

428 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaEscapeService() - Service Request */

RetCode_t cstaEscapeService(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTAEscapeSvcConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ESCAPE_SVC_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAEscapeSvcConfEvent_t escapeService;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {

 Nulltype null;

} CSTAEscapeSvcConfEvent_t;

 Query Station Status Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 429

Private Data Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attQueryStationStatus() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attQueryStationStatus(

 ATTPrivateData_t *privateData,

 DeviceID_t *device);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTQueryStationStatusConfEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_QUERY_STATION_STATUS_CONF */

 union

 {

 ATTQueryStationStatusConfEvent_t queryStationStatus;

 } u;

} ATTEvent_t;

typedef struct ATTQueryStationStatusConfEvent_t {

 unsigned char stationStatus; /* TRUE = busy, FALSE = idle */

} ATTQueryStationStatusConfEvent_t;

Chapter 8: Query Service Group

430 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Query Time of Day Service

Summary

 Direction: Client to Switch

 Function: cstaEscapeService()

 Confirmation Event: CSTAEscapeSvcConfEvent

 Private Data Function: attQueryTimeOfDay()

 Private Data Confirmation Event: ATTQueryTodConfEvent

 Service Parameters: noData

 Private Parameters: noData

 Ack Parameters: noData

 Ack Private Parameters: time

 Nak Parameter: universalFailure

Functional Description:

The Query Time of Day Service provides the switch information for the year, month, day,

hour, minute, and second.

Service Parameters:

 None for this service.

Ack Parameters:

 None for this service.

Ack Private Parameters:

time [mandatory] Specifies the year, month, day, hour, minute, and second.

 The year 1999 is specified by two digits: 99.

 The year 2000 is specified by one digit: 0.

 The year 2001 is specified by one digit; 1.

 The year 2002 is specified by one digit: 2, and so forth.

 Query Time of Day Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 431

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain one of the error values described in Table 20:
Common switch-related CSTA Service errors -- universalFailure
on page 817.

Detailed Information:

None for this service.

Chapter 8: Query Service Group

432 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaEscapeService() - Service Request */

RetCode_t cstaEscapeService(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTAEscapeSvcConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ESCAPE_SVC_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAEscapeSvcConfEvent_t escapeService;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {

 Nulltype null;

} CSTAEscapeSvcConfEvent_t;

 Query Time of Day Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 433

Private Data Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attQueryTimeOfDay() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attQueryTimeOfDay(

 ATTPrivateData_t *privateData);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTQueryTodConfEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_QUERY_TOD_CONF */

 union

 {

 ATTQueryTodConfEvent_t queryTOD;

 } u;

} ATTEvent_t;

typedef struct ATTQueryTodConfEvent_t {

 short year;

 short month;

 short day;

 short hour;

 short minute;

 short second;

} ATTQueryTODConfEvent_t;

Chapter 8: Query Service Group

434 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Query Trunk Group Service

Summary

 Direction: Client to Switch

 Function: cstaEscapeService()

 Confirmation Event: CSTAEscapeSvcConfEvent

 Private Data Function: attQueryTrunkGroup()

 Private Data Confirmation Event: ATTQueryTgConfEvent

 Service Parameters: noData

 Private Data Parameters: device

 Ack Parameters: noData

 Ack Private Parameters: idleTrunks, usedTrunks

 Nak Parameter: universalFailure

Functional Description:

The Query Trunk Group Service provides the number of idle trunks and the number of

in-use trunks. The sum of the idle and in-use trunks provides the number of trunks in

service.

Service Parameters:

 None for this service.

Private Parameters:

device [mandatory] Specifies a valid trunk group access code.

Ack Parameters:

 None for this service.

Ack Private Parameters:

idleTrunks [mandatory] The number of "idle" trunks in the group.

usedTrunks [mandatory] The number of "in use" trunks in the group

 Query Trunk Group Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 435

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error value, or one of the error
values described in Table 20: Common switch-related CSTA
Service errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier has been specified in device.

Detailed Information:

None for this service.

Chapter 8: Query Service Group

436 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaEscapeService() - Service Request */

RetCode_t cstaEscapeService(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTAEscapeSvcConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ESCAPE_SVC_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAEscapeSvcConfEvent_t escapeService;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {

 Nulltype null;

} CSTAEscapeSvcConfEvent_t;

 Query Trunk Group Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 437

Private Data Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attQueryTrunkGroup() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attQueryTrunkGroup(

 ATTPrivateData_t *privateData,

 DeviceID_t *device);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTQueryTgConfEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_QUERY_TG_CONF */

 union

 {

 ATTQueryTgConfEvent_t queryTg;

 } u;

} ATTEvent_t;

typedef struct ATTQueryTgConfEvent_t {

 short idleTrunks; /* number of "idle" trunks

 * in the group */

 short usedTrunks; /* number of "in use" trunks

 * in the group */

} ATTQueryTgConfEvent_t;

Chapter 8: Query Service Group

438 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Query Universal Call ID Service (Private)

Summary

 Direction: Client to Switch

 Function: cstaEscapeService()

 Confirmation Event: CSTAEscapeSvcConfEvent

 Private Data Function: attQueryUCID()

 Private Data Confirmation Event: ATTQueryUcidConfEvent

 Service Parameters: noData

 Private Parameters: call

 Ack Parameters: noData

 Ack Private Parameters: ucid

 Nak Parameter: universalFailure

Functional Description:

The Query Universal Call ID Service responds with the Universal Call ID (UCID) for a

normal callID. This query may be performed anytime during the life of a call.

Service Parameters:

 None for this service.

Private Parameters:

call [mandatory] Specifies the normal callID of a call. This is a

Connection Identifier. The deviceID is ignored.

Ack Parameters:

 None for this service.

Ack Private Parameters:

ucid [mandatory] Specifies the Universal Call ID (UCID) of the requested

call. The UCID is a unique call identifier across switches and the

network. A valid UCID is a null-terminated ASCII character string. If

there is no UCID associated with this call, the ucid contains the

ATT_NULL_UCID (a 20-character string of all zeros).

 Query Universal Call ID Service (Private)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 439

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA
Service errors -- universalFailure on page 817.

 VALUE_OUT_OF_RANGE (3) The specified callID value is

invalid

 OBJECT_NOT_KNOWN (4) The specified callID value is zero

 NO_ACTIVE_CALL (24) (CS3/86) An invalid call identifier

has been specified in call.

 INVALID_FEATURE (15) (CS3/63) The switch software does

not support this feature.

Detailed Information:

None for this service.

Chapter 8: Query Service Group

440 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaEscapeService() - Service Request */

RetCode_t cstaEscapeService(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTAEscapeSvcConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ESCAPE_SVC_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAEscapeSvcConfEvent_t escapeService;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {

 Nulltype null;

} CSTAEscapeSvcConfEvent_t;

 Query Universal Call ID Service (Private)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 441

Private Data Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* attQueryUCID() - Service Request Private Data Formatting Function */

RetCode_t attQueryUCID(

 ATTPrivateData_t *privateData,

 ConnectionID_t *call);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTQueryUcidConfEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_QUERY_UCID_CONF */

 union

 {

 ATTQueryUcidConfEvent_t queryUCID;

 } u;

} ATTEvent_t;

typedef char ATTUCID_t[64];

typedef struct ATTQueryUcidConfEvent_t {

 ATTUCID_t ucid;

} ATTQueryUcidConfEvent_t;

442 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Chapter 9: Snapshot Service Group

The Snapshot Service Group provides services that enable the client to get information

about a particular call, or information about calls associated with a particular device.

The following sections describe the Snapshot services supported by AE Services:

 Snapshot Call Service on page 443

 Snapshot Device Service on page 449

 Snapshot Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 443

Snapshot Call Service

Summary

 Direction: Client to Switch

 Function: cstaSnapshotCallReq()

 Confirmation Event: CSTASnapshotCallConfEvent

 Private Event: ATTSnapshotCallConfEvent

 Service Parameters: snapshotObj

 Private Parameters: deviceHistory

 Ack Parameters: snapshotData

 Nak Parameter: universalFailure

Functional Description:

The Snapshot Call Service provides the following information for each endpoint on the

specified call:

 Device ID

 Connection ID

 CSTA Local Connection State

The CSTA Connection state may be one of the following: Unknown, Null, Initiated,

Alerting, Queued, Connected, Held, or Failed.

The Device ID may be an on-PBX extension, an alerting extension, or a split hunt group

extension (when the call is queued). When a call is queued on more than one split hunt

group, only one split hunt group extension is provided in the response to such a query.

For calls alerting at various groups (for example, hunt group, TEG, etc.), the group

extension is reported to the client application. For calls connected to a member of a

group, the group member‘s extension is reported to the client.

Service Parameters:

snapshotObj [mandatory] Identifies the call object for which snapshot information is
requested. The structure includes the call identifier, the device identifier,
and the device type (static or dynamic).

 Communication Manager ignores the device identifier and device type, so
they may have null values.

Chapter 9: Snapshot Service Group

444 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Parameters:

deviceHistory The deviceHistory parameter type specifies a list of DeviceIDs that

were previously associated with the call. A device becomes associated
with the call whenever there is a CSTA connection created at the device
for the call. The association may also result from a relationship between
a device and a call outside the CSTA switching function. A device

becomes part of the deviceHistory list when it is no longer associated

with the call (for example: when a call is redirected from a device, when
a call is transferred away from a device, or when a device clears from a
call).

 Conceptually, the deviceHistory parameter provides a list of entries,

where each entry contains information about a DeviceID that had

previously been associated with the call, and the list is ordered from the
first device that left the call to the device that most recently left the call.
However, for AE Services, this list contains at most one entry.

The entry consists of:

 olddeviceID - the device that left the call. This information should

be consistent with the subject device in the event that represented

the device leaving the call. For example: the divertingDevice

provided in the Diverted event for that redirection, the transferring
device in the Transferred event for a transfer, or the clearing device
in the Connection Cleared event.

 cause - the reason the device left the call or was redirected. This

information should be consistent with the cause provided in the event

that represented the device leaving the call (for example, the cause
provided in the Diverted, Transferred, or Connection Cleared event).

 oldconnectionID - the CSTA ConnectionID that represents the last

ConnectionID associated with the device that left the call. This

information should be consistent with the subject connection in the
event that represented the device leaving the call (for example, the

ConnectionID provided in the Diverted, Transferred, or Connection

Cleared event).

Ack Parameters:

snapshotData [mandatory] Contains all the snapshot information for the call for which
the request was made. The structure includes a count of how many
device endpoints are on the call as well as the following detailed
information for each endpoint: Device ID, Call ID, and Local Connection
State of the call at the device.

 Snapshot Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 445

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 INVALID_CSTA_CALL_IDENTIFIER (11) An invalid call identifier

has been specified in snapshotObj.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier has been specified in snapshotObj.

Chapter 9: Snapshot Service Group

446 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaSnapshotCallReq() - Service Request */

RetCode_t cstaSnapshotCallReq(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 ConnectionID_t *snapshotObj,

 PrivateData_t *privateData);

/* CSTASnapshotCallConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_SNAPSHOT_CALL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTASnapshotCallConfEvent_t snapshotCall;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTASnapshotCallConfEvent_t {

 CSTASnapshotCallData_t snapshotCall;

} CSTASnapshotCallConfEvent_t;

typedef struct CSTASnapshotCallData_t {

 unsigned int count; /* call count */

 CSTASnapshotCallResponseInfo_t *info;

} CSTASnapshotCallData_t;

typedef struct CSTASnapshotCallResponseInfo_t {

 SubjectDeviceID_t deviceOnCall;

 Snapshot Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 447

 ConnectionID_t callIdentifier;

 LocalConnectionState_t localConnectionState;

} CSTASnapshotCallResponseInfo_t;

typedef enum LocalConnectionState_t {

 CS_NONE = -1,

 CS_NULL = 0, /* indicates a bridged state */

 CS_INITIATE = 1,

 CS_ALERTING = 2,

 CS_CONNECT = 3,

 CS_HOLD = 4,

 CS_QUEUED = 5,

 CS_FAIL = 6,

} LocalConnectionState_t;

Chapter 9: Snapshot Service Group

448 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 7 and Later Syntax

The CSTA Snapshot Call Confirmation event includes a private data, an

ATTSnapshotCallConfEvent, for private data version 7 and later. The

ATTSnapshotCallConfEvent provides the deviceHistory private data parameter.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTSnapshotCallConfEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_SNAPSHOT_CALL_CONF */

 union

 {

 ATTSnapshotCallConfEvent_t snapshotCallConf;

 } u;

} ATTEvent_t;

typedef struct ATTSnapshotCallConfEvent_t {

 DeviceHistory_t deviceHistory;

} ATTSnapshotCallConfEvent_t;

typedef struct DeviceHistory_t {

 unsigned int count; /* at most 1 */

 DeviceHistoryEntry_t *deviceHistoryList;

} DeviceHistory_t;

typedef struct DeviceHistoryEntry_t {

 DeviceID_t olddeviceID;

 CSTAEventCause_t cause;

 ConnectionID_t oldconnectionID;

} DeviceHistoryEntry_t;

 Snapshot Device Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 449

Snapshot Device Service

Summary

 Direction: Client to Switch

 Function: cstaSnapshotDeviceReq()

 Confirmation Event: CSTASnapshotDeviceConfEvent

 Private Data Confirmation Event: ATTSnapshotDeviceConfEvent (private data

version 5 and later), ATTV4SnapshotDeviceConfEvent (private data versions 2-

4)

 Service Parameters: snapshotObj

 Ack Parameters: snapshotDevice

 Ack Private Parameters: pSnapshotDevice

 Nak Parameter: universalFailure

Functional Description:

The Snapshot Device Service provides information about calls associated with a given

CSTA device. The information identifies each call and indicates the CSTA local

connection state for all devices on each call.

Service Parameters:

snapshotObj [mandatory] Must be a valid device.

Ack Parameters:

snapshotDevice [mandatory] Contains a sequence of information about each call on

the device. Information for each call includes the connectionID and a

sequence of local connection states for each connection in the call.

Ack Private Parameters:

pSnapshotDevice [mandatory] Contains a sequence of information about each call on

the device. Information for each call includes the connectionID and

the Communication Manager call state for each call at the snapshot
device.

Chapter 9: Snapshot Service Group

450 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error value, or one of the error values
described in Table 20: Common switch-related CSTA Service errors -
- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier has been specified in snapshotObj.

Detailed Information:

 The ECMA-180 definition for the confirmation event does not distinguish between
the call states for each individual connection making up a call. This is a
deficiency because there is no way to correlate the local connection state to a
particular connection ID within a call. To overcome this deficiency,
Communication Manager always returns the local connection state for the
queried device first in the list for each of the calls. The response contains lists of
connection states for each call at the snapshot device.

 Information for a maximum of 10 calls is provided for the snapshot device. This is
a Communication Manager limit.

 The mapping from the Communication Manager call state to the CSTA local call
state (provided in the CSTA response) is as follows:

Communication Manager Local Call State CSTA Local Call State

Initiate Initiated

Alerting Alerting

Connected Connected

Held Hold

Bridged Null

Other None (CS_NONE)

 The bridged state is a Communication Manager private local connection state
that is not defined in the CSTA specification. This state indicates that a call is
present at a bridged, simulated bridged, button TEG, or PCOL appearance, and
the call is neither ringing nor connected at the station. The bridged connection
state is reported in the private data of a Snapshot Device Confirmation Event and

it has a CSTA null (CS_NULL) state. Thus a device with the null state in the

Snapshot Device Confirmation Event is bridged.

 Snapshot Device Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 451

 A device with the bridged state can join the call by manually answering the call

(press the line appearance) or through the cstaAnswerCall() service. Once a

bridged device is connected to a call, its state becomes connected. After a
bridged device becomes connected, it can drop from the call and become
bridged again, if the call is not cleared.

Chapter 9: Snapshot Service Group

452 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaSnapshotDeviceReq() - Service Request */

RetCode_t cstaSnapshotDeviceReq(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 DeviceID_t *snapshotObj,

 PrivateData_t *privateData);

/* CSTASnapshotDeviceConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_SNAPSHOT_DEVICE_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTASnapshotDeviceConfEvent_t snapshotDevice;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTASnapshotDeviceConfEvent_t {

 CSTASnapshotDeviceData_t snapshotData;

} CSTASnapshotDeviceConfEvent_t;

typedef struct CSTASnapshotDeviceData_t {

 unsigned int count;

 CSTASnapshotDeviceResponseInfo_t *info;

} CSTASnapshotDeviceData_t;

typedef struct CSTASnapshotDeviceResponseInfo_t {

 ConnectionID_t callIdentifier;

 Snapshot Device Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 453

 CSTACallState_t localCallState;

} CSTASnapshotDeviceResponseInfo_t;

typedef struct CSTACallState_t {

 unsigned int count; /* number of connections

 * on call */

 LocalConnectionState_t *state; /* list of connection

 * states */

} CSTACallState_t;

typedef enum LocalConnectionState_t {

 CS_NONE = -1, /* not an expected snapshot device

 * response */

 CS_NULL = 0, /* indicates a bridged state */

 CS_INITIATE = 1,

 CS_ALERTING = 2,

 CS_CONNECT = 3,

 CS_HOLD = 4,

 CS_QUEUED = 5,

 CS_FAIL = 6,

} LocalConnectionState_t;

Chapter 9: Snapshot Service Group

454 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 5 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTSnapshotDeviceConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATT_SNAPSHOT_DEVICE_CONF */

 union

 {

 ATTSnapshotDeviceConfEvent_t snapshotDevice;

 } u;

} ATTEvent_t;

typedef struct ATTSnapshotDeviceConfEvent_t {

 unsigned int count;

 ATTSnapshotDevice_t *pSnapshotDevice;

} ATTSnapshotDeviceConfEvent_t;

typedef struct ATTSnapshotDevice_t {

 ConnectionID_t call;

 ATTLocalCallState_t state;

} ATTSnapshotDevice_t;

typedef enum ATTLocalCallState_t {

 ATT_CS_INITIATED = 1,

 ATT_CS_ALERTING = 2,

 ATT_CS_CONNECTED = 3,

 ATT_CS_HELD = 4,

 ATT_CS_BRIDGED = 5,

 ATT_CS_OTHER = 6

} ATTLocalCallState_t;

 Snapshot Device Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 455

Private Data Version 2-4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV4SnapshotDeviceConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATTV4_SNAPSHOT_DEVICE_CONF */

 union

 {

 ATTV4SnapshotDeviceConfEvent_t v4snapshotDevice;

 } u;

} ATTEvent_t;

typedef struct ATTV4SnapshotDeviceConfEvent_t {

 unsigned short count;

 ATTSnapshotDevice_t *snapshotDevice[6];

} ATTV4SnapshotDeviceConfEvent_t;

typedef struct ATTSnapshotDevice_t {

 ConnectionID_t call;

 ATTLocalCallState_t state;

} ATTSnapshotDevice_t;

typedef enum ATTLocalCallState_t {

 ATT_CS_INITIATED = 1,

 ATT_CS_ALERTING = 2,

 ATT_CS_CONNECTED = 3,

 ATT_CS_HELD = 4,

 ATT_CS_BRIDGED = 5,

 ATT_CS_OTHER = 6

} ATTLocalCallState_t;

456 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Chapter 10: Monitor Service Group

The Monitor Service Group provides services to monitor calls and devices. This chapter

includes the following sections:

 Overview on page 456

 Change Monitor Filter Service on page 461

 Monitor Call Service on page 467

 Monitor Calls Via Device Service on page 478

 Monitor Device Service on page 488

 Monitor Ended Event Report on page 497

 Monitor Stop On Call Service (Private) on page 499

 Monitor Stop Service on page 503

Overview

This overview provides a high level description of each of the monitor services that AE

Services supports. Additionally, it includes the following topics:

 Event Filters and Monitor Services on page 457

 The localConnectionInfo Parameter for Monitor Services on page 460

Change Monitor Filter Service — cstaChangeMonitorFilter()

This service is used by a client application to change the filter options in a previously

requested monitor association.

Monitor Call Service — cstaMonitorCall()

This service provides call event reports passed by the call filter for a single call to an

application, but does not provide any agent, feature, or maintenance event reports.

Monitor Calls Via Device Service — cstaMonitorCallsViaDevice()

This service4 provides call event reports passed by the call filter for all devices on all

calls that involve a VDN or an ACD Split device. Event reports are provided for calls that

arrive at the device after the monitor request is acknowledged. Event reports for calls

that were already present at the VDN or ACD prior to the monitor request are not

provided. Special rules apply to the event reports when the call is diverted, forwarded,

conferenced, or transferred. Details are provided in later sections.

This service does not provide any agent, feature, or maintenance event reports.

4
 The Monitor Calls Via Device Service is the call-type Monitor Start Service on a static device

identifier in ECMA-179.

 Overview

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 457

Monitor Device Service — cstaMonitorDevice()

This service5 provides call event reports passed by the call filter for all devices on all

calls at a station device. Event reports are provided for calls that occurred prior to the

monitor request and arrive at the device after the monitor request is acknowledged. If a

call is dropped, forwarded, or transferred from the device, and the device has ceased to

participate in the call, no further events of the call are reported.

The service also provides feature event reports passed by the filter for a monitored

station device as well as agent event reports passed by the filter for a monitored ACD

Split device.

The service does not provide maintenance event reports.

Monitor Ended Event — CSTAMonitorEndedEvent

The switch uses this event report to notify a client application that a previously requested

Monitor Service has been canceled.

Monitor Stop On Call Service (Private) — attMonitorStopOnCall()

An application uses this service to stop call event reports of a specific call on a

monitored device.

Monitor Stop Service — cstaMonitorStop()

An application uses this service to cancel a previously requested Monitor Service.

Event Filters and Monitor Services

Table 14 shows the relationship between event filters and monitor services.

 A value of "On" means that this filter is always turned on in the service request
confirmation event or the change filter service request confirmation event. This
monitor request will never receive this event.

 A value of "On/Off" means that this filter can be turned on or off in the service
request or in the change filter service request and the active filters will be
specified in the confirmation event. If a filter is set to on, this monitor request will
not receive that event.

5
 The Monitor Device Service is the device-type Monitor Start Service on a static device identifier

in ECMA-179.

Chapter 10: Monitor Service Group

458 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 NOTE:

If the Private Filter is set to On, all ATT private event filters (Entered Digits) will
be automatically set to On, meaning that there will be no ATT private events for
the monitor request.

Table 14: Event Filters and Monitor Services

Event Filters Monitor
Call

Monitor
Device
(Station)

Monitor
Device
(ACD
Split)

Monitor
Device
(Trunk or
All
Trunks)

Monitor Calls
Via Device
(VDN or ACD
Split)

Call Event Filters

Advice of Charge
(private data version 5
and later)

On/Off On/Off On/Off On/Off On/Off

Call Cleared On/Off On On On On/Off

Conferenced On/Off On/Off On On On/Off

Connection Cleared On/Off On/Off On On On/Off

Delivered On/Off On/Off On On On/Off

Diverted On On/Off On On On/Off

Entered Digits
(private)

On/Off On On On On/Off

Established On/Off On/Off On On On/Off

Failed On/Off On/Off On On On/Off

Held On/Off On/Off On On On/Off

Network Reached On/Off On/Off On On On/Off

Originated On On/Off On/Off On On

Queued On/Off On/Off On On On/Off

Retrieved On/Off On/Off On On On/Off

Service Initiated On On/Off On On On

Transferred On/Off On/Off On On On/Off

 Overview

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 459

Table 14: Event Filters and Monitor Services

Event Filters Monitor
Call

Monitor
Device
(Station)

Monitor
Device
(ACD
Split)

Monitor
Device
(Trunk or
All
Trunks)

Monitor Calls
Via Device
(VDN or ACD
Split)

Agent Event Filters

Logged On On On On/Off On On

Logged Off On On On/Off On On

Not Ready On On On On On

Ready On On On On On

Work Not Ready On On On On On

Work Ready On On On On On

Feature Event Filters

Call Information On On On On On

Do Not Disturb On On/Off
6
 On On On

Forwarding On On/Off On On On

Message Waiting On On On On On

Maintenance Event Filters

Back in Service On On On On On

Out of Service On On On On On

Private Filter On/Off On/Off On/Off On/Off On/Off

6
 For Communication Manager release earlier than 5.0, or when the TSAPI CTI link is

administered with ASAI link version 4, the Do Not Disturb and Forwarding events are always
filtered (On).

Chapter 10: Monitor Service Group

460 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

The localConnectionInfo Parameter for Monitor Services

Table 15 shows the availability of the localConnectionInfo parameter for the monitor

services. These definitions follow the CSTA specification.

Table 15: localConnectionInfo for monitor services

Parameter Monitor Call Monitor
Device
(Station)

Monitor
Device (ACD
Split)

Monitor
Device (Trunk
or All Trunks)

Monitor Calls
Via Device

(VDN or ACD
Split)

localConnectionInfo not supported supported not supported not supported not supported

 Change Monitor Filter Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 461

Change Monitor Filter Service

Summary

 Direction: Client to Switch

 Function: cstaChangeMonitorFilter()

 Confirmation Event: CSTAChangeMonitorFilterConfEvent

 Private Data Function: attMonitorFilterExt() (private data version 5 and

later), attMonitorFilter() (private data versions 2-4)

 Private Data Confirmation Event: ATTMonitorConfEvent (private data version 5

and later), ATTV4MontorConfEvent (private data versions 2-4)

 Service Parameters: monitorCrossRefID, filterList

 Private Parameters: privateFilter

 Ack Parameters: filterList

 Ack Private Parameters: usedFilter

 Nak Parameter: universalFailure

Functional Description:

The Change Monitor Filter Service is used by a client application to change the filter

options for a previously established monitor association.

Service Parameters:

monitorCrossRefID [mandatory] Must be a valid Cross Reference ID that was returned in
a previous CSTAMonitorConfEvent of this acsOpenStream session.

filterList [mandatory — partially supported] Specifies the filters to be changed.
Call Filter, Agent Filter, Feature Filter, and Private Filter are
supported.

Setting a filter for an event (for example, CF_CALL_CLEARED=0x8000)

in the monitorFilter means that the event will be filtered out and

no such event reports will be sent to the application on that monitor.

A zero Private Filter means that the application wants to receive the
private events. If Private Filter is non-zero, private events will be
filtered out. The Maintenance Filter is not supported. If present, it will
be ignored.

Chapter 10: Monitor Service Group

462 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Parameters:

privateFilter [optional] Specifies the Communication Manager private filters to be
changed. The following Communication Private Call Filter and Call Event
Reports are supported:

 Private data version 5 and later:

– ATT_ENTERED_DIGITS_FILTER

– ATT_CHARGE_ADVICE_FILTER

 Private data versions 2-4:

– ATT_V4_ENTERED_DIGITS_FILTER

See Table 14 to determine which filters are under the control of the
application, that is, can be turned on and off.

Ack Parameters:

filterList [optional — partially supported] Specifies the event reports that are to be
filtered out on the object being monitored by the application. This may

not be the filterList specified in the service request, because filters

for events that are not supported by Communication Manager and filters
for events that do not apply to the monitored object are always turned on

in the filterList. All event reports in Maintenance Filter are set to ON,

meaning that there are no reports supported for these events.

Ack Private Parameters:

usedFilter [optional] Specifies the Communication Manager Private Event
Reports that are to be filtered out on the object being monitored by
the application.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA
Service errors -- universalFailure on page 817.

 INVALID_CROSS_REF_ID (17) The service request specified

a Cross Reference ID that is not in use at this time.

Detailed Information:

See Event Report Detailed Information on page 710.

 Change Monitor Filter Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 463

Syntax

#include <acs.h>

#include <csta.h>

/* cstaChangeMonitorFilter() - Service Request */

RetCode_t cstaChangeMonitorFilter(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 CSTAMonitorCrossRefID_t monitorCrossRefID,

 CSTAMonitorFilter_t *filterList,

 PrivateData_t *privateData);

/* CSTAChangeMonitorFilterConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType;

 /* CSTA_CHANGE_MONITOR_FILTER_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAChangeMonitorFilterConfEvent_t changeMonitorFilter;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAChangeMonitorFilterConfEvent_t {

 CSTAMonitorFilter_t monitorFilter;

} CSTAChangeMonitorFilterConfEvent_t;

typedef unsigned short CSTACallFilter_t;

#define CF_CALL_CLEARED 0x8000

#define CF_CONFERENCED 0x4000

#define CF_CONNECTION_CLEARED 0x2000

Chapter 10: Monitor Service Group

464 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

#define CF_DELIVERED 0x1000

#define CF_DIVERTED 0x0800

#define CF_ESTABLISHED 0x0400

#define CF_FAILED 0x0200

#define CF_HELD 0x0100

#define CF_NETWORK_REACHED 0x0080

#define CF_ORIGINATED 0x0040

#define CF_QUEUED 0x0020

#define CF_RETRIEVED 0x0010

#define CF_SERVICE_INITIATED 0x0008

#define CF_TRANSFERRED 0x0004

typedef unsigned char CSTAFeatureFilter_t;

#define FF_CALL_INFORMATION 0x80

#define FF_DO_NOT_DISTURB 0x40

#define FF_FORWARDING 0x20

#define FF_MESSAGE_WAITING 0x10

typedef unsigned char CSTAAgentFilter_t;

#define AF_LOGGED_ON 0x80

#define AF_LOGGED_OFF 0x40

#define AF_NOT_READY 0x20

#define AF_READY 0x10

#define AF_WORK_NOT_READY 0x08

#define AF_WORK_READY 0x04 /* not supported */

typedef unsigned char CSTAMaintenanceFilter_t

#define MF_BACK_IN_SERVICE 0x80 /* not supported */

#define MF_OUT_OF_SERVICE 0x40 /* not supported */

typedef struct CSTAMonitorFilter_t {

 CSTACallFilter_t call;

 CSTAFeatureFilter_t feature;

 CSTAAgentFilter_t agent;

 CSTAMaintenanceFilter_t maintenance; /* not supported */

 long privateFilter; /* 0 = private events,

 * non-zero = no

 * private events */

} CSTAMonitorFilter_t;

 Change Monitor Filter Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 465

Private Data Version 5 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attMonitorFilterExt() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attMonitorFilterExt(

 ATTPrivateData_t *privateData,

 ATTPrivateFilter_t privateFilter);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTPrivateFilter_t;

#define ATT_ENTERED_DIGITS_FILTER 0x80

#define ATT_CHARGE_ADVICE_FILTER 0x40

/* ATTMonitorConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATT_MONITOR_CONF */

 union

 {

 ATTMonitorConfEvent_t monitorStart;

 } u;

} ATTEvent_t;

typedef struct ATTMonitorConfEvent_t {

 ATTPrivateFilter_t usedFilter;

} ATTMonitorConfEvent_t;

Chapter 10: Monitor Service Group

466 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Versions 2-4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attMonitorFilter() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attMonitorFilter(

 ATTPrivateData_t *privateData,

 ATTV4PrivateFilter_t privateFilter);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTV4PrivateFilter_t;

#define ATT_V4_ENTERED_DIGITS_FILTER 0x80

/* ATTV4MonitorConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATTV4_MONITOR_CONF */

 union

 {

 ATTV4MonitorConfEvent_t v4monitorStart;

 } u;

} ATTEvent_t;

typedef struct ATTV4MonitorConfEvent_t {

 ATTV4PrivateFilter_t usedFilter;

} ATTV4MonitorConfEvent_t;

 Monitor Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 467

Monitor Call Service

Summary

 Direction: Client to Switch

 Function: cstaMonitorCall()

 Confirmation Event: CSTAMonitorConfEvent

 Private Data Function: attMonitorFilterExt() (private data version 5 and

later), attMonitorFilter() (private data versions 2-4)

 Private Data Confirmation Event: ATTMonitorCallConfEvent (private data

version 5 and later), ATTV4MonitorCallConfEvent (private data versions 2-4)

 Service Parameters: call, monitorFilter

 Private Parameters: privateFilter

 Ack Parameters: monitorCrossRefID, monitorFilter

 Ack Private Parameters: usedFilter, snapshotCall

 Nak Parameter: universalFailure

Functional Description:

This service provides call event reports passed by the call filter for a call (call) already

in progress. Event reports are provided after the monitor request is acknowledged.

Events that occurred prior to the monitor request are not reported. A call that is being

monitored may have a new call identifier assigned to it after a conference or transfer. In

this case, event reports continue for that call with the new call identifier.

The event reports are provided for all endpoints directly connected to the

Communication Manager server and, in some cases, for endpoints not directly

connected to the Communication Manager server that are involved in a monitored call.

A snapshot of the call is provided in the CSTAMonitorConfEvent. The information

provided is equivalent to the information provided in a CSTASnapshotCallConfEvent for

a snapshot of the monitored call.

Only Call Filter/Call Event Reports and Private Filter are supported. Agent Event

Reports, Feature Event Reports and Maintenance Event Reports are not provided.

Chapter 10: Monitor Service Group

468 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Service Parameters:

call [mandatory] ConnectionID of the call to be monitored.

monitorFilter [optional - partially supported] Specifies the filters to be used with call.
Only Call Filter/Call Event Reports and Private Filter are supported. If a
Call Filter is not present, it defaults to no filter, meaning that all
Communication Manager CSTA call events will be reported.

Setting a filter for an event (for example, CF_CALL_CLEARED=0x8000) in

the monitorFilter means that the event will be filtered out and no such

event reports will be sent to the application on that monitor.

A zero Private Filter means that the application wants to receive the
private call events. If Private Filter is non-zero, private call events will be
filtered out. The Agent Filter, Feature Filter, and Maintenance Filter are
not supported. If one of these is present, it will be ignored.

Private Parameters:

privateFilter [optional] Specifies the Communication Manager private filters to be
changed. The following Private Call Filter and Call Event Reports are
supported:

 Private data version 5 and later:

– ATT_ENTERED_DIGITS_FILTER

– ATT_CHARGE_ADVICE_FILTER

 Private data versions 2-4:

– ATT_V4_ENTERED_DIGITS_FILTER

See Table 14 to determine which filters are under the control of the
application, that is, can be turned on and off.

 Monitor Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 469

Ack Parameters:

monitorCrossRefID [mandatory] Contains the handle chosen by the TSAPI Service for the

monitor. This handle is a unique value within an acsOpenStream

session for the duration of the monitor and is used by the application
to correlate subsequent event reports to the monitor request that
initiated them. It also allows the correlation of a Monitor Stop service
request to the original cstaMonitorCall() request.

monitorFilter [optional — partially supported] Specifies the event reports that are to
be filtered out on the object being monitored by the application. This

may not be the monitorFilter specified in the service request,

because filters for events that are not supported by Communication
Manager and filters for events that do not apply to the monitored

object are always turned on in monitorFilter. Only Call Filter and

Call Event Reports are supported.

All event reports in Agent Filter, Feature Filter, Maintenance Filter,
and Private Filter are set to ON, meaning that there are no reports
supported for these events.

Ack Private Parameters:

usedFilter [optional] Specifies the Communication Manager Private Filter and Event
Reports that are to be filtered out on the object being monitored by the
application.

snapshotCall [optional] Provides information about the device identifier, connection,
and the CSTA Connection state for up to six (6) endpoints on the call.
The Connection state may be one of the following: Unknown, Null,
Initiated, Alerting, Queued, Connected, Held, or Failed. The information
provided is equivalent to the information provided in a

CSTASnapshotCallConfEvent of the monitored call.

Chapter 10: Monitor Service Group

470 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA
Service errors -- universalFailure on page 817.

 INVALID_CONNECTION_ID_FOR_ACTIVE_CALL (23)

(CS0/100) The call identifier is outside the range of valid call

identifier values.

 NO_ACTIVE_CALL (24) (CS3/86) The application has sent

an invalid call identifier. The call does not exist or has been
cleared.

 RESOURCE_BUSY (33) The TSAPI Service is busy processing

a cstaMonitorCall() service request on the same call. Try

again.

 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY (41)

(CS0/50) The user has not subscribed for the requested

service.

 OBJECT_MONITOR_LIMIT_EXCEEDED (42) (CS3/40) The

maximum number of calls being monitored on Communication
Manager was exceeded.

 OUTSTANDING_REQUEST_LIMIT_EXCEEDED (44) (CS3/63)

The same call may be being monitored by another AE
Services server. The request cannot be executed because the
system limit is exceeded for the maximum number of monitors
on a call by CTI applications.

 Monitor Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 471

Detailed Information:

See also Event Report Detailed Information on page 710.

 Monitor Ended Event Report — When the monitored call is ended before a

cstaMonitorStop() request is received to stop the cstaMonitorCall()

association, a CSTAMonitorEndedEvent will be sent to the application to

terminate the cstaMonitorCall() association.

 Monitor Stop on Call Service — When the cstaMonitorCall() association is

stopped by an attMonitorStopOnCall() request before a cstaMonitorStop()

request is received, a CSTAMonitorEndedEvent will be sent to the application to

terminate the cstaMonitorCall() association.

 Maximum Requests from Multiple AE Services Servers — Multiple TSAPI
applications may monitor the same call if all of the applications have opened
streams to the same AE Services server. However, a cstaMonitorCall() request
will fail if the call is already being monitored by a TSAPI application on a stream
to a different AE Services server, or if the call is already being monitored by a
DLG or CVLAN application.

 Multiple Application Requests — Multiple applications can have multiple

cstaMonitorCall() requests on one object through one TSAPI Service. An

application can have more than one cstaMonitorCall() request on one object

through one TSAPI Service. However, this is not recommended.

 Advice of Charge Event Report (private data version 5 and later) — The

ATTChargeAdviceEvent is provided, by an outside service, to streams which

have enabled Advice of Charge using the attSetAdviceOfCharge() escape

service. Typically, an ATTChargeAdviceEvent will arrive from the provider as a

call ends, providing the final charge amount. Generally, the final

CSTAMonitorEndedEvent (sent for call monitors at the end of a call) is delayed

until that final ATTChargeAdviceEvent arrives. When there is a long delay in the

arrival of the final ATTChargeAdviceEvent, the CSTAMonitorEndedEvent will be

sent to the application and a final ATTChargeAdviceEvent will not be provided.

Chapter 10: Monitor Service Group

472 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaMonitorCall() - Service Request */

RetCode_t cstaMonitorCall(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 ConnectionID_t *call,

 CSTAMonitorFilter_t *monitorFilter, /* supports call

 * filters only */

 PrivateData_t *privateData);

/* CSTAMonitorConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_MONITOR_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAMonitorConfEvent_t monitorStart;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAMonitorConfEvent_t {

 CSTAMonitorCrossRefID_t monitorCrossRefID;

 CSTAMonitorFilter_t monitorFilter;

} CSTAMonitorConfEvent_t;

typedef long CSTAMonitorCrossRefID_t;

typedef unsigned short CSTACallFilter_t;

 Monitor Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 473

#define CF_CALL_CLEARED 0x8000

#define CF_CONFERENCED 0x4000

#define CF_CONNECTION_CLEARED 0x2000

#define CF_DELIVERED 0x1000

#define CF_DIVERTED 0x0800

#define CF_ESTABLISHED 0x0400

#define CF_FAILED 0x0200

#define CF_HELD 0x0100

#define CF_NETWORK_REACHED 0x0080

#define CF_ORIGINATED 0x0040

#define CF_QUEUED 0x0020

#define CF_RETRIEVED 0x0010

#define CF_SERVICE_INITIATED 0x0008

#define CF_TRANSFERRED 0x0004

typedef unsigned char CSTAFeatureFilter_t;

/

#define FF_CALL_INFORMATION 0x80

#define FF_DO_NOT_DISTURB 0x40

#define FF_FORWARDING 0x20

#define FF_MESSAGE_WAITING 0x10

typedef unsigned char CSTAAgentFilter_t;

#define AF_LOGGED_ON 0x80

#define AF_LOGGED_OFF 0x40

#define AF_NOT_READY 0x20

#define AF_READY 0x10

#define AF_WORK_NOT_READY 0x08

#define AF_WORK_READY 0x04

typedef unsigned char CSTAMaintenanceFilter_t

#define MF_BACK_IN_SERVICE 0x80

#define MF_OUT_OF_SERVICE 0x40

typedef struct CSTAMonitorFilter_t {

 CSTACallFilter_t call;

 CSTAFeatureFilter_t feature;

 CSTAAgentFilter_t agent;

 CSTAMaintenanceFilter_t maintenance;

 long privateFilter; /* 0 = private events,

 * non-zero = no

 * private events */

} CSTAMonitorFilter_t;

Chapter 10: Monitor Service Group

474 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 5 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attMonitorFilterExt() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attMonitorFilterExt(

 ATTPrivateData_t *privateData,

 ATTPrivateFilter_t privateFilter);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTPrivateFilter_t;

#define ATT_ENTERED_DIGITS_FILTER 0x80

#define ATT_CHARGE_ADVICE_FILTER 0x40

/* ATTMonitorCallConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATT_MONITOR_CALL_CONF */

 union

 {

 ATTMonitorCallConfEvent_t monitorCallStart;

 } u;

} ATTEvent_t;

typedef struct ATTMonitorCallConfEvent_t {

 ATTPrivateFilter_t usedFilter;

 ATTSnapshotCall_t snapshotCall;

} ATTMonitorCallConfEvent_t;

typedef struct ATTSnapshotCall_t {

 unsigned int count;

 CSTASnapshotCallResponseInfo_t *pInfo;

} ATTSnapshotCall_t;

typedef struct CSTASnapshotCallResponseInfo_t {

 SubjectDeviceID_t deviceOnCall;

 Monitor Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 475

 ConnectionID_t callIdentifier;

 LocalConnectionState_t localConnectionState;

} CSTASnapshotCallResponseInfo_t;

typedef enum LocalConnectionState_t {

 CS_NONE = -1,

 CS_NULL = 0, /* indicates a bridged state */

 CS_INITIATE = 1,

 CS_ALERTING = 2,

 CS_CONNECT = 3,

 CS_HOLD = 4,

 CS_QUEUED = 5,

 CS_FAIL = 6,

} LocalConnectionState_t;

Chapter 10: Monitor Service Group

476 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Versions 2-4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attMonitorFilter() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attMonitorFilter(

 ATTPrivateData_t *privateData,

 ATTV4PrivateFilter_t privateFilter);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTV4PrivateFilter_t;

#define ATT_V4_ENTERED_DIGITS_FILTER 0x80

/* ATTV4MonitorCallConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATTV4_MONITOR_CALL_CONF */

 union

 {

 ATTV4MonitorCallConfEvent_t v4monitorCallStart;

 } u;

} ATTEvent_t;

typedef struct ATTV4MonitorCallConfEvent_t {

 ATTV4PrivateFilter_t usedFilter;

 ATTV4SnapshotCall_t snapshotCall;

} ATTV4MonitorCallConfEvent_t;

#define ATT_MAX_PARTIES_ON_CALL 6

typedef struct ATTV4SnapshotCall_t {

 unsigned short count;

 CSTASnapshotCallResponseInfo_t info[ATT_MAX_PARTIES_ON_CALL];

} ATTV4SnapshotCall_t;

typedef struct CSTASnapshotCallResponseInfo_t {

 Monitor Call Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 477

 SubjectDeviceID_t deviceOnCall;

 ConnectionID_t callIdentifier;

 LocalConnectionState_t localConnectionState;

} CSTASnapshotCallResponseInfo_t;

typedef enum LocalConnectionState_t {

 CS_NONE = -1,

 CS_NULL = 0, /* indicates a bridged state */

 CS_INITIATE = 1,

 CS_ALERTING = 2,

 CS_CONNECT = 3,

 CS_HOLD = 4,

 CS_QUEUED = 5,

 CS_FAIL = 6,

} LocalConnectionState_t;

Chapter 10: Monitor Service Group

478 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Monitor Calls Via Device Service

Summary

 Direction: Client to Switch

 Function: cstaMonitorCallsViaDevice()

 Confirmation Event: CSTAMonitorConfEvent

 Private Data Function: attMonitorCallsViaDevice() (private data version 7

and later), attMonitorFilterExt() (private data version 5 and later),

attMonitorFilter() (private data version 2 and later)

 Private Data Confirmation Event: ATTMonitorConfEvent (private data version 5

or later), ATTV4MonitorConfEvent (private data versions 2-4)

 Service Parameters: deviceID, monitorFilter

 Private Parameters: privateFilter and flowPredictiveCallEvents

 Ack Parameters: monitorCrossRefID, monitorFilter

 Ack Private Parameters: usedFilter

 Nak Parameter: universalFailure

Functional Description:

This service provides call event reports passed by the call filter for all devices on all calls

that involve the device (deviceID). Event reports are provided for calls that arrive at the

device after the monitor request is acknowledged. Events for calls that occurred prior to

the monitor request are not reported. There are feature interactions between two

cstaMonitorCallsViaDevice() requests on different monitored ACD or VDN devices.

 NOTE:

There are no feature interactions between a cstaMonitorCallsViaDevice()

request and a cstaMonitorDevice() request. There are no feature interactions

between a cstaMonitorDevice() request and another cstaMonitorDevice()

request.

The event reports are provided for all end points directly connected to the

Communication Manager server and may be present for certain types of endpoints not

directly connected to the Communication Manager server that are involved in the

monitored device.

This service supports only VDN and ACD Split devices, but not station devices. Use

cstaMonitorDevice() service to monitor stations.

Only Call Filter/Call Event Reports and Private Filter are supported. Agent Event

Reports, Feature Event Reports, and Maintenance Event Reports are not supported.

 Monitor Calls Via Device Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 479

Service Parameters:

deviceID [mandatory] A valid on-PBX VDN or ACD Split extension to be
monitored. A station extension is invalid.

monitorFilter [optional — partially supported] Specifies the filters to be used with

deviceID. Only Call Filter/Call Event Reports and Private Filter are

supported. If a Call Filter is not present, it defaults to no filter, meaning
that all Communication Manager CSTA call events will be reported.

Setting a filter for an event (for example, CF_CALL_CLEARED=0x8000) in

the monitorFilter means that the event will be filtered out and no such

event reports will be sent to the application on the monitor.

A zero Private Filter means that the application wants to receive the
private call events. If Private Filter is non-zero, private call events will be
filtered out.

The Agent Filter, Feature Filter, and Maintenance Filter are not
supported for this service. If one of these is present, it will be ignored.

Private Parameters:

privateFilter [optional] Specifies the Communication Manager private
filters to be changed. The following Communication
Manager Private Call Filter and Call Event Reports are
supported:

 Private data version 5 and later:

– ATT_ENTERED_DIGITS_FILTER

– ATT_CHARGE_ADVICE_FILTER

 Private data versions 2-4:

– ATT_V4_ENTERED_DIGITS_FILTER

See Table 14 to determine which filters are under the
control of the application, that is, can be turned on and off.

Chapter 10: Monitor Service Group

480 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

flowPredictiveCallEvents [optional] Specifies whether "first-leg" Predictive Dial call
events should be reported on this monitor.

For a predictive dial call, normally the first event that would

be reported on this monitor is a CSTADeliveredEvent

indicating that the call arrived at the VDN.

When the application specifies this parameter as FALSE,

this behavior is unchanged.

When the application specifies this parameter as TRUE, the

monitor also receives events for the outbound call to the

calledDevice in the cstaMakePredictiveCall()

request. These events may include:

 a CSTADeliveredEvent indicating that the call arrived

at the calledDevice

 a CSTAEstablishedEvent indicating that the call has

been answered by the calledDevice; or

 a CSTAConnectionClearedEvent indicating that the

connection has been cleared at the calledDevice.

Ack Parameters:

monitorCrossRefID [mandatory] Contains the handle chosen by the TSAPI Service for

the monitor. This handle is a unique value within an acsOpenStream

session for the duration of the monitor and is used by the application
to correlate subsequent event reports to the monitor request that
initiated them. It also allows the correlation of a Monitor Stop service

request to the original cstaMonitorCallsViaDevice() request.

monitorFilter [optional — partially supported] Specifies the event reports that are to
be filtered out for the object being monitored by the application. This

may not be the monitorFilter specified in the service request

because filters for events that are not supported by Communication
Manager and filters for events that do not apply to the monitored

device are always turned on in monitorFilter. Only Call Filter and

Call Event Reports are supported.

All event reports in Agent Filter, Feature Filter, and Maintenance
Filter are set to "On", meaning that there are no reports supported for
these events.

Ack Private Parameters:

usedFilter [optional] Specifies the Communication Manager private event reports
that are to be filtered out on the object being monitored by the
application.

 Monitor Calls Via Device Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 481

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 REQUEST_INCOMPATIBLE_WITH_OBJECT (2) The service request

has failed for one of the following reasons:

– The monitored object is not administered correctly in the
switch.

– The monitored object is an adjunct-controlled split or a vector-
controlled split.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier or extension is specified in deviceID.

 RESOURCE_BUSY (33) The TSAPI Service is busy processing a

cstaMonitorCallsViaDevice() service request on the same

device. Try again.

 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY (41) The user

has not subscribed to the requested service.

 OBJECT_MONITOR_LIMIT_EXCEEDED (42) The request cannot be

executed because the system limit would be exceeded for the
maximum number of monitors.

Detailed Information:

See also Event Report Detailed Information on page 710.

 ACD split — An ACD split can be monitored by this service only for Call Event
Reports.

 Adjunct-Controlled Splits — A cstaMonitorCallsViaDevice() request will be

denied (REQUEST_INCOMPATIBLE_WITH_OBJECT) if the monitored object is an

adjunct- controlled split.

 Maximum Number of Objects that can be Monitored — See "G3 CSTA System
Capacity" section in Chapter 3. G3 CSTA Services Overview.

 Multiple Requests — Multiple applications can have multiple

cstaMonitorCallsViaDevice() requests on one object. An application can

have more than one cstaMonitorCallsViaDevice() request on one object;

however, the latter is not recommended.

 Personal Central Office Line (PCOL) — Members of a PCOL may be monitored.
PCOL behaves like bridging for the purpose of event reporting.

Chapter 10: Monitor Service Group

482 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 Skill Hunt Groups — A skill hunt group (split) cannot be monitored directly by an
application. The VDN providing access to the vector(s) controlling the hunt group
can be monitored instead, if event reports for calls delivered to the hunt group
are desired.

Special Rules - Monitor Calls Via Device Service

The following rules apply when a monitored call is diverted, forwarded, or

transferred.

– If a call monitored by a cstaMonitorCallsViaDevice() request is diverted

to a device that is not monitored by a cstaMonitorCallsViaDevice()

request, then no Diverted Event Report is provided. Subsequent event
reports of the call continue.

– If a call monitored by a cstaMonitorCallsViaDevice() request at an ACD

or VDN device (A) and is diverted to an ACD or VDN device (B) monitored by

another cstaMonitorCallsViaDevice() request, then a Diverted Event

Report is provided on the monitor for the first ACD or VDN device (A) to
indicate that the call has left the domain of the monitored device, and that no
subsequent event reports will be sent for this call on the monitor for device
(A). A Delivered Event Report is sent to the monitor for device (B) and
subsequent call event reports are sent on the monitor for device (B). The rule
is that call event reports of a call are sent to only one

cstaMonitorCallsViaDevice() request.

– If a call that is monitored by a cstaMonitorCallsViaDevice() request is

merged by a conference/transfer operation with a call that is not monitored by

a cstaMonitorCallsViaDevice() request and the resulting call is the one

being monitored, a Conferenced/Transferred Event Report is sent to the
monitor and subsequent event reports of the call continue to be provided to
that monitor. If the resulting call is the one not being monitored, a

Conferenced/Transferred Event Report with a new callID is sent to the

monitor. A Call Ended Event Report for the abandoned call is also sent to the
monitor. Subsequent event reports of the new call continue to be sent to the

monitor. In this case, the callID for the abandoned call is no longer valid.

 Station — A station cannot be monitored by this service.

 Terminating Extension Group (TEG) — Members of a TEG may be monitored.
PCOL behaves like bridging for the purpose of event reporting.

 Vector-Controlled Split — A vector-controlled split cannot be monitored. The
VDN providing access to the vector(s) controlling the split should be monitored
instead.

 Monitor Calls Via Device Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 483

Syntax

#include <acs.h>

#include <csta.h>

/* cstaMonitorCallsViaDevice() - Service Request */

RetCode_t cstaMonitorCallsViaDevice(

 ACSHandle_t acsHandle

 InvokeID_t invokeID,

 DeviceID_t *deviceID, /* must be a VDN or

 * an ACD split */

 CSTAMonitorFilter_t *monitorFilter, /* supports call

 * filters only */

 PrivateData_t *privateData);

/* CSTAMonitorConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_MONITOR_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAMonitorConfEvent_t monitorStart;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAMonitorConfEvent_t {

 CSTAMonitorCrossRefID_t monitorCrossRefID;

 CSTAMonitorFilter_t monitorFilter;

} CSTAMonitorConfEvent_t;

typedef long CSTAMonitorCrossRefID_t;

typedef unsigned short CSTACallFilter_t;

Chapter 10: Monitor Service Group

484 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

#define CF_CALL_CLEARED 0x8000

#define CF_CONFERENCED 0x4000

#define CF_CONNECTION_CLEARED 0x2000

#define CF_DELIVERED 0x1000

#define CF_DIVERTED 0x0800

#define CF_ESTABLISHED 0x0400

#define CF_FAILED 0x0200

#define CF_HELD 0x0100

#define CF_NETWORK_REACHED 0x0080

#define CF_ORIGINATED 0x0040

#define CF_QUEUED 0x0020

#define CF_RETRIEVED 0x0010

#define CF_SERVICE_INITIATED 0x0008

#define CF_TRANSFERRED 0x0004

typedef unsigned char CSTAFeatureFilter_t;

/

#define FF_CALL_INFORMATION 0x80

#define FF_DO_NOT_DISTURB 0x40

#define FF_FORWARDING 0x20

#define FF_MESSAGE_WAITING 0x10

typedef unsigned char CSTAAgentFilter_t;

#define AF_LOGGED_ON 0x80

#define AF_LOGGED_OFF 0x40

#define AF_NOT_READY 0x20

#define AF_READY 0x10

#define AF_WORK_NOT_READY 0x08

#define AF_WORK_READY 0x04

typedef unsigned char CSTAMaintenanceFilter_t

#define MF_BACK_IN_SERVICE 0x80

#define MF_OUT_OF_SERVICE 0x40

typedef struct CSTAMonitorFilter_t {

 CSTACallFilter_t call;

 CSTAFeatureFilter_t feature;

 CSTAAgentFilter_t agent;

 CSTAMaintenanceFilter_t maintenance;

 long privateFilter; /* 0 = private events,

 * non-zero = no

 * private events */

} CSTAMonitorFilter_t;

 Monitor Calls Via Device Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 485

Private Data Version 7 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attMonitorCallsViaDevice() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attMonitorCallsViaDevice(

 ATTPrivateData_t *privateData,

 ATTPrivateFilter_t privateFilter,

 Boolean flowPredictiveCallEvents);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTPrivateFilter_t;

#define ATT_ENTERED_DIGITS_FILTER 0x80

#define ATT_CHARGE_ADVICE_FILTER 0x40

/* ATTMonitorConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATT_MONITOR_CONF */

 union

 {

 ATTMonitorConfEvent_t monitorStart;

 } u;

} ATTEvent_t;

typedef struct ATTMonitorConfEvent_t {

 ATTPrivateFilter_t usedFilter;

} ATTMonitorConfEvent_t;

Chapter 10: Monitor Service Group

486 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 5 and 6 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attMonitorFilterExt() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attMonitorFilterExt(

 ATTPrivateData_t *privateData,

 ATTPrivateFilter_t privateFilter);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTPrivateFilter_t;

#define ATT_ENTERED_DIGITS_FILTER 0x80

#define ATT_CHARGE_ADVICE_FILTER 0x40

/* ATTMonitorConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATT_MONITOR_CONF */

 union

 {

 ATTMonitorConfEvent_t monitorStart;

 } u;

} ATTEvent_t;

typedef struct ATTMonitorConfEvent_t {

 ATTPrivateFilter_t usedFilter;

} ATTMonitorConfEvent_t;

 Monitor Calls Via Device Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 487

Private Data Versions 2-4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attMonitorFilter() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attMonitorFilter(

 ATTPrivateData_t *privateData,

 ATTV4PrivateFilter_t privateFilter);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTV4PrivateFilter_t;

#define ATT_V4_ENTERED_DIGITS_FILTER 0x80

/* ATTV4MonitorConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATTV4_MONITOR_CONF */

 union

 {

 ATTV4MonitorConfEvent_t v4monitorStart;

 } u;

} ATTEvent_t;

typedef struct ATTV4MonitorConfEvent_t {

 ATTV4PrivateFilter_t usedFilter;

} ATTV4MonitorConfEvent_t;

Chapter 10: Monitor Service Group

488 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Monitor Device Service

Summary

 Direction: Client to Switch

 Function: cstaMonitorDevice()

 Confirmation Event: CSTAMonitorConfEvent

 Private Data Function: attMonitorFilterExt() (private data version 5 and

later), attMonitorFilter() (private data versions 2-4)

 Private Data Confirmation Event: ATTMonitorConfEvent (private data version 5

and later), ATTV4MonitorConfEvent (private data versions 2-4)

 Service Parameters: deviceID, monitorFilter

 Private Parameters: privateFilter

 Ack Parameters: monitorCrossRefID, monitorFilter

 Ack Private Parameters: usedFilter

 Nak Parameter: universalFailure

Functional Description:

This service provides call event reports passed by the call filter for all devices on all calls

at a device. Event reports are provided for calls that occurred previous to the monitor

request and arrive at the device after the monitor request is acknowledged. Call events

are also provided for calls already present at the device. No further events for a call are

reported when that call is dropped, forwarded, or transferred, conferenced, or the device

ceases to participate in the call.

The Call Cleared Event is never provided for this service. There are no subsequent

event reports for a call after a Connection Cleared or a Diverted Event Report has been

received for that call on this service. Reporting of the subsequent call event reports after

a Transferred Event Report is dependent on whether the call is merged-in or merged-out

from the monitored device.

The event reports are provided for all endpoints directly connected to the

Communication Manager server and may in certain cases be provided for endpoints not

directly connected to the Communication Manager server that are involved in the calls

with the monitored device.

Beginning with Communication Manager Release 5.0, this service provides partial

support for Feature Event Reports for station devices, provided that the TSAPI CTI link

is administered with ASAI link version 5 or later.

This service supports Call Event Reports for station devices and provides partial support

for Agent Event Reports for ACD Split devices.

Maintenance Event Reports are not supported.

 Monitor Device Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 489

 NOTE:

Communication Manager supports the Charge Advice Event feature. To receive
Charge Advice Events, an application must first turn the Charge Advice Event
feature on using the Set Advice of Charge Service. (For details, see Set Advice
of Charge Service (Private Data Version 5 and Later) on page 336.) If the Charge
Advice Event feature is turned on, a trunk group monitored by

cstaMonitorDevice(), a station monitored by cstaMonitorDevice(), or a call

monitored by cstaMonitorCall() will receive Charge Advice Events. However,

this will not occur if the Charge Advice Event is filtered out by the

privateFilter in the monitor request and its confirmation event.

Service Parameters:

deviceID [mandatory] A valid on-PBX extension, trunk group, or ACD extension to
be monitored. A VDN extension is invalid.

A trunk group number has the format of a ‗T‘ followed by the trunk group
number (e.g., T123), or a ‗T‘ followed by a ‗#‘ to indicate all trunk groups
(i.e., "T#").

 If a single trunk group number is specified, the monitor session will
receive the Charge Advice Event for that trunk group only.

 If "T#" is specified, the monitor session will receive Charge Advice
Events from all trunk groups.

A trunk group monitor will receive the Charge Advice Event only. It will
not receive any other call events.

monitorFilter [optional — partially supported] Specifies the filters to be used with
deviceID. Call Filter/Event Reports are supported for station devices. If a
Call Filter is not present, it defaults to no filter, meaning that all
Communication Manager CSTA Call Event Reports will be reported.

The Agent Filter is supported for ACD Split devices.

Setting a filter for an event (for example, CF_CALL_CLEARED=0x8000) in

the monitorFilter means that the event will be filtered out and no such

event reports will be sent to the application on that monitor.

A zero Private Filter means that the application wants to receive the
private events. If Private Filter is non-zero, private events will be filtered
out.

The Feature Filter and Maintenance Filter are not supported. If a filter
that does not apply to the monitored device is present, it will be ignored.

Chapter 10: Monitor Service Group

490 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Parameters:

privateFilter [optional] Specifies the Communication Manager private filters to be
changed. The following Communication Manager Private Call Filter
and Call Event Reports are supported:

 Private data version 5 and later:

– ATT_ENTERED_DIGITS_FILTER

– ATT_CHARGE_ADVICE_FILTER

 Private data versions 2-4:

– ATT_V4_ENTERED_DIGITS_FILTER

See Table 14 to determine which filters are under the control of the
application, that is, can be turned on and off.

Ack Parameters:

monitorCrossRefID [mandatory] Contains the handle chosen by the TSAPI Service for

the monitor. This handle is a unique value within an acsOpenStream

session for the duration of the monitor and is used by the application
to correlate subsequent event reports to the monitor request that
initiated them. It also allows the correlation of a Monitor Stop service
request to the original Monitor Device service request.

monitorFilter [optional — partially supported] Specifies the event reports that are to
be filtered out for the object being monitored by the application. This

may not be the monitorFilter specified in the service request

because filters for events that are not supported by Communication
Manager and filters for events that do not apply to the monitored

device are always turned on in monitorFilter. Maintenance Filters

are set to "On", meaning that there are no reports supported for
these events.

Ack Private Parameters:

usedFilter [optional] Specifies the Communication Manager private event reports
that are to be filtered out on the object being monitored by the
application.

 Monitor Device Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 491

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid device

identifier or extension is specified in deviceID.

 RESOURCE_BUSY (33) The TSAPI Service is busy processing a

cstaMonitorDevice() service request on the same device. Try

again.

 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY (41)

– The user has not subscribed to the requested service. The
Domain Control feature may not be turned on in
Communication Manager.

– The TSAPI Service could not acquire the license(s) needed to
satisfy the request.

 OBJECT_MONITOR_LIMIT_EXCEEDED (42) The request cannot be

executed because the system limit would be exceeded for the
maximum number of monitor.

Chapter 10: Monitor Service Group

492 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Detailed Information:

See also Event Report Detailed Information on page 710.

 ACD split — An ACD split can be monitored by this service. The monitor will only
receive Agent Event Reports.

 Administration Without Hardware (AWOH) — A station administered without
hardware may be monitored. However, no event reports will be provided to the
application for this station since there will be no activity at such an extension.

 Analog ports — Analog ports equipped with modems can be monitored by the

cstaMonitorDevice() Service.

 Attendants and Attendant Groups — An attendant group extension or an
individual attendant extension number cannot be monitored with the Monitor
Device Service.

 Feature Access Monitoring — A station will not prohibit users from access to any
enabled switch features. A monitored station can access any enabled switch
feature.

 Logical Agents — A logical agent‘s station extension can be monitored. Agent
login IDs are not valid monitor objects.

 Multiple Requests — Multiple applications can have multiple

cstaMonitorDevice() requests for the same device. An application can have

more than one cstaMonitorDevice() request on one device. However, this is

not recommended.

 Personal Central Office Line (PCOL) — Members of a PCOL may be monitored.
PCOL behaves like bridging for the purpose of event reporting.

 Skill Hunt Groups — A skill hunt group (split) cannot be monitored directly by an
application. The VDN providing access to the vector(s) controlling the hunt group
can be monitored instead if event reports for calls delivered to the hunt group are
desired.

 Terminating Extension Group (TEG) — Members of a TEG may be monitored.
PCOL behaves like bridging for the purpose of event reporting.

 VDN — A VDN cannot be monitored by this service.

 Vector-Controlled Split — A vector-controlled split cannot be monitored. The
VDN providing access to the vector(s) controlling the split should be monitored
instead.

 Monitor Device Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 493

Syntax

#include <acs.h>

#include <csta.h>

/* cstaMonitorDevice() - Service Request */

RetCode_t cstaMonitorDevice(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 DeviceID_t *deviceID,

 CSTAMonitorFilter_t *monitorFilter,

 PrivateData_t *privateData);

/* CSTAMonitorConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_MONITOR_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAMonitorConfEvent_t monitorStart;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAMonitorConfEvent_t {

 CSTAMonitorCrossRefID_t monitorCrossRefID;

 CSTAMonitorFilter_t monitorFilter;

} CSTAMonitorConfEvent_t;

typedef long CSTAMonitorCrossRefID_t;

typedef unsigned short CSTACallFilter_t;

#define CF_CALL_CLEARED 0x8000

Chapter 10: Monitor Service Group

494 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

#define CF_CONFERENCED 0x4000

#define CF_CONNECTION_CLEARED 0x2000

#define CF_DELIVERED 0x1000

#define CF_DIVERTED 0x0800

#define CF_ESTABLISHED 0x0400

#define CF_FAILED 0x0200

#define CF_HELD 0x0100

#define CF_NETWORK_REACHED 0x0080

#define CF_ORIGINATED 0x0040

#define CF_QUEUED 0x0020

#define CF_RETRIEVED 0x0010

#define CF_SERVICE_INITIATED 0x0008

#define CF_TRANSFERRED 0x0004

typedef unsigned char CSTAFeatureFilter_t;

/

#define FF_CALL_INFORMATION 0x80

#define FF_DO_NOT_DISTURB 0x40

#define FF_FORWARDING 0x20

#define FF_MESSAGE_WAITING 0x10

typedef unsigned char CSTAAgentFilter_t;

#define AF_LOGGED_ON 0x80

#define AF_LOGGED_OFF 0x40

#define AF_NOT_READY 0x20

#define AF_READY 0x10

#define AF_WORK_NOT_READY 0x08

#define AF_WORK_READY 0x04

typedef unsigned char CSTAMaintenanceFilter_t

#define MF_BACK_IN_SERVICE 0x80

#define MF_OUT_OF_SERVICE 0x40

typedef struct CSTAMonitorFilter_t {

 CSTACallFilter_t call;

 CSTAFeatureFilter_t feature;

 CSTAAgentFilter_t agent;

 CSTAMaintenanceFilter_t maintenance;

 long privateFilter; /* 0 = private events,

 * non-zero = no

 * private events */

} CSTAMonitorFilter_t;

 Monitor Device Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 495

Private Data Version 5 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attMonitorFilterExt() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attMonitorFilterExt(

 ATTPrivateData_t *privateData,

 ATTPrivateFilter_t privateFilter);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTPrivateFilter_t;

#define ATT_ENTERED_DIGITS_FILTER 0x80

#define ATT_CHARGE_ADVICE_FILTER 0x40

/* ATTMonitorConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATT_MONITOR_CONF */

 union

 {

 ATTMonitorConfEvent_t monitorStart;

 } u;

} ATTEvent_t;

typedef struct ATTMonitorConfEvent_t {

 ATTPrivateFilter_t usedFilter;

} ATTMonitorConfEvent_t;

Chapter 10: Monitor Service Group

496 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Versions 2-4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attMonitorFilter() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attMonitorFilter(

 ATTPrivateData_t *privateData,

 ATTV4PrivateFilter_t privateFilter);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef unsigned char ATTV4PrivateFilter_t;

#define ATT_V4_ENTERED_DIGITS_FILTER 0x80

/* ATTV4MonitorConfEvent - Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATTV4_MONITOR_CONF */

 union

 {

 ATTV4MonitorConfEvent_t v4monitorStart;

 } u;

} ATTEvent_t;

typedef struct ATTV4MonitorConfEvent_t {

 ATTV4PrivateFilter_t usedFilter;

} ATTV4MonitorConfEvent_t;

 Monitor Ended Event Report

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 497

Monitor Ended Event Report

Summary

 Direction: Switch to Client

 Event: CSTAMonitorEndedEvent

 Service Parameters: monitorCrossRefID

Functional Description:

TSAPI uses the Monitor Ended Event Report to indicate that it will no longer provide

events for a monitor previously established through a cstaMonitorCall(),

cstaMonitorDevice() or cstaMonitorCallsViaDevice() service request. This may

occur because the monitored object has been removed or changed through switch

administration to make it invalid, or when the switch can no longer provide the

information. Once a Monitor Ended Event Report is generated, event reports cease to be

sent to the client application by the switch and the Cross Reference Association that was

established by the original service request is terminated.

Service Parameters:

monitorCrossRefID [mandatory] Must be a valid Cross Reference ID of this
acsOpenStream session.

cause [optional — supported] Specifies the reason for this event.

The following Event Causes are explicitly sent from the switch:

 EC_NETWORK_NOT_OBTAINABLE The previously monitored object

is no longer available due to a CTI link failure.

 EC_RESOURCES_NOT_AVAILABLE The previously monitored

object is no longer available or valid due to switch
administration changes or because of a communication
protocol error.

Detailed Information:

See Event Report Detailed Information on page 710.

Chapter 10: Monitor Service Group

498 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* CSTAMonitorEndedEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_MONITOR_ENDED */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefID;

 union

 {

 CSTAMonitorEndedEvent_t monitorEnded;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTAMonitorEndedEvent_t {

 CSTAEventCause_t cause;

} CSTAMonitorEndedEvent_t;

 Monitor Stop On Call Service (Private)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 499

Monitor Stop On Call Service (Private)

Summary

 Direction: Client to Switch

 Function: cstaEscapeService()

 Confirmation Event: CSTAEscapeSvcConfEvent

 Private Data Function: attMonitorStopOnCall()

 Private Data Confirmation Event: ATTMonitorStopOnCallConfEvent

 Private Parameters: monitorCrossRefID, callID

 Ack Parameters: noData

 Ack Private Parameters: noData

 Nak Parameter: universalFailure

Functional Description:

An application uses the Monitor Stop On Call Service to stop Call Event Reports of a

specific call reported by an active call monitor when it no longer has an interest in that

call. Once a Monitor Stop On Call request has been acknowledged, event reports of that

call cease to be sent to the client application. The Monitor Cross Reference ID that was

established by the original cstaMonitorCall() service request remains active.

The call monitor will receive a Monitor Ended Event Report.

 NOTE:

The current release provides this capability for monitors initiated with the

cstaMonitorCall() service only. It does not work for the other types of

monitors.

Private Parameters:

monitorCrossRefID [mandatory] Must be a valid Cross Reference ID that was returned in
a previous CSTAMonitorConfEvent of this acsOpenStream session.

callID [mandatory] This is the callID of the call whose event reports are to

be stopped.

Ack Parameters:

 None for this service.

Ack Private Parameters:

 None for this service.

Chapter 10: Monitor Service Group

500 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 INVALID_CROSS_REF_ID (17) The service request specified a

Cross Reference ID that is not in use at this time.

 NO_ACTIVE_CALL (24) The application has sent an invalid call

identifier. The call does not exist, the call has been cleared, or the
call is not being monitored by the monitoring device.

Detailed Information:

See also Event Report Detailed Information on page 710.

 This service will take effect immediately. Event reports to the application for the
specified call will cease after this service request. The switch continues to
process the call at the monitored object. Call processing is not affected by this
service.

 This service will not affect Call Event Reports of the specified call on other
monitors.

 Monitor Stop On Call Service (Private)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 501

Syntax

#include <acs.h>

#include <csta.h>

/* cstaEscapeService() - Service Request */

RetCode_t cstaEscapeService(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTAEscapeSvcConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ESCAPE_SVC_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAEscapeSvcConfEvent_t escapeService;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAEscapeSvcConfEvent_t {

 Nulltype null;

} CSTAEscapeSvcConfEvent_t;

Chapter 10: Monitor Service Group

502 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attMonitorStopOnCall() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attMonitorStopOnCall(

 ATTPrivateData_t *privateData,

 CSTAMonitorCrossRefID_t monitorCrossRefID,

 ConnectionID_t *call);

/* ATTMonitorStopOnCallConfEvent- Service Response Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATT_MONITOR_STOP_ON_CALL_CONF */

 union

 {

 ATTMonitorStopOnCallConfEvent_t monitorStopOnCall;

 } u;

} ATTEvent_t;

typedef struct ATTMonitorStopOnCallConfEvent_t {

 Nulltype null;

} ATTMonitorStopOnCallConfEvent_t;

 Monitor Stop Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 503

Monitor Stop Service

Summary

 Direction: Client to Switch

 Function: cstaMonitorStop()

 Confirmation Event: CSTAMonitorStopConfEvent

 Service Parameters: monitorCrossRefID

 Ack Parameters: noData

 Nak Parameter: universalFailure

Functional Description:

An application uses the Monitor Stop Service to cancel a subscription to a previously

requested cstaMonitorCall(), cstaMonitorDevice(), or

cstaMonitorCallsViaDevice() service when it no longer has an interest in continuing

a monitor. Once a Monitor Stop request has been acknowledged, event reports cease to

be sent to the client application by the switch and the Cross Reference Association that

was established by the original service request is terminated.

Service Parameters:

monitorCrossRefID [mandatory] Must be a valid Cross Reference ID that was returned in
a previous CSTAMonitorConfEvent of this acsOpenStream session.

Ack Parameters:

 None for this service.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error values, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 INVALID_CROSS_REF_ID (17) The service request specified a

Cross Reference ID that is not in use at this time.

504 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Detailed Information:

See also Event Report Detailed Information on page 710.

 Switch Operation — This service will take effect immediately. Event reports to the
application for calls in progress will stop for the specified monitor. The switch
continues to process calls at the monitored object. Calls present at the monitored
object are not affected by this service.

Syntax

#include <acs.h>

#include <csta.h>

RetCode_t cstaMonitorStop(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 CSTAMonitorCrossRefID_t monitorCrossRefID,

 PrivateData_t *privateData);

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_MONITOR_STOP_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAMonitorStopConfEvent_t monitorStop;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAMonitorStopConfEvent_t {

 Nulltype null;

} CSTAMonitorStopConfEvent_t;

505 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Chapter 11: Event Report Service Group

The Event Report Service Group provides event messages (or reports) from Avaya

Communication Manager to the Application Enablement Services (AE Services) TSAPI

Service.

 CSTAEventCause and LocalConnectionState on page 506

 Call Cleared Event on page 514

 Charge Advice Event (Private) on page 519

 Conferenced Event on page 524

 Connection Cleared Event on page 546

 Delivered Event on page 555

 Diverted Event on page 597

 Do Not Disturb Event on page 603

 Entered Digits Event (Private) on page 605

 Established Event on page 608

 Failed Event on page 637

 Forwarding Event on page 645

 Held Event on page 648

 Logged Off Event on page 652

 Logged On Event on page 655

 Network Reached Event on page 658

 Originated Event on page 666

 Queued Event on page 674

 Retrieved Event on page 681

 Service Initiated Event on page 684

 Transferred Event on page 689

 Event Report Detailed Information on page 710

Chapter 11: Event Report Service Group

506 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

CSTAEventCause and LocalConnectionState

The Event Report Service Group members described in this chapter rely extensively on

the CSTAEventCause definitions and LocalConnectionState enumerated types.

The following figure provides the definition of the CSTAEventCause enumerated type

typedef enum CSTAEventCause_t {

 EC_NONE = -1, /* no cause value is specified */

 EC_ACTIVE_MONITOR = 1,

 EC_ALTERNATE = 2,

 EC_BUSY = 3,

 EC_CALL_BACK = 4,

 EC_CALL_CANCELLED = 5,

 EC_CALL_FORWARD_ALWAYS = 6,

 EC_CALL_FORWARD_BUSY = 7,

 EC_CALL_FORWARD_NO_ANSWER = 8,

 EC_CALL_FORWARD = 9,

 EC_CALL_NOT_ANSWERED = 10,

 EC_CALL_PICKUP = 11,

 EC_CAMP_ON = 12,

 EC_DEST_NOT_OBTAINABLE = 13,

 EC_DO_NOT_DISTURB = 14,

 EC_INCOMPATIBLE_DESTINATION = 15,

 EC_INVALID_ACCOUNT_CODE = 16,

 EC_KEY_CONFERENCE = 17,

 EC_LOCKOUT = 18,

 EC_MAINTENANCE = 19,

 EC_NETWORK_CONGESTION = 20,

 EC_NETWORK_NOT_OBTAINABLE = 21,

 EC_NEW_CALL = 22,

 EC_NO_AVAILABLE_AGENTS = 23,

 EC_OVERRIDE = 24,

 EC_PARK = 25,

 EC_OVERFLOW = 26,

 EC_RECALL = 27,

 EC_REDIRECTED = 28,

 EC_REORDER_TONE = 29,

 EC_RESOURCES_NOT_AVAILABLE = 30,

 EC_SILENT_MONITOR = 31,

 EC_TRANSFER = 32,

 EC_TRUNKS_BUSY = 33,

 EC_VOICE_UNIT_INITIATOR, = 34

 EC_NETWORK_SIGNAL = 46,

 EC_SINGLE_STEP_TRANSFER = 52,

 EC_ALERT_TIME_EXPIRED = 60,

 EC_DEST_OUT_OF_ORDER = 65,

 EC_NOT_SUPPORTED_BEARER_SERVICE = 80,

 EC_UNASSIGNED_NUMBER = 81,

 EC_INCOMPATIBLE_BEARER_SERVICE = 87

} CSTAEventCause_t;

 CSTAEventCause and LocalConnectionState

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 507

The following figure provides the definition of the LocalConnectionState enumerated

type:

typedef enum LocalConnectionState_t {

 CS_NONE = -1, /* state is unknown */

 CS_NULL = 0,

 CS_INITIATE = 1,

 CS_ALERTING = 2,

 CS_CONNECT = 3,

 CS_HOLD = 4,

 CS_QUEUED = 5,

 CS_FAIL = 6

} LocalConnectionState_t;

Certain cause codes will appear in events only if they make sense. See Table 16 for a

description of event cause definitions. See Table 17 for a description the cause codes

that are possible for each of the call events.

Table 16: Event Cause Definitions

Event Cause Definition

Active Monitor An Active Monitor Feature has occurred. This feature typically
allows intrusion by a supervisor into an agent call with the
ability to speak and listen. The resultant call can be considered
as a conference so this cause code may be supplied with the
Conferenced Event Report.

Alternate The call is in the process of being exchanged. This feature is
typically found on single-line telephones, where the human
interface puts one call on hold and retrieves a held call or
answers a waiting call in an atomic action.

Busy the call encountered a busy tone or device

Call Back Call Back is a feature invoked (by a user or via CSTA) in an
attempt to complete a call that has encountered a busy or no
answer condition. As a result of invoking the feature, the failed
call is cleared and the call can be considered as queued. The
switch may subsequently automatically retry the call (normally
when the called party next becomes free). Consequently, this
cause code may appear in Event Reports related to the
feature invocation (Call Cleared, Connection Cleared and
Queued) or related to the subsequent, retried call (Service
Initiated, Originated, Delivered, and Established).

Call Canceled The user has terminated a call without going on-hook.

Call Forward The call has been redirected via a Call Forwarding feature set
for general, unknown, or multiple conditions.

Chapter 11: Event Report Service Group

508 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 16: Event Cause Definitions

Event Cause Definition

Call Forward -
Immediate

The call has been redirected via a Call Forwarding feature set
for all conditions.

Call Forward - Busy The call has been redirected via a Call Forwarding feature set
for a busy endpoint.

Call Forward - No
Answer

The call has been redirected via a Call Forwarding feature set
for an endpoint that does not answer.

Call Not Answered The call was not answered because a timer has elapsed.

Call Pickup The call has been redirected via a Call Pickup feature.

Camp On A Camp On feature has been invoked or has matured.

Destination Not
Obtainable

The call could not obtain the destination.

Do Not Disturb The call encountered a Do Not Disturb condition.

Incompatible
Destination

The call encountered an incompatible destination.

Invalid Account Code The call has an invalid account code.

Key Operation7 Indicates that the Event Report occurred at a bridged or twin
device.

Lockout The call encountered inter-digit time-out while dialing.

Maintenance The call encountered a facility or endpoint in a maintenance
condition.

Network Congestion The call encountered a congested network. In some
circumstances this cause code indicates that the user is
listening to a "No Circuit" Special Information Tone (SIT) from
a network that is accompanied by a statement similar to "All
circuits are busy..."

Network Not
Obtainable

The call could not reach a destination network.

7
 Telephone numbers associated primarily with one device often appear also on a second device.

One example is a secretary who‘s phone has mirrored or bridged lines of a supervisor‘s phone.

 CSTAEventCause and LocalConnectionState

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 509

Table 16: Event Cause Definitions

Event Cause Definition

Resources not
Available

Resources were not available.

Silent Monitor The event was caused by the invocation of a feature that
allows a third party, such as an ACD agent supervisor, to join
the call. The joining party can hear the entire conversation, but
cannot be heard by either original party. The feature,
sometimes called silent intrusion, may provide a tone to one or
both parties to indicate that they are being monitored. This
feature is not the same as a CSTA Monitor request. This
cause shall not indicate that a CSTA Monitor has been
initiated.

Transfer A Transfer is in progress or has occurred.

Trunks Busy The call encountered Trunks Busy.

Voice Unit Initiator Indicates that the event was the result of action by automated
equipment (voice mail device, voice response unit, or
announcement) rather than the result of action by a human
user.

Network Signal Indicates that the subscriber is absent (no radio signal from
cell).

Alert Time Expired Indicates that no user is responding to cell call.

Destination Out of
Order

Indicates that the destination is out of order.

Not Supported
Bearer Service

Indicates that the service/option is not available; unspecified.

Unassigned Number Indicates an unassigned number.

Incompatible Bearer
Service

Indicates that the bearer capability is not available.

Chapter 11: Event Report Service Group

510 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 17: CSTA Event Report - Cause Relationships

Cause Call
Clr

Conf Con.
Clr

Dlv Div Est Fail Held Net.
Rch

Orig Q-ed Retr Svc
Init.

Tran Cell
Call

8

Active Monitor y

Alternate y y y y

Busy y y

Call Back y y y y y y

Call Canceled y y y y

Call Forward y y y y y y

Call Fd. -

Immediate

 y y y y y

Call Fd. -

Busy

 y y y y y

Call Fd. - No

Answer

 y y y y y y

Call Not

Answered

y y y y

Call Pickup y y

Camp On y y y

Dest. not

Obtainable

 y y y

Do Not

Disturb

 y y y y

Incpt.

Destination

y y y y

Invalid

Account Code

y y

Key Operation y y y y y y y y y y y y y y

Lockout y

8
 CTI cause values for cell phones.

 CSTAEventCause and LocalConnectionState

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 511

Table 17: CSTA Event Report - Cause Relationships

Cause Call
Clr

Conf Con.
Clr

Dlv Div Est Fail Held Net.
Rch

Orig Q-ed Retr Svc
Init.

Tran Cell
Call

8

Maintenance y y

Net

Congestion

 y y

Net Not

Obtainable

 y y

New Call y y y y y

No Available

Agents

 y y y y

Overflow y y y y y y y

Override y y y y y y y y

Park y y

Recall y y y y y y y y y

Redirected y y y y y y

Reorder Tone y

Resrcs. not

Available

y y y y y

Silent Monitor y y

Transfer y y y y y y y y

Trunks Busy y y

Voice Unit

Initiator

 y y

Network

Signal

 y

Alert Time

Expired

 y

Dest. out of

Order

 y

Not Supported

Bearer

Service

 y

Chapter 11: Event Report Service Group

512 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 17: CSTA Event Report - Cause Relationships

Cause Call
Clr

Conf Con.
Clr

Dlv Div Est Fail Held Net.
Rch

Orig Q-ed Retr Svc
Init.

Tran Cell
Call

8

Unassigned

Number

 y

Incompatible

Bearer

Service

 y

 CSTAEventCause and LocalConnectionState

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 513

Event Minimization Feature on Communication Manager

If Communication Manager is administered with the Event Minimization feature set to y

for the CTI link connected to the Application Enablement Services TSAPI Service, then

only one set of events for a call is sent to the TSAPI Service even if one or more devices

are monitored. For example, if a VDN and an agent station are both monitored, only the

VDN monitoring will received the Delivered Event.

 NOTE:

The Event Minimization feature must be set to "n" on the switch for the CTI link
administered for the Application Enablement Services TSAPI Service.

Chapter 11: Event Report Service Group

514 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Call Cleared Event

Summary

 Direction: Switch to Client

 Event: CSTACallClearedEvent

 Private Data Event: ATTCallClearedEvent

 Service Parameters: monitorCrossRefID, clearedCall,

localConnectionInfo, cause

 Private Parameters: reason

Functional Description:

The Call Cleared Event Report indicates that a call is ended. Normally this occurs when

the last remaining device or party disconnects from the call. It can also occur when a call

is immediately dissolved as the call is conferenced or transferred for a

cstaMonitorCallsViaDevice() request, but not for a cstaMonitorDevice() request.

 Call Cleared Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 515

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for which
this event is reported.

clearedCall [mandatory] Specifies the call identifier of the call that has been
cleared. The deviceID is set to 0.

localConnectionInfo [optional - supported] Always specifies a null state (CS_NULL).

cause [optional - supported] Specifies a cause when the call is not

terminated normally. EC_NONE is specified for normal call

termination.

 EC_BUSY - Device busy.

 EC_CALL_CANCELLED - Call rejected or canceled.

 EC_DEST_NOT_OBTAINABLE - Called device is not reachable or

wrong number is called.

 EC_CALL_NOT_ANSWERED - Called device not responding or call

not answered (maxRings timed out) for a

cstaMakePredictiveCall() service request.

 EC_NETWORK_CONGESTION - Network congestion or channel is

unacceptable.

 EC_RESOURCES_NOT_AVAILABLE - No circuit or channel is

available.

 EC_SINGLE_STEP_TRANSFER (private data version 8 or later) -

The call was dissolved as the result of a Single Step Transfer
Call operation. (This cause value applies for a Call Cleared
event received on a monitor created via

cstaMonitorCallsViaDevice(), but not for a monitor created

via cstaMonitorDevice().)

 EC_TRANSFER - Call merged due to transfer or conference.

 EC_REORDER_TONE - Intercept SIT treatment - Number changed.

 EC_VOICE_UNIT_INITIATOR - Answer machine is detected for a

cstaMakePredictiveCall() request.

Chapter 11: Event Report Service Group

516 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Parameters:

reason [optional] Specifies the reason for this event. The following reason codes
are supported:

 AR_NONE - indicates no value specified for reason.

 AR_ANSWER_NORMAL - Answer supervision from the network or internal

answer.

 AR_ANSWER_TIMED - Assumed answer based on internal timer.

 AR_ANSWER_VOICE_ENERGY - Voice energy detection from a call

classifier.

 AR_ANSWER_MACHINE_DETECTED - Answering machine detected

 AR_SIT_REORDER - Switch equipment congestion

 AR_SIT_NO_CIRCUIT - No circuit or channel available

 AR_SIT_INTERCEPT - Number changed

 AR_SIT_VACANT_CODE - Unassigned number

 AR_SIT_INEFFECTIVE_OTHER - Invalid number

 AR_SIT_UNKNOWN - Normal unspecified

Detailed Information:

See the Event Report Detailed Information on page 710.

 Call Cleared Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 517

Syntax

#include <acs.h>

#include <csta.h>

/* CSTACallClearedEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_CALL_CLEARED */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTACallClearedEvent_t callCleared;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTACallClearedEvent_t {

 ConnectionID_t clearedCall;

 /* deviceID = "0" */

 /* devIDType = DYNAMIC_ID */

 LocalConnectionState_t localConnectionInfo;

 /* always CS_NULL */

 CSTAEventCause_t cause;

} CSTACallClearedEvent;

Chapter 11: Event Report Service Group

518 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Syntax

If private data accompanies a CSTACallClearedEvent, then the private data would be

stored in the location that the application specified as the private data parameter in the

acsGetEventBlock() or acsGetEventPoll() request. If the privateData pointer is set

to NULL in these requests, then the CSTACallClearedEvent does not deliver private

data to the application. If the acsGetEventBlock() or acsGetEventPoll() returns a

Private Data length of 0, then no private data is provided with this event.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTCallClearedEvent - CSTA Unsolicited Event Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATT_CALL_CLEARED */

 union

 {

 ATTCallClearedEvent_t callClearedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTCallClearedEvent_t {

 ATTReasonCode_t reason;

} ATTCallClearedEvent_t;

typedef enum ATTReasonCode_t {

 AR_NONE = 0, /* no reason code provided */

 AR_ANSWER_NORMAL = 1, /* answer supervision from the

 * network or internal answer */

 AR_ANSWER_TIMED = 2, /* answer assumed based on

 * internal timer */

 AR_ANSWER_VOICE_ENERGY = 3, /* voice energy detection by call

 * classifier */

 AR_ANSWER_MACHINE_DETECTED = 4,/* answering machine detected */

 AR_SIT_REORDER = 5, /* switch equipment congestion */

 AR_SIT_NO_CIRCUIT = 6, /* no circuit or channel available

 */

 AR_SIT_INTERCEPT = 7, /* number changed */

 AR_SIT_VACANT_CODE = 8, /* unassigned number */

 AR_SIT_INEFFECTIVE_OTHER = 9, /* invalid number */

 AR_SIT_UNKNOWN = 10, /* normal unspecified */

 AR_IN_QUEUE = 11, /* call still in queue - for

 * Delivered Event only */

 AR_SERVICE_OBSERVER = 12 /* service observer connected */

} ATTReasonCode_t

 Charge Advice Event (Private)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 519

Charge Advice Event (Private)

Summary

 Direction: Switch to Client

 Event: CSTAPrivateStatusEvent

 Private Data Event: ATTChargeAdviceEvent

 Service Parameters: monitorCrossRefID

 Private Parameters: connection, calledDevice, chargingDevice,

trunkGroup, trunkMember, chargeType, charge, error

Functional Description:

This event reports the charging units for an outbound call to a trunk group monitor, a

monitor of all trunk groups, a station monitor, or a call monitor. This event is available

only if trunk group monitoring (or monitoring of all trunk groups) is requested to the

switch for turning the Charge Advice feature on.

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for which
this event is reported.

Private Parameters:

connection [mandatory] Specifies the connectionID of the trunk party that

generated the charge event. The deviceID is null if split charge is

reported due to a conference or transfer.

calledDevice [mandatory] Specifies the external device that was dialed or requested.
This number does not include ARS, FAC, or TAC digits.

chargingDevice [mandatory] Specifies the local device that added the trunk group
member to the call or an external party if the ISDN-PRI (or R2MFC)
calling party number of the caller is available. If no local party is
involved, and no calling party is available for an external call, then the
TAC of the trunk used on the incoming call will be present. This
number indicates to the application the number that may be used at the
device that is being charged. Note that this number is not always
identical to the CPN or SID that is provided in other event reports
reporting on the same call.

trunkGroup [mandatory] Specifies the trunk group receiving the charge. The
number provided corresponds to the number used in switch
administration, and is not the Trunk Access Code.

Chapter 11: Event Report Service Group

520 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

trunkMember [mandatory] Specifies the member of the trunk group receiving the
charge.

chargeType [mandatory] Indicates the charge type provide by the network. Valid
types are:

 CT_INTERMEDIATE_CHARGE - This is a charge sent by the trunk

while the call is active. The charge amounts reported are
cumulative. If a call receives two or more consecutive intermediate
charges, then the amount from the last intermediate charge
replaces the amount(s) of the previous intermediate charges. The
amounts are not added to produce a total charge.

 CT_FINAL_CHARGE - This charge is sent by the trunk when a call is

dropped. If call CDR outgoing call splitting is not enabled, then the
final charge reflects the charge for the entire call.

 CT_SPLIT_CHARGE - CDR outgoing call splitting is used to divide

the charge for a call among different users. For example, if an
outgoing call is placed by one station and transferred to a second
station, and if CDR call splitting is enabled, then CDR and the
Charge Advice Events would charge the first station up to the time
of the transfer, and the second station after that. A split charge
reflects the charge for the call up to the time the split charge is sent
(starting at the beginning of the call or at the previous split charge).
Any Charge Advice Event received after a split charge will reflect
only that portion of the charge that took place after the split charge.
If split charges are received for a call, then the total charge for the
call can be computed by adding the split charges and the final
charge.

charge [mandatory] Specifies the amount of charging units.

error [optional - supported] Indicates a possible error in the charge amount
and the reason for the error. It will appear only if there is an error.

 CE_NONE - no error

 CE_NO_FINAL_CHARGE – the network failed to provide a final charge

for the call (CS3/38)

 CE_LESS_FINAL_CHARGE – the final charge provided by the network

is less than a previous charge (CS3/38)

 CE_CHARGE_TOO_LARGE – the charge provided by the network is too

large (CS3/38)

 CE_NETWORK_BUSY - too many calls are waiting for their final charge

from the network (CS3/22)

Detailed Information:

 Charge Advice Event (Private)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 521

 Charge Advice Event Feature - This feature must be turned on via

cstaMonitorDevice() with attSetAdviceOfCharge().

 Trunk Group Administration - Only ISDN-PRI trunk groups that have Charge
Advice set to "during-on-request" or "automatic" on the switch will provide Charge
Advice Events.

 More Than 100 Calls in Call Clearing State - If more than 100 calls are in a call
clearing state waiting for charging information, the oldest record will not receive
final charge information. In this case a value of 0 and a cause value of

CE_NETWORK_BUSY will be reported.

Chapter 11: Event Report Service Group

522 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* CSTAPrivateStatusEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_PRIVATE_STATUS */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 struct

 { CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTAPrivateStatusEvent_t privateStatus;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTAPrivateStatusEvent_t {

 Nulltype null;

} CSTAPrivateStatusEvent_t;

 Charge Advice Event (Private)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 523

Private Data Syntax

If private data accompanies a CSTAPrivateStatusEvent, then the private data would

be stored in the location that the application specified as the privateData parameter in

the acsGetEventBlock() or acsGetEventPoll() request. If the privateData pointer is

set to NULL in these requests, then the CSTAPrivateStatusEvent does not deliver

private data to the application. If the acsGetEventBlock() or acsGetEventPoll()

returns a Private Data length of 0, then no private data is provided with this event.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTChargeAdviceEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_CHARGE_ADVICE */

 union

 {

 ATTChargeAdviceEvent_t chargeAdviceEvent;

 } u;

} ATTEvent_t;

typedef struct ATTChargeAdviceEvent_t {

 ConnectionID_t connection;

 DeviceID_t calledDevice;

 DeviceID_t chargingDevice;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 ATTChargeType_t chargeType;

 long charge;

 ATTChargeError_t error;

} ATTChargeAdviceEvent_t;

typedef enum ATTChargeType_t {

 CT_INTERMEDIATE_CHARGE = 1,

 CT_FINAL_CHARGE = 2,

 CT_SPLIT_CHARGE = 3

} ATTChargeType_t;

typedef enum ATTChargeError_t {

 CE_NONE = 0,

 CE_NO_FINAL_CHARGE = 1,

 CE_LESS_FINAL_CHARGE = 2,

 CE_CHARGE_TOO_LARGE = 3,

 CE_NETWORK_BUSY = 4

} ATTChargeError_t;

Chapter 11: Event Report Service Group

524 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Conferenced Event

Summary

 Direction: Switch to Client

 Event: CSTAConferencedEvent

 Private Data Event: ATTConferencedEvent (private data version 7 and later),

ATTV6ConferencedEvent (private data version 6), ATTV5ConferencedEvent

(private data version 5), ATTV4ConferencedEvent (private data version 4),

ATTV3ConferencedEvent (private data versions 2 and 3)

 Service Parameters: monitorCrossRefID, primaryOldCall,

secondaryOldCall, confController, addedParty, conferenceConnections,

localConnectionInfo, cause

 Private Parameters: originalCallInfo, distributingDevice,

distributingVDN, ucid, trunkList, deviceHistory

Functional Description:

The Conference Event Report indicates that two calls are conferenced (merged) into

one, and no parties are removed from the resulting call in the process. The event may

include up to six parties on the resulting call.

The Conferenced Event Report is generated for the following circumstances:

 When an on-PBX station completes a conference by pressing the "conference"
button on the voice terminal.

 When an on-PBX station completes a conference after having activated the
"supervisor assist" button on the voice set.

 When the on-PBX analog set user flashes the switch hook with one active call
and one call on conference and/or transfer hold.

 When a TSAPI application successfully completes a cstaConferenceCall()

request.

 When a TSAPI application successfully completes an attSingleStep-

ConferenceCall() request.

 Conferenced Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 525

 When the "call park" feature is used in conjunction with the "conference" button
on the voice set.

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

primaryOldCall [mandatory] Specifies the callID of the call that was

conferenced. This is usually the held call before the conference.
This call is ended as a result of the conference.

secondaryOldCall [mandatory] Specifies the callID of the call that was

conferenced. This is usually the active call before the
conference. This call was retained by the switch after the
conference.

confController [mandatory] Specifies the device that is controlling the
conference. This is the device that set up the conference.

addedParty [mandatory] Specifies the new conferenced-in device.

 If the device is an on-PBX station, the extension is specified.

 If the party is an off-PBX endpoint, then the deviceID is

ID_NOT_KNOWN.

 NOTE:

This endpoint‘s trunk identifier is included in the

conferenceConnections list, but not in this parameter.

 There are call scenarios in which the conference operation joins

multiple parties to a call. In such situations, the addedParty will

be the extension for the last party to join the call.

conferenceConnections [optional - supported] Specifies a count of the number of

devices and a list of connectionIDs and deviceIDs which

resulted from the conference.

 If a device is on-PBX, the extension is specified. The extension
consists of station or group extensions. Group extensions are
provided when the conference is to a group and the conference
completes before the call is answered by one of the group
members (TEG, PCOL, hunt group, or VDN extension). It may
contain alerting extensions.

 The static deviceID of a queued endpoint is set to the split

extension of the queue.

 If a party is off-PBX, then its static device identifier or its
previously assigned trunk identifier is specified.

Chapter 11: Event Report Service Group

526 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

localConnectionInfo [optional - supported] Specifies the local connection state as
perceived by the monitored device on this call. This is provided

for the cstaMonitorDevice() requests only. A value of

CS_NONE indicates that the local connection state is unknown.

cause [optional - limited support] Specifies the reason for this event:

 EC_PARK - A call conference was performed for parking a call

rather than a true call conference operation.

 EC_ACTIVE_MONITOR - This is the cause value if the Single Step

Conference request is for participation type PT_ACTIVE. For

details, see Single Step Conference Call Service (Private Data
Version 5 and Later) on page 325 in Chapter 6.

 EC_SILENT_MONITOR - This is the cause value if the Single Step

Conference request is for PT_SILENT. For details, see Single

Step Conference Call Service (Private Data Version 5 and
Later) on page 325 in Chapter 6.

 Conferenced Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 527

Private Parameters:

originalCallInfo [optional] specifies the original call information. This parameter is

sent with this event for the resulting newCall of a

cstaConferenceCall() request or the retained call of a (manual)

conference call operation. The calls being conferenced must be
known to the TSAPI Service via the Call Control Services or
Monitor Services.

 For a cstaConferenceCall(), the originalCallInfo includes

the original call information originally received by the heldCall

specified in the cstaConferenceCall() request. For a manual call

conference, the originalCallInfo includes the original call

information originally received by the primaryOldCall specified in

the event report.

 The original call information includes:

 reason - the reason for the originalCallInfo. The following

reasons are supported:

– OR_NONE - no originalCallInfo provided

– OR_CONFERENCED - call conferenced

 callingDevice - the original callingDevice received by the

heldCall or the primaryOldCall. This parameter is always

provided.

 calledDevice - the original calledDevice received by the

heldCall or the primaryOldCall. This parameter is always

provided.

 trunk - the original trunk group received by the heldCall or

the primaryOldCall. This parameter is supported by private

data versions 2, 3, and 4.

 trunkGroup - the original trunkGroup received by the

heldCall or the primaryOldCall. This parameter is

supported by private data version 5 and later.

 trunkMember - the original trunkMember received by the

heldCall or the primaryOldCall. This parameter is

supported by private data version 5 and later.

 lookaheadInfo - the original lookaheadInfo received by the

heldCall or the primaryOldCall.

Chapter 11: Event Report Service Group

528 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 userEnteredCode - the original userEnteredCode received by

the heldCall or the primaryOldCall call.

 userInfo - the original userInfo received by the heldCall or

the primaryOldCall call.

 For private data versions 2-5, the maximum length of userInfo

is 32 bytes. Beginning with private data version 6, the

maximum length of userInfo is increased to 96 bytes.

 An application using private data version 5 and earlier can only
receive a maximum of 32 bytes of data for userInfo, regardless
of the size of the data sent by the switch.

 ucid - the original ucid of the call. This parameter is supported

by private data version 5 and later only.

 callOriginatorInfo - the original callOriginatorInfo

received by the activeCall. This parameter is supported by

private data version 5 and later only.

 flexibleBilling - the original flexibleBilling information

of the call. This parameter is supported by private data version
5 and later only.

 deviceHistory - The deviceHistory parameter type

specifies a list of DeviceIDs that were previously associated

with the call. For an explanation of this parameter and the
following list of entries, see deviceHistory on page 530.

– olddeviceID

– cause

– oldconnectionID

This parameter is supported by private data version 7 and later.

distributingDevice [optional] Specifies the original distributing device of the call before
the call is conferenced. See the Delivered Event section in this

chapter for details on the distributingDevice parameter. This

parameter is supported by private data version 4 and later.

distributingVDN The VDN extension associated with the distributing device. This
field gets set only and exactly under the following conditions.

 When the application monitors the VDN in question and a call
is offered to the VDN. (This appears to the VDN monitor as a
Delivered event, if the application does not filter it out.)

 When the application monitors an agent and receives a call
that came from that monitored VDN (that is, in the Delivered,
Established, Transferred, and Conferenced events).

 Conferenced Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 529

ucid [optional] Specifies the Universal Call ID (UCID) of the resulting

newCall. The UCID is a unique call identifier across switches and

the network. A valid UCID is a null-terminated ASCII character

string. If there is no UCID associated with this call, the ucid

contains the ATT_NULL_UCID (a 20-character string of all zeros).

This parameter is supported by private data version 5 and later
only.

trunkList [optional] Specifies a list of up to 5 trunk groups and trunk
members. This parameter is supported by private data version 6
and later only. The following parameters are supported:

 count - The count of the connected parties on the call.

 trunks - An array of 5 trunk group and trunk member IDs, one

for each connected party. The following parameters are
supported:

– connection - The connection ID of one of the parties

on the call.

– trunkGroup - The trunk group of the party referenced

by connection.

– trunkMember - The trunk member of the party

referenced by connection.

Chapter 11: Event Report Service Group

530 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

deviceHistory The deviceHistory parameter type specifies a list of deviceIDs

that were previously associated with the call. A device becomes
associated with the call whenever there is a CSTA connection
created at the device for the call. The association may also result
from a relationship between a device and a call outside the CSTA

switching function. A device becomes part of the deviceHistory

list when it is no longer associated with the call (for example: when
a call is redirected from a device, when a call is transferred away
from a device, and when a device clears from a call).

 Conceptually, the deviceHistory parameter consists of a list of

entries, where each entry contains information about a DeviceID

that had previously been associated with the call, and the list is
ordered from the first device that left the call to the device that
most recently left the call. However, for AE Services, the list will
contain at most one entry.

The entry consists of:

 olddeviceID - the device that left the call. This information

should be consistent with the subject device in the event that
represented the device leaving the call. For example: the

divertingDevice provided in the Diverted event for that

redirection, the transferring device in the Transferred event for
a transfer, or the clearing device in the Connection Cleared
event.

 cause - the reason the device left the call or was redirected.

This information should be consistent with the cause provided

in the event that represented the device leaving the call (for
example, the cause provided in the Diverted, Transferred, or
Connection Cleared event).

 oldconnectionID - the CSTA ConnectionID that represents

the last ConnectionID associated with the device that left the

call. This information should be consistent with the subject
connection in the event that represented the device leaving the

call (for example, the ConnectionID provided in the Diverted,

Transferred, or Connection Cleared event).

 NOTE:

Device History cannot be guaranteed for events that
happened before monitoring started. Notice that the cause

value should be EC_NETWORK_SIGNAL if an ISDN

Redirected Number was provided; otherwise the cause
value is set to match the cause value of the event that was
flowed to report the dropped connection.

 Conferenced Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 531

Detailed Information:

See also the Event Report Detailed Information on page 710.

The originalCallInfo includes the original call information originally received by the

call that is ended (this is usually, but not always, the held call) as the result of the

conference.

The following special rules apply:

 If the Conferenced Event was a result of a cstaConferenceCall() request, the

originalCallInfo and the distributingDevice sent with this Conferenced

Event is from the heldCall in the cstaConferenceCall() request. Thus, the

application can control what originalCallInfo and distributingDevice will

be sent in a Conferenced Event by putting the original call on hold and specifying

it as the heldCall in the cstaConferenceCall request. The primaryOldCall

(the call that ended as the result of the cstaConferenceCall() request) is

usually the heldCall, but it can be the activeCall.

 If the Conferenced Event was a result of a manual conference, the

originalCallInfo and the distributingDevice sent with this Conferenced

Event is from the primaryOldCall of the event. Thus the application does not

have control of what originalCallInfo and distributingDevice will be sent

in the Conferenced Event. The primaryOldCall (the call that ended as the result

of the manual conference operation) is usually the held call, but it can be the
active call.

Chapter 11: Event Report Service Group

532 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* CSTAConferencedEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_CONFERENCED */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTAConferencedEvent_t conferenced;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTAConferencedEvent_t {

 ConnectionID_t primaryOldCall;

 ConnectionID_t secondaryOldCall;

 SubjectDeviceID_t confController;

 SubjectDeviceID_t addedParty;

 ConnectionList_t conferenceConnections;

 LocalConnectionState_t localConnectionInfo;

 CSTAEventCause_t cause;

} CSTAConferencedEvent_t;

typedef struct ConnectionList_t {

 unsigned int count;

 Connection_t *connection;

} ConnectionList_t;

typedef struct Connection_t {

 ConnectionID_t party;

 SubjectDeviceID_t staticDevice;

} Connection_t;

 Conferenced Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 533

Private Data Syntax

If private data accompanies a CSTAConferencedEvent, then the private data would be

stored in the location that the application specified as the privateData parameter in the

acsGetEventBlock() or acsGetEventPoll() request. If the privateData pointer is set

to NULL in these requests, then the CSTAConferencedEvent does not deliver private

data to the application. If acsGetEventBlock() or acsGetEventPoll() returns a

Private Data length of 0, then no private data is provided with this event.

Private Data Version 7 and Later Syntax

The deviceHistory and distributingVDN parameters are new for private data version

7.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTConferencedEvent - CSTA Unsolicited Event Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATT_CONFERENCED */

 union

 {

 ATTConferencedEvent_t conferencedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTConferencedEvent_t {

 ATTOriginalCallInfo_t originalCallInfo;

 CalledDeviceID_t distributingDevice;

 ATTUCID_t ucid;

 ATTTrunkList_t trunkList;

 DeviceHistory_t deviceHistory;

 CalledDeviceID_t distributingVDN;

} ATTConferencedEvent_t;

typedef struct ATTOriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTUserToUserInfo_t userInfo;

 ATTUCID_t ucid;

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

 DeviceHistory_t deviceHistory;

} ATTOriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

Chapter 11: Event Report Service Group

534 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef struct ATTLookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

 ATTUnicodeDeviceID_t uSourceVDN; /* sourceVDN in Unicode */

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t {

 unsigned short count;

 short value[64];

} ATTUnicodeDeviceID_t

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

 Conferenced Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 535

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct {

 unsigned short length; /* 0 indicates UUI not

 * present */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t {

 unsigned char hasInfo; /* if FALSE, no

 * call originator info */

 short callOriginatorType;

} ATTCallOriginatorInfo_t;

typedef struct DeviceHistory_t {

 unsigned int count; /* at most 1 */

 DeviceHistoryEntry_t *deviceHistoryList;

} DeviceHistory_t;

typedef struct DeviceHistoryEntry_t {

 DeviceID_t olddeviceID;

 CSTAEventCause_t cause;

 ConnectionID_t oldconnectionID;

} DeviceHistoryEntry_t;

Chapter 11: Event Report Service Group

536 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 6 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV6ConferencedEvent - CSTA Unsolicited Event Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATTV6_CONFERENCED */

 union

 {

 ATTV6ConferencedEvent_t v6conferencedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV6ConferencedEvent_t {

 ATTV6OriginalCallInfo_t originalCallInfo;

 CalledDeviceID_t distributingDevice;

 ATTUCID_t ucid;

 ATTTrunkList_t trunkList;

} ATTV6ConferencedEvent_t;

typedef struct ATTV6OriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTUserToUserInfo_t userInfo;

 ATTUCID_t ucid;

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

} ATTV6OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

 Conferenced Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 537

typedef struct ATTLookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

 ATTUnicodeDeviceID_t uSourceVDN; /* sourceVDN in Unicode */

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t {

 unsigned short count;

 short value[64];

} ATTUnicodeDeviceID_t

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

Chapter 11: Event Report Service Group

538 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct {

 unsigned short length; /* 0 indicates UUI not

 * present */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t {

 unsigned char hasInfo; /* if FALSE, no

 * callOriginatorType */

 short callOriginatorType;

} ATTCallOriginatorInfo_t;

 Conferenced Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 539

Private Data Version 5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV5ConferencedEvent - CSTA Unsolicited Event Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATTV5_CONFERENCED */

 union

 {

 ATTV5ConferencedEvent_t v5conferencedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV5ConferencedEvent_t

{

 ATTV5OriginalCallInfo_t originalCallInfo;

 CalledDeviceID_t distributingDevice;

 ATTUCID_t ucid;

} ATTV5ConferencedEvent_t;

typedef struct ATTV5OriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

 ATTUCID_t ucid;

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

} ATTV5OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

Chapter 11: Event Report Service Group

540 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

typedef struct ATTLookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

 ATTUnicodeDeviceID_t uSourceVDN; /* sourceVDN in Unicode */

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t {

 unsigned short count;

 short value[64];

} ATTUnicodeDeviceID_t

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 Conferenced Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 541

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t {

 unsigned char hasInfo; /* if FALSE, no

 * callOriginatorType */

 short callOriginatorType;

} ATTCallOriginatorInfo_t;

Chapter 11: Event Report Service Group

542 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV4ConferencedEvent - CSTA Unsolicited Event Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATTV4_CONFERENCED */

 union

 {

 ATTV4ConferencedEvent_t v4conferencedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV4ConferencedEvent_t {

 ATTV4OriginalCallInfo_t originalCallInfo;

 CalledDeviceID_t distributingDevice;

} ATTV4ConferencedEvent_t;

typedef struct ATTV4OriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunk;

 DeviceID_t trunkMember;

 ATTV4LookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

} ATTV4OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef struct ATTV4LookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 Conferenced Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 543

 short seconds;

 DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

Chapter 11: Event Report Service Group

544 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Versions 2 and 3 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV3ConferencedEvent - CSTA Unsolicited Event Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATTV3_CONFERENCED */

 union

 {

 ATTV3ConferencedEvent_t v3conferencedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV3ConferencedEvent_t

{

 ATTV4OriginalCallInfo_t originalCallInfo;

} ATTV3ConferencedEvent_t;

typedef struct ATTV4OriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunk;

 DeviceID_t trunkMember;

 ATTV4LookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

} ATTV4OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef struct ATTV4LookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 Conferenced Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 545

 short seconds;

 DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

Chapter 11: Event Report Service Group

546 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Connection Cleared Event

Summary

 Direction: Switch to Client

 Event: CSTAConnectionClearedEvent

 Private Data Event: ATTConnectionClearedEvent (private data version 7 and

later), ATTV6ConnectionClearedEvent (private data version 6),

ATTV5ConnectionClearedEvent (private data versions 2, 3, 4 and 5)

 Service Parameters: monitorCrossRefID, droppedConnection,

releasingDevice, localConnectionInfo, cause

 Private Parameters: userInfo, deviceHistory

Functional Description:

The Connection Cleared Event Report indicates that a device in a call disconnects or is

dropped. It does not indicate that a transferring device has left a call in the act of

transferring that call.

A Connection Cleared Event Report is generated in the following cases:

 A simulated bridged appearance is dropped when one member drops.

 When an on-PBX party drops from a call.

 When an off-PBX party drops and the ISDN-PRI receives a disconnect message.

 When an off-PBX party drops and the non-ISDN-PRI trunk detects a drop.

A Connection Cleared Event Report is not generated in the following cases:

 A party drops as a result of a transfer operation.

 A split or vector announcement drops.

 Attendant drops a call, if the call was received through the attendant group (0).

 A predictive call is dropped during the call classification stage. (A Call Cleared
Event Report is generated instead.)

 Connection Cleared Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 547

 A call is delivered to an agent and de-queued from multiple splits as part of
vector processing.

This event report is not generated for the last disconnected party on a call for a

cstaMonitorCallsViaDevice() request. In that case, a Call Cleared Event Report is

generated instead.

This event is the last event of a call for a cstaMonitorDevice() request.

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for which
this event is reported.

droppedConnection [mandatory] Specifies the connection that has been dropped from
the call.

releasingDevice [mandatory] Specifies the dropped device.

 If the device is on-PBX, then the extension is specified (primary
extension for TEGs, PCOLs, bridging).

 If a party is off-PBX, then its static device identifier or its
previously assigned trunk identifier is specified.

localConnectionInfo [optional - supported] Specifies the local connection state as
perceived by the monitored device on this call. This is provided

for cstaMonitorDevice() requests only. A value of CS_NONE

indicates that the local connection state is unknown.

Chapter 11: Event Report Service Group

548 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

cause [optional - supported] Specifies a cause when the call is not

terminated normally. EC_NONE is specified for normal call

termination.

 EC_BUSY – Device busy.

 EC_CALL_CANCELLED – Call rejected or canceled.

 EC_DEST_NOT_OBTAINABLE – Called device is not reachable

or wrong number is called.

 EC_CALL_NOT_ANSWERED – Called device not responding or

call not answered (maxRings has timed out) for a

cstaMakePredictiveCall() request.

 EC_NETWORK_CONGESTION – Network congestion or channel is

unacceptable.

 EC_RESOURCES_NOT_AVAILABLE – No circuit or channel is

available.

 EC_TRANSFER – Call merged due to transfer or conference.

 EC_REORDER_TONE – Intercept SIT treatment - Number

changed.

 EC_VOICE_UNIT_INITIATOR – Answer machine is detected

for a cstaMakePredictiveCall() request.

 EC_INCOMPATIBLE_BEARER SERVICE – The connection was

cleared because the selected facility for the call did not have
the proper bearer capability. This could occur, for example, if
a data or video call was attempted on a trunk facility that is
reserved for voice traffic.

 EC_REDIRECTED – A queued connection has been redirected

to a station.

 Connection Cleared Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 549

Private Parameters:

userInfo [optional] Contains user-to-user information. This parameter allows
an application to associate caller information, up to 32 (private data
versions 2-5) or 96 (private data versions 6 and later) bytes, with a
call. This information may be a customer number, credit card
number, alphanumeric digits, or a binary string. It is propagated with

the call when the call is dropped by a cstaClearConnection()

service request with userInfo and passed to an application in the

Connection Cleared Event Report.

An application using private data version 5 or earlier can only

receive a maximum of 32 bytes of data in userInfo, regardless of

the size of the data sent by the switch.

 The following UUI protocol types are supported:

 UUI_NONE - There is no data provided in the data parameter.

 UUI_USER_SPECIFIC - The content of the data parameter is a

binary string. The correct size (maximum of 32 or 96 bytes) of

data must be specified in the size parameter.

 UUI_IA5_ASCII - The content of the data parameter must be a

null-terminated IA5 (ASCII) character string. The correct size

(maximum of 32 or 96 bytes excluding the null terminator) of

data must be specified in the size parameter.

deviceHistory The deviceHistory parameter type specifies a list of DeviceIDs

that were previously associated with the call. A device becomes
associated with the call whenever there is a CSTA connection
created at the device for the call. The association may also result
from a relationship between a device and a call outside the CSTA

switching function. A device becomes part of the deviceHistory

list when it is no longer associated with the call (for example: when
a call is redirected from a device, when a call is transferred away
from a device, and when a device clears from a call).

 Conceptually, the deviceHistory parameter consists of a list of

entries, where each entry contains information about a DeviceID

that had previously been associated with the call, and the list is
ordered from the first device that left the call to the device that most
recently left the call. However, for AE Services, the list will contain
at most one entry.

The entry consists of:

 olddeviceID - the device that left the call. This information

should be consistent with the subject device in the event that
represented the device leaving the call. For example: the

divertingDevice provided in the Diverted event for that

redirection, the transferring device in the Transferred event for a
transfer, or the clearing device in the Connection Cleared event.

Chapter 11: Event Report Service Group

550 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 cause - the reason the device left the call or was redirected.

This information should be consistent with the cause provided in

the event that represented the device leaving the call (for
example, the cause provided in the Diverted, Transferred, or
Connection Cleared event).

 oldconnectionID - the CSTA ConnectionID that represents

the last ConnectionID associated with the device that left the

call. This information should be consistent with the subject
connection in the event that represented the device leaving the

call (for example, the ConnectionID provided in the Diverted,

Transferred, or Connection Cleared event).

Note:

Device History cannot be guaranteed for events that
happened before monitoring started. Notice that the cause

value should be EC_NETWORK_SIGNAL if an ISDN Redirected

Number was provided; otherwise the cause value is set to
match the cause value of the event that was flowed to report
the dropped connection.

Detailed Information:

See the Event Report Detailed Information on page 710.

 Connection Cleared Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 551

Syntax

#include <acs.h>

#include <csta.h>

/* CSTAConnectionClearedEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_CONNECTION_CLEARED */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTAConnectionClearedEvent_t connectionCleared;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTAConnectionClearedEvent_t {

 ConnectionID_t droppedConnection;

 SubjectDeviceID_t releasingDevice;

 LocalConnectionState_t localConnectionInfo;

 CSTAEventCause_t cause;

} CSTAConnectionClearedEvent_t;

Chapter 11: Event Report Service Group

552 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Syntax

If private data accompanies a CSTAConnectionClearedEvent, then the private data

would be stored in the location that the application specified as the privateData

parameter in the acsGetEventBlock() or acsGetEventPoll() request. If the

privateData pointer is set to NULL in these requests, then the

CSTAConnectionClearedEvent does not deliver private data to the application. If the

acsGetEventBlock() or acsGetEventPoll() returns a Private Data length of 0, then

no private data is provided with this event.

Private Data Version 7 and Later Syntax

The deviceHistory parameter is new for private data version 7.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTConnectionClearedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_CONNECTION_CLEARED */

 union

 {

 ATTConnectionClearedEvent_t connectionCleared;

 } u;

} ATTEvent_t;

typedef struct ATTConnectionClearedEvent_t {

 ATTUserToUserInfo_t userInfo;

 DeviceHistory_t deviceHistory;

} ATTConnectionClearedEvent_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct {

 unsigned short length; /* 0 indicates UUI not

 * present */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

 Connection Cleared Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 553

Private Data Version 6 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV6ConnectionClearedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV6_CONNECTION_CLEARED */

 union

 {

 ATTV6ConnectionClearedEvent_t v6connectionCleared;

 } u;

} ATTEvent_t;

typedef struct ATTV6ConnectionClearedEvent_t {

 ATTUserToUserInfo_t userInfo;

} ATTV6ConnectionClearedEvent_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct {

 unsigned short length; /* 0 indicates UUI not

 * present */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

Chapter 11: Event Report Service Group

554 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 2-5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV5ConnectionClearedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV5_CONNECTION_CLEARED */

 union

 {

 ATTV5ConnectionClearedEvent_t v5connectionCleared;

 } u;

} ATTEvent_t;

typedef struct ATTV5ConnectionClearedEvent_t {

 ATTV5UserToUserInfo_t userInfo;

} ATTV5ConnectionClearedEvent_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 555

Delivered Event

Summary

 Direction: Switch to Client

 Event: CSTADeliveredEvent

 Private Data Event: ATTDeliveredEvent (private data version 7 and later),

ATTV6DeliveredEvent (private data version 6), ATTV5DeliveredEvent (private

data version 5), ATTV4DeliveredEvent (private data version 4),

ATTV3DeliveredEvent (private data versions 2 and 3)

 Service Parameters: monitorCrossRefID, connection, alertingDevice,

callingDevice, calledDevice, lastRedirectionDevice,

localConnectionInfo, cause

 Private Parameters: deliveredType, trunk, trunkGroup, trunkMember, split,

lookaheadInfo, userEnteredCode, userInfo, reason, originalCallInfo,

distributingDevice, distributingVDN, ucid, callOriginatorInfo,

flexibleBilling, deviceHistory

Functional Description:

Communication Manager reports two types of Delivered Event Reports:

 call delivered to station

 call delivered to ACD/VDN

The type of the Delivered Event is specified in the ATTDeliveredEvent.

Call Delivered to a Station Device

A Delivered Event Report of this type indicates that "alerting" (tone, ring, etc.) is applied

to a device or when the switch detects that "alerting" has been applied to a device.

Consecutive Delivered Event Reports are possible. Multiple Delivered Event Reports for

multiple devices are also possible (e.g., a principal and its bridging users).

The Delivered Event Report is not guaranteed for each call. The Delivered Event Report

is not sent for calls that connect to announcements as a result of ACD split forced

announcement or announcement vector commands.

The switch generates the Delivered Event Report when the following events occur.

 "Alerting" (tone, ring, etc.) is applied to a device or when the switch detects that
"alerting" has been applied to a device.

Chapter 11: Event Report Service Group

556 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 The originator of a cstaMakePredictiveCall() call is an on-PBX station and

ringing or zip tone is started.

 When a call is redirected to an off-PBX station and the ISDN ALERTing message
is received from an ISDN-PRI facility.

 When a cstaMakePredictiveCall() call is trying to reach an off-PBX station

and the call classifier detects precise, imprecise, or special ringing.

 When a cstaMakeCall() (or a cstaMakePredictiveCall()) call is placed to an

off-PBX station, and the ALERTing message is received from the ISDN-PRI
facility.

When both a classifier and an ISDN-PRI facility report alerting on a call made by a

cstaMakePredictiveCall() request, then the first occurrence generates a Delivered

Event Report; succeeding reports are not reported by the switch.

Consecutive Delivered Event Reports are possible in the following cases:

 A station is alerted first and the call goes to coverage: a Delivered Event Report
is generated each time a new station is alerted.

 A principal and its bridging users are alerted: a Delivered Event Report is
generated for the principal and for each bridged station alerted.

 A call is alerting a Terminating Extension Group (TEG); one report is sent for
each TEG member alerted.

 A call is alerting a Personal Central Office Line (PCOL); one report is sent for
each PCOL member is alerted.

 A call is alerting a coverage/answer point; one report is sent for each alerting
member of the coverage answer group.

 A call is alerting a principal with SAC active; one report is sent for the principal
and one or more are sent for the coverage points.

Call Delivered to an ACD Device

An ACD device can distribute calls within a switch. If an ACD device is called, normally

the call will pass through the device, as the ACD call processing progresses, and

eventually be delivered to a station device. Therefore, a call delivered to an ACD device

will have multiple Delivered Event Reports before it connects.

There are two types of Communication Manager devices that distribute calls, VDNs and

ACD splits.

A Delivered Event Report is generated when a call is delivered to a monitored VDN or

ACD split:

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 557

 Call Delivered to a VDN - An event is generated when a call is delivered to a
monitored VDN.

 Call Delivered to an ACD Split - An event is generated when a call is delivered to
a monitored ACD split. The event report will be sent even if the ACD split is in
night service or has call forwarding active.

A Delivered Event Report will be generated for each cstaMonitorCallsViaDevice()

request that monitors an ACD device through which the call passes.

The Delivered Event Report is not sent for calls that connected to announcements as a

result of ACD split forced announcement or announcement vector commands.

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

connection [mandatory] Specifies the endpoint that is alerting.

alertingDevice [mandatory] Specifies the device that is alerting.

 If the device being alerted is on-PBX, then the extension of the
device is specified (primary extension for TEGs, PCOLs,
bridging).

 If a party is off-PBX, then its static device identifier or its
assigned trunk identifier is specified.

 If the call was delivered to a VDN or ACD split, the monitored
object is specified.

callingDevice [mandatory] Specifies the calling device. The following rules
apply:

 For internal calls - the originator‘s extension.

 For outgoing calls over PRI facilities - "calling number" from
the ISDN SETUP message or its assigned trunk identifier is
specified. If the "calling number" does not exist, it is NULL.

Note: For outgoing calls over non-PRI facilities, there is
no Delivered Event Report. A Network Reached Event
Report is generated instead.

 For incoming calls over PRI facilities - "calling number" from
the ISDN SETUP message or its assigned trunk identifier is
specified. If the "calling number" does not exist, it is NULL.

Chapter 11: Event Report Service Group

558 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 For incoming calls over non-PRI facilities - the calling party
number is generally not available. The assigned trunk
identifier is provided instead.

Note: The trunk identifier is a dynamic device identifier
and it cannot be used to access a trunk in
Communication Manager.

 The trunk identifier is specified only when the calling party
number is not available.

 For calls originated at a bridged call appearance - the
principal‘s extension is specified.

 There is a special case for a predictive call being delivered

to a split: in this case, the callingDevice contains the

original digits (from the cstaMakePredictiveCall request)

provided in the destination field.

calledDevice [mandatory] Specifies the originally called device. The following
rules apply:

 For outgoing calls over PRI facilities - "called number" from
the ISDN SETUP message is specified. If the "called

number" does not exist (it is NULL), the deviceIDStatus is

ID_NOT_KNOWN.

 For outgoing calls over non-PRI facilities - the

deviceIDStatus is ID_NOT_KNOWN.

 For incoming calls over PRI facilities - "called number" from
the ISDN SETUP message is specified.

 For incoming calls over non-PRI facilities - the principal
extension is specified. It may be a group extension for
TEG, hunt group, VDN. If the switch is administered to
modify the DNIS digits, then the modified DNIS string is
specified.

 For incoming calls to PCOL, the deviceIDStatus is

ID_NOT_KNOWN.

 For incoming calls to a TEG (principal) group, the TEG
group extension is specified.

 For incoming calls to a principal with bridges, the principal‘s
extension is specified.

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 559

 If the called device is an invalid number and the Invalid
Number Dialed Intercept Treatment type on Avaya
Communication Manager is administered as
―announcement‖ (rather than ―tone‖), then the extension
number of the announcement is specified.

 If the called device is on-PBX and the call did not come
over a PRI facility, the extension of the party dialed is
specified.

lastRedirectionDevice [optional - limited support] Specifies the previous
redirection/alerted device in the case where the call was

redirected/diverted to the alertingDevice.

localConnectionInfo [optional - supported] Specifies the local connection state as
perceived by the monitored device on this call. This is provided

for cstaMonitorDevice requests only. A value of CS_NONE

means the local connection state is unknown.

cause [optional - supported] Specifies the cause for this event. The
following causes are supported:

 The causes EC_CALL_FORWARD, EC_CALL_FORWARD_ALWAYS,

EC_CALL_FORWARD_BUSY, and EC_CALL_FORWARD_NO_ANSWER

have higher precedence than the following three causes:
EC_KEY_CONFERENCE, EC_NEW_CALL, and EC_REDIRECTED.

For example, if two causes apply to an event; one from the
group with higher precedence (for example,

EC_CALL_FORWARD_ALWAYS) and one from the group with a

lower precedence (for example, EC_NEW_CALL), only the cause

from the group with the higher precedence will apply.

 EC_CALL_FORWARD – The call has been redirected via one

of the following features:

 – Send All Calls

– Cover All Calls

– Go to Cover active

– cstaDeflectCall

 EC_CALL_FORWARD_ALWAYS – The call has been redirected

via the Call Forwarding feature.

 EC_CALL_FORWARD_BUSY – The call has been redirected for

one of the following reasons:

 – Cover - principal busy

– Cover - all call appearance busy

Chapter 11: Event Report Service Group

560 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 EC_CALL_FORWARD_NO_ANSWER – The call has been

redirected because no answer from cover

 EC_KEY_CONFERENCE – Indicates that the event report

occurred at a bridged device. This cause has higher
precedence than the following two causes.

 EC_NEW_CALL – The call has not yet been redirected.

 EC_REDIRECTED – The call has been redirected.

Private Parameters:

deliveredType [optional] Specifies the type of the Delivered Event:

 DELIVERED_TO_ACD – This type indicates that the call is delivered to

an ACD split or a VDN device and subsequent Delivered or other

events (e.g., QUEUED) may be expected.

 DELIVERED_TO_STATION – This type indicates that the call is

delivered to a station.

trunkGroup [optional] Specifies the trunk group number from which the call
originated. This parameter is supported by private data version 5
and later only.

trunk [optional] Specifies the trunk group number from which the call
originated. Trunk group number is provided only if the

callingDevice is unavailable. This parameter is supported by

private data versions 2, 3, and 4 only.

trunkMember [optional - limited support] Specifies the trunk member number from
which the call originated. This parameter is supported by private
data version 5 and later.

split [optional] Specifies the ACD split extension which delivered the call

to the agent. This parameter applies to deliveredType

DELIVERED_TO_STATION only.

lookaheadInfo [optional] Specifies the lookahead interflow information received
from the delivered call. Lookahead interflow is a Communication
Manager feature that routes some of the incoming calls from one
switch to another so that they can be handled more efficiently and
will not be lost. The switch that overflows the call provides the
lookahead interflow information. A routing application may use the
lookahead interflow information to determine the destination of the

call. If the lookahead interflow type is set to "LAI_NO_INTERFLOW",

no lookahead interflow private data is provided with this event.

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 561

userEnteredCode [optional] Specifies the code/digits that may have been entered by
the caller through the Communication Manager call prompting

feature or the collected digits feature. If the userEnteredCode code

is set to "UE_NONE", no userEnteredCode private data is provided

with this event. See the Detailed Information section for how to

setup the switch and application for collecting userEnteredCode.

userInfo [optional] Contains user-to-user information. This parameter allows
an application to associate caller information, up to 32 (private data
versions 2-5) or 96 (private data versions 6 and later) bytes, with a
call. This information may be a customer number, credit card
number, alphanumeric digits, or a binary string.

An application using private data version 5 or earlier can only
receive a maximum of 32 bytes of data in userInfo, regardless of the
size of the data sent by the switch.

 The following UUI protocol types are supported:

UUI_NONE – There is no data provided in the data parameter.

UUI_USER_SPECIFIC – The content of the data parameter is a

binary string. The correct size (maximum of 32 or 96 bytes) of data
must be specified in the size parameter.

UUI_IA5_ASCII – The content of the data parameter must be a

null-terminated IA5 (ASCII) character string. The correct size
(maximum of 32 or 96 bytes excluding the null terminator) of data

must be specified in the size parameter.

reason [optional] Specifies the reason of this event. The following reasons
are supported:

 AR_NONE – indicates no value specified for reason.

 AR_IN_QUEUE – When an already queued call reaches a

converse vector step, the Delivered Event will include this
reason code to inform the application that the call is still in

queue. This reason applies to DELIVERED_TO_ACD only.

Otherwise, this parameter will be set to AR_NONE.

Chapter 11: Event Report Service Group

562 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

originalCallInfo [optional] Specifies the original call information. Note that

information is not repeated in the originalCallInfo, if it is already

reported in the CSTA service parameters or in the private data. For

example, the callingDevice and calledDevice in the

originalCallInfo will be NULL if the callingDevice and the

calledDevice in the CSTA service parameters are the original

calling and called devices. Only when the original devices are

different from the most recent callingDevice and calledDevice,

the callingDevice and calledDevice in the originalCallInfo

will be set. If the userEnteredCode in the private data is the original

userEnteredCode, the userEnteredCode in the

originalCallInfo will be UE_NONE. Only when new

userEnteredCode is received and reported in the

userEnteredCode, the originalCallInfo will have the original

userEnteredCode.

 Note: For the Delivered Event sent to the newCall of a

Consultation Call, the originalCallInfo is taken from the

activeCall specified in the Consultation Call request. Thus

the application can pass the original call information

between two calls. The calledDevice of the Consultation

Call must reside on the same switch and must be monitored
by the same AE Services TSAPI Service.

 The original call information includes:

 reason - the reason for the originalCallInfo. The following

reasons are supported.

– OR_NONE - no originalCallInfo provided

– OR_CONSULTATION - consultation call

– OR_CONFERENCED - call conferenced

– OR_TRANSFERRED - call transferred

– OR_NEW_CALL - new call

 callingDevice - the original callingDevice received by the

activeCall.

 calledDevice - the original calledDevice received by the

activeCall.

 trunk - the original trunk group received by the activeCall.

This parameter is supported by private data version 2, 3, and 4.

 trunkGroup - the original trunkGroup received by the

activeCall. This parameter is supported by private data

version 5 and later only.

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 563

 trunkMember - the original trunkMember received by the

activeCall.

 lookaheadInfo - the original lookaheadInfo received by the

activeCall.

 userEnteredCode - the original userEnteredCode received by

the activeCall.

 userInfo - the original userInfo received by the activeCall.

Note: An application using private data version 5 or earlier
can only receive a maximum of 32 bytes of data in

userInfo, regardless of the size of the data sent by the

switch.

 ucid - the original ucid of the call. This parameter is supported

by private data version 5 and later only.

 callOriginatorInfo - the original callOriginatorInfo

received by the activeCall. This parameter is supported by

private data version 5 and later only.

 flexibleBilling - the original flexibleBilling information

of the call. This parameter is supported by private data version 5
and later only.

 deviceHistory - specifies a list of DeviceIDs that were

previously associated with the call. For an explanation of this
parameter and the following list of entries, see deviceHistory on
page 565.

– olddeviceID

– cause

– oldconnectionID

This parameter is supported by private data version 7 and later.

distributingDevice [optional] Specifies the ACD or VDN device that distributed the call
to the agent station. This information is provided only when the call
is processed by the switch ACD or Call Vectoring processing and is

sent for a station monitor only (that is, when the deliveredType is

DELIVERED_TO_STATION). This parameter is supported by private

data version 4 and later.

Chapter 11: Event Report Service Group

564 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 The value of the distributingDevice may be affected by CM

administration of the VDN Override feature. The calledDevice

specifies the originally called device. In many ACD call scenarios,

calledDevice and distributingDevice have the same device ID.

However, in call scenarios that involve call vectoring with the VDN

Override feature turned on, calledDevice and

distributingDevice may have different device IDs. Incoming calls

arriving at the same calledDevice may be distributed to an agent

via different call paths that have more than one VDN involved. If the

VDN Override feature is used on the calledDevice, the

distributingDevice specifies the VDN that distributes the call to

the agent. This is particularly useful for applications that need to
know the call path.

 For example, VDN 25201 has VDN Override feature on. VDN 25201
can either route the call to VDN 25202 or VDN 25204. VDN
Override is not administered on 25202 and 25204, based on
conditions set up at the vector associated with VDN 25201. Both
VDN 25202 and 25204 route the call to VDN 25203. Then VDN
25203 routes the call to an agent. If VDN 25201 and the agent‘s
station are both monitored, but not VDN 25202 and 25204, the

agent‘s station monitoring can tell from the distributingDevice

whether the path of a call involves 24202 or 24204 when 25201 is
called. Also note that, in the Delivered and Established events for

the agent‘s station monitoring, the calledDevice will be 25201 and

the lastRedirectionDevice will also be 25201(if VDN 25203 is

monitored, the lastRedirectionDevice will change to 25203).

Proper switch administration of the VDN Override feature is required
on the Communication Manager in order to receive a useful

distributingDevice. The distributingDevice contains the

originally called device if such administration is not performed on
Communication Manager.

distributingVDN The VDN extension associated with the distributing device. Unlike

the distributingDevice field, the value of the distributingVDN

field is not affected by CM administration of the VDN Override
feature. The field gets set only and exactly under the following
conditions.

 When the application monitors the VDN in question and a call is
offered to the VDN. This event is conveyed to the applications
as a Delivered event, if the application does not filter it out.

 When the application monitors an agent and receives a call that
came from that monitored VDN (that is, in the Delivered,
Established, Transferred, and Conferenced events).

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 565

ucid [optional] Specifies the Universal Call ID (UCID) of the resulting

newCall. The UCID is a unique call identifier across switches and

the network. A valid UCID is a null-terminated ASCII character

string. If there is no UCID associated with this call, the ucid

contains the ATT_NULL_UCID (a 20-character string of all zeros).

This parameter is supported by private data version 5 and later
only.

callOriginatorInfo [optional] Specifies the callOriginatorType of the call originator

such as coin call, 800-service call, or cellular call. See Table 18 on
page 573.

Note: callOriginatorType values (II digit assignments) are

provided by the network, not Communication Manager. The II-

digit assignments are maintained by the North American

Numbering Plan Administration (NANPA). To obtain the most

current II digit assignments and descriptions, go to:

http://www.nanpa.com/number_resource_info/ani_ii_assignme

nts.html

flexibleBilling [optional] Specifies whether the Flexible Billing feature is allowed for
this call and the Flexible Billing customer option is assigned on the

switch. If this parameter is set to TRUE, the billing rate can be

changed for the incoming 900-type call using the Set Bill Rate
Service. This parameter is supported by private data version 5 and
later only.

deviceHistory The deviceHistory parameter type specifies a list of deviceIDs

that were previously associated with the call. A device becomes
associated with the call whenever there is a CSTA connection
created at the device for the call. The association may also result
from a relationship between a device and a call outside the CSTA

switching function. A device becomes part of the deviceHistory

list when it is no longer associated with the call (for example: when
a call is redirected from a device, when a call is transferred away
from a device, and when a device clears from a call).

http://www.nanpa.com/number_resource_info/ani_ii_assignments.html
http://www.nanpa.com/number_resource_info/ani_ii_assignments.html

Chapter 11: Event Report Service Group

566 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 Conceptually, the deviceHistory parameter consists of a list of

entries, where each entry contains information about a deviceID

that had previously been associated with the call, and the list is
ordered from the first device that left the call to the device that most
recently left the call. However, for AE Services, the list will contain
at most one entry.

The entry consists of:

 olddeviceID - the device that left the call. This information

should be consistent with the subject device in the event that
represented the device leaving the call. For example: the

divertingDevice provided in the Diverted event for that

redirection, the transferring device in the Transferred event for a
transfer, or the clearing device in the Connection Cleared event.

 cause - the reason the device left the call or was redirected.

This information should be consistent with the cause provided in

the event that represented the device leaving the call (for
example, the cause provided in the Diverted, Transferred, or
Connection Cleared event).

 oldconnectionID - the CSTA ConnectionID that represents

the last ConnectionID associated with the device that left the

call. This information should be consistent with the subject
connection in the event that represented the device leaving the

call (for example, the ConnectionID provided in the Diverted,

Transferred, or Connection Cleared event).

 NOTE:

Device History cannot be guaranteed for events that
happened before monitoring started. Notice that the cause

value should be EC_NETWORK_SIGNAL if an ISDN Redirected

Number was provided; otherwise the cause value is set to
match the cause value of the event that was flowed to report
the dropped connection.

Detailed Information:

In addition to the information below, see the Event Report Detailed Information on page

710.

 Last Redirection Device

 NOTE:

There is only limited support for this parameter. An application must understand
the limitations of this parameter in order to use the information correctly.

– The accuracy of the information provided in this parameter depends on how
an application monitors the devices involved in a call scenario.
Experimentation may be required before an application can use this
information.

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 567

– This parameter provides the last device known by the TSAPI Service through
monitor services that redirect the call or divert the call to the device

(alertingDevice, answeringDevice, queued) to which the call arrives. The

redirection device can be a VDN, ACD Split, or station device. The following
call scenarios describe this parameter and its limitations.

Call Scenario 1:

 Both caller and agent device are monitored.

 Caller dials an ACD Split (not monitored) or a VDN (not monitored) to connect to
the agent.

 Call arrives at the agent station.

– If the caller dials the ACD Split directly, the Delivered/Established Events sent
to both caller and the agent will have the ACD Split as the

lastRedirectionDevice.

 NOTE:

If the caller calls the VDN, instead of the ACD Split, and the VDN sends the

call to the ACD Split, the Delivered/Established Events sent to both the caller

and the agent will have the VDN as the lastRedirectionDevice. The last

redirection device in the PBX is actually the ACD Split.

 NOTE:

If the caller dials the VDN, the VDN sends the call to the ACD Split, and the

call is queued at the ACD Split before the agent receives the call, the

Delivered/Established Events will have the VDN as the

lastRedirectionDevice. The last redirection device in the PBX is actually

the ACD Split.

 NOTE:

If the caller calls from an external device, the agent station receives the same

lastRedirectionDevice information.

Call Scenario 2:

 Both caller and agent device are monitored.

 Caller dials an ACD Split (not monitored) or a VDN (monitored) to connect to the
agent.

 Call arrives at the agent station.

Same results as in the call scenario 1, except in the following case.

– If the caller dials the VDN, the VDN sends the call to the ACD Split, and the
call is queued at the ACD Split before the agent receives the call, the Queued

Event will have the VDN as the lastRedirectionDevice. The

Delivered/Established Events will have the ACD Split as the

lastRedirectionDevice.

Chapter 11: Event Report Service Group

568 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

– If the caller calls from an external device, the agent station receives the same

lastRedirectionDevice information.

Call Scenario 3:

 Both caller and the answering party are monitored.

 Caller dials a number (having no effect on the result whether it is monitored or
not) and call goes to the first coverage point (not monitored).

 Call goes to the second coverage point (answering station).

 Call arrives at the answering station.

– The Delivered Event sent to the caller will have the dialed number as the

lastRedirectionDevice when call arrives at the first coverage point.

– The Delivered/Established Events sent to both caller and the answering party

will have the first coverage point as the lastRedirectionDevices when call

arrives at the answering party.

Call Scenario 4:

 Caller is not monitored, but answering party is monitored.

 Caller dials a number (having no effect on the result whether it is monitored or
not) and call goes to the first coverage point (not monitored).

 Call goes to the second coverage point (answering station).

 Call arrives at the answering station.

 NOTE:

The Delivered/Established Events sent to the answering party will have the

dialed number as the lastRedirectionDevice event though the first

coverage point redirects the call to the answering party.

Call Scenario 5:

 Caller is not monitored, but answering party is monitored.

 Caller dials a number (having no effect on the result whether it is monitored or
not) and call goes to the first coverage point (monitored).

 Call goes to the second coverage point (answering station).

 Call arrives at the answering station.

– The Delivered Event sent to the first coverage point will have the dialed

number as the lastRedirectionDevice.

– The Delivered/Established Events sent to the answering party will have the

first coverage point as the lastRedirectionDevice.

– The trunkGroup (private data version 5) trunk (private data versions 2-4),

split, lookaheadInfo, userEnteredCode, and userInfo private

parameters contain the most recent information about a call, while the

originalCallInfo contains the original values for this information. If the

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 569

most recent values are the same as the original values, the original values

are not repeated in the originalCallInfo.

Chapter 11: Event Report Service Group

570 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

How to Collect User Entered Codes (UEC)

The following are steps for setting up VDNs, simple vector steps and CSTA Monitor

Service requests required for a client application to receive UECs from the switch.

Administer a VDN and a vector on Communication Manager with a collect digits step

and route command to a second VDN. See Call Scenario 1 and Call Scenario 2.

1. The purpose of this VDN is to collect UEC, but it will not report the UEC to the

TSAPI Service, even if the VDN is monitored. The route command must redirect

the call to a second VDN. The first VDN doesn‘t have to be monitored by any

client application.

2. Administer a second VDN and vector to receive the redirected call from the first

VDN.

The purpose of this second VDN is to report the UEC to the TSAPI Service. Thus

it must be monitored by a cstaMonitorCallsViaDevice service request from at

least one client. This VDN should redirect the call to its destination. The
destination can be a station extension, an ACD split, or another VDN.

If the destination is a station extension and if the station is monitored by a

cstaMonitorDevice service request, the station monitor will receive the UEC

collected by the first VDN.

If the destination is an ACD split and if an agent station in the split is monitored

by a cstaMonitorDevice service request, the station monitor will receive the

UEC collected by the first VDN.

If the destination is a VDN and if the VDN is monitored by a

cstaMonitorCallsViaDevice Service request, the VDN monitor will not receive

the UEC collected by the first VDN.

UEC is reported in Delivered Event Reports (for detailed information, see Call
Scenario 1 and Call Scenario 2).

If multiple UECs are collected by multiple VDNs in call processing, only the most
recently collected UEC is reported.

Limitations

 A monitored VDN only reports the UEC it receives (UEC collected in a previous
VDN). It will not report UEC it collects or UEC collected after the call is redirected
from the VDN.

 A station monitor reports only the UEC that is received by the VDN that redirects
the call to the station, provided that the VDN is monitored (see Call Scenario 2).

Call Scenario 1:

Suppose VDN 24101 is mapped to vector 1, and vector 1 has the following steps:

1. Collect 16 digits after announcement extension 1000

2. Route to 24102

3. Stop

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 571

Suppose VDN 24102 is mapped to vector 2, and vector 2 has the following steps:

1. Route to 24103

2. Stop

If 24103 is a station extension, the following can occur:

– When a call is arrived on VDN 24101, the caller will hear the announcement
and the switch will wait for the caller to enter 16 digits. After the 16 digits are
collected in time (if the collect digits step is timed out, the next step is
executed), the call is routed to VDN 24102. The VDN 24102 routes the call to
station 24103.

– If VDN 24101 is monitored using cstaMonitorCallsViaDevice, the User

Entered Digits will NOT be reported in the Delivered Event Report (Call
Delivered to an ACD Device) for the VDN 24101 monitor. This is because the
Delivered Event Report is sent before the digits are collected.

– If VDN 24102 is monitored using cstaMonitorCallsViaDevice, the 16 digits

collected by VDN 24101 will be reported in the Delivered Event Report (Call
Delivered to an ACD Device) for the VDN 24102 monitor. VDN 24101
monitoring is not required for the VDN 24102 monitor to receive UEC
collected by VDN 24101.

– If VDN 24102 is monitored using cstaMonitorCallsViaDevice from any

client and station 24103 is monitored using cstaMonitorDevice, the 16

digits collected by VDN 24101 will be reported in the Delivered Event Report
(Call Delivered to a Station Device) sent to the station 24103 monitor. If the
client application is interested in the events reported by the station 24103

monitor only, call filters can be used in the cstaMonitorCallsViaDevice

service to filter out all event reports from VDN 24102. This will not affect the
UEC sent to the station 24103 monitor.

VDN 24102 monitoring (with or without call filters) is required for the station 24103

monitor to receive UEC collected by VDN 24101.

Call Scenario 2:

Suppose VDN 24201 is mapped to vector 11, and vector 11 has the following steps:

1. Collect 10 digits after announcement extension 2000.

2. Route to 24202.

3. Stop.

Suppose VDN 24202 is mapped to vector 12, and vector 12 has the following steps:

1. Collect 16 digits after announcement extension 3000.

2. Route to 24203.

3. Stop.

Suppose VDN 24203 is mapped to vector 13, and vector 13 has the following steps:

1. Queue to main split 2 priority.

2. Stop.

Chapter 11: Event Report Service Group

572 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

where split 2 is a vector-controlled ACD split that has agent extensions 24301,
24302, 24303.

– When a call arrives on VDN 24201, the caller will hear an announcement and
the switch will wait for the caller to enter 10 digits. After the 10 digits are
collected in time, the call is routed to VDN 24202. When the call arrives on
VDN 24202, the caller will hear an announcement and the switch will wait for
the caller to enter 16 digits. After the 16 digits are collected in time, the call is
routed to VDN 24203. The VDN 24203 queues the call to ACD Split 2. If the
agent at station 24301 is available, the call is sent to station 24301.

– If VDN 24201 is monitored using cstaMonitorCallsViaDevice, the 10 digits

collected by VDN 24201 will not be reported in the Delivered Event Report
(Call Delivered to an ACD Device) sent for the VDN 24201 monitor. This
occurs because the Delivered Event Report is sent before the digits are
collected.

– If VDN 24202 is monitored using cstaMonitorCallsViaDevice, the 10 digits

collected by VDN 24201 will be reported in the Delivered Event Report (Call
Delivered to an ACD Device) sent for the VDN 24202 monitor.

– If VDN 24203 is monitored using cstaMonitorCallsViaDevice, the 16 digits

collected by VDN 24202 will be reported in the Delivered Event Report (Call
Delivered to an ACD Device) sent for the VDN 24203 monitor. However, the
10 digits collected by VDN 24201 will not be reported in the Delivered Event
for the VDN 24203 monitor.

– The cstaMonitorCallsViaDevice service receives only the most recent

UEC.

– If VDN 24202 and VDN 24203 are both monitored using

cstaMonitorCallsViaDevice from any client, and station 24301 is

monitored using cstaMonitorDevice, only the 16 digits collected by VDN

24202 will be reported in the Delivered Event Report (Call Delivered to a

Station Device) for the station 24301 monitor. The cstaMonitorDevice

service will receive the UEC that is received by the VDN that redirects calls to
the station.

 NOTE:

In order to receive the UEC for station monitoring, the VDN that receives the

UEC and redirects calls to the station must be monitored. For example, if VDN

24203 is not monitored by any client, a cstaMonitorDevice Service on

station 24301 will not receive the 16 digits collected by VDN 24202.

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 573

Table 18: Call Originator Type Values (II-digits)

Code Description

00 Plain Old Telephone Service (POTS) - non-coin service requiring no special
treatment

01 Multiparty line (more than 2) - ANI cannot be provided on 4 or 8 party lines. The
presence of this "01" code will cause an Operator Number Identification (ONI)
function to be performed at the distant location. The ONI feature routes the call to a
CAMA operator or to an Operator Services System (OSS) for determination of the
calling number.

02 ANI Failure - the originating switching system indicates (by the "02" code), to the
receiving office that the calling station has not been identified. If the receiving
switching system routes the call to a CAMA or Operator Services System, the
calling number may be verbally obtained and manually recorded. If manual operator
identification is not available, the receiving switching system (e.g., an interLATA
carrier without operator capabilities) may reject the call.

03-05 Unassigned

06 Station Level Rating - The "06" digit pair is used when the customer has subscribed
to a class of service in order to be provided with real time billing information. For
example, hotel/motels, served by PBXs, receive detailed billing information,
including the calling party's room number. When the originating switching system
does not receive the detailed billing information, e.g., room number, this "06" code
allows the call to be routed to an operator or operator services system to obtain
complete billing information. The rating and/or billing information is then provided to
the service subscriber. This code is used only when the directory number (DN) is
not accompanied by automatic room/account identification.

07 Special Operator Handling Required - calls generated from stations that require
further operator or Operator Services System screening are accompanied by the
"07" code. The code is used to route the call to an operator or Operator Services
System for further screening and to determine if the station has a denied-originating
class of service or special routing/billing procedures. If the call is unauthorized, the
calling party will be routed to a standard intercept message.

08-09 Unassigned

10 Not assignable - conflict with 10X test code

11 Unassigned

12-19 Not assignable - conflict with international outpulsing code

Chapter 11: Event Report Service Group

574 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 18: Call Originator Type Values (II-digits)

Code Description

20 Automatic Identified Outward Dialing (AIOD) - without AIOD, the billing number for a
PBX is the same as the PBX Directory Number (DN). With the AIOD feature, the
originating line number within the PBX is provided for charging purposes. If the
AIOD number is available when ANI is transmitted, code "00" is sent. If not, the
PBX DN is sent with ANI code "20". In either case, the AIOD number is included in
the AMA record.

21-22 Unassigned

23 Coin or Non-Coin - on calls using database access, e.g., 800, ANI II 23 is used to
indicate that the coin/non-coin status of the originating line cannot be positively
distinguished for ANI purposes by the SSP. The ANI II pair 23 is substituted for the
II pairs which would otherwise indicate that the non-coin status is known, i.e., 00, or
when there is ANI failure.

ANI II 23 may be substituted for a valid 2-digit ANI pair on 0-800 calls. In all other
cases, ANI II 23 should not be substituted for a valid 2-digit ANI II pair which is
forward to an SSP from an EAEO.

Some of the situations in which the ANI II 23 may be sent:

 Calls from non-conforming end offices (CAMA or LAMA types) with combined
coin/non-coin trunk groups.

 0-800 Calls

 Type 1 Cellular Calls

 Calls from PBX Trunks

 Calls from Centrex Tie Lines

24 Code 24 identifies a toll free service call that has been translated to a Plain Old
Telephone Service (POTS) routable number via the toll free database that
originated for any non-pay station. If the received toll free number is not converted
to a POTS number, the database returns the received ANI code along with the
received toll free number. Thus, Code 24 indicates that this is a toll free service call
since that fact can no longer be recognized simply by examining the called address.

25 Code 25 identifies a toll free service call that has been translated to a Plain Old
Telephone Service (POTS) routable number via the toll free database that
originated from any pay station, including inmate telephone service. Specifically,
ANI II digits 27, 29, and 70 will be replaced with Code 25 under the above stated
condition.

26 Unassigned

27 Code 27 identifies a line connected to a pay station which uses network provided
coin control signaling. II 27 is used to identify this type of pay station line
irrespective of whether the pay station is provided by a LEC or a non-LEC. II 27 is
transmitted from the originating end office on all calls made from these lines.

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 575

Table 18: Call Originator Type Values (II-digits)

Code Description

28 Unassigned

29 Prison/Inmate Service - the ANI II digit pair 29 is used to designate lines within a
confinement/detention facility that are intended for inmate/detainee use and require
outward call screening and restriction (e.g., 0+ collect only service). A
confinement/detention facility may be defined as including, but not limited to,
Federal, State and/or Local prisons, juvenile facilities, immigration and
naturalization confinement/detention facilities, etc., which are under the
administration of Federal, State, City, County, or other Governmental agencies.
Prison/Inmate Service lines will be identified by the customer requesting such call
screening and restriction. In those cases where private pay stations are located in
confinement/detention facilities, and the same call restrictions applicable to
Prison/Inmate Service required, the ANI II digit for Prison/Inmate Service will apply
if the line is identified for Prison/Inmate Service by the customer.

30-32 Intercept - where the capability is provide to route intercept calls (either directly or
after an announcement recycle) to an access tandem with an associated Telco
Operator Services System, the following ANI codes should be used:

 30 Intercept (blank) - for calls to unassigned directory number (DN)

 31 Intercept (trouble) - for calls to directory numbers (DN) that have been
manually placed in trouble-busy state by Telco personnel

 32 Intercept (regular) - for calls to recently changed or disconnected numbers

33 Unassigned

34 Telco Operator Handled Call - after the Telco Operator Services System has
handled a call for an IC, it may change the standard ANI digits to "34", before
outpulsing the sequence to the IC, when the Telco performs all call handling
functions, e.g., billing. The code tells the IC that the BOC has performed billing on
the call and the IC only has to complete the call.

35-39 Unassigned

40-49 Unrestricted Use - locally determined by carrier

50-51 Unassigned

Chapter 11: Event Report Service Group

576 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 18: Call Originator Type Values (II-digits)

Code Description

52 Outward Wide Area Telecommunications Service (OUTWATS) - this service allows
customers to make calls to a certain zone(s) or band(s) on a direct dialed basis for
a flat monthly charge or for a charge based on accumulated usage. OUTWATS
lines can dial station-to-station calls directly to points within the selected band(s) or
zone(s). The LEC performs a screening function to determine the correct charging
and routing for OUTWATS calls based on the customer's class of service and the
service area of the call party. When these calls are routed to the interexchange
carrier via a combined WATS-POTS trunk group, it is necessary to identify the
WATS calls with the ANI code "52".

53-59 Unassigned

60 TRS - ANI II digit pair 60 indicates that the associated call is a TRS call delivered to
a transport carrier from a TRS Provider and that the call originated from an
unrestricted line (i.e., a line for which there are no billing restrictions). Accordingly, if
no request for alternate billing is made, the call will be billed to the calling line.

61 Cellular/Wireless PCS (Type 1) - The "61" digit pair is to be forwarded to the
interexchange carrier by the local exchange carrier for traffic originating from a
cellular/wireless PCS carrier over type 1 trunks. (Note: ANI information
accompanying digit pair "61" identifies only the originating cellular/wireless PCS
system, not the mobile directory placing the call.

62 Cellular/Wireless PCS (Type 2) - The "62" digit pair is to be forwarded to the
interexchange carrier by the cellular/wireless PCS carrier when routing traffic over
type 2 trunks through the local exchange carrier access tandem for delivery to the
interexchange carrier. (Note: ANI information accompanying digit pair "62" identifies
the mobile directory number placing the call but does not necessarily identify the
true call point of origin.)

63 Cellular/Wireless PCS (Roaming) - The "63" digit pair is to be forwarded to the
interexchange carrier by the cellular/wireless PCS subscriber "roaming" in another
cellular/wireless PCS network, over type 2 trunks through the local exchange carrier
access tandem for delivery to the interexchange carrier. (Note: Use of "63" signifies
that the "called number" is used only for network routing and should not be
disclosed to the cellular/wireless PCS subscriber. Also, ANI information
accompanying digit pair "63" identifies the mobile directory number forwarding the
call but does not necessarily identify the true forwarded-call point of origin.)

64-65 Unassigned

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 577

Table 18: Call Originator Type Values (II-digits)

Code Description

66 TRS - ANI II digit pair 66 indicates that the associated call is a TRS call delivered to
a transport carrier from a TRS Provider, and that the call originates from a
hotel/motel. The transport carrier can use this indication, along with other
information (e.g., whether the call was dialed 1+ or 0+) to determine the appropriate
billing arrangement (i.e., bill to room or alternate bill).

67 TRS - ANI II digit pair 67 indicates that the associated call is a TRS call delivered to
a transport carrier from a TRS Provider and that the call originated from a restricted
line. Accordingly, sent paid calls should not be allowed and additional screening, if
available, should be performed to determine the specific restrictions and type of
alternate billing permitted.

68-69 Unassigned

70 Code 70 identifies a line connected to a pay station (including both coin and
coinless stations) which does not use network provided coin control signaling. II 70
is used to identify this type pay station line irrespective of whether the pay station is
provided by a LEC or a non-LEC. II 70 is transmitted from the originating end office
on all calls made from these lines.

71-79 Unassigned

80-89 Reserved for Future Expansion "to" 3-digit Code

90-92 Unassigned

93 Access for private virtual network types of service: the ANI code "93" indicates, to
the IC, that the originating call is a private virtual network type of service call.

94 Unassigned

95 Unassigned - conflict with Test Codes 958 and 959

96-99 Unassigned

Although each value in callOriginatorType has a special meaning, neither

Communication Manager nor the TSAPI Service interprets these values. The values in

callOriginatorType are from the network and the application should interpret the

meaning of a particular value based on The North American Numbering Plan (NANP).

Chapter 11: Event Report Service Group

578 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* CSTADeliveredEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_DELIVERED */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTADeliveredEvent_t delivered;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTADeliveredEvent_t {

 ConnectionID_t connection;

 SubjectDeviceID_t alertingDevice;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 RedirectionDeviceID_t lastRedirectionDevice;

 LocalConnectionState_t localConnectionInfo;

 CSTAEventCause_t cause;

} CSTADeliveredEvent_t;

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 579

Private Data Syntax

If private data accompanies a CSTADeliveredEvent, then the private data would be

stored in the location that the application specified as the privateData parameter in the

acsGetEventBlock() or acsGetEventPoll() request. If the privateData pointer is set

to NULL in these requests, then the CSTADeliveredEvent does not deliver private data

to the application. If acsGetEventBlock() or acsGetEventPoll() returns a Private

Data length of 0, then no private data is provided with this event.

Private Data Version 7 and Later Syntax

The deviceHistory parameter is new for private data version 7.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTDeliveredEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_DELIVERED */

 union

 {

 ATTDeliveredEvent_t deliveredEvent;

 } u;

} ATTEvent_t;

typedef struct ATTDeliveredEvent_t {

 ATTDeliveredType_t deliveredType;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 DeviceID_t split;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTUserToUserInfo_t userInfo;

 ATTReasonCode_t reason;

 ATTOriginalCallInfo_t originalCallInfo;

 CalledDeviceID_t distributingDevice;

 ATTUCID_t ucid;

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

 DeviceHistory_t deviceHistory;

 CalledDeviceID_t distributingVDN;

} ATTDeliveredEvent_t;

typedef enum ATTDeliveredType_t {

 DELIVERED_TO_ACD = 1,

 DELIVERED_TO_STATION = 2,

Chapter 11: Event Report Service Group

580 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 DELIVERED_OTHER = 3 /* not in use */

} ATTDeliveredType_t;

typedef struct ATTLookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

 ATTUnicodeDeviceID_t uSourceVDN; /* sourceVDN in Unicode */

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t {

 unsigned short count;

 short value[64];

} ATTUnicodeDeviceID_t

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 581

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct {

 unsigned short length; /* 0 indicates UUI not

 * present */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

typedef enum ATTReasonCode_t {

 AR_NONE = 0, /* no reason code provided */

 AR_ANSWER_NORMAL = 1, /* answer supervision from the

 * network or internal answer */

 AR_ANSWER_TIMED = 2, /* answer assumed based on

 * internal timer */

 AR_ANSWER_VOICE_ENERGY = 3, /* voice energy detection by call

 * classifier */

 AR_ANSWER_MACHINE_DETECTED = 4,/* answering machine detected */

 AR_SIT_REORDER = 5, /* switch equipment congestion */

 AR_SIT_NO_CIRCUIT = 6, /* no circuit or channel available

 */

 AR_SIT_INTERCEPT = 7, /* number changed */

 AR_SIT_VACANT_CODE = 8, /* unassigned number */

 AR_SIT_INEFFECTIVE_OTHER = 9, /* invalid number */

 AR_SIT_UNKNOWN = 10, /* normal unspecified */

 AR_IN_QUEUE = 11, /* call still in queue - for

 * Delivered Event only */

 AR_SERVICE_OBSERVER = 12 /* service observer connected */

} ATTReasonCode_t

typedef struct ATTOriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

Chapter 11: Event Report Service Group

582 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 CalledDeviceID_t calledDevice;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTUserToUserInfo_t userInfo;

 ATTUCID_t ucid;

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

 DeviceHistory_t deviceHistory;

} ATTOriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t {

 unsigned char hasInfo; /* if FALSE, no

 * call originator info */

 short callOriginatorType;

} ATTCallOriginatorInfo_t;

typedef struct DeviceHistory_t {

 unsigned int count; /* at most 1 */

 DeviceHistoryEntry_t *deviceHistoryList;

} DeviceHistory_t;

typedef struct DeviceHistoryEntry_t {

 DeviceID_t olddeviceID;

 CSTAEventCause_t cause;

 ConnectionID_t oldconnectionID;

} DeviceHistoryEntry_t;

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 583

Private Data Version 6 and Later Syntax

For private data version 6, the maximum size of the data provided in the userInfo

parameter is increased from 32 bytes to 96 bytes.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV6DeliveredEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV6_DELIVERED */

 union

 {

 ATTV6DeliveredEvent_t v6deliveredEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV6DeliveredEvent_t {

 ATTDeliveredType_t deliveredType;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 DeviceID_t split;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTUserToUserInfo_t userInfo;

 ATTReasonCode_t reason;

 ATTV6OriginalCallInfo_t originalCallInfo;

 CalledDeviceID_t distributingDevice;

 ATTUCID_t ucid;

 ATTCallOriginatorType_t callOriginatorInfo;

 unsigned char flexibleBilling;

} ATTV6DeliveredEvent_t;

typedef enum ATTDeliveredType_t {

 DELIVERED_TO_ACD = 1,

 DELIVERED_TO_STATION = 2,

 DELIVERED_OTHER = 3 /* not in use */

} ATTDeliveredType_t;

typedef struct ATTLookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

Chapter 11: Event Report Service Group

584 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 ATTUnicodeDeviceID_t uSourceVDN; /* sourceVDN in Unicode */

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t {

 unsigned short count;

 short value[64];

} ATTUnicodeDeviceID_t

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 585

 ATTUUIProtocolType_t type;

 struct {

 unsigned short length; /* 0 indicates UUI not

 * present */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

typedef enum ATTReasonCode_t {

 AR_NONE = 0, /* no reason code provided */

 AR_ANSWER_NORMAL = 1, /* answer supervision from the

 * network or internal answer */

 AR_ANSWER_TIMED = 2, /* answer assumed based on

 * internal timer */

 AR_ANSWER_VOICE_ENERGY = 3, /* voice energy detection by call

 * classifier */

 AR_ANSWER_MACHINE_DETECTED = 4,/* answering machine detected */

 AR_SIT_REORDER = 5, /* switch equipment congestion */

 AR_SIT_NO_CIRCUIT = 6, /* no circuit or channel available

 */

 AR_SIT_INTERCEPT = 7, /* number changed */

 AR_SIT_VACANT_CODE = 8, /* unassigned number */

 AR_SIT_INEFFECTIVE_OTHER = 9, /* invalid number */

 AR_SIT_UNKNOWN = 10, /* normal unspecified */

 AR_IN_QUEUE = 11, /* call still in queue - for

 * Delivered Event only */

 AR_SERVICE_OBSERVER = 12 /* service observer connected */

} ATTReasonCode_t

typedef struct ATTV6OriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTUserToUserInfo_t userInfo;

 ATTUCID_t ucid;

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

} ATTV6OriginalCallInfo_t;

Chapter 11: Event Report Service Group

586 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t {

 unsigned char hasInfo; /* if FALSE, no

 * call originator info */

 short callOriginatorType;

} ATTCallOriginatorInfo_t;

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 587

Private Data Version 5 Syntax

Private data version 5 adds support for the ucid, callOriginatorInfo,

flexibleBilling, and uSourceVDN parameters.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV5DeliveredEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV5_DELIVERED */

 union

 {

 ATTV5DeliveredEvent_t v5deliveredEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV5DeliveredEvent_t {

 ATTDeliveredType_t deliveredType;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 DeviceID_t split;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

 ATTReasonCode_t reason;

 ATTV5OriginalCallInfo_t originalCallInfo;

 CalledDeviceID_t distributingDevice;

 ATTUCID_t ucid;

 ATTCallOriginatorType_t callOriginatorInfo;

 unsigned char flexibleBilling;

} ATTV5DeliveredEvent_t;

typedef enum ATTDeliveredType_t {

 DELIVERED_TO_ACD = 1,

 DELIVERED_TO_STATION = 2,

 DELIVERED_OTHER = 3 /* not in use */

} ATTDeliveredType_t;

typedef struct ATTLookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

Chapter 11: Event Report Service Group

588 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 ATTUnicodeDeviceID_t uSourceVDN; /* sourceVDN in Unicode */

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t {

 unsigned short count;

 short value[64];

} ATTUnicodeDeviceID_t

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 589

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

typedef enum ATTReasonCode_t {

 AR_NONE = 0, /* no reason code provided */

 AR_ANSWER_NORMAL = 1, /* answer supervision from the

 * network or internal answer */

 AR_ANSWER_TIMED = 2, /* answer assumed based on

 * internal timer */

 AR_ANSWER_VOICE_ENERGY = 3, /* voice energy detection by call

 * classifier */

 AR_ANSWER_MACHINE_DETECTED = 4,/* answering machine detected */

 AR_SIT_REORDER = 5, /* switch equipment congestion */

 AR_SIT_NO_CIRCUIT = 6, /* no circuit or channel available

 */

 AR_SIT_INTERCEPT = 7, /* number changed */

 AR_SIT_VACANT_CODE = 8, /* unassigned number */

 AR_SIT_INEFFECTIVE_OTHER = 9, /* invalid number */

 AR_SIT_UNKNOWN = 10, /* normal unspecified */

 AR_IN_QUEUE = 11, /* call still in queue - for

 * Delivered Event only */

 AR_SERVICE_OBSERVER = 12 /* service observer connected */

} ATTReasonCode_t

typedef struct ATTV5OriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

 ATTUCID_t ucid;

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

} ATTV5OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

Chapter 11: Event Report Service Group

590 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t {

 unsigned char hasInfo; /* if FALSE, no

 * call originator info */

 short callOriginatorType;

} ATTCallOriginatorInfo_t;

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 591

Private Data Version 4 Syntax

Private data version 4 adds support for the distributingDevice parameter.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV4DeliveredEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV4_DELIVERED */

 union

 {

 ATTV4DeliveredEvent_t v4deliveredEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV4DeliveredEvent_t {

 ATTDeliveredType_t deliveredType;

 DeviceID_t trunk;

 DeviceID_t trunkMember;

 DeviceID_t split;

 ATTV4LookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

 ATTReasonCode_t reason;

 ATTV4OriginalCallInfo_t originalCallInfo;

 CalledDeviceID_t distributingDevice;

} ATTV4DeliveredEvent_t;

typedef enum ATTDeliveredType_t {

 DELIVERED_TO_ACD = 1,

 DELIVERED_TO_STATION = 2,

 DELIVERED_OTHER = 3 /* not in use */

} ATTDeliveredType_t;

typedef struct ATTV4LookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

Chapter 11: Event Report Service Group

592 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 593

 * character string */

} ATTUUIProtocolType_t;

typedef enum ATTReasonCode_t {

 AR_NONE = 0, /* no reason code provided */

 AR_ANSWER_NORMAL = 1, /* answer supervision from the

 * network or internal answer */

 AR_ANSWER_TIMED = 2, /* answer assumed based on

 * internal timer */

 AR_ANSWER_VOICE_ENERGY = 3, /* voice energy detection by call

 * classifier */

 AR_ANSWER_MACHINE_DETECTED = 4,/* answering machine detected */

 AR_SIT_REORDER = 5, /* switch equipment congestion */

 AR_SIT_NO_CIRCUIT = 6, /* no circuit or channel available

 */

 AR_SIT_INTERCEPT = 7, /* number changed */

 AR_SIT_VACANT_CODE = 8, /* unassigned number */

 AR_SIT_INEFFECTIVE_OTHER = 9, /* invalid number */

 AR_SIT_UNKNOWN = 10, /* normal unspecified */

 AR_IN_QUEUE = 11, /* call still in queue - for

 * Delivered Event only */

 AR_SERVICE_OBSERVER = 12 /* service observer connected */

} ATTReasonCode_t

typedef struct ATTV4OriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunk;

 DeviceID_t trunkMember;

 ATTV4LookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

} ATTV4OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

Chapter 11: Event Report Service Group

594 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Versions 2 and 3 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV3DeliveredEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV3_DELIVERED */

 union

 {

 ATTV3DeliveredEvent_t v3deliveredEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV3DeliveredEvent_t {

 ATTDeliveredType_t deliveredType;

 DeviceID_t trunk;

 DeviceID_t trunkMember;

 DeviceID_t split;

 ATTV4LookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

 ATTReasonCode_t reason;

 ATTV4OriginalCallInfo_t originalCallInfo;

} ATTV3DeliveredEvent_t;

typedef enum ATTDeliveredType_t {

 DELIVERED_TO_ACD = 1,

 DELIVERED_TO_STATION = 2,

 DELIVERED_OTHER = 3 /* not in use */

} ATTDeliveredType_t;

typedef struct ATTV4LookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

 Delivered Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 595

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

Chapter 11: Event Report Service Group

596 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

typedef enum ATTReasonCode_t {

 AR_NONE = 0, /* no reason code provided */

 AR_ANSWER_NORMAL = 1, /* answer supervision from the

 * network or internal answer */

 AR_ANSWER_TIMED = 2, /* answer assumed based on

 * internal timer */

 AR_ANSWER_VOICE_ENERGY = 3, /* voice energy detection by call

 * classifier */

 AR_ANSWER_MACHINE_DETECTED = 4,/* answering machine detected */

 AR_SIT_REORDER = 5, /* switch equipment congestion */

 AR_SIT_NO_CIRCUIT = 6, /* no circuit or channel available

 */

 AR_SIT_INTERCEPT = 7, /* number changed */

 AR_SIT_VACANT_CODE = 8, /* unassigned number */

 AR_SIT_INEFFECTIVE_OTHER = 9, /* invalid number */

 AR_SIT_UNKNOWN = 10, /* normal unspecified */

 AR_IN_QUEUE = 11, /* call still in queue - for

 * Delivered Event only */

 AR_SERVICE_OBSERVER = 12 /* service observer connected */

} ATTReasonCode_t

typedef struct ATTV4OriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunk;

 DeviceID_t trunkMember;

 ATTV4LookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

} ATTV4OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

 Diverted Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 597

Diverted Event

Summary

 Direction: Switch to Client

 Event: CSTADivertedEvent

 Private Data Event: ATTDivertedEvent (private data version 7 and later)

 Service Parameters: monitorCrossRefID, connection, divertingDevice,

newDestination, localConnectionInfo, cause

 Private Parameter: deviceHistory

Functional Description:

The Diverted Event Report indicates that a call has been deflected or diverted from a

monitored device, and is no longer present at the device.

The Diverted Event Report is sent to notify the client application that event reports for a

call will no longer be provided. This event report is sent under the following

circumstances:

 When a call enters a new VDN or ACD split that is being monitored.9 For
example, if a call leaves one monitored ACD device and enters another, a Call
Diverted Event Report is sent to the monitor for the first ACD device. A Delivered
Event Report must have been received by the ACD monitoring before the
Diverted Event Report.

 When a call leaves a monitored station, without having been dropped or
disconnected, this report is sent to the monitor for the station. A Delivered Event
Report must have been received by the station monitoring before the Diverted
Event Report.

 When a call that had been alerting at the station leaves the station because:

– One member of a coverage and/or answer group answers a call offered to a
coverage group. In this case, all other members of the coverage and/or
answer group that were alerting for the call receive a Diverted Event Report.

9
 Described in the Delivered Event section.

Chapter 11: Event Report Service Group

598 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

– A call has gone to voice mail coverage and the Coverage Response Interval
(CRI) has elapsed (the principal‘s call is redirected).

– The principal answers the call while the coverage point is alerting and the
coverage point is dropped from the call.

– For stations that are members of a TEG group with no associated TEG button
(typically analog stations).

 The monitored station is an analog phone and an alerting call is now alerting
elsewhere (gone to coverage) because:

– The pick-up feature is used to answer a call alerting an analog principal‘s
station.

– An analog phone call is sent to coverage due to "no answer" (the analog
station‘s call is redirected).

This event report will not be sent if the station is never alerted or if it retains a simulated

bridge appearance until the call is dropped/disconnected. Examples of situations when

this event is not sent are:

 Bridging

 Call forwarding

 Calls to a TEG (multifunction set with TEG button)

 Cover-All

 Coverage/Busy

 Incoming PCOL calls (multifunction sets)

 Pick-up for multifunction set principals

This event report will never follow an Established Event Report and is always preceded

by a Delivered Event Report.

If an application opens a stream with private data version 5 or later, and any monitor

receives a Diverted event, then that Diverted Event is also sent to all other monitors

associated with the call. A station device monitor, an ACD device monitor, or a call

monitor can determine whether a call is leaving or staying at a previously alerted device

(for example, when a call goes to a coverage point) by the absence or presence of the

Diverted Event. Note that this change only affects how the Diverted event is reported; for

private data version 5 there is no private data change for the Diverted Event itself.

 NOTE:

This behavior only applies to streams opened with private data version 5 or later.
If an application opens a stream with private data version 4 or earlier, it will not
be affected by this change.

 Diverted Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 599

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

connection [mandatory] Specifies the connection that was alerting.

divertingDevice [optional - partially supported] Specifies the device from which
the call was diverted.

newDestination [optional - partially supported] Specifies the device to which the
call was diverted.

localConnectionInfo [optional - supported] Specifies the local connection state as
perceived by the monitored device on this call. This is provided

for cstaMonitorDevice() requests only. A value of CS_NONE

indicates that the local connection state is unknown.

cause [optional - supported] Specifies the cause for this event. The
following cause is supported:

 EC_REDIRECTED - The call has been redirected.

Chapter 11: Event Report Service Group

600 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Parameters:

deviceHistory The deviceHistory parameter type specifies a list of DeviceIDs

that were previously associated with the call. A device becomes
associated with the call whenever there is a CSTA connection
created at the device for the call. The association may also result
from a relationship between a device and a call outside the CSTA

switching function. A device becomes part of the deviceHistory

list when it is no longer associated with the call (for example: when
a call is redirected from a device, when a call is transferred away
from a device, and when a device clears from a call).

 Conceptually, the deviceHistory parameter consists of a list of

entries, where each entry contains information about a DeviceID

that had previously been associated with the call, and the list is
ordered from the first device that left the call to the device that most
recently left the call. However, for AE Services, the list will contain
at most one entry.

The entry consists of:

 olddeviceID - the device that left the call. This information

should be consistent with the subject device in the event that
represented the device leaving the call. For example: the

divertingDevice provided in the Diverted event for that

redirection, the transferring device in the Transferred event for a
transfer, or the clearing device in the Connection Cleared event.

 cause - the reason the device left the call or was redirected.

This information should be consistent with the cause provided in

the event that represented the device leaving the call (for
example, the cause provided in the Diverted, Transferred, or
Connection Cleared event).

 oldconnectionID - the CSTA ConnectionID that represents

the last ConnectionID associated with the device that left the

call. This information should be consistent with the subject
connection in the event that represented the device leaving the

call (for example, the ConnectionID provided in the Diverted,

Transferred, or Connection Cleared event).

 NOTE:

Device History cannot be guaranteed for events that
happened before monitoring started. Notice that the cause

value should be EC_NETWORK_SIGNAL if an ISDN Redirected

Number was provided; otherwise the cause value is set to
match the cause value of the event that was flowed to report
the dropped connection.

 Diverted Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 601

Detailed Information:

See the Event Report Detailed Information on page 710.

Syntax

#include <acs.h>

#include <csta.h>

/* CSTADivertedEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_DIVERTED */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTADivertedEvent_t diverted;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTADivertedEvent_t {

 ConnectionID_t connection;

 SubjectDeviceID_t divertingDevice;

 CalledDeviceID_t newDestination;

 LocalConnectionState_t localConnectionInfo;

 CSTAEventCause_t cause;

} CSTADivertedEvent_t;

typedef ExtendedDeviceID_t SubjectDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

Chapter 11: Event Report Service Group

602 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 7 and Later Syntax

The CSTA Diverted Event includes a private data event, ATTDivertedEvent for private

data version 7 and later. The ATTDivertedEvent provides the deviceHistory private

data parameter.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTDivertedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_DIVERTED */

 union

 {

 ATTDivertedEvent_t divertedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTDivertedEvent_t {

 DeviceHistory_t deviceHistory;

} ATTDivertedEvent_t;

typedef struct DeviceHistory_t {

 unsigned int count; /* at most 1 */

 DeviceHistoryEntry_t *deviceHistoryList;

} DeviceHistory_t;

typedef struct DeviceHistoryEntry_t {

 DeviceID_t olddeviceID;

 CSTAEventCause_t cause;

 ConnectionID_t oldconnectionID;

} DeviceHistoryEntry_t;

 Do Not Disturb Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 603

Do Not Disturb Event

Summary

 Direction: Switch to Client

 Event: CSTADoNotDisturbEvent

 Service Parameters: monitorCrossRefID, device, doNotDisturbOn

Functional Description

This event report indicates a change in the status of the Do Not Disturb feature for a

specific device. When the Do Not Disturb feature is active at a device, all calls to that

device will be automatically forwarded to the device coverage path.

The Do Not Disturb event is available beginning with Communication Manager 5.0 and

AE Services 4.1. This event is only available if the TSAPI Link is administered with ASAI

Link Version 5 or later. Applications should use the cstaGetAPICaps() service to

determine whether this event will be provided.

Service Parameters

acsHandle This is the handle for the ACS Stream.

eventClass This is a tag with the value CSTAUNSOLICITED, which identifies this

message as an CSTA unsolicited event.

eventType This is a tag with the value CSTA_DO_NOT_DISTURB, which identifies

this message as an CSTADoNotDisturbEvent.

monitorCrossRefID [mandatory] Contains the handle to the monitor request for which
this event is reported..

device [mandatory] Specifies the device for which the Do Not Disturb
feature has been activated/deactivated. If the device is not
specified, then the parameter will indicate that the device was not
known or that it was not required

doNotDisturbOn [mandatory] Specifies whether the Do Not Disturb feature is on (1)
or off (0).

Chapter 11: Event Report Service Group

604 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

The following structure shows only the relevant portions of the unions for this message.

See ACS Data Types on page 105 and CSTA Event Data Types on page 123 for a

complete description of the event structure.

#include <acs.h>

#include <csta.h>

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_DO_NOT_DISTURB */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefID;

 union

 {

 CSTADoNotDisturbEvent_t doNotDisturb,

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTADoNotDistrubEvent_t {

 SubjectDeviceID_t device;

 Boolean doNotDisturbOn;

} CSTADoNotDisturbEvent_t;

 Entered Digits Event (Private)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 605

Entered Digits Event (Private)

Summary

 Direction: Switch to Client

 Event: CSTAPrivateStatusEvent

 Private Data Event: ATTEnteredDigitsEvent

 Service Parameters: monitorCrossRefID

 Private Parameters: connection, digits, localConnectionInfo, cause

Functional Description:

The Entered Digits Event is sent when a DTMF tone detector is attached to a call and

DTMF tones are received. The tone detector is disconnected when the far end answers

or "#" is detected. The digits reported include: 0-9, "*", and "#". The digit string includes

the "#", if present. Up to 24 digits can be entered.

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for which this
event is reported.

Private Parameters:

connection [mandatory] Specifies the callID of the call for which this

event is reported.

digits [mandatory] Specifies the digits user entered. The digits
reported include: 0-9, "*", and "#". The digit string includes the
"#", if present. The digit string is null terminated.

localConnectionInfo [optional] Specifies the local connection state as perceived by

the monitored device on this call. A value of CS_NONE is always

specified.

cause [optional] Specifies the cause for this event.

Detailed Information:

See the Event Report Detailed Information on page 710.

Chapter 11: Event Report Service Group

606 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* CSTAPrivateStatusEvent */

typedef struct {

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_PRIVATE_STATUS */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTAPrivateEvent_t privateStatus;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTAPrivateEvent_t {

 Nulltype null;

} CSTAPrivateEvent_t;

 Entered Digits Event (Private)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 607

Private Data Syntax

If private data accompanies a CSTAPrivateStatusEvent, then the private data would

be stored in the location that the application specified as the privateData parameter in

the acsGetEventBlock() or acsGetEventPoll() request. If the privateData pointer is

set to NULL in these requests, then the CSTAPrivateStatusEvent does not deliver

private data to the application. If acsGetEventBlock() or acsGetEventPoll() returns a

Private Data length of 0, then no private data is provided with this event.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTEnteredDigitsEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_ENTERED_DIGITS */

 union

 {

 ATTEnteredDigitsEvent_t enteredDigitsEvent;

 } u;

} ATTEvent_t;

#define ATT_MAX_ENTERED_DIGITS 25

typedef struct ATTEnteredDigitsEvent_t {

 ConnectionID_t connection;

 char digits[ATT_MAX_ENTERED_DIGITS];

 LocalConnectionState_t localConnectionInfo;

 CSTAEventCause_t cause;

} ATTEnteredDigitsEvent_t;

Chapter 11: Event Report Service Group

608 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Established Event

Summary

 Direction: Switch to Client

 Event: CSTAEstablishedEvent

 Private Data Event: ATTEstablishedEvent (private data version 7),

ATTV6EstablishedEvent (private data version 6), ATTV5EstablishedEvent

(private data version 5), ATTV4EstablishedEvent (private data version 4),

ATTV3EstablishedEvent (private data versions 2 and 3)

 Service Parameters: monitorCrossRefID, establishedConnection,

answeringDevice, callingDevice, calledDevice, lastRedirectionDevice,

localConnectionInfo, cause

 Private Parameters: trunkGroup, trunkMember, split, lookaheadInfo,

userEnteredCode, userInfo, reason, originalCallInfo,

distributingDevice, distributingVDN, ucid, callOriginatorInfo,

flexibleBilling, deviceHistory

Functional Description:

The Established Event Report indicates that the switch detects that a device has

answered or connected to a call.

The Established Event Report is sent under the following circumstances:

 When a predictive call is delivered to an on-PBX party (after having been
answered at the destination) and the on-PBX party answers the call (picked up
handset or cut-through after zip tone).

 When a predictive call is placed to an off-PBX destination and an ISDN CONNect
message is received from an ISDN-PRI facility.

 When a predictive call is placed to an off-PBX destination and the call classifier
detects an answer or a Special Information Tone (SIT) administered to answer.

 When a call is delivered to an on-PBX party and the on-PBX party has answered
the call (picked up handset or cut-through after zip tone).

 When a call is redirected to an off-PBX destination, and the ISDN CONN (ISDN
connect) message is received from an ISDN-PRI facility.

 Any time a station is connected to a call (picked up on a bridged call appearance,
service observing, busy verification, etc.).

 Established Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 609

In general, the Established Event Report is not sent for split or vector announcements,

nor it is sent for the attendant group (0).

Multiple Established Event Reports

Multiple Established Event Reports may be sent for a specific call. For example, when a

call is first picked up by coverage, the event is sent to the active monitors for the

coverage party, as well as to the active monitors for all other extensions already on the

call. If the call is then bridged onto by the principal, the Established Event Report is then

sent to the monitors for the principal, as well as to the monitors for all other extensions

active on the call.

Multiple Established Event Reports may also be sent for the same extension on a call.

For example, when a call is first picked up by a member of a bridge, TEG, PCOL, an

Established Event Report is generated. If that member goes on-hook and then off-hook

again while another member of the particular group is connected on the call, a second

Established Event Report will be sent for the same extension. This event report is not

sent for split or vector announcements, nor it is sent for the attendant group (0).

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

establishedConnection [mandatory] Specifies the endpoint that joined the call.

answeringDevice [mandatory] Specifies the device that joined the call.

 For outgoing calls over PRI facilities -"connected number" from
the ISDN CONN (ISDN connect) message.

Note: For outgoing calls over non-PRI facilities, there is no

Established Event Report. A Network Reached Event

Report is generated instead.

 If the device being connected is on-PBX, then the extension of
the device is specified (primary extension for TEGs, PCOLs,
bridging).

callingDevice [mandatory] Specifies the calling device. The following rules
apply:

 For internal calls originated at an on-PBX station - the station‘s
extension is specified.

 For outgoing calls over PRI facilities – the "calling number" from
the ISDN SETUP message or its assigned trunk identifier is

specified if the "calling number" does not exist (it is NULL).

 For incoming calls over PRI facilities – the "calling number"
from the ISDN SETUP message or its assigned trunk identifier

is specified if the "calling number" does not exist (it is NULL).

Chapter 11: Event Report Service Group

610 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 For incoming calls over non-PRI facilities - the calling party
number is generally not available. The assigned trunk identifier
is provided instead.

Note: The trunk identifier is a dynamic identifier, and it

cannot be used to access a trunk in Communication

Manager.

 The trunk group number is specified only when the calling party
number is not available.

 For calls originated at a bridged call appearance - the
principal‘s extension is specified.

calledDevice [mandatory - partially supported] Specifies the originally called
device. The following rules apply:

 For outgoing calls over PRI facilities – the "called number" from
the ISDN SETUP message is specified. If the "called number"

does not exist (it is NULL), the deviceIDStatus is

ID_NOT_KNOWN.

 For incoming calls over PRI facilities – the "called number" from
the ISDN SETUP message is specified. If the "called number"

does not exist (it is NULL), the deviceIDStatus is

ID_NOT_KNOWN.

 For incoming calls over non-PRI facilities - the principal
extension is specified. It may be a group extension for a TEG,
hunt group, or VDN. If the switch is administered to modify the
DNIS digits, then the modified DNIS string is specified.

 For incoming calls to PCOL, the deviceIDStatus is

ID_NOT_KNOWN.

 For incoming calls to a TEG (principal) group, the TEG group
extension is specified.

 For incoming calls to a principal with bridges, the principal‘s
extension is specified.

 If the called device is on-PBX and the call did not come over a
PRI facility, the extension of the party dialed is specified.

lastRedirectionDevice [optional - limited support] Specifies the previously
redirection/alerted device in the case where the call was

redirected/diverted to the answeringDevice.

localConnectionInfo [optional - supported] Specifies the local connection state as
perceived by the monitored device on this call. This is provided

for cstaMonitorDevice() requests only. A value of CS_NONE

indicates that the local connection state is unknown.

 Established Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 611

cause [optional - supported] Specifies the cause for this event. The
following causes are supported:

 EC_TRANSFER - A call transfer has occurred. This cause has

higher precedence than the following two. See Blind
Transfer in the Detailed Information section.

 EC_KEY_CONFERENCE - Indicates that the event report

occurred at a bridged device. This cause has higher
precedence than the following one

 EC_NEW_CALL - The call has not yet been transferred.

 EC_PARK - The call is connected due to picking up a parked

call.

 EC_ACTIVE_MONITOR - This is the cause value if the

Established Event Report resulted from a Single Step
Conference request and the Single Step Conference

request is for PT_ACTIVE. For details, see Single Step

Conference Call Service (Private Data Version 5 and Later)
in Chapter 6.

 EC_SILENT_MONITOR - This is the cause value if the

Established Event Report resulted from a Single Step
Conference request and the Single Step Conference

request is for participant type PT_SILENT. For details, see

Single Step Conference Call Service (Private Data Version
5 and Later) in Chapter 6.

This is also the cause value if the Established Event Report
resulted from a Service Observer (with either listen-only or
listen-and-talk mode) joining the call. In this case, the
reason parameter in private data version 5 and later will

have AR_SERVICE_OBSERVER. Private data version 4 and

earlier will not have this information.

An application cannot distinguish between case 1 and case
2 using the cause value only. However, the reason
parameter in private data version 5 and later indicates

whether the EC_SILENT_MONITOR is from Single Step

Conference or Service Observer.

 EC_SINGLE_STEP_TRANSFER (private data version 8 or later)

- The call was answered at the answeringDevice as the

result of a Single Step Transfer Call operation. This cause
value may occur in certain coverage scenarios where
Simulated Bridging is enabled and the answering device is
an extension administered with the Auto-Answer feature.

Chapter 11: Event Report Service Group

612 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Parameters:

trunkGroup [optional] Specifies the trunk group number from which the call
originated. This parameter is supported by private data version 5
and later only.

trunk [optional] Specifies the trunk group number from which the call
originated. Trunk group number is provided only if the

callingDevice is unavailable. This parameter is supported by

private data versions 2, 3, and 4 only.

trunkMember [optional - limited support] Specifies the trunk member number from
which the call originated. This parameter is supported by private
data version 5 and later.

split [optional] Specifies the ACD split extension which delivered the call
to an agent.

distributingDevice [optional] Specifies the ACD or VDN device that distributed the call
to the station. This information is provided only when the call was
processed by the switch ACD or Call Vectoring processing and is
only sent for a station monitor. This parameter is supported by
private data version 4 and later.

distributingVDN The VDN extension associated with the distributing device. The
field gets set only and exactly under the following conditions.

 When the application monitors the VDN in question and a call is
offered to the VDN. This event is conveyed to the applications
as a Delivered event, if the application does not filter it out.

 When the application monitors an agent and receives a call that
came from that monitored VDN (that is, in the Delivered,
Established, Transferred, and Conferenced events).

lookaheadInfo [optional] Specifies the lookahead interflow information received
from the established call. The lookahead interflow is a
Communication Manager feature that routes some of the incoming
calls from one switch to another so that they can be handled more
efficiently and will not be lost. The lookahead interflow information
is provided by the switch that overflows the call. A routing
application may use the lookahead interflow information to
determine the destination of the call. See the Communication
Manager Feature Description for more information about lookahead
interflow. If the lookahead interflow type is set to

"LAI_NO_INTERFLOW", no lookahead interflow private data is

provided with this event.

 Established Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 613

userEnteredCode [optional] Specifies the code/digits that may have been entered by
the caller through the Communication Manager call prompting

feature or the collected digits feature. If the userEnteredCode code

is set to "UE_NONE", no userEnteredCode private data is provided

with this event.

userInfo [optional] Contains user-to-user information. This parameter allows
an application to associate caller information, up to 32 (private data
versions 2-5) or 96 (private data versions 6 and later) bytes, with a
call. This information may be a customer number, credit card
number, alphanumeric digits, or a binary string.

 NOTE:

An application using private data version 5 or earlier can
only receive a maximum of 32 bytes of data in userInfo,
regardless of the size of the data sent by the switch.

 The following UUI protocol types are supported:

 UUI_NONE - There is no data provided in the data parameter.

 UUI_USER_SPECIFIC - The content of the data parameter is a

binary string. The correct size (maximum of 32 or 96 bytes) of
data must be specified in the size parameter.

 UUI_IA5_ASCII - The content of the data parameter must be a

null-terminated IA5 (ASCII) character string. The correct size

(maximum of 32 or 96 bytes excluding the null terminator) of

data must be specified in the size parameter.

reason [optional] Specifies the reason that caused this event. The following
reasons are supported:

 AR_NONE - indicates no value specified for reason.

 AR_ANSWER_NORMAL - answer supervision from the network or

internal answer.

 AR_ANSWER_TIMED - assumed answer based on internal timer.

 AR_ANSWER_VOICE_ENERGY - voice energy detection from a call

classifier.

 AR_ANSWER_MACHINE_DETECTED - answering machine detected

 AR_SIT_REORDER - switch equipment congestion

 AR_SIT_NO_CIRCUIT - no circuit or channel available

 AR_SIT_INTERCEPT - number changed

 AR_SIT_VACANT_CODE - unassigned number

 AR_SIT_INEFFECTIVE_OTHER - invalid number

Chapter 11: Event Report Service Group

614 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 AR_SIT_UNKNOWN - normal unspecified

originalCallInfo [optional] Specifies the original call information. Note that

information is not repeated in the originalCallInfo, if it is already

reported in the CSTA service parameters or in the private data. For

example, the callingDevice and calledDevice in the

originalCallInfo will be NULL, if the callingDevice and the

calledDevice in the CSTA service parameters are the original

calling and called devices. Only when the original devices are

different from the most recent callingDevice and calledDevice,

the callingDevice and calledDevice in the originalCallInfo

will be set. If the userEnteredCode in the private data is the

original (first time entered) userEnteredCode, the

userEnteredCode in the originalCallInfo will be UE_NONE. Only

when new (second time entered) userEnteredCode is received, will

originalCallInfo have the original userEnteredCode.

 NOTE:

For the Established Event sent for the newCall of a

Consultation Call, the originalCallInfo is taken from the

activeCall specified in the Consultation Call request. Thus

the application can pass the original call information

between two calls. The calledDevice of the Consultation

Call must reside on the same switch and must be monitored
via the same Tserver.

 The originalCallInfo includes the original call information

received by the activeCall in the Consultation Call request. The

original call information includes:

 reason - the reason for the originalCallInfo. The following

reasons are supported.

 – OR_NONE - no originalCallInfo provided

 – OR_CONFERENCED - call conference

 – OR_CONSULTATION - consultation call

 – OR_TRANSFERRED - call transferred

 – OR_NEW_CALL - new call

 callingDevice - the original callingDevice received by the

activeCall.

 calledDevice - the original calledDevice received by the

activeCall.

 Established Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 615

 trunk - the original trunk group received by the activeCall.

This parameter is supported by private data versions 2, 3, and
4.

 trunkGroup - the original trunkGroup received by the

activeCall. This parameter is supported by private data

version 5 and later only.

 trunkMember - the original trunkMember received by the

activeCall. This parameter is supported by private data

version 5 and later only.

 lookaheadInfo - the original lookaheadInfo received by the

activeCall.

 userEnteredCode - the original userEnteredCode received by

the activeCall.

 userInfo - the original userInfo received by the activeCall.

 NOTE:

An application using private data version 5 or earlier can

only receive a maximum of 32 bytes of data in userInfo,

regardless of the size of the data sent by the switch.

 ucid - the original ucid of the call. This parameter is supported

by private data version 5 and later only.

 callOriginatorInfo - the original callOriginatorInfo for

the call. This parameter is supported by private data version 5
and later only.

 flexibleBilling - the original flexibleBilling information

of the call. This parameter is supported by private data version
5 and later only.

 deviceHistory - specifies a list of deviceIDs that were

previously associated with the call. For an explanation of this
parameter and the following list of entries, see deviceHistory on
page 616.

– olddeviceID

– cause

– oldconnectionID

This parameter is supported by private data version 7 and later.

Chapter 11: Event Report Service Group

616 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

ucid [optional] Specifies the Universal Call ID (UCID) of the call. The

UCID is a unique call identifier across switches and the network. A

valid UCID is a null-terminated ASCII character string. If there is no

UCID associated with this call, the ucid contains the

ATT_NULL_UCID (a 20-character string of all zeros). This parameter

is supported by private data version 5 and later only.

callOriginatorInfo [optional] Specifies the callOriginatorType of the call originator

such as coin call, 800-service call, or cellular call. See Table 18.

Note: callOriginatorType values (II digit assignments) are

provided by the network, not Communication Manager. The II-
digit assignments are maintained by the North American
Numbering Plan Administration (NANPA). To obtain the most
current II digit assignments and descriptions, go to:

http://www.nanpa.com/number_resource_info/ani_ii_assignments.html

flexibleBilling [optional] Specifies whether the Flexible Billing feature is allowed
for this call and the Flexible Billing customer option is assigned on

the switch. If this parameter is set to TRUE, the billing rate can be

changed for the incoming 900-type call using the Set Bill Rate
Service. This parameter is supported by private data version 5 and
later only.

deviceHistory The deviceHistory parameter type specifies a list of DeviceIDs

that were previously associated with the call. A device becomes
associated with the call whenever there is a CSTA connection
created at the device for the call. The association may also result
from a relationship between a device and a call outside the CSTA

switching function. A device becomes part of the deviceHistory

list when it is no longer associated with the call (for example: when
a call is redirected from a device, when a call is transferred away
from a device, and when a device clears from a call).

 Conceptually, the deviceHistory parameter consists of a list of

entries, where each entry contains information about a DeviceID

that had previously been associated with the call, and the list is
ordered from the first device that left the call to the device that most
recently left the call. However, for AE Services, the list will contain
at most one entry.

The entry consists of:

 olddeviceID - the device that left the call. This information

should be consistent with the subject device in the event that
represented the device leaving the call. For example: the

divertingDevice provided in the Diverted event for that

redirection, the transferring device in the Transferred event for a
transfer, or the clearing device in the Connection Cleared event.

http://www.nanpa.com/number_resource_info/ani_ii_assignments.html

 Established Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 617

 cause - the reason the device left the call or was redirected.

This information should be consistent with the cause provided

in the event that represented the device leaving the call (for
example, the cause provided in the Diverted, Transferred, or
Connection Cleared event).

 oldconnectionID - the CSTA ConnectionID that represents

the last ConnectionID associated with the device that left the

call. This information should be consistent with the subject
connection in the event that represented the device leaving the

call (for example, the ConnectionID provided in the Diverted,

Transferred, or Connection Cleared event).

 NOTE:

Device History cannot be guaranteed for events that
happened before monitoring started. Notice that the cause

value should be EC_NETWORK_SIGNAL if an ISDN Redirected

Number was provided; otherwise the cause value is set to
match the cause value of the event that was flowed to report
the dropped connection.

Chapter 11: Event Report Service Group

618 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Detailed Information:

In addition to the information below, see the Event Report Detailed Information on page

710.

 Call Classification - For cstaMakePredictiveCall() service requests, the

switch uses the Call Classification process, along with a variety of internal and
external events, to determine a predictive (switch-classified call) call outcome.
Whenever the called endpoint is external, a call classifier is used.

– The classifier is inserted in the connection as soon as the digits have been
outpulsed (sent out on a circuit). A call is classified as either answered
(Established Event) or dropped (Call Cleared/Connection Cleared Event).

– A Delivered Event is reported to the application, but it is not the final
classification. "Non-classified energy" is always treated as an answer
classification and reported to the application in an Established Event. A
modem answer back tone results in a Call Cleared/Connection Cleared
Event. Special Information Tone (SIT) detection is reported to the application
as an Established Event or a Call Cleared/Connection Cleared Event,
depending on the customer‘s administration preference. Answer Machine
Detection (AMD) is reported as an Established Event or a Call
Cleared/Connection Cleared Event, depending on administration or call
options.

 Last Redirection Device - There is only limited support for this parameter. An
application must understand the limitations of this parameter in order to use the
information correctly.

 Blind Transfer - Application designers using caller information to pop screens
should refer to Transferring or conferencing a call together with screen pop
information on page 33, which describes how to coordinate the passing of caller
information across applications.

– A cause of EC_TRANSFER indicates that an unsupervised transfer occurred

before the call was established. An unsupervised transfer is a call transfer
operation that completes before the receiving party answers. Thus, when the
receiving party answers, the caller and the receiving party are connected.
The transferring party is not part of the connection. In terms of manual
operations, it is as if the transferring party presses the transfer button to put
the caller on hold, dials the receiving party, and immediately presses the
transfer button again (while the call is ringing at the receiving party). Since
the transfer occurs between the time the call rings at the receiving party
(CSTA Delivered Event) and the time that the receiving party answers the call

(CSTA Established Event), the callingDevice changes between these two

events.

 Established Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 619

 NOTE:

During an unsupervised transfer, Communication Manager will not send a
Transferred Event for the answering party, neither before nor after the
Established event. An application must look in the CSTA Established Event

for the callingDevice (ANI) information.

 Consultation Transfer - (Also known as "manual transfer" or "supervised
transfer") - The transfer does not complete before the receiving party answers.
Specifically, the transferring party and the receiving party are connected and can
consult before the transfer occurs. The caller is not connected to this consultation
conversation. In terms of manual operations, it is as if the transferring party
presses the transfer button to put the caller on hold, dials the receiving party, the
receiving party answers, the transferring and receiving parties consult, and then
the transferring party presses transfer again to transfer the call. Since the
transfer occurs after the time that the receiving party answers the consultation

call (after the CSTA Established Event), there is no EC_TRANSFER in the cause of

the Established Event.

 NOTE:

ANI screen pop applications should follow the guidelines described in Using
Original Call Information to Pop a Screen on page 36. ANI screen pop in
cases where the user does a consultation transfer manually from the
telephone requires information that appears on a cstaMonitorDevice of the
transferring party. If both the transferring party and the receiving party run
applications that use the same TSAPI Service, then this requirement is met.
To do an ANI screen pop in this case, an application must look in the CSTA
Transferred Event for the ANI information. An ANI screen pop for a manual
consultation transfer is done in this way at the time the call transfers, not when
the consultation call rings or is answered.

Additional details and interactions are found in the Event Report Detailed
Information section in this chapter. The notes above are special cases and do
not reflect the recommended design.

The trunkGroup, trunk, split, lookaheadInfo, userEnteredCode, userInfo private

parameters contain the most recent information about a call, while the

originalCallInfo contains the original values for this information. If the most recent

values are the same as the original values, the original values are not repeated in the

originalCallInfo.

Chapter 11: Event Report Service Group

620 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* CSTAEstablishedEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_ESTABLISHED */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTAEstablishedEvent_t established;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTAEstablishedEvent_t {

 ConnectionID_t establishedConnection;

 SubjectDeviceID_t answeringDevice;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 RedirectionDeviceID_t lastRedirectionDevice;

 LocalConnectionState_t localConnectionInfo;

 CSTAEventCause_t cause;

} CSTAEstablishedEvent_t;

 Established Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 621

Private Data Syntax

If private data accompanies a CSTAEstablishedEvent, then the private data would be

stored in the location that the application specified as the privateData parameter in the

acsGetEventBlock() or acsGetEventPoll() request. If the privateData pointer is set

to NULL in these requests, then the CSTAEstablishedEvent does not deliver private

data to the application. If acsGetEventBlock() or acsGetEventPoll() returns a

Private Data length of 0, then no private data is provided with this event.

Private Data Version 7 and Later Syntax

The deviceHistory parameter is new for private data version 7.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTEstablishedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_ESTABLISHED */

 union

 {

 ATTEstablishedEvent_t establishedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTEstablishedEvent_t {

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 DeviceID_t split;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTUserToUserInfo_t userInfo;

 ATTReasonCode_t reason;

 ATTOriginalCallInfo_t originalCallInfo;

 CalledDeviceID_t distributingDevice;

 ATTUCID_t ucid;

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

 DeviceHistory_t deviceHistory;

 CalledDeviceID_t distributingVDN;

} ATTEstablishedEvent_t;

typedef struct ATTLookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

Chapter 11: Event Report Service Group

622 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

 ATTUnicodeDeviceID_t uSourceVDN; /* sourceVDN in Unicode */

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t {

 unsigned short count;

 short value[64];

} ATTUnicodeDeviceID_t

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

 Established Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 623

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct {

 unsigned short length; /* 0 indicates UUI not

 * present */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

typedef enum ATTReasonCode_t {

 AR_NONE = 0, /* no reason code provided */

 AR_ANSWER_NORMAL = 1, /* answer supervision from the

 * network or internal answer */

 AR_ANSWER_TIMED = 2, /* answer assumed based on

 * internal timer */

 AR_ANSWER_VOICE_ENERGY = 3, /* voice energy detection by call

 * classifier */

 AR_ANSWER_MACHINE_DETECTED = 4,/* answering machine detected */

 AR_SIT_REORDER = 5, /* switch equipment congestion */

 AR_SIT_NO_CIRCUIT = 6, /* no circuit or channel available

 */

 AR_SIT_INTERCEPT = 7, /* number changed */

 AR_SIT_VACANT_CODE = 8, /* unassigned number */

 AR_SIT_INEFFECTIVE_OTHER = 9, /* invalid number */

 AR_SIT_UNKNOWN = 10, /* normal unspecified */

 AR_IN_QUEUE = 11, /* call still in queue - for

 * Delivered Event only */

 AR_SERVICE_OBSERVER = 12 /* service observer connected */

} ATTReasonCode_t

typedef struct ATTOriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTUserToUserInfo_t userInfo;

 ATTUCID_t ucid;

Chapter 11: Event Report Service Group

624 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

 DeviceHistory_t deviceHistory;

} ATTOriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t {

 unsigned char hasInfo; /* if FALSE, no

 * call originator info */

 short callOriginatorType;

} ATTCallOriginatorInfo_t;

typedef struct DeviceHistory_t {

 unsigned int count; /* at most 1 */

 DeviceHistoryEntry_t *deviceHistoryList;

} DeviceHistory_t;

typedef struct DeviceHistoryEntry_t {

 DeviceID_t olddeviceID;

 CSTAEventCause_t cause;

 ConnectionID_t oldconnectionID;

} DeviceHistoryEntry_t;

 Established Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 625

Private Data Version 6 Syntax

For private data version 6, the maximum size of the data provided in the userInfo

parameter is increased from 32 bytes to 96 bytes.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV6EstablishedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV6_ESTABLISHED */

 union

 {

 ATTV6EstablishedEvent_t v6establishedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV6EstablishedEvent_t

{

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 DeviceID_t split;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTUserToUserInfo_t userInfo;

 ATTReasonCode_t reason;

 ATTV6OriginalCallInfo_t originalCallInfo;

 CalledDeviceID_t distributingDevice;

 ATTUCID_t ucid;

 ATTCallOriginatorType_t callOriginatorInfo;

 unsigned char flexibleBilling;

} ATTV6EstablishedEvent_t;

typedef struct ATTLookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

 ATTUnicodeDeviceID_t uSourceVDN; /* sourceVDN in Unicode */

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

Chapter 11: Event Report Service Group

626 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t {

 unsigned short count;

 short value[64];

} ATTUnicodeDeviceID_t

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct {

 unsigned short length; /* 0 indicates UUI not

 * present */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

typedef enum ATTReasonCode_t {

 AR_NONE = 0, /* no reason code provided */

 AR_ANSWER_NORMAL = 1, /* answer supervision from the

 * network or internal answer */

 AR_ANSWER_TIMED = 2, /* answer assumed based on

 * internal timer */

 Established Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 627

 AR_ANSWER_VOICE_ENERGY = 3, /* voice energy detection by call

 * classifier */

 AR_ANSWER_MACHINE_DETECTED = 4,/* answering machine detected */

 AR_SIT_REORDER = 5, /* switch equipment congestion */

 AR_SIT_NO_CIRCUIT = 6, /* no circuit or channel available

 */

 AR_SIT_INTERCEPT = 7, /* number changed */

 AR_SIT_VACANT_CODE = 8, /* unassigned number */

 AR_SIT_INEFFECTIVE_OTHER = 9, /* invalid number */

 AR_SIT_UNKNOWN = 10, /* normal unspecified */

 AR_IN_QUEUE = 11, /* call still in queue - for

 * Delivered Event only */

 AR_SERVICE_OBSERVER = 12 /* service observer connected */

} ATTReasonCode_t

typedef struct ATTV6OriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTUserToUserInfo_t userInfo;

 ATTUCID_t ucid;

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

} ATTV6OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t {

 unsigned char hasInfo; /* if FALSE, no

 * call originator info */

 short callOriginatorType;

} ATTCallOriginatorInfo_t;

Chapter 11: Event Report Service Group

628 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 5 Syntax

Private data version 5 adds support for the ucid, callOriginatorInfo,

flexibleBilling, and uSourceVDN parameters.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV5EstablishedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV5_ESTABLISHED */

 union

 {

 ATTV5EstablishedEvent_t v5establishedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV5EstablishedEvent_t

{

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 DeviceID_t split;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

 ATTReasonCode_t reason;

 ATTV5OriginalCallInfo_t originalCallInfo;

 CalledDeviceID_t distributingDevice;

 ATTUCID_t ucid;

 ATTCallOriginatorType_t callOriginatorInfo;

 unsigned char flexibleBilling;

} ATTV5EstablishedEvent_t;

typedef struct ATTLookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

 ATTUnicodeDeviceID_t uSourceVDN; /* sourceVDN in Unicode */

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 Established Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 629

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t {

 unsigned short count;

 short value[64];

} ATTUnicodeDeviceID_t

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

typedef enum ATTReasonCode_t {

 AR_NONE = 0, /* no reason code provided */

 AR_ANSWER_NORMAL = 1, /* answer supervision from the

 * network or internal answer */

 AR_ANSWER_TIMED = 2, /* answer assumed based on

 * internal timer */

 AR_ANSWER_VOICE_ENERGY = 3, /* voice energy detection by call

 * classifier */

Chapter 11: Event Report Service Group

630 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 AR_ANSWER_MACHINE_DETECTED = 4,/* answering machine detected */

 AR_SIT_REORDER = 5, /* switch equipment congestion */

 AR_SIT_NO_CIRCUIT = 6, /* no circuit or channel available

 */

 AR_SIT_INTERCEPT = 7, /* number changed */

 AR_SIT_VACANT_CODE = 8, /* unassigned number */

 AR_SIT_INEFFECTIVE_OTHER = 9, /* invalid number */

 AR_SIT_UNKNOWN = 10, /* normal unspecified */

 AR_IN_QUEUE = 11, /* call still in queue - for

 * Delivered Event only */

 AR_SERVICE_OBSERVER = 12 /* service observer connected */

} ATTReasonCode_t

typedef struct ATTV5OriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

 ATTUCID_t ucid;

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

} ATTV5OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t {

 unsigned char hasInfo; /* if FALSE, no

 * call originator info */

 short callOriginatorType;

} ATTCallOriginatorInfo_t;

 Established Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 631

Private Data Version 4 Syntax

Private data version 4 adds support for the distributingDevice parameter.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV4EstablishedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV4_ESTABLISHED */

 union

 {

 ATTV4EstablishedEvent_t v4establishedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV4EstablishedEvent_t

{

 DeviceID_t trunk;

 DeviceID_t trunkMember;

 DeviceID_t split;

 ATTV4LookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

 ATTReasonCode_t reason;

 ATTV4OriginalCallInfo_t originalCallInfo;

 CalledDeviceID_t distributingDevice;

} ATTV4EstablishedEvent_t;

typedef struct ATTV4LookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

Chapter 11: Event Report Service Group

632 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

typedef enum ATTReasonCode_t {

 AR_NONE = 0, /* no reason code provided */

 AR_ANSWER_NORMAL = 1, /* answer supervision from the

 Established Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 633

 * network or internal answer */

 AR_ANSWER_TIMED = 2, /* answer assumed based on

 * internal timer */

 AR_ANSWER_VOICE_ENERGY = 3, /* voice energy detection by call

 * classifier */

 AR_ANSWER_MACHINE_DETECTED = 4,/* answering machine detected */

 AR_SIT_REORDER = 5, /* switch equipment congestion */

 AR_SIT_NO_CIRCUIT = 6, /* no circuit or channel available

 */

 AR_SIT_INTERCEPT = 7, /* number changed */

 AR_SIT_VACANT_CODE = 8, /* unassigned number */

 AR_SIT_INEFFECTIVE_OTHER = 9, /* invalid number */

 AR_SIT_UNKNOWN = 10, /* normal unspecified */

 AR_IN_QUEUE = 11, /* call still in queue - for

 * Delivered Event only */

 AR_SERVICE_OBSERVER = 12 /* service observer connected */

} ATTReasonCode_t

typedef struct ATTV4OriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunk;

 DeviceID_t trunkMember;

 ATTV4LookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

} ATTV4OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

Chapter 11: Event Report Service Group

634 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Versions 2 and 3 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV3EstablishedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV3_ESTABLISHED */

 union

 {

 ATTV3EstablishedEvent_t v3establishedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV3EstablishedEvent_t

{

 DeviceID_t trunk;

 DeviceID_t trunkMember;

 DeviceID_t split;

 ATTV4LookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

 ATTReasonCode_t reason;

 ATTV4OriginalCallInfo_t originalCallInfo;

} ATTV3EstablishedEvent_t;

typedef struct ATTV4LookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 Established Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 635

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

typedef enum ATTReasonCode_t {

 AR_NONE = 0, /* no reason code provided */

 AR_ANSWER_NORMAL = 1, /* answer supervision from the

 * network or internal answer */

 AR_ANSWER_TIMED = 2, /* answer assumed based on

 * internal timer */

Chapter 11: Event Report Service Group

636 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 AR_ANSWER_VOICE_ENERGY = 3, /* voice energy detection by call

 * classifier */

 AR_ANSWER_MACHINE_DETECTED = 4,/* answering machine detected */

 AR_SIT_REORDER = 5, /* switch equipment congestion */

 AR_SIT_NO_CIRCUIT = 6, /* no circuit or channel available

 */

 AR_SIT_INTERCEPT = 7, /* number changed */

 AR_SIT_VACANT_CODE = 8, /* unassigned number */

 AR_SIT_INEFFECTIVE_OTHER = 9, /* invalid number */

 AR_SIT_UNKNOWN = 10, /* normal unspecified */

 AR_IN_QUEUE = 11, /* call still in queue - for

 * Delivered Event only */

 AR_SERVICE_OBSERVER = 12 /* service observer connected */

} ATTReasonCode_t

typedef struct ATTV4OriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunk;

 DeviceID_t trunkMember;

 ATTV4LookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

} ATTV4OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

 Failed Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 637

Failed Event

Summary

 Direction: Switch to Client

 Event: CSTAFailedEvent

 Private Data Event: ATTFailedEvent (private data version 8 and later),

ATTV7FailedEvent (private data version 7)

 Service Parameters: monitorCrossRefID, failedConnection, failingDevice,

calledDevice, localConnectionInfo, cause

 Private Parameters: deviceHistory, callingDevice

Functional Description:

The Failed Event Report indicates that a call cannot be completed.

This event report is generated when the destination of a call is busy or unavailable, as

follows:

 When a call is delivered to an on-PBX station and the station is busy (without
coverage and call waiting).

 When a call tries to terminate on an ACD split without going through a vector and
the destination ACD split‘s queue is full, and the ACD split does not have
coverage.

 When a call encounters a busy vector command in vector processing.

 When a Direct-Agent call tries to terminate at an on-PBX ACD agent and the
specified ACD agent‘s split queue is full and the specified ACD agent does not
have coverage.

 When a call is trying to reach an off-PBX party and an ISDN DISConnect
message with a User Busy cause is received from an ISDN-PRI facility.

The Failed Event Report is also generated when the destination of a call receives

reorder/denial treatment, as follows:

 When a call is trying to terminate to an on-PBX destination but the destination
specified is inconsistent with the dial plan, has failed the "class of restriction"
check, or an inter-digit timeout has occurred.

 When a call encounters a step in vector processing which causes the denial
treatment to be applied to the originator.

Chapter 11: Event Report Service Group

638 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 When a Direct-Agent call is placed to a destination agent who is not a member of
the specified split.

 When a Direct-Agent call is placed to a destination agent who is not logged in.

The Failed Event Report is not sent under the following circumstances:

 For a predictive when any of the above conditions occur, a Call Cleared Event
Report is generated to indicate that the call has been terminated.

The call is terminated because a connection could not be established to the destination.

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for which
this event is reported.

failingConnection [mandatory - partially supported] Specifies the callID and

deviceID of the failed connection

failingDevice [mandatory - partially supported] Specifies the device that failed.

The deviceIDStatus may be ID_NOT_KNOWN.

calledDevice [mandatory - partially supported] Specifies the called device. The
following rules apply:

 For outgoing calls over PRI facilities, the "called number"
from the ISDN SETUP message is specified. If the "called

number" does not exist (it is NULL), the deviceIDStatus is

ID_NOT_KNOWN.

 For outgoing calls over non-PRI facilities, then the

deviceIDStatus is ID_NOT_KNOWN.

 For calls to a TEG (principal) group, the TEG group extension
is provided.

 If the busy party is on the PBX, then the extension of the
party will be specified. If there is an internal error in the

extension, then the deviceIDStatus is ID_NOT_KNOWN.

 For incoming calls to a principal with bridges, the principal‘s
extension is provided.

 If the destination is inconsistent with the dial plan, then the

deviceIDStatus is ID_NOT_KNOWN.

localConnectionInfo [optional - supported] Specifies the local connection state as
perceived by the monitored device on this call. This is provided

for the cstaMonitorDevice() requests only. A value of CS_NONE

indicates that the local connection state is unknown.

cause [optional - supported] Specifies the reason for this event. The
following Event Causes are explicitly sent from the switch:

 Failed Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 639

 EC_BUSY - User is busy or queue is full.

 EC_CALL_NOT_ANSWERED - User is not responding.

 EC_TRUNKS_BUSY - No trunks are available.

 EC_RESOURCES_NOT_AVAILABLE- Call cannot be completed

due to switching resources limitation; for example, no circuit
or channel is available.

 EC_REORDER_TONE - Call is rejected or outgoing call is barred.

 EC_DEST_NOT_OBTAINABLE - Invalid destination number.

 EC_NETWORK_NOT_OBTAINABLE - Bearer capability is not

available.

 EC_INCOMPATIBLE_DESTINATION - Incompatible destination

number. For example, a call from a voice station to a data
extension.

 EC_NO_AVAILABLE_AGENTS – The call failed for one of the

following reasons:

– Queue full

– for direct agent calls - the agent is not a member of the
split or the agent is not logged in.

 EC_INCOMPATIBLE_BEARER_SERVICE – The call failed

because the selected facility for the call did not have the
proper bearer capability. This could occur, for example, if a
data or video call was attempted on a trunk facility that is
reserved for voice traffic.

Chapter 11: Event Report Service Group

640 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Parameters

deviceHistory The deviceHistory parameter type specifies a list of DeviceIDs

that were previously associated with the call. A device becomes
associated with the call whenever there is a CSTA connection
created at the device for the call. The association may also result
from a relationship between a device and a call outside the CSTA

switching function. A device becomes part of the deviceHistory

list when it is no longer associated with the call (for example: when
a call is redirected from a device, when a call is transferred away
from a device, and when a device clears from a call).

 Conceptually, the deviceHistory parameter consists of a list of

entries, where each entry contains information about a DeviceID

that had previously been associated with the call, and the list is
ordered from the first device that left the call to the device that most
recently left the call. However, for AE Services, the list will contain
at most one entry.

The entry consists of:

 olddeviceID - the device that left the call. This information

should be consistent with the subject device in the event that
represented the device leaving the call. For example: the

divertingDevice provided in the Diverted event for that

redirection, the transferring device in the Transferred event for a
transfer, or the clearing device in the Connection Cleared event.

 cause - the reason the device left the call or was redirected.

This information should be consistent with the cause provided in

the event that represented the device leaving the call (for
example, the cause provided in the Diverted, Transferred, or
Connection Cleared event).

 oldconnectionID - the CSTA ConnectionID that represents

the last ConnectionID associated with the device that left the

call. This information should be consistent with the subject
connection in the event that represented the device leaving the

call (for example, the ConnectionID provided in the Diverted,

Transferred, or Connection Cleared event).

 NOTE:

Device History cannot be guaranteed for events that
happened before monitoring started. Notice that the cause

value should be EC_NETWORK_SIGNAL if an ISDN Redirected

Number was provided; otherwise the cause value is set to
match the cause value of the event that was flowed to report
the dropped connection.

 Failed Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 641

callingDevice Specifies the calling device. The following rules apply:

 For internal calls - the originator‘s extension.

 For outgoing calls over PRI facilities - "calling number" from the
ISDN SETUP message or its assigned trunk identifier is

specified. If the "calling number" does not exist, it is NULL.

 For incoming calls over PRI facilities - "calling number" from the
ISDN SETUP message or its assigned trunk identifier is
specified. If the "calling number" does not exist, it is NULL.

 For incoming calls over non-PRI facilities - the calling party
number is generally not available. The assigned trunk identifier
is provided instead.

 NOTE:

The trunk identifier is a dynamic device identifier and it
cannot be used to access a trunk in Communication
Manager.

 The trunk identifier is specified only when the calling party
number is not available.

 For calls originated at a bridged call appearance - the principal‘s
extension is specified.

Detailed Information:

See the Event Report Detailed Information on page 710.

Chapter 11: Event Report Service Group

642 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* CSTAFailedEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_FAILED */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTAFailedEvent_t failed;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTAFailedEvent_t {

 ConnectionID_t failedConnection;

 SubjectDeviceID_t failingDevice;

 CalledDeviceID_t calledDevice;

 LocalConnectionState_t localConnectionInfo;

 CSTAEventCause_t cause;

} CSTAFailedEvent_t;

 Failed Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 643

Private Data Version 8 and Later Syntax

Private data version 8 adds support for the callingDevice parameter.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTFailedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_FAILED */

 union

 {

 ATTFailedEvent_t failedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTFailedEvent_t {

 DeviceHistory_t deviceHistory;

 CallingDeviceID_t callingDevice;

} ATTFailedEvent_t;

typedef struct DeviceHistory_t {

 unsigned int count; /* at most 1 */

 DeviceHistoryEntry_t *deviceHistoryList;

} DeviceHistory_t;

typedef struct DeviceHistoryEntry_t {

 DeviceID_t olddeviceID;

 CSTAEventCause_t cause;

 ConnectionID_t oldconnectionID;

} DeviceHistoryEntry_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

Chapter 11: Event Report Service Group

644 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 7 Syntax

The CSTA Failed Event includes a private data event, ATTV7FailedEvent for private

data version 7. The ATTV7FailedEvent provides the deviceHistory private data

parameter.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV7FailedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV7_FAILED */

 union

 {

 ATTV7FailedEvent_t v7failedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV7FailedEvent_t {

 DeviceHistory_t deviceHistory;

} ATTV7FailedEvent_t;

typedef struct DeviceHistory_t {

 unsigned int count; /* at most 1 */

 DeviceHistoryEntry_t *deviceHistoryList;

} DeviceHistory_t;

typedef struct DeviceHistoryEntry_t {

 DeviceID_t olddeviceID;

 CSTAEventCause_t cause;

 ConnectionID_t oldconnectionID;

} DeviceHistoryEntry_t;

 Forwarding Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 645

Forwarding Event

Summary

 Direction: Switch to Client

 Event: CSTAForwardingEvent

 Service Parameters: monitorCrossRefID, device, forwardingInformation

Functional Description

This event report indicates a change in the state of the Forwarding feature for a specific

device. The event also indicates the type of forwarding being invoked when the feature

is activated.

The Forwarding event is available beginning with Communication Manager 5.0 and AE

Services 4.1. This event is only available if the TSAPI Link is administered with ASAI

Link Version 5 or later. Applications should use the cstaGetAPICaps() service to

determine whether this event will be provided.

Currently, AE Services does not provide the forwarding destination in the Forwarding

event. However, applications may use the cstaQueryForwarding() service to

determine the forwarding destination for a device where call forwarding is active.

Chapter 11: Event Report Service Group

646 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Service Parameters

acsHandle This is the handle for the ACS Stream.

eventClass This is a tag with the value CSTAUNSOLICITED, which identifies this

message as an CSTA unsolicited event.

eventType This is a tag with the value CSTA_FORWARDING which identifies this

message as an CSTAForwardingEvent.

monitorCrossRefID This parameter contains the handle to the CSTA association for
which this event is associated. It provides a reference to a specific
established association.

device Specifies the device for which the Forwarding feature has been
activated/deactivated.

forwardingType Specifies the type of forwarding being invoked for the specific
device. This may include one of the following:

 Immediate - Forwarding all calls

 Busy - Forwarding when busy

 No Answer - Forwarding after no answer

 Busy Internal - Forwarding when busy for an internal call

 Busy External - Forwarding when busy for an external call

 No Answer Internal - Forwarding after no answer for an internal
call

 No Answer External - after no answer for an external call.

 NOTE:

AE Services supports only the Immediate forwarding type.

forwardingOn Specifies whether the Forward feature is on (1) or off (0).

forwardDN Specifies the destination device to which the calls are being
forwarded. If the device is not specified, then the parameter will
indicate that the device was not known or that it was not required.

 NOTE:

AE Services always provides a null (―‖) value for this
parameter.

 Forwarding Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 647

Syntax

The following structure shows only the relevant portions of the unions for this message.

#include <acs.h>

#include <csta.h>

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_FORWARDING */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefID;

 union

 {

 CSTAForwardingEvent_t forwarding;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTAForwardingEvent_t {

 SubjectDeviceID_t device;

 ForwardingInfo_t forwardingInformation;

} CSTAForwardingEvent_t;

typedef struct ForwardingInfo_t {

 ForwardingType_t forwardingType;

 unsigned char forwardingOn;

 DeviceID_t forwardDN; /* "" if not present */

} ForwardingInfo_t;

typedef enum ForwardingType_t {

 FWD_IMMEDIATE = 0,

 FWD_BUSY = 1,

 FWD_NO_ANS = 2,

 FWD_BUSY_INT = 3,

 FWD_BUSY_EXT = 4,

 FWD_NO_ANS_INT = 5,

 FWD_NO_ANS_EXT = 6

} ForwardingType_t;

Chapter 11: Event Report Service Group

648 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Held Event

Summary

 Direction: Switch to Client

 Event: CSTAHeldEvent

 Private Data Event: ATTHeldEvent (private data version 9)

 Service Parameters: monitorCrossRefID, heldConnection, holdingDevice,

localConnectionInfo, cause

 Private Parameters: consultMode

Functional Description:

The Held Event Report indicates that an on-PBX station has placed a call on hold. This

includes the hold for conference and transfer.

Placing a call on hold can be done either manually at the station or via a Hold Service

request.

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for which
this event is reported.

heldConnection [mandatory] Specifies the endpoint where hold was activated.

holdingDevice [mandatory] Specifies the station extension that placed the call on
hold.

localConnectionInfo [optional - supported] Specifies the local connection state as
perceived by the monitored device on this call. This is provided

for cstaMonitorDevice() requests only. A value of CS_NONE

indicates that the local connection state is unknown.

 Held Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 649

cause [optional - supported] Specifies the cause for this event. The
following causes are supported.

 EC_KEY_CONFERENCE - Indicates that the event report

occurred at a bridged device.

 EC_NONE - No cause provided.

Private Parameters:

consultMode [optional – limited support] Indicates whether this event occurred
as the result of a conference, transfer, or consultation operation.
The following values are supported:

 ATT_CM_NONE – Indicates that the event did not occur as the

result of a conference operation, a transfer operation, or
Consultation Call service request.

 ATT_CM_CONSULTATION – Indicates that the event occurred as

the result of a Consultation Call service request.

 ATT_CM_TRANSFER – Indicates that the event occurred as the

result of a transfer operation.

 ATT_CM_CONFERENCE – Indicates that the event occurred as

the result of a conference operation.

 ATT_CM_NOT_PROVIDED – Indicates that the TSAPI Service

cannot determine why the event occurred.

 For AE Services 6.1, the following limitations apply:

 The values ATT_CM_NONE and ATT_CM_CONSULTATION are not

supported for this event.

 The values ATT_CM_TRANSFER and ATT_CM_CONFERENCE are

only provided for manual transfer and conference operations
performed at the telephone set, and only when:

– the Communication Manager software release is 6.0.1
with service pack 1 or later

– the TSAPI CTI link is administered with ASAI link
version 5 or later.

 This parameter is only supported by private data version 9.

Detailed Information:

See the Event Report Detailed Information on page 710.

Chapter 11: Event Report Service Group

650 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* CSTAHeldEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_HELD */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTAHeldEvent_t held;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTAHeldEvent_t {

 ConnectionID_t heldConnection;

 SubjectDeviceID_t holdingDevice;

 LocalConnectionState_t localConnectionInfo;

 CSTAEventCause_t cause;

} CSTAHeldEvent_t;

 Held Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 651

Private Data Version 9 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTHeldEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_HELD */

 union

 {

 ATTHeldEvent_t heldEvent;

 } u;

} ATTEvent_t;

typedef struct ATTHeldEvent_t {

 ATTConsultMode_t consultMode;

} ATTHeldEvent_t;

typedef enum ATTConsultMode_t {

 ATT_CM_NONE = 0,

 ATT_CM_CONSULTATION = 1,

 ATT_CM_TRANSFER = 2,

 ATT_CM_CONFERENCE = 3,

 ATT_CM_NOT_PROVIDED = 4

} ATTConsultMode_t;

Chapter 11: Event Report Service Group

652 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Logged Off Event

Summary

 Direction: Switch to Client

 Event: CSTALoggedOffEvent

 Private Data Event: ATTLoggedOffEvent

 Service Parameters: monitorCrossRefID, agentDevice, agentID, agentGroup

 Group Private Parameters: reasonCode

Functional Description:

The Logged Off Event Report informs the application that an agent has logged out of an

ACD Split. An application needs to request a cstaMonitorDevice() on the ACD Split in

order to receive this event.

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for which
this event is reported.

agentDevice [mandatory] Indicates the extension of the agent that is logging off.

agentID [optional - not supported] Indicates the agent identifier.

agentGroup [optional - supported] Indicates the ACD Split that is being logged
out of.

Private Parameters:

reasonCode [optional] Specifies the reason that the agent changed to Auxiliary
Work Mode (WM_AUX_WORK) or the logged-out (AM_LOG_OUT) state.

Beginning with private data version 7, valid reason codes range from
0 to 99. A value of 0 indicates that the reason code is not available.
The meaning of the codes 1 through 99 is defined by the application.
This range of reason codes is only supported by private data version
7 and later.

Private data versions 5 and 6 support reason codes 1 through 9. A
value of 0 indicates that the reason code is not available. The
meaning of the code (1-9) is defined by the application.

Private data versions 4 and earlier do not support reason codes.

 Logged Off Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 653

Detailed Information:

The CSTA Logged Off event is only provided when the Monitor Device service is used to

monitor an ACD split. This event is not provided when the Monitor Device service is

used to monitor a station extension.

See also the Event Report Detailed Information on page 710.

Syntax

#include <acs.h>

#include <csta.h>

/* CSTALoggedOffEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_LOGGED_OFF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTALoggedOffEvent_t loggedOff;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTALoggedOffEvent_t {

 SubjectDeviceID_t agentDevice;

 AgentID_t agentID;

 AgentGroup_t agentGroup;

} CSTALoggedOffEvent_t;

typedef ExtendedDeviceID_t SubjectDeviceID_t;

typedef char AgentID_t[32];

typedef DeviceID_t AgentGroup_t;

Chapter 11: Event Report Service Group

654 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Syntax

If private data accompanies a CSTALoggedOffEvent, then the private data would be

stored in the location that the application specified as the privateData parameter in the

acsGetEventBlock() or acsGetEventPoll() request. If the privateData pointer is set

to NULL in these requests, then the CSTALoggedOffEvent does not deliver private data

to the application. If the acsGetEventBlock() or acsGetEventPoll() returns a Private

Data length of 0, then no private data is provided with this event.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTLoggedOffEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_LOGGED_OFF */

 union

 {

 ATTLoggedOffEvent_t loggedOff;

 } u;

} ATTEvent_t;

typedef struct ATTLoggedOffEvent_t {

 long reasonCode; /* 0–99 for private data version 7

 * and later; 0–9 for private data

 * versions 5 and 6. */

} ATTLoggedOffEvent_t;

 Logged On Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 655

Logged On Event

Summary

 Direction: Switch to Client

 Event: CSTALoggedOnEvent

 Private Data Event: ATTLoggedOnEvent

 Service Parameters: monitorCrossRefID, agentDevice, agentID, agentGroup,
password

 Private Parameters: workMode

Functional Description:

The Logged On Event Report informs the application that an agent has logged into an

ACD Split. An application needs to request a cstaMonitorDevice() on the ACD Split in

order to receive this event.

The initial agent work mode is provided in the private data.

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for which
this event is reported.

agentDevice [mandatory] Indicates the station extension of the agent that is
logging on.

agentID [optional - partially supported] Indicates the logical agent identifier.
This is only provided in an in Expert Agent Selection (EAS)
environment. In a traditional ACD environment, this parameter is
not supported.

agentGroup [optional - supported] Indicates the ACD Split that is being logged
into.

password [optional - not supported] Indicates the agent password for logging
in.

Private Parameters:

workMode [optional - not supported] Specifies the initial work mode for the

Agent as Auxiliary-Work Mode (WM_AUX_WORK), After-Call-Work

Mode (WM_AFT_CALL), Auto-In Mode (WM_AUTO_IN), or Manual-In-

Work Mode (WM_MANUAL_IN).

Chapter 11: Event Report Service Group

656 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Detailed Information:

The CSTA Logged On event is only provided when the Monitor Device service is used to

monitor an ACD split. This event is not provided when the Monitor Device service is

used to monitor a station extension.

See also the Event Report Detailed Information on page 710.

Syntax

#include <acs.h>

#include <csta.h>

/* CSTALoggedOnEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_LOGGED_ON */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTALoggedOnEvent_t loggedOn;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTALoggedOnEvent_t {

 SubjectDeviceID_t agentDevice;

 AgentID_t agentID;

 AgentGroup_t agentGroup;

 AgentPassword_t password; /* not supported */

} CSTALoggedOnEvent_t;

typedef ExtendedDeviceID_t SubjectDeviceID_t;

typedef char AgentID_t[32];

typedef DeviceID_t AgentGroup_t;

typedef char AgentPassword_t[32];

 Logged On Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 657

Private Data Syntax

If private data accompanies a CSTALoggedOnEvent, then the private data would be

stored in the location that the application specified as the privateData parameter in the

acsGetEventBlock() or acsGetEventPoll() request. If the privateData pointer is set

to NULL in these requests, then the CSTALoggedOnEvent does not deliver private data to

the application. If the acsGetEventBlock() or acsGetEventPoll() returns a Private

Data length of 0, then no private data is provided with this event.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTLoggedOnEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_LOGGED_ON */

 union

 {

 ATTLoggedOnEvent_t loggedOnEvent;

 } u;

} ATTEvent_t;

typedef struct ATTLogedOnEvent_t {

 ATTWorkMode_t workMode;

} ATTLoggedOnEvent_t;

typedef enum ATTWorkMode_t {

 WM_NONE = -1,

 WM_AUX_WORK = 1,

 WM_AFTCAL_WK = 2,

 WM_AUTO_IN = 3,

 WM_MANUAL_IN = 4

} ATTWorkMode_t;

Chapter 11: Event Report Service Group

658 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Network Reached Event

Summary

 Direction: Switch to Client

 Event: CSTANetworkReachedEvent

 Private Data Event: ATTNetworkReachedEvent (private data version 7 and later),

ATTV6NetworkReachedEvent (private data versions 5 and 6),

ATTV4NetworkReachedEvent (private data versions 2, 3, and 4)

 Service Parameters: monitorCrossRefID, connection, trunkUsed,

calledDevice, localConnectionInfo, cause

 Private Parameters: progressLocation, progressDescription, trunkGroup,

trunkMember, deviceHistory

Functional Description:

This event indicates the following two situations when establishing a connection:

 a non-ISDN call is cut through the switch boundary to another network (set to
outgoing trunk), or

 an ISDN call is leaving the ISDN network.

This event report implies that there will be a reduced level of event reporting and

possibly no additional device feedback, except disconnect/drop, provided for this party in

the call. A Network Reached Event Report is never sent for calls made to devices

connected directly to the switch.

The Network Reached Event Report is generated when:

 an ISDN PROG (ISDN progress) message has been received for a call using the
ISDN-PRI facilities. The reason for the PROG (progress) message is contained
in the Progress Indicator. This indicator is sent in private data.

 a call is placed to an off-PBX destination and a non-PRI trunk is seized.

 a call is redirected to an off-PBX destination and a non-PRI trunk is seized.

A switch may receive multiple PROGress messages for any given call; each will

generate a Network Reached Event Report. This event will not be generated for a

predictive call.

 Network Reached Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 659

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for which
this event is reported.

connection [mandatory] Specifies the endpoint for the outbound connection
to another network.

trunkUsed [mandatory - not supported] Specifies the trunk identifier that was
used to establish the connection. This information is provided in
the private data.

calledDevice [mandatory - partially supported] Specifies the destination device
of the call. The deviceIDStatus may be ID_NOT_KNOWN.

localConnectionInfo [optional - supported] Specifies the local connection state as
perceived by the monitored device on this call. This is provided

for cstaMonitorDevice requests only. A value of CS_NONE

indicates that the local connection state is unknown.

cause [optional -supported] Specifies the cause for this event. The
following cause is supported.

 EC_REDIRECTED - The call has been redirected.

 EC_SINGLE_STEP_TRANSFER (private data version 8 or later) -

The call was placed to an off-PBX destination as the result of
a Single Step Transfer Call operation.

Chapter 11: Event Report Service Group

660 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Parameters:

progressLocation [mandatory] Specifies the progress location in a Progress
Indicator Information Element from the PRI network. The
following location indicators are supported:

 PL_NONE – not provided

 PL_USER – user

 PL_PUB_LOCAL – public network serving local user

 PL_PUB_REMOTE – public network serving remote user

 PL_PRIV_REMOTE – private network serving remote user

progressDescription [mandatory] Specifies the progress description in a Progress
Indicator Information Element from the PRI network. The
following description indicators are supported:

 PD_NONE – not provided

 PD_CALL_OFF_ISDN – the call is not end-to-end ISDN, call

progress in-band

 PD_DEST_NOT_ISDN – the destination address is non-ISDN

 PD_ORIG_NOT_ISDN – the origination address is no-ISDN

 PD_CALL_ON_ISDN – the call has returned to ISDN

 PD_INBAND – in-band information is now available

trunkGroup [optional - limited support] Specifies the trunk group number from
which the call leaves the switch and enters the network. This

information will not be reported in the originalCallInfo

parameter in the events following Network Reached. This
parameter is supported by private data version 5 and later only.

trunkMember [optional - limited support] Specifies the trunk member from which
the call leaves the switch and enters the network. This

information will not be reported in the originalCallInfo

parameter in the events following Network Reached. This
parameter is supported by private data version 5 and later only.

 Network Reached Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 661

deviceHistory The deviceHistory parameter type specifies a list of DeviceIDs

that were previously associated with the call. A device becomes
associated with the call whenever there is a CSTA connection
created at the device for the call. The association may also result
from a relationship between a device and a call outside the CSTA

switching function. A device becomes part of the deviceHistory

list when it is no longer associated with the call (for example:
when a call is redirected from a device, when a call is transferred
away from a device, and when a device clears from a call).

 Conceptually, the deviceHistory parameter consists of a list of

entries, where each entry contains information about a deviceID

that had previously been associated with the call and the list is
ordered from the first device that left the call to the device that
most recently left the call. However, for AE Services, the list will
contain at most one entry.

The entry consists of:

 olddeviceID - the device that left the call. This information

should be consistent with the subject device in the event that
represented the device leaving the call. For example: the

divertingDevice provided in the Diverted event for that

redirection, the transferring device in the Transferred event
for a transfer, or the clearing device in the Connection
Cleared event.

 cause - the reason the device left the call or was redirected.

This information should be consistent with the cause provided

in the event that represented the device leaving the call (for
example, the cause provided in the Diverted, Transferred, or
Connection Cleared event).

 oldconnectionID - the CSTA ConnectionID that represents

the last ConnectionID associated with the device that left the

call. This information should be consistent with the subject
connection in the event that represented the device leaving

the call (for example, the ConnectionID provided in the

Diverted, Transferred, or Connection Cleared event).

 NOTE:

Device History cannot be guaranteed for events that
happened before monitoring started. Notice that the cause

value should be EC_NETWORK_SIGNAL if an ISDN

Redirected Number was provided; otherwise the cause
value is set to match the cause value of the event that
was flowed to report the dropped connection.

Detailed Information:

See the Event Report Detailed Information on page 710.

Chapter 11: Event Report Service Group

662 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* CSTANetworkReachedEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_NETWORK_REACHED */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTANetworkReachedEvent_t networkReached;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTANetworkReachedEvent_t {

 ConnectionID_t connection;

 SubjectDeviceID_t trunkUsed;

 CalledDeviceID_t calledDevice;

 LocalConnectionState_t localConnectionInfo;

 CSTAEventCause_t cause;

} CSTANetworkReachedEvent_t;

 Network Reached Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 663

Private Data Syntax

If private data accompanies a CSTANetworkReachedEvent, then the private data would

be stored in the location that the application specified as the privateData parameter in

the acsGetEventBlock() or acsGetEventPoll() request. If the privateData pointer is

set to NULL in these requests, then the CSTANetworkReachedEvent does not deliver

private data to the application. If acsGetEventBlock() or acsGetEventPoll() returns a

Private Data length of 0, then no private data is provided with this event.

Private Data Version 7 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTNetworkReachedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_NETWORK_REACHED */

 union

 {

 ATTNetworkReachedEvent_t networkReachedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTNetworkReachedEvent_t {

 ATTProgressLocation_t progressLocation;

 ATTProgressDescription_t progressDescription;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 DeviceHistory_t deviceHistory;

} ATTNetworkReachedEvent_t;

typedef enum ATTProgressLocation_t {

 PL_NONE = -1, /* not provided */

 PL_USER = 0, /* user */

 PL_PUB_LOCAL = 1, /* public network serving local user */

 PL_PUB_REMOTE = 4, /* public network serving remote user */

 PL_PRIV_REMOTE = 5 /* private network serving remote user */

} ATTProgressLocation_t;

typedef enum ATTProgressDescription_t {

 PD_NONE = -1, /* not provided */

 PD_CALL_OFF_ISDN = 1, /* call is not end-to-end ISDN,

 * call progress in-band */

 PD_DEST_NOT_ISDN = 2, /* destination address is non-ISDN */

 PD_ORIG_NOT_ISDN = 3, /* origination address is non-ISDN */

 PD_CALL_ON_ISDN = 4, /* call has returned to ISDN */

 PD_INBAND = 8 /* in-band information now available */

} ATTProgressDescription_t;

Chapter 11: Event Report Service Group

664 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 5 and 6 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV6NetworkReachedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV6_NETWORK_REACHED */

 union

 {

 ATTV6NetworkReachedEvent_t v6networkReachedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV6NetworkReachedEvent_t

{

 ATTProgressLocation_t progressLocation;

 ATTProgressDescription_t progressDescription;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

} ATTV6NetworkReachedEvent_t;

typedef enum ATTProgressLocation_t {

 PL_NONE = -1, /* not provided */

 PL_USER = 0, /* user */

 PL_PUB_LOCAL = 1, /* public network serving local user */

 PL_PUB_REMOTE = 4, /* public network serving remote user */

 PL_PRIV_REMOTE = 5 /* private network serving remote user */

} ATTProgressLocation_t;

typedef enum ATTProgressDescription_t {

 PD_NONE = -1, /* not provided */

 PD_CALL_OFF_ISDN = 1, /* call is not end-to-end ISDN,

 * call progress in-band */

 PD_DEST_NOT_ISDN = 2, /* destination address is non-ISDN */

 PD_ORIG_NOT_ISDN = 3, /* origination address is non-ISDN */

 PD_CALL_ON_ISDN = 4, /* call has returned to ISDN */

 PD_INBAND = 8 /* in-band information now available */

} ATTProgressDescription_t;

 Network Reached Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 665

Private Data Versions 2-4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV4NetworkReachedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV4_NETWORK_REACHED */

 union

 {

 ATTV4NetworkReachedEvent_t v4networkReachedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV4NetworkReachedEvent_t {

 ATTProgressLocation_t progressLocation;

 ATTProgressDescription_t progressDescription;

} ATTV4NetworkReachedEvent_t;

typedef enum ATTProgressLocation_t {

 PL_NONE = -1, /* not provided */

 PL_USER = 0, /* user */

 PL_PUB_LOCAL = 1, /* public network serving local user */

 PL_PUB_REMOTE = 4, /* public network serving remote user */

 PL_PRIV_REMOTE = 5 /* private network serving remote user */

} ATTProgressLocation_t;

typedef enum ATTProgressDescription_t {

 PD_NONE = -1, /* not provided */

 PD_CALL_OFF_ISDN = 1, /* call is not end-to-end ISDN,

 * call progress in-band */

 PD_DEST_NOT_ISDN = 2, /* destination address is non-ISDN */

 PD_ORIG_NOT_ISDN = 3, /* origination address is non-ISDN */

 PD_CALL_ON_ISDN = 4, /* call has returned to ISDN */

 PD_INBAND = 8 /* in-band information now available */

} ATTProgressDescription_t;

Chapter 11: Event Report Service Group

666 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Originated Event

Summary

 Direction: Switch to Client

 Event: CSTAOriginatedEvent

 Private Data Event: ATTOriginatedEvent (private data version 9),

ATTV8OriginatedEvent (private data versions 6-8), ATTV5OriginatedEvent

(private data versions 2-5)

 Service Parameters: monitorCrossRefID, originatedConnection,

callingDevice, calledDevice, localConnectionInfo, cause

 Private Parameters: logicalAgent, userInfo, consultMode

Functional Description:

The Originated Event Report indicates that a station has completed dialing and the

switch has decided to attempt the call. This event is reported to cstaMonitorDevice()

associations only.

This event is generated under the following circumstances:

 When a station user completes dialing a valid number.

 When a cstaMakeCall() is requested on a station, and the station is in the off-

hook state (goes off-hook manually, or is forced off-hook), the switch processes
the request and determines that a call is to be attempted.

 When a call is attempted using an outgoing trunk and the switch stops collecting
digits for that call.

This event will not be reported when a call is aborted because an invalid number was

provided, or because the originating number provided is not allowed (via COR) to

originate a call.

 Originated Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 667

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

originatedConnection [mandatory] Specifies the connection for which the call has
been originated.

callingDevice [mandatory] Specifies the device from which the call has
been originated.

calledDevice [mandatory] Specifies the number that the user dialed or the

destination requested by a cstaMakeCall. This is the

number dialed rather than the number out-pulsed. It does not
include the AAR/ARS FAC (Feature Access Code), or TAC
(Trunk Access Code; for example, without the leading 9 often
used as the ARS FAC).

localConnectionInfo [optional - supported] Specifies the local connection state as
perceived by the monitored device on this call. This

information is provided for cstaMonitorDevice requests

only. A value of CS_NONE indicates that the local connection

state is unknown.

cause [optional - supported] Specifies the cause for this event. The
following causes are supported:

 EC_KEY_CONFERENCE - Indicates that the event report

occurred at a bridged device. This cause has higher
precedence than the following cause.

 EC_NEW_CALL - The event report is for a new call.

Chapter 11: Event Report Service Group

668 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Parameters:

logicalAgent [optional] Specifies the logical agent extension of the agent that is

logged into the station making the call for a cstaMakeCall()

request.

userInfo [optional – not supported] This parameter allows the application to
associate caller information, up to 32 (private data versions 2-5) or
96 (private data versions 6 and later) bytes, with a call. This
information may be a customer number, credit card number,
alphanumeric digits, or a binary string.

 The userInfo parameter is defined for this event, but it is not

supported by Communication Manager. Thus, the userInfo

parameter will not be provided for this event.

consultMode [optional – limited support] Indicates whether this event occurred as
the result of a conference, transfer, or consultation operation. The
following values are supported:

 ATT_CM_NONE – Indicates that the event did not occur as the

result of a conference operation, a transfer operation, or
Consultation Call service request.

 ATT_CM_CONSULTATION – Indicates that the event occurred as the

result of a Consultation Call service request.

 ATT_CM_TRANSFER – Indicates that the event occurred as the

result of a transfer operation.

 ATT_CM_CONFERENCE – Indicates that the event occurred as the

result of a conference operation.

 ATT_CM_NOT_PROVIDED – Indicates that the TSAPI Service

cannot determine why the event occurred.

 For AE Services 6.1, the following limitations apply:

 The value ATT_CM_NONE is not supported for this event.

 The values ATT_CM_TRANSFER and ATT_CM_CONFERENCE are only

provided for manual transfer and conference operations
performed at the telephone set, and only when:

– the Communication Manager software release is 6.0.1 with
service pack 1 or later

– the TSAPI CTI link is administered with ASAI link version 5 or
later.

 This parameter is only supported by private data version 9.

 Originated Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 669

Detailed Information:

In addition to the information provided below, see the Event Report Detailed Information

section in this chapter.

 Abbreviated Dialing - The Originated Event will be reported when a call is
attempted after requesting an abbreviated or speed dialing feature.

 Account Codes - (CDR or SMDR Account Code Dialing) - The Originated Event
will be reported when a call is originated after an optional or mandatory account
code entry.

 Authorization Codes - The Originated Event will be reported when a call is
originated after an authorization code entry.

 Automatic Callback - The Originated Event will be reported when an automatic
callback feature matures and the caller goes off-hook on the automatic callback
call.

 Bridged Call Appearance - The Originated Event will be reported for a call
originated from a bridged appearance.

 Call Park - The Originated Event will not be reported when a call is parked or
retrieved from a parking spot.

 cstaMakePredictiveCall() - The Originated Event will not be reported for a

cstaMakePredictiveCall() service request.

Chapter 11: Event Report Service Group

670 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* CSTAOriginatedEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_ORIGINATED */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTAOriginatedEvent_t originated;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTAOriginatedEvent_t

{

 ConnectionID_t originatedConnection;

 SubjectDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 LocalConnectionState_t localConnectionInfo;

 CSTAEventCause_t cause;

} CSTAOriginatedEvent_t;

 Originated Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 671

Private Data Syntax

If private data accompanies a CSTAOriginatedEvent, then the private data would be

stored in the location that the application specified as the privateData parameter in the

acsGetEventBlock() or acsGetEventPoll() request. If the privateData pointer is set

to NULL in these requests, then the CSTAOriginatedEvent does not deliver private data

to the application. If the acsGetEventBlock() or acsGetEventPoll() returns a Private

Data length of 0, then no private data is provided with this event.

Private Data Version 9 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTOriginatedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_ORIGINATED */

 union

 {

 ATTOriginatedEvent_t originatedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTOriginatedEvent_t {

 DeviceID_t logicalAgent;

 ATTUserToUserInfo_t userInfo;

 ATTConsultMode_t consultMode;

} ATTOriginatedEvent_t;

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct {

 unsigned short length; /* 0 indicates UUI not

 * present */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

typedef enum ATTConsultMode_t {

 ATT_CM_NONE = 0,

 ATT_CM_CONSULTATION = 1,

 ATT_CM_TRANSFER = 2,

 ATT_CM_CONFERENCE = 3,

 ATT_CM_NOT_PROVIDED = 4

} ATTConsultMode_t;

Chapter 11: Event Report Service Group

672 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 6-8 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV8OriginatedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV8_ORIGINATED */

 union

 {

 ATTV8OriginatedEvent_t v8originatedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV8OriginatedEvent_t {

 DeviceID_t logicalAgent;

 ATTUserToUserInfo_t userInfo;

} ATTV8OriginatedEvent_t;

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct {

 unsigned short length; /* 0 indicates UUI not

 * present */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

 Originated Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 673

Private Data Version 2-5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/& ATTV5OriginatedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV5_ORIGINATED */

 union

 {

 ATTV5OriginatedEvent_t v5originatedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV5OriginatedEvent_t {

 DeviceID_t logicalAgent;

 ATTV5UserToUserInfo_t userInfo;

} ATTV5OriginatedEvent_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

Chapter 11: Event Report Service Group

674 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Queued Event

Summary

 Direction: Switch to Client

 Event: CSTAQueuedEvent

 Private Data Event: ATTQueuedEvent (private data version 7 and later)

 Service Parameters: monitorCrossRefID, queuedConnection, queue,

callingDevice, calledDevice, lastRedirectionDevice, numberQueued,

localConnectionInfo, cause

 Private Parameters: deviceHistory

Functional Description:

The Queued Event Report indicates that a call queued.

The Queued Event report is generated under the following circumstances:

 When a cstaMakePredictiveCall call is delivered to a hunt group or ACD split

and the call queues.

 When a call is delivered or redirected to a hunt group or ACD split and the call
queues.

It is possible to have multiple Queued Event Reports for a call. For example, the call

vectoring feature may queue a call in up to three ACD splits at any one time. In addition,

the event is sent if the call queues to the same split with a different priority.

This event report is not generated when a call queues to an announcement, vector

announcement or trunk group. It is also not generated when a call queues, again, to the

same ACD split at the same priority.

Refer to the Detailed Information section below for specific instructions to program your

application to obtain this event.

 Queued Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 675

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

queuedConnection [mandatory] Specifies the connection that queued.

queue [mandatory] Specifies the queuing device to which the call has
queued. This is the extension of the ACD split to which the call
queued.

callingDevice [mandatory - partially supported] Specifies the calling device.
The deviceIDStatus may be ID_NOT_KNOWN.

calledDevice [mandatory - partially supported] Specifies the called device.
The following rules apply:

 For incoming calls over PRI facilities, the "called number" from
the ISDN SETUP message is specified. If the "called number"

does not exist (i.e., NULL), the deviceIDStatus is

ID_NOT_KNOWN.

 For incoming calls over non-PRI facilities, the called number is
the principal extension (a group extension for TEG, PCOL, hunt
group, VDN). If the switch is administered to modify the DNIS
digits, then the modified DNIS is specified.

 For outbound calls, the dialed number is specified.

lastRedirectionDevice [optional - limited support] Specifies the previous
redirection/alerted device in case where the call was
redirected/diverted to the queue device.

localConnectionInfo [optional - supported] Specifies the local connection state as
perceived by the monitored device on this call. This is provided

for cstaMonitorDevice() requests only. A value of CS_NONE

indicates that the local connection state is unknown.

numberQueued [optional - supported] Specifies how many calls are queued to
the queue device. This is the call position in the queue in the
hunt group or ACD split. This number will include the current
call and excludes all direct-agent calls in the queue.

Chapter 11: Event Report Service Group

676 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

cause [optional - supported] Specifies the cause for this event. The
following cause is supported:

 EC_REDIRECTED - The call has been redirected.

 EC_TRANSFER (private data versions 2-7) - The call was

queued as the result of a Single Step Transfer Call
operation.

 EC_SINGLE_STEP_TRANSFER (private data version 8 or later)

- The call was queued as the result of a Single Step
Transfer Call operation.

 EC_NEW_CALL - The call entered the queue neither by being

rejected/diverted to the queue, nor as the result of a Single
Step Transfer Call operation.

 Queued Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 677

Private Parameters:

deviceHistory The deviceHistory parameter type specifies a list of DeviceIDs

that were previously associated with the call. A device becomes
associated with the call whenever there is a CSTA connection
created at the device for the call. The association may also result
from a relationship between a device and a call outside the CSTA

switching function. A device becomes part of the deviceHistory

list when it is no longer associated with the call (for example: when
a call is redirected from a device, when a call is transferred away
from a device, and when a device clears from a call).

 Conceptually, the deviceHistory parameter consists of a list of

entries, where each entry contains information about a DeviceID

that had previously been associated with the call, and the list is
ordered from the first device that left the call to the device that most
recently left the call. However, for AE Services, the list will contain
at most one entry.

The entry consists of:

 olddeviceID - the device that left the call. This information

should be consistent with the subject device in the event that
represented the device leaving the call. For example: the

divertingDevice provided in the Diverted event for that

redirection, the transferring device in the Transferred event for a
transfer, or the clearing device in the Connection Cleared event.

 cause - the reason the device left the call or was redirected.

This information should be consistent with the cause provided in

the event that represented the device leaving the call (for
example, the cause provided in the Diverted, Transferred, or
Connection Cleared event).

 oldconnectionID - the CSTA ConnectionID that represents

the last ConnectionID associated with the device that left the

call. This information should be consistent with the subject
connection in the event that represented the device leaving the

call (for example, the ConnectionID provided in the Diverted,

Transferred, or Connection Cleared event).

 NOTE:

Device History cannot be guaranteed for events that
happened before monitoring started. Notice that the cause

value should be EC_NETWORK_SIGNAL if an ISDN Redirected

Number was provided; otherwise the cause value is set to
match the cause value of the event that was flowed to report
the dropped connection.

Chapter 11: Event Report Service Group

678 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Detailed Information:

In addition to the information provided below, see the Event Report Detailed Information

on page 710.

 Last Redirection Device - There is only limited support for this parameter. An
application must understand the limitations of this parameter in order to use the
information correctly.

Perform either of the steps below to obtain the queued event in your application with

Avaya Communication Manager:

 For any vector controlled ACD or Skill (in either an Expert Agent Selection [EAS]

or non-EAS environment) use cstaMonitorCallsViaDevice() to monitor the

VDN that queues calls to the ACD or Skill.

 For a non-vector controlled ACD (in a non-EAS environment) use

cstaMonitorCallsViaDevice() to monitor the ACD split.

 Queued Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 679

Syntax

#include <acs.h>

#include <csta.h>

/* CSTAQueuedEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_QUEUED */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTAQueuedEvent_t queued;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTAQueuedEvent_t {

 ConnectionID_t queuedConnection;

 SubjectDeviceID_t queue;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 RedirectionDeviceID_t lastRedirectionDevice;

 short numberQueued;

 LocalConnectionState_t localConnectionInfo;

 CSTAEventCause_t cause;

} CSTAQueuedEvent_t;

Chapter 11: Event Report Service Group

680 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 7 and Later Syntax

The CSTA Queued Event includes a private data event, ATTQueuedEvent for private

data version 7. The ATTQueuedEvent provides the deviceHistory private data

parameter.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTQueuedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_QUEUED */

 union

 {

 ATTQueuedEvent_t queuedEvent;

 } u;

} ATTEvent_t;

typedef struct ATTQueuedEvent_t {

 DeviceHistory_t deviceHistory;

} ATTQueuedEvent_t;

typedef struct DeviceHistory_t {

 unsigned int count; /* at most 1 */

 DeviceHistoryEntry_t *deviceHistoryList;

} DeviceHistory_t;

typedef struct DeviceHistoryEntry_t {

 DeviceID_t olddeviceID;

 CSTAEventCause_t cause;

 ConnectionID_t oldconnectionID;

} DeviceHistoryEntry_t;

 Retrieved Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 681

Retrieved Event

Summary

 Direction: Switch to Client

 Event: CSTARetrievedEvent

 Service Parameters: monitorCrossRefID, retrievedConnection,

retrievingDevice, localConnectionInfo, cause

Functional Description:

The Retrieved Event Report indicates that the switch detects a previously held call that

has been retrieved.

It is generated when an on-PBX station connects to a call that has been previously

placed on hold. Retrieving a held call can be done either manually at the station by

selecting the call appearance of the held call or by switch-hook flash from an analog

station, or via a cstaRetrieveCall() service request from a client application.

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for which
this event is reported.

retrievedConnection [mandatory] Specifies the connection for which the call has been
taken off the held state.

retrievingDevice [mandatory] Specifies the device that connected the call from the
held state. This is the extension that has been connected to the
call.

localConnectionInfo [optional - supported] Specifies the local connection state as
perceived by the monitored device on this call. This is provided

for cstaMonitorDevice() requests only. A value of CS_NONE

indicates that the local connection state is unknown.

Chapter 11: Event Report Service Group

682 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

cause [optional - supported] Specifies the cause for this event. The
following cause is supported:

 EC_KEY_CONFERENCE – Indicates that the event report

occurred at a bridged device.

 EC_NONE – Indicates that the event report did not occur at a

bridged device.

Detailed Information:

See the Event Report Detailed Information on page 710.

 Retrieved Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 683

Syntax

#include <acs.h>

#include <csta.h>

/* CSTARetrievedEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_RETRIEVED */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTARetrievedEvent_t retrieved;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTARetrievedEvent_t {

 ConnectionID_t retrievedConnection;

 SubjectDeviceID_t retrievingDevice;

 LocalConnectionState_t localConnectionInfo;

 CSTAEventCause_t cause;

} CSTARetrievedEvent_t;

Chapter 11: Event Report Service Group

684 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Service Initiated Event

Summary

 Direction: Switch to Client

 Event: CSTAServiceInitiatedEvent

 Private Data Event: ATTServiceInitiatedEvent (private data version 9),

ATTV8ServiceInitiatedEvent (private data versions 5-8)

 Service Parameters: monitorCrossRefID, initiatedConnection,

localConnectionInfo, cause

 Private Parameters: ucid

Functional Description:

The Service Initiated Event Report indicates that telecommunication service is initiated.

This event is generated under the following circumstances:

 When a station begins to receive dial tone.

 When a station is forced off-hook because a cstaMakeCall() is requested on

that station.

 When certain switch features that initiate a call (such as abbreviated dialing, etc.)
are invoked.

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for which
this event is reported.

initiatedConnection [mandatory] Specifies the connection for which the service (dial
tone) has been initiated.

localConnectionInfo [optional - supported] Specifies the local connection state as
perceived by the monitored device on this call. This is provided

for the cstaMonitorDevice() requests only. A value of CS_NONE

indicates that the local connection state is unknown.

cause [optional - supported] Specifies the cause for this event. The
following cause values are supported:

 Service Initiated Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 685

 EC_KEY_CONFERENCE – Indicates that the event report

occurred at a bridged device.

 EC_NONE – Indicates that the event report did not occur at a

bridged device.

Private Parameters:

ucid [optional] Specifies the Universal Call ID (UCID) of the resulting call.

The UCID is a unique call identifier across switches and the network.

A valid UCID is a null-terminated ASCII character string. If there is

no UCID associated with this call, the ucid contains the

ATT_NULL_UCID (a 20-character string of all zeros). This parameter

is supported by private data version 5 and later only.

consultMode [optional – limited support] Indicates whether this event occurred as
the result of a conference, transfer, or consultation operation. The
following values are supported:

 ATT_CM_NONE – Indicates that the event did not occur as the

result of a conference operation, a transfer operation, or
Consultation Call service request.

 ATT_CM_CONSULTATION – Indicates that the event occurred as

the result of a Consultation Call service request.

 ATT_CM_TRANSFER – Indicates that the event occurred as the

result of a transfer operation.

 ATT_CM_CONFERENCE – Indicates that the event occurred as the

result of a conference operation.

 ATT_CM_NOT_PROVIDED – Indicates that the TSAPI Service

cannot determine why the event occurred.

 For AE Services 6.1, the following limitations apply:

 The values ATT_CM_NONE and ATT_CM_CONSULTATION are not

supported for this event.

 The values ATT_CM_TRANSFER and ATT_CM_CONFERENCE are

only provided for manual transfer and conference operations
performed at the telephone set, and only when:

– the Communication Manager software release is 6.0.1 with
service pack 1 or later

– the TSAPI CTI link is administered with ASAI link version 5
or later.

 This parameter is only supported by private data version 9.

Detailed Information:

See the Event Report Detailed Information section in this chapter.

Chapter 11: Event Report Service Group

686 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* CSTAServiceInitiatedEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_SERVICE_INITIATED */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTAServiceInitiatedEvent_t serviceInitiated;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTAServiceInitiatedEvent_t {

 ConnectionID_t initiatedConnection;

 LocalConnectionState_t localConnectionInfo;

 CSTAEventCause_t cause;

} CSTAServiceInitiatedEvent_t;

 Service Initiated Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 687

Private Data Syntax

If private data accompanies a CSTAServiceInitiatedEvent, then the private data

would be stored in the location that the application specified as the privateData

parameter in the acsGetEventBlock() or acsGetEventPoll() request. If the

privateData pointer is set to NULL in these requests, then the

CSTAServiceInitiatedEvent does not deliver private data to the application. If the

acsGetEventBlock() or acsGetEventPoll() returns a Private Data length of 0, then

no private data is provided with this event.

Private Data Version 9 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTServiceInitiatedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_SERVICE_INITIATED */

 union

 {

 ATTServiceInitiatedEvent_t serviceInitiated;

 } u;

} ATTEvent_t;

typedef struct ATTServiceInitiatedEvent_t {

 ATTUCID_t ucid;

 ATTConsultMode_t consultMode;

} ATTServiceInitiatedEvent_t;

typedef char ATTUCID_t[64];

typedef enum ATTConsultMode_t {

 ATT_CM_NONE = 0,

 ATT_CM_CONSULTATION = 1,

 ATT_CM_TRANSFER = 2,

 ATT_CM_CONFERENCE = 3,

 ATT_CM_NOT_PROVIDED = 4

} ATTConsultMode_t;

Chapter 11: Event Report Service Group

688 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 5-8 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV8ServiceInitiatedEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV8_SERVICE_INITIATED */

 union

 {

 ATTV8ServiceInitiatedEvent_t v8serviceInitiated;

 } u;

} ATTEvent_t;

typedef struct ATTV8ServiceInitiatedEvent_t {

 ATTUCID_t ucid;

} ATTV8ServiceInitiatedEvent_t;

typedef char ATTUCID_t[64];

 Transferred Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 689

Transferred Event

Summary

 Direction: Switch to Client

 Event: CSTATransferredEvent

 Private Data Event: ATTTransferredEvent (private data version 7 and later),

ATTV6TransferredEvent (private data version 6), ATTV5TransferredEvent

(private data version 5), ATTV4TransferredEvent (private data version 4),

ATTV3TransferredEvent (private data versions 2 and 3)

 Service Parameters: monitorCrossRefID, primaryOldCall,

secondaryOldCall, transferringDevice, transferredDevice,

transferredConnections, localConnectionInfo, cause

 Private Parameters: originalCallInfo, distributingDevice,

distributingVDN, ucid, trunkList, deviceHistory

Functional Description:

The Transferred Event Report indicates that an existing call was transferred to another

device and the device requesting the transfer has been dropped from the call. The

transferringDevice will not appear in any future feedback for the call.

The Transferred Event Report is generated under the following circumstances:

 When an on-PBX station completes a transfer by pressing the "transfer" button
on the voice terminal.

 When an on-PBX analog telephone user on a monitored call goes on hook with
one active call and one call on conference/transfer hold.

 When the "call park" feature is used in conjunction with the "transfer" button on
the voice set.

 When an adjunct successfully completes a cstaTransferCall() request.

Chapter 11: Event Report Service Group

690 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Service Parameters:

monitorCrossRefID [mandatory] Contains the handle to the monitor request for
which this event is reported.

primaryOldCall [mandatory] Specifies the callID of the call that was

transferred. This is usually the held call from before the
transfer. This call ended as a result of the transfer.

secondaryOldCall [mandatory] Specifies the callID of the call that was

transferred. This is usually the active call from before the
transfer. This call is retained by the switch after the transfer.

transferringDevice [mandatory] Specifies the device that is controlling the
transfer. This is the device that did the transfer.

transferredDevice [mandatory] Specifies the new transferred-to device.

 If the device is an on-PBX station, the extension is specified.

 If the party is an off-PBX endpoint, then the deviceIDStatus

is ID_NOT_KNOWN.

 There are call scenarios in which the transfer operation joins
multiple parties to a call. In such situations, the

transferredDevice will be the extension for the last party to

join the call.

transferredConnections [optional - supported] Specifies a count of the number of

devices and a list of connectionIDs and deviceIDs which

resulted from the transfer.

 If a device is on-PBX, the extension is specified. The
extension consists of station or group extensions. Group
extensions are provided when the transfer is to a group and
the transfer completes before the call is answered by one of
the group members (TEG, PCOL, hunt group, or VDN
extension). It may contain alerting extensions.

 The static deviceID of a queued endpoint is set to the split

extension of the queue.

 If a party is off-PBX, then its static device identifier or its
previously assigned trunk identifier is specified.

localConnectionInfo [optional - supported] Specifies the local connection state as
perceived by the monitored device on this call. This is

provided for the cstaMonitorDevice() requests only. A

value of CS_NONE indicates that the local connection state is

unknown.

 Transferred Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 691

cause [optional - supported] Specifies the cause for this event. The
following causes are supported:

 EC_TRANSFER - A call transfer has occurred.

 EC_PARK - A call transfer was performed for parking a call

rather than a true call transfer operation.

 EC_SINGLE_STEP_TRANSFER (private data version 8 or

later) - The call was transferred via the Single Step
Transfer Call service.

Private Parameters:

originalCallInfo [optional] Specifies the original call information. This parameter is

sent with this event for the resulting newCall of a

cstaTransferCall() request or the retained call of a (manual)

transfer call operation. The calls being transferred must be known
to the TSAPI Service via the Call Control Services or Monitor
Services.

 In a cstaTransferCall() scenario, the originalCallInfo

includes the call information originally received by the heldCall

specified in the cstaTransferCall() request. For a manual call

transfer, the originalCallInfo includes the call information

originally received by the primaryOldCall specified in the event

report.

 reason - the reason for the originalCallInfo. The following

reasons are supported.

 – OR_NONE - no originalCallInfo provided

 – OR_CONFERENCED - call conferenced

 – OR_CONSULTATION - consultation call

 – OR_TRANSFERRED - call transferred

 – OR_NEW_CALL - new call

 callingDevice - The original callingDevice received by the

heldCall or the primaryOldCall. This parameter is always

provided.

 calledDevice - The original calledDevice received by the

heldCall or the primaryOldCall. This parameter is always

provided.

Chapter 11: Event Report Service Group

692 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 trunk - The original trunk group received by the heldCall or

the primaryOldCall. This parameter is supported by private

data versions 2, 3, and 4.

 trunkGroup - The original trunk group received by the

heldCall or the primaryOldCall. This parameter is supported

by private data version 5 and later only.

 trunkMember - The original trunkMember received by the

heldCall or the primaryOldCall.

 lookaheadInfo - The original lookaheadInfo received by the

heldCall or the primaryOldCall.

 userEnteredCode - The original userEnteredCode received by

the heldCall or the primaryOldCall call.

 userInfo - the original userInfo received by the heldCall or

the primaryOldCall call.

 For private data versions 2-5, the maximum length of userInfo

is 32 bytes. Beginning with private data version 6, the maximum

length of userInfo is increased to 96 bytes.

 An application using private data version 5 or earlier can only
receive a maximum of 32 bytes of data in userInfo, regardless
of the size of the data sent by the switch.

 ucid - the original ucid of the call. This parameter is supported

by private data version 5 and later only.

 callOriginatorInfo - the original callOriginatorInfo

received by the call. This parameter is supported by private
data version 5 and later only.

 flexibleBilling - the original flexibleBilling information

of the call. This parameter is supported by private data version
5 and later only.

 deviceHistory - The deviceHistory parameter type specifies

a list of deviceIDs that were previously associated with the

call. For an explanation of this parameter and the following list
of entries, see deviceHistory on page 693.

– olddeviceID

– cause

– oldconnectionID

 This parameter is supported by private data version 7 and later.

 Transferred Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 693

distributingDevice [optional] Specifies the original distributing device before the call is
transferred. See the Delivered Event section in this chapter for

details on the distributingDevice parameter. This parameter is

supported by private data version 4 and later.

distributingVDN The VDN extension associated with the distributing device. The
field gets set only and exactly under the following conditions.

 When the application monitors the VDN in question and a call is
offered to the VDN. This event is conveyed to the applications
as a Delivered event, if the application does not filter it out

 When the application monitors an agent and receives a call that
came from that monitored VDN (that is, in the Delivered,
Established, Transferred, and Conferenced events).

ucid [optional] Specifies the Universal Call ID (UCID) of the call. The
UCID is a unique call identifier across switches and the network. A
valid UCID is a null-terminated ASCII character string. If there is no

UCID associated with this call, the ucid contains the

ATT_NULL_UCID (a 20-character string of all zeros). This parameter

is supported by private data version 5 and later only.

trunkList [optional] Specifies a list of up to 5 trunk groups and trunk
members. This parameter is supported by private data version 6
and later only. The following options are supported:

 count - The count of the connected parties on the call.

 trunks - An array of 5 trunk group and trunk member IDs, one

for each connected party. The following options are supported:

 – connection - The connection ID of one of the parties on the

call.

 – trunkGroup - The trunk group of the party referenced by

connection.

 – trunkMember - The trunk member of the party referenced

by connection.

deviceHistory The deviceHistory parameter type specifies a list of DeviceIDs

that were previously associated with the call. A device becomes
associated with the call whenever there is a CSTA connection
created at the device for the call. The association may also result
from a relationship between a device and a call outside the CSTA

switching function. A device becomes part of the deviceHistory

list when it is no longer associated with the call (for example: when
a call is redirected from a device, when a call is transferred away
from a device, and when a device clears from a call).

Chapter 11: Event Report Service Group

694 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 Conceptually, the deviceHistory parameter consists of a list of

entries, where each entry contains information about a deviceID

that had previously been associated with the call and the list is
ordered from the first device that left the call to the device that most
recently left the call. However, for AE Services, the list will contain
at most one entry.

The entry consists of:

 olddeviceID - the device that left the call. This information

should be consistent with the subject device in the event that
represented the device leaving the call. For example: the

divertingDevice provided in the Diverted event for that

redirection, the transferring device in the Transferred event for
a transfer, or the clearing device in the Connection Cleared
event.

 cause - the reason the device left the call or was redirected.

This information should be consistent with the cause provided

in the event that represented the device leaving the call (for
example, the cause provided in the Diverted, Transferred, or
Connection Cleared event).

 oldconnectionID - the CSTA ConnectionID that represents

the last ConnectionID associated with the device that left the

call. This information should be consistent with the subject
connection in the event that represented the device leaving the

call (for example, the ConnectionID provided in the Diverted,

Transferred, or Connection Cleared event).

 NOTE:

Device History cannot be guaranteed for events that
happened before monitoring started. Notice that the cause

value should be EC_NETWORK_SIGNAL if an ISDN Redirected

Number was provided; otherwise the cause value is set to
match the cause value of the event that was flowed to
report the dropped connection.

 Transferred Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 695

Detailed Information:

In addition to the information provided below, see the Event Report Detailed Information

section in this chapter.

The originalCallInfo includes the original call information originally received by the

call that is ended as the result of the transfer. The following special rules apply:

 If the Transferred Event was the result of a cstaTransferCall() request, the

originalCallInfo and the distributingDevice sent with this Transferred

Event is from the heldCall in the cstaTransferCall() request. Thus, the

application can control the originalCallInfo and the distributingDevice to

be sent in a Transferred Event by putting the original call on hold and specifying

it as the heldCall in the cstaTransferCall() request. Although the

primaryOldCall (that is, the call that ended as the result of the

cstaTransferCall() is usually the heldCall, sometimes it can be the

activeCall.

 If the Transferred Event was the result of a manual transfer, the

originalCallInfo and the distributingDevice sent with this Transferred

Event is from the primaryOldCall of the event. Thus, the application does not

have control of the originalCallInfo and distributingDevice to be sent in

the Transferred Event. Although the primaryOldCall (that is, the call that ended

as the result of the manual transfer operation) is usually the heldCall,

sometimes it can be the active call.

In addition, see the Established Event Detailed Information section for Unsupervised

Transfer and Consultation Transfer definitions; Transferring or conferencing a call

together with screen pop information on page 33 for the recommended design for

applications that use caller information to populate a screen; and the ANI Screen Pop

Application Requirements in the Event Report Detailed Information section in this

chapter.

Chapter 11: Event Report Service Group

696 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* CSTATransferredEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAUNSOLICITED */

 EventType_t eventType; /* CSTA_TRANSFERRED */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 CSTAMonitorCrossRefID_t monitorCrossRefId;

 union

 {

 CSTATransferredEvent_t transferred;

 } u;

 } cstaUnsolicited;

 } event;

} CSTAEvent_t;

typedef struct CSTATransferredEvent_t {

 ConnectionID_t primaryOldCall;

 ConnectionID_t secondaryOldCall;

 SubjectDeviceID_t transferringDevice;

 SubjectDeviceID_t transferredDevice;

 ConnectionList_t transferredConnections;

 LocalConnectionState_t localConnectionInfo;

 CSTAEventCause_t cause;

} CSTATransferredEvent_t;

typedef ExtendedDeviceID_t SubjectDeviceID_t;

typedef struct Connection_t {

 ConnectionID_t party;

 SubjectDeviceID_t staticDevice;

 } Connection_t;

typedef struct ConnectionList_t {

 unsigned int count;

 Connection_t *connection;

} ConnectionList_t;

 Transferred Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 697

Private Data Syntax

If private data accompanies a CSTATransferredEvent, then the private data would be

stored in the location that the application specified as the privateData parameter in the

acsGetEventBlock() or acsGetEventPoll() request. If the privateData pointer is set

to NULL in these requests, then the CSTATransferredEvent does not deliver private

data to the application. If acsGetEventBlock() or acsGetEventPoll() returns a

Private Data length of 0, then no private data is provided with this event.

Private Data Version 7 and Later Syntax

The deviceHistory parameter is new for private data version 7.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTTransferredEvent - CSTA Unsolicited Event Private Data */

typedef struct ATTEvent_t

{

 ATTEventType_t eventType; /* ATT_TRANSFERRED */

 union

 {

 ATTTransferredEvent_t transferredEvent;

 } u;

} ATTEvent_t;

typedef struct ATTTransferredEvent_t {

 ATTOriginalCallInfo_t originalCallInfo;

 CalledDeviceID_t distributingDevice;

 ATTUCID_t ucid;

 ATTTrunkList_t trunkList;

 DeviceHistory_t deviceHistory;

 CalledDeviceID_t distributingVDN;

} ATTTransferredEvent_t;

typedef struct ATTOriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTUserToUserInfo_t userInfo;

 ATTUCID_t ucid;

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

 DeviceHistory_t deviceHistory;

} ATTOriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

Chapter 11: Event Report Service Group

698 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef struct ATTLookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

 ATTUnicodeDeviceID_t uSourceVDN; /* sourceVDN in Unicode */

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t {

 unsigned short count;

 short value[64];

} ATTUnicodeDeviceID_t

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 Transferred Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 699

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct {

 unsigned short length; /* 0 indicates UUI not

 * present */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t {

 unsigned char hasInfo; /* if FALSE, no

 * call originator info */

 short callOriginatorType;

} ATTCallOriginatorInfo_t;

typedef struct DeviceHistory_t {

 unsigned int count; /* at most 1 */

 DeviceHistoryEntry_t *deviceHistoryList;

} DeviceHistory_t;

typedef struct DeviceHistoryEntry_t {

 DeviceID_t olddeviceID;

 CSTAEventCause_t cause;

 ConnectionID_t oldconnectionID;

} DeviceHistoryEntry_t;

Chapter 11: Event Report Service Group

700 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 6 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV6TransferredEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV6_TRANSFERRED */

 union

 {

 ATTV6TransferredEvent_t v6transferredEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV6TransferredEvent_t {

 ATTV6OriginalCallInfo_t originalCallInfo;

 CalledDeviceID_t distributingDevice;

 ATTUCID_t ucid;

 ATTTrunkList_t trunkList;

} ATTV6TransferredEvent_t;

typedef struct ATTV6OriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTUserToUserInfo_t userInfo;

 ATTUCID_t ucid;

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

} ATTV6OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef struct ATTLookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

 Transferred Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 701

 ATTUnicodeDeviceID_t uSourceVDN; /* sourceVDN in Unicode */

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t {

 unsigned short count;

 short value[64];

} ATTUnicodeDeviceID_t

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct {

 unsigned short length; /* 0 indicates UUI not

 * present */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

Chapter 11: Event Report Service Group

702 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t {

 unsigned char hasInfo; /* if FALSE, no

 * callOriginatorType */

 short callOriginatorType;

} ATTCallOriginatorInfo_t;

 Transferred Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 703

Private Data Version 5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV5TransferredEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV5_TRANSFERRED */

 union

 {

 ATTV5TransferredEvent_t v5transferredEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV5TransferredEvent_t {

 ATTV5OriginalCallInfo_t originalCallInfo;

 CalledDeviceID_t distributingDevice;

 ATTUCID_t ucid;

} ATTV5TransferredEvent_t;

typedef struct ATTV5OriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunkGroup;

 DeviceID_t trunkMember;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

 ATTUCID_t ucid;

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

} ATTV5OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef struct ATTLookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

 ATTUnicodeDeviceID_t uSourceVDN; /* sourceVDN in Unicode */

Chapter 11: Event Report Service Group

704 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t {

 unsigned short count;

 short value[64];

} ATTUnicodeDeviceID_t

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 Transferred Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 705

 UUI_IA5_ASCII = 4 /* null-terminated ASCII

 * character string */

} ATTUUIProtocolType_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t {

 unsigned char hasInfo; /* if FALSE, no

 * callOriginatorType */

 short callOriginatorType;

} ATTCallOriginatorInfo_t;

Chapter 11: Event Report Service Group

706 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV4TransferredEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV4_TRANSFERRED */

 union

 {

 ATTV4TransferredEvent_t v4transferredEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV4TransferredEvent_t {

 ATTV4OriginalCallInfo_t originalCallInfo;

 CalledDeviceID_t distributingDevice;

} ATTV4TransferredEvent_t;

typedef struct ATTV4OriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunk;

 DeviceID_t trunkMember;

 ATTV4LookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

} ATTV4OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef struct ATTV4LookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 Transferred Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 707

 short seconds;

 DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

Chapter 11: Event Report Service Group

708 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Versions 2 and 3 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV3TransferredEvent - CSTA Unsolicited Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV3_TRANSFERRED */

 union

 {

 ATTV3TransferredEvent_t v3transferredEvent;

 } u;

} ATTEvent_t;

typedef struct ATTV3TransferredEvent_t {

 ATTV4OriginalCallInfo_t originalCallInfo;

} ATTV3TransferredEvent_t;

typedef struct ATTV4OriginalCallInfo_t {

 ATTReasonForCallInfo_t reason;

 CallingDeviceID_t callingDevice;

 CalledDeviceID_t calledDevice;

 DeviceID_t trunk;

 DeviceID_t trunkMember;

 ATTV4LookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

} ATTV4OriginalCallInfo_t;

typedef enum ATTReasonForCallInfo_t {

 OR_NONE = 0, /* indicates not present */

 OR_CONSULTATION = 1,

 OR_CONFERENCED = 2,

 OR_TRANSFERRED = 3,

 OR_NEW_CALL = 4

} ATTReasonForCallInfo_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef struct ATTV4LookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 Transferred Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 709

 DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

Chapter 11: Event Report Service Group

710 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Event Report Detailed Information

Analog Sets

Redirection

Analog sets do not support temporary bridged appearances. When, in normal

circumstances, a call at a multifunction set would have been left on a simulated bridge

appearance, the call will move away from the analog set. Thus, any monitor requests for

the analog set will receive the Diverted Event Report.

 Delivered Event Reports are not sent to SAC-activated analog sets receiving calls.

Redirection on No Answer

Calls redirected by this feature generate the following event reports when a call is

redirected from a non-answering station.

 The Diverted Event Report is provided over cstaMonitorDevice() monitor

requests when the call is redirected from a non-answering agent. This event is
not provided if the call is queued again to the split or delivered to another agent
in the split.

 The Queued Event Report will be generated if the call queues after being
redirected.

 The Call Cleared Event Report - If the call cannot re-queue after the call has
been redirected from the non-answering agent, then the call continues to listen to
ringback until the caller is dropped. In this case, a Call Cleared Event Report is
generated when the caller is dropped and the call disconnected.

 Direct Agent Calls always redirect to the agent‘s coverage path instead of queuing

again to the servicing ACD split.

Switch Hook Operation

When an analog set goes on-hook with one or two calls on hold, the user is audibly

notified (the phone rings). This notification ring is not reported as a Delivered event.

When the user goes off-hook and is reconnected to the alerting call, a Retrieved Event

Report is generated.

When a user goes on hook with a soft-held call and an active call, both calls are

transferred away from the user‘s set. It does not matter how the held call was placed on

soft hold.

If a monitored analog user flashes the switch hook to put a call on soft hold to start a

new call:

 The Held Event Report is sent to all monitor requests.

 A Service Initiated Event Report is returned to all cstaMonitorDevice()

requests when the user receives the dial tone.

 Event Report Detailed Information

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 711

 A Retrieved Event Report is returned to all monitor requests if the user returns to
the held call. If the held call is conferenced or transferred, the Conferenced or
Transferred Event Reports are sent to all monitor requests.

ANI Screen Pop Application Requirements

The list below summarizes the prerequisites for ANI screen pop at a station. Each item is

discussed in more detail below:

 Incoming PRI provides ANI for incoming external calls. No other external sources
(such as "caller-id") are supported. This is a typical Communication Manager call
center configuration.

 A local Communication Manager server or DCS provides extension number as
ANI for local or private network incoming calls. This is a typical help desk
configuration.

 Chapter 3 gives design guidelines for transferring a call across more than one
TSAPI Service servers, across CTI platforms, and across switches. If these
guidelines are not followed, then the transferring party and receiving party must
be on the same switch and monitored by the same TSAPI Service. Transfers
across a private DCS network are not supported.

 The receiving party may either manually answer the call or run an application that

uses cstaAnswerCall().

If the design considerations in Chapter 3 are not followed, then ANI screen pop for

unsupervised transfers can only be done at the time the call is answered, not when it

rings. In this case, applications will find the ANI information in the CSTA Established

Event (which the TSAPI Service sends when the call answers), not the CSTA Delivered

Event (which the TSAPI Service sends when the call rings). For an application to do an

ANI screen pop on an unsupervised transfer, it must look in the proper CSTA Event.

If the design considerations in Chapter 3 are not followed, then ANI screen pop for

consultation transfers is possible only at the time the call transfers, not when the

consultation call rings or is answered. In this case, applications will find the information

necessary to do the screen pop in the CSTA Transferred Event (which the TSAPI

Service sends them when the call transfers), not in the CSTA Established or Delivered

events. For an application to do an ANI screen pop on a consultation transfer, it must

look in the proper CSTA Event.

If the design considerations in Chapter 3 are not followed, then ANI screen pop on a

consultation transfer requires that the transferring party must be monitored by the same

TSAPI Service that is monitoring the receiving party.

Announcements

 Automatic Call Distribution (ACD) split-forced announcements and vector

announcements do not generate event reports for the application. However, non-split

announcements generate events that are sent to other parties on the call.

Extensions assigned to integrated announcements may not be monitored.

Chapter 11: Event Report Service Group

712 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Answer Supervision

The Communication Manager "answer supervision timeout" field determines how long

the central office trunk board waits before sending the (simulated) "answer" message to

the software. This is useful when the answer supervision is not available on a trunk. This

message is used to send call information to Station Message Detail Recording (SMDR)

and to trigger the bridging of a service observer onto an outgoing trunk call. This

message is ignored if the trunk is expected to receive true answer supervision from the

network (the switch uses the true answer supervision whenever available). Client

application monitored calls are treated like regular calls. No Established Event Report

will be generated for this "simulated answer."

With respect to cstaMakePredictiveCall() calls, when the "answer supervision" field

is set to "no", the switch relies entirely on the call classifier to determine when the call

was answered. When answer supervision on the trunk is set to "yes", a

cstaMakePredictiveCall() call is considered "answered" when the switch software

receives the "answer" message from the trunk board. In reality,

cstaMakePredictiveCall() calls may receive either an "answer" message from the

trunk board or (if this never comes) an indication from the classifier that the far end

answered. In this case, the switch will act on the first indication received and not act on

any subsequent indications.

Attendants and Attendant Groups

An attendant group extension cannot be monitored as a station.

Individual attendants may be parties on monitored calls and are supported like regular

station users as far as the event reporting is concerned on monitors for other station

types.

An attendant group may be a party on a monitored call, but the Delivered, Established,

and Connection Cleared Event Reports do not apply.

An individual attendant extension member cannot be monitored by a

cstaMonitorDevice() request; but it can be a destination for a call from a

cstaMonitorDevice() monitored station. In this case, event reports are sent to the

cstaMonitorDevice() request about the individual attendant that is receiving the call.

Attendant Specific Button Operation

This section clarifies what events are sent when an attendant uses buttons that are

specific to an attendant console.

 Hold button - If an individual attendant presses the hold button and the call is
monitored, the Held Event Report will be sent to the corresponding monitor
request.

 Call Appearance button - If an individual attendant has a call on hold, and the call
is monitored, then the Retrieved Event Report will be sent to the corresponding
monitor requests.

 Start button - If a call is present at an attendant and the call is monitored, and the
attendant presses the Start button, then the call will be put on hold and a Held
Event Report will be sent on the corresponding monitor requests.

 Event Report Detailed Information

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 713

 Cancel button - If a call is on hold at the attendant and the attendant presses the
Start button, putting the previous call on hold, and then either dials a number and
then presses the Cancel button or presses the Cancel button right away, the call
that was originally put on hold will be reconnected and a Retrieved Event Report
will be sent to the monitor request on the call.

 Release button - If only one call is active and the attendant presses the Release
button, the call will be dropped and the Connection Cleared Event Report will be
sent to the monitor request on the call. If two calls are active at the attendant and
the attendant then presses the Release button, the calls will be transferred away
from the attendant and a Transferred Event Report will be sent to the monitor
request on the calls.

 Split button - If two calls are active at the attendant and the attendant presses the
Split button, the calls will be conferenced at the attendant and a Conferenced
Event Report will be sent to the monitor requests monitoring the calls.

Attendant Auto-Manual Splitting

If an individual attendant receives a call with associated cstaMonitorDevice()

requests, then activates the Attendant Auto-Manual Splitting feature, a Held Event

Report is returned to the monitor requests. The next event report sent depends on which

button the attendant presses on the set (CANCEL = Retrieved, SPLIT = Conferenced,

RELEASE = Transferred).

Attendant Call Waiting

Calls that provide event reports over cstaMonitorDevice() requests and are extended

by an attendant to a local, busy, single-line voice terminal will generate the following

event reports:

 Held when the incoming call is split away by the attendant.

 Established when the attendant returns to the call.

The following events are generated, if the busy station does not accept the extended call

and its returns:

 Delivered when the call is returned to the attendant.

 Established when the attendant returns to the call.

Attendant Control of Trunk Group Access

Calls that provide event reports over cstaMonitorDevice() requests can access any

trunk group controlled by the attendant. The attendant is alerted and places the call to its

destination.

AUDIX

Calls that cover AUDIX do not maintain a simulated bridge appearance on the principal‘s

station. The principal receives audible alerting followed by an interval of coverage

response followed by the call dropping from the principal‘s set. When the principal

receives alerting, the Delivered Event Report is sent. When the call is dropped from the

Chapter 11: Event Report Service Group

714 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

principal‘s set because the call went to AUDIX coverage, the Diverted Event Report is

sent.

Automatic Call Distribution (ACD)

Announcements

Announcements played while a monitored call is in a split queue, or as a result of an

announcement vector command, create no event reports. Calls made directly to

announcement extensions will have the same event report sent to the application as

calls made to station extensions. In either case, no Queued Event Report is sent to the

application.

Interflow

This occurs when a split redirects all calls to another split on another PBX by activating

off-premise call forwarding.

When a monitored call interflows, event reports will cease except for the Network

Reached (for non-PRI trunk) and trunk Connection Cleared Event Reports.

Night Service

The Delivered Event Report is sent when a call that is not being monitored enters an

ACD split (not adjunct-controlled) with monitor requests and also has night service

active.

Service Observing

A monitored call can be service observed provided that service observing is originated

from a voice terminal and the service observing criteria are met. An Established Event

Report is generated every time service observing is activated for a monitored call. A

Connection Cleared Event Report is generated when the observer disconnects from the

call.

For a cstaMakeCall() call, the observer is bridged on the connection when the

destination answers. When the destination is a trunk with answer supervision (includes

PRI), the observer is bridged on when an actual far-end answer occurs. When the

destination is a trunk without answer supervision, the observer is bridged on after the

Network Reached (timeout) event.

Applicable events are "Established" (when the observer is bridged on) with the

observer‘s extension and "Connection Cleared" when the observer drops from the call.

In addition, the observer may manipulate the call via Call Control requests to the same

extent as he or she can via the station set.

Auto-Available Split

An auto-available split can be monitored as an ACD split and members of auto-available

splits (agents) can be monitored as stations.

Bridged Call Appearance

A cstaMonitorDevice() monitored station can have a bridged appearance(s) of its

primary extension number appear at other stations. For bridging, event reports are

 Event Report Detailed Information

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 715

provided based on the internal state of bridging parties with respect to the call. A call to

the primary extension number will alert both the principal and the bridged appearance.

Two or more Delivered Event Reports get triggered, one for the principal, and one for

each of the bridged appearances. Two or more Established Event Reports may be

triggered, if both the primary extension number and the bridged appearance(s) pick up

the call. When the principal or bridging user goes on hook but the bridge itself does not

drop from the call, no event report is sent but the state of that party changes from the

connected state to the bridged state. When the principal or bridging user reconnects,

another Established Event Report will be sent. A Connection Cleared Event Report will

be triggered for the principal and each bridged appearance when the entire bridge drops

from the call.

Members that are not connected to the call while the call is connected to another bridge

member are in the "bridged" state. When the only connected member of the bridge

transitions to the held state, the state for all members of the bridge changes to the held

state even if they were previously in the bridged state. There is no event report sent to

the bridged user monitor request for this transition.

Both the principal and bridging users may be individually monitored by a

cstaMonitorDevice(). Each monitor will receive appropriate events as applicable to

the monitored station. However, event reporting for a member of the bridge in the held

state will be dependent on whether the transition was from the connected state or the

bridged state.

CSTA Conference Call, Drop Call, Hold Call, Retrieve Call, and Transfer Call services

are not permitted for parties in the bridged state and may also be more restrictive if the

principal of the bridge has an analog set or if the exclusion option is in effect from a

station associated with the bridge.

A CSTA Make Call request will always originate at the primary extension number of a

user having a bridged appearance. For a call to originate at the bridged call appearance

of a primary extension, that user must be off hook at that bridged appearance at the time

the request is received.

 NOTE:

A principal station with bridged call appearances can be single step conferenced
into a call. Stations with bridged call appearance to the principal have the same
bridged call appearance behavior; that is, if monitored, the station will receive
Established and Conferenced Events when it joins the call. The station will not
receive a Delivered Event.

Busy Verification of Terminals

A cstaMonitorDevice-monitored station may be busy-verified. An Established Event

Report is provided when the verifying user is bridged in on a connection in which there is

a cstaMonitorDevice-monitored station.

Call Coverage

If a call that goes to coverage is monitored by a monitor request on an ACD split or a

VDN, the monitor request will receive the Delivered and Established Event reports.

Chapter 11: Event Report Service Group

716 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

For an alternate answering position that is monitored by a cstaMonitorDevice()

request, the Delivered and Established Event Reports are returned to its

cstaMonitorDevice() request.

The Diverted Event Report is sent to the principal‘s cstaMonitorDevice() request

when an analog principal‘s call goes to coverage. The Connection Cleared Event Report

is sent for the coverage station‘s monitor requests when the call that had been alerting at

both the principal and the coverage is picked up at the principal.

Call Coverage Path Containing VDNs

When a call is diverted to a station/split coverage path and the coverage path is a VDN,

the switch will provide the following event reports for the call:

 Diverted Event Report - This event report is sent to a monitor request on a
station. A Diverted Event Report can also be sent to the diverted-from VDN‘s
monitor request on the call, if the diverted-to VDN in the coverage path has a
monitor request. The diverted-to VDN‘s monitor request receives a Delivered (to
an ACD device) Event Report. If the diverted-to VDN in the coverage path has no
active monitor request (not monitored), then no Diverted Event Report is sent to
the diverted-from VDN‘s monitor request for the call.

 Delivered (to ACD device) Event Report - This report is only sent if the diverted-
to VDN in the call coverage path has a monitor request.

All other event reports associated with calls in a VDN (for example, Queued and

Delivered Event Reports) are provided to all monitor requests on the call.

Call Forwarding All Calls

No Diverted Event Report will be sent to a cstaMonitorDevice() request for the

forwarding station, since the call does not alert the extension that has Call Forwarding

activated. This is only if the call was placed directly to the "forwarded-to‖ station.

If a monitored call is forwarded off-PBX over a non-PRI facility, the Network Reached

Event Report will be generated.

Call Park

A cstaMonitorDevice-monitored station can activate Call Park.

A call may be parked manually at a station by use of the "call park" button (with or

without the conference and/or transfer buttons), or by use of the feature access code

and the conference and/or transfer buttons.

When a call is parked by using the "call park" button without either the conference or the

transfer buttons, there are no event reports generated. When the conference or transfer

buttons are used to park a call, the Conferenced or Transferred Event Reports are

generated. In this case, the "calling" and the "called" number in the Conferenced or

Transferred Event Reports will be the same as that of the station on which the call was

parked.

When the call is unparked, an Established Event Report is generated with the "calling"

and "called" numbers indicating the station on which the call had been parked, and the

"connected" number is that of the station unparking the call.

 Event Report Detailed Information

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 717

Call Pickup

A call alerting at a cstaMonitorDevice-monitored station may be picked up using Call

Pickup. The station picking up (either the principal or the pickup user or both) may be

monitored. An Established Event Report is sent to all monitor requests on the call when

this feature is used. When a pickup user picks up the principal‘s call, the principal‘s set

(if multifunction) retains a simulated bridge appearance and is able to connect to the call

at any time. No event report is sent for the principal unless the principal connects in the

call.

When a call has been queued first and then picked up by a pickup user, it is possible for

a client application to see an Established Event Report without having seen any prior

Delivered Event Reports.

Call Vectoring

A VDN can have a monitor request. Interactions between event reporting and call

vectoring are shown in Table 19.

Table 19: Interactions Between Feedback and Call Vectoring

Vector Step or
Command

Event Report When Sent Cause

Vector Initialization Delivered 8810 (to ACD
device)

encountered

Queue to Main Queued successfully queues

Failed queue full, no agents
logged in

queue full

Check Backup Queued successfully queues

Failed queue full, no agents
logged in

queue full

Messaging Split Queued successfully queues

Failed queue full, no agents
logged in

queue full

Announcement none

Wait none

GoTo none

10

 Only reported over a VCN/ACD split monitor association.

Chapter 11: Event Report Service Group

718 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 19: Interactions Between Feedback and Call Vectoring

Vector Step or
Command

Event Report When Sent Cause

Stop none

Busy Failed Encountered busy

Disconnect Connection Cleared Facility Dropped busy

Go To Vector none

Route to (internal) Delivered (to station
device)

Route To (external) Network Reached

Adjunct Routing route

Collected Digits none

Route To Digits
(internal)

Delivered (to station
device)

Route To Digits
(external)

Network Reached

Converse Vector
Command

Queued Event If the call queues for
the agent or
automated attendant
(VRU)

Delivered Event When the call is
delivered to an agent
or the automated
attendant

Established Event When the call is
answered by the agent
or automated
attendant

Connection Cleared
Event

When the call
disconnects from the
agent or automated
attendant

 Event Report Detailed Information

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 719

Call Prompting

Up to 16 digits collected from the last "collect digit" vector command will be passed to

the application in the Delivered Event Report. The collected digits are sent in private

data.

Lookahead Interflow

This feature is activated by encountering a ‘‘route to‘‘ vector command, with the route to

destination being an off PBX number, and having the ISDN-PRI, Vectoring (Basic), and

Lookahead Interflow options enabled on the Customer Options form.

For the originating PBX, the interactions are the same as with any call being routed to an

off-PBX destination by the ‘‘route to‘‘ vector command.

For the receiving PBX, the lookahead interflow information element is passed in the

ISDN message and will be included in all subsequent Delivered (to ACD device) Event

Report for the call, when the information exists, and when the call is monitored.

(Lookahead Interflow Information is supported in private data.)

Multiple Split Queuing

A Queued Event Report is sent for each split that the call queues to. Therefore, multiple

call queued events could be sent to a client application for one call.

If a call is in multiple queues and abandons (caller drops), one Connection Cleared

Event Report (cause normal) will be returned to the application followed by a Call

Cleared Event Report.

When the call is answered at a split, the call will be removed from the other split‘s queue.

No other event reports for the queues will be provided in addition to the Delivered and

Established Event Reports.

Call Waiting

When an analog station is administered with this feature and a call comes in while the

user is busy on another call, the Delivered Event Report is sent to the client application.

Conference

Manual conference from a cstaMonitorDevice-monitored station is allowed, subject to

the feature‘s restrictions. The Held Event Report is provided as a result of the first button

push or first switch-hook flash. The Conferenced Event Report is provided as a result of

the second button push or second switch-hook flash, and only if the conference is

successfully completed. On a manual conference or on a Conference Call Service

request, the Conferenced Event is sent to all the monitor requests for the resultant call.

Consult Button

When the covering user presses the Conference or Transfer feature button and receives

a dial tone, a Held Event Report is returned to monitor requests of the call. A Service

Initiated Event Report is then returned to the monitor requests on the covering user.

After the Consult button is pressed by the covering user, Delivered and Established

Event Reports are returned to monitor requests on the principal and covering user. Then

the covering user can conference or transfer the call.

Chapter 11: Event Report Service Group

720 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

CTI Link Failure

When the connectivity of the CTI link between the Communication Manager and the

TSAPI Service is interrupted or reset, information associated with all calls received prior

to the CTI link failure is no longer reliable. When a CTI link failure occurs, all call records

are destroyed and information such as User To User Info and User Entered Codes are

deleted from the TSAPI Service. If the link is restored in time, the call events may

resume for new monitor requests (note that when CTI link is re-initialized, all monitor

associations are aborted), but the Original Call Information for calls that existed before

the link went down are not available.

 Data Calls

Analog ports equipped with modems can be monitored by the cstaMonitorDevice()

Service and calls to and from ports can be monitored. However, Call Control Service

requests may cause the call to be dropped by the modem.

DCS

With respect to event reporting, calls made over a DCS network are treated as off-PBX

calls and only the Service Initiated, Network Reached, Call Cleared, and/or Connection

Cleared Event Reports are generated. DCS/UDP extensions that are local to the PBX

are treated as on-PBX stations. DCS/UDP extensions connected to the remote nodes

are treated as off-PBX numbers.

Incoming DCS calls will provide a calling party number.

Direct Agent Calling and Number of Calls In Queue

Direct-agent calls will not be included in the calculation of number of calls queued for the

Queued Event Report.

Drop Button Operation

When the ‘‘Drop‘‘ button is pushed by one party in a two-party call, the Connection

Cleared Event Report is sent with the extension of the party that pushed the button. The

originating party receives dial tone and the Service Initiated Event Report is reported on

its cstaMonitorDevice() requests.

When the ‘‘Drop‘‘ button is pushed by the controlling party in a conference, the

Connection Cleared Event Report is sent with the extension of the party who was

dropped off the call. This might be a station extension or a group extension. A group

extension is provided in situations when the last added party to a conference was a

group (for example, TEG, split, announcement, etc.) and the ‘‘Drop‘‘ button was used

while the group extension was still alerting (or was busy). Since the controlling party

does not receive dial tone (it is still connected to the conference), no Service Initiated

Event Report is reported in this case.

 Event Report Detailed Information

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 721

Expert Agent Selection (EAS)

Logical Agents

Whenever logical agents are part of a monitored call, the following additional rules apply

to the event reports:

 The callingDevice always contains the logical agent‘s physical station number

(extension), even though a Make Call request might have contained a logical

agent‘s login ID as the originating number (callingDevice).

 The answeringDevice and alertingDevice contain the logical agent‘s station

extension and never contain the login ID. This is true regardless of whether the
call was routed through a skill hunt group, whether the connected station has a
logical agent currently logged in, or whether the call is an application-initiated or
voice terminal-initiated direct agent call.

 The calledDevice contains the number that was dialed, regardless of the

station that connected to the call. For example, a call may be alerting an agent
station, but the dialed number might have been a logical agent‘s login ID, a VDN,
or another station.

 The Conferenced and Transferred Event Reports are an exception to this rule. In

these events the addedParty contains the station extension of the transferred to

or conferenced party when a local extension is involved. When an external

extension is involved, the addedParty is unknown. If the transferred to or

conferenced party is a hunt group or login ID and the call has not been delivered

to a station, the addedParty contains the hunt group or login ID extension. If the

call has been delivered to a station, the addedParty contains the station

extension connected to the call.

 The alertingDevice in the Delivered and the queue in the Queued Event

Report for logical direct-agent calls contain a skill hunt group from the set of skills
associated with the logical agent. Note that the skill hunt group is provided, even
though an application-initiated, logical direct agent call request did not contain a
skill hunt group.

Hold

Manually holding a call (either by using the Hold, Conference, Transfer buttons, or

switch-hook flash) results in the Held Event Report being sent to all monitor requests for

this call, including the held device. A held party is considered on the call for the purpose

of receiving events relevant to that call.

Integrated Services Digital Network (ISDN)

The Make Call calls will follow Integrated Services Digital Network (ISDN) rules for the

originator‘s name and number. The Service Initiated Event Report will not be sent for en-

bloc BRI sets.

Chapter 11: Event Report Service Group

722 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Multiple Split Queuing

When a call is queued in multiple ACD splits and then removed from the queue, the

Delivered Event Report will provide the split extension of the alerting agent. There will be

no other events provided for the splits from which the call was removed.

Personal Central Office Line (PCOL)

Members of a Personal Central Office Line (PCOL) may be monitored by the

cstaMonitorDevice() Service. PCOL behaves like bridging for the purpose of event

reporting. When a call is placed to a PCOL group, the Delivered Event Report is

provided to each member‘s cstaMonitorDevice() requests. The calledDevice

information passed in the Delivered event will be the default station characters. When

one of the members answers the incoming call, the Established Event Report provides

the extension of the station that answered the call. If another member connects to the

call, another Established Event Report is provided. When a member goes on hook but

the PCOL itself does not drop from the call, no event is sent but the state of that party

changes from the connected state to the bridged state. The Connection Cleared Event

Report is not sent to each member‘s cstaMonitorDevice() requests until the entire

PCOL drops from the call (as opposed to an individual member going on-hook).

Members that are not connected to the call while the call is connected to another PCOL

member are in the bridged state. When the only connected member of the PCOL

transitions to the held state, the state for all members of the PCOL changes to the held

state even if they were previously in bridged state. There is no event report sent to any

cstaMonitorDevice() request(s) for bridged users for this transition.

All members of the PCOL may be individually monitored by the cstaMonitorDevice()

Service. Each will receive appropriate events as applicable.

Primary Rate Interface (PRI)

Primary Rate Interface (PRI) facilities may be used for either inbound or outbound

application monitored calls.

An incoming call over a PRI facility will provide the callingDevice and calledDevice

information (CPN/BN/DNIS) which is passed on to the application in the Delivered (to

ACD device) and Established Event Reports.

An outgoing call over a PRI facility provides call feedback events from the network.

A cstaMakePredictiveCall() call will always use a call classifier on PRI facilities,

whether the call is interworked or not. Although these facilities are expected to report call

outcomes on the ‘‘D‘‘ channel, often interworking causes loss or delay of such reports.

Progress messages reporting ‘‘busy,‘‘ SITs, ‘‘alert,‘‘ and ‘‘drop/disconnect‘‘ will cause the

corresponding event report to be sent to the application. For cstaMakePredictive-

Call() calls, the ‘‘connected‘‘ number is interpreted as ‘‘far end answer‘‘ and is reported

to the application as the Established Event Report when received before the call

classifiers‘ ‘‘answer‘‘ indication. When received after the call classifier has reported an

outcome, it will not be acted upon. A monitored outbound call over PRI facilities may

generate the Delivered, Established, Connection Cleared, and/or Call Cleared Event

Reports, if such a call goes ISDN end-to-end. If such a call interworks, the ISDN

 Event Report Detailed Information

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 723

PROGress message is mapped into a Network Reached Event Report. In this case, only

the Connection Cleared or Call Cleared Event Reports may follow.

Ringback Queuing

cstaMakePredictiveCall() calls will be allowed to queue on busy trunks or stations.

When activated, the callback call will report events on the same callID as the original

call.

Send All Calls (SAC)

For incoming calls, the Delivered Event Report is sent only for multifunction sets

receiving calls while having SAC activated. The Delivered Event Report is not generated

for analog sets when the SAC feature is activated and the set is receiving a call.

Service-Observing

cstaMonitorDevice-monitored stations may be service-observed or service observers.

When a monitored station is the observer, and it is bridged onto a call for the purpose of

service observing, the Established Event Report is sent to the observer‘s

cstaMonitorDevice() requests as well as to all other monitor requests for that call.

Temporary Bridged Appearances

There is no event provided when a temporary bridged appearance is created at a

multifunction set. If the user is connected to the call (becomes active on such an

appearance), the Established Event Report is provided. If a user goes on hook after

having been connected on such an appearance, a Connection Cleared Event Report

(normal clearing) is generated for the disconnected extension (bridged appearance).

If the call is dropped from the temporary bridged appearance by someone else, a

Connection Cleared Event Report is also provided.

Temporary bridged appearances are not supported with analog sets. Analog sets get the

Diverted Event Report when such an appearance would normally be created for a

multifunction set.

The call state provided to queries about extensions with temporary bridged appearances

will be ‘‘bridged‘‘ if the extension is not active on the call or it will be ‘‘connected‘‘ if the

extension is active on the call.

Terminating Extension Group (TEG)

Members of a TEG may be monitored by the cstaMonitorDevice() Service. A TEG

behaves similarly to bridging for the purpose of event reporting. If cstaMonitorDevice-

monitored stations are members of a terminating group, an incoming call to the group

will cause a Delivered Event Report to be sent to all cstaMonitorDevice() requests for

members of the terminating group. On the cstaMonitorDevice() request for the

member of the group that answers the call, an Established Event Report is returned to

the answering member‘s cstaMonitorDevice() request(s) which contains the station

that answered the call. All the cstaMonitorDevice() requests for the other group

members (non-answering members without TEG buttons) receive a Diverted Event

724 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Report. When a button TEG member goes on hook but the TEG itself does not drop

from the call, no event is sent but the state of that party changes from the connected

state to the bridged state.

The Connection Cleared Event Report is not sent to each member‘s cstaMonitor-

Device() requests until the entire TEG drops from the call (as opposed to an individual

member going on hook).

Members that are not connected to the call while the call is connected to another TEG

member are in the bridged state. When the only connected member of the TEG

transitions to the held state, the state for all members of the TEG changes to the held

state even if they were previously in the bridged state. There is no event report sent over

the cstaMonitorDevice() requests for the bridged user(s) for this transition.

All members of the TEG may have individual cstaMonitorDevice() requests. Each will

receive appropriate events as applicable to the monitored station.

Transfer

Manual transfer from a station monitored by a cstaMonitorDevice() request is allowed

subject to the feature‘s restrictions. The Held Event Report is provided as a result of the

first button push (or switch-hook flash for analog sets). The Transferred Event Report is

provided as a result of the second button push (or on-hook for analog sets), and only if

the transfer is successfully completed. The Transferred Event Report is sent to all

monitor requests for the resultant call.

Trunk-to-Trunk Transfer

Existing rules for trunk-to-trunk transfer from a station user will remain unchanged for

monitored calls. In such cases, transfers requested via Transfer Call request will be

negatively acknowledged. When this feature is enabled, monitored calls transferred from

trunk-to-trunk will be allowed, but there will be no further notification.

725 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Chapter 12: Routing Service Group

The Routing Service Group provides the services that allow the switch to request and

receive routing instructions for a call. These instructions, issued by a client routing server

application, are based upon the incoming call information provided by the switch.

The following Routing services and events are provided:

 Route End Event on page 726

 Route End Service (TSAPI Version 2) on page 730

 Route End Service (TSAPI Version 1) on page 733

 Route Register Abort Event on page 734

 Route Register Cancel Service on page 736

 Route Register Service on page 739

 Route Request Event (TSAPI Version 2) on page 742

 Route Request Event (TSAPI Version 1) on page 759

 Route Select Service (TSAPI Version 2) on page 763

 Route Select Service (TSAPI Version 1) on page 775

 Route Used Event (TSAPI Version 2) on page 777

 Route Used Event (TSAPI Version 1) on page 781

Chapter 12: Routing Service Group

726 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Route End Event

Summary

 Direction: Switch to Client

 Event: CSTARouteEndEvent

 Service Parameters: routeRegisterReqID, routingCrossRefID, errorValue

Functional Description:

This event is sent by the switch to terminate a routing dialog for a call and to inform the

routing server application of the outcome of the call routing.

Service Parameters:

routeRegisterReqID [mandatory] Contains the handle to the routing registration session
for which the application is providing routing services. The

application received this handle in a CSTARouteRegisterReqConf-

Event confirmation to a cstaRouteRegisterReq() request.

routingCrossRefID [mandatory] Contains the handle to the CSTA call routing dialog for
a call. The application previously received this handle in the

CSTARouteRequestExtEvent for the call. This is the routing dialog

that the switch is ending.

errorValue [mandatory] Contains the cause code for the reason why the switch
is ending the routing dialog. One of the following values will be
returned:

 GENERIC_UNSPECIFIED (0) (CS0/16)

– The call has been routed successfully.

– The adjunct route request to route using Network Call
Redirection (NCR) resulted in the call not being routed by
NCR because of an internal system error.

 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY (CS0/50)

The adjunct route request to route using NCR resulted in the
call not being routed by NCR because the NCR contained
incorrectly administered trunk (NCR is active but not set up
correctly).

 INVALID_CALLING_DEVICE (5) (CS3/15) Upon routing to an

agent (for a direct-agent call), the agent is not logged in.

 Route End Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 727

 PRIVILEGE_VIOLATION_ON_SPECIFIED_DEVICE (8)

(CS3/43) Lack of calling permission; for example, for an ARS

call, there is an insufficient Facility Restriction Level (FRL). For
a direct-agent call, the originator‘s Class Of Restriction (COR)
or the destination agent‘s COR does not allow a direct-agent
call.

 INVALID_DESTINATION (14) (CS0/28) The destination

address in the cstaRouteSelectInv() is invalid.

 The adjunct route request to route using NCR resulted in the
call not being routed by NCR because the NCR contained in
invalid PSTN number

 INVALID_OBJECT_TYPE (18) (CS3/11) Upon routing to an

agent (for direct-agent call), the agent is not a member of the
specified split.

 INVALID_OBJECT_STATE (22) A Route Select request was

received by the TSAPI Service in the wrong state. A second
Route Select request sent by the application before the routing
dialog is ended may cause this.

 NETWORK_BUSY (35) (CS0/34) The adjunct route request to

route using NCR resulted in the call not being routed by NCR
because there was no Network Call Transfer (NCT) outgoing
trunk.

 NETWORK_OUT_OF_SERVICE (36) (CS3/38)

– The adjunct route request to route using NCR resulted in
the call not being routed by NCR because the NCT
contained an invalid PSTN number, and the second leg
cannot be set up.

– The adjunct route request to route using NCR resulted in
the call not being routed by NCR because of a PSTN
Network Call Deflection (NCD) network error.

– .The adjunct route request to route using NCR resulted in
the call not being routed by NCR because of a PSTN NCD
no disc error.

 NO_ACTIVE_CALL (24) (CS0/86, CS3/86) The call was

dropped (for example, caller abandons, vector disconnect timer
times out, a non-queued call encounters a "stop" step, or the
application clears the call) while waiting for a
cstaRouteSelectInv() response.

Chapter 12: Routing Service Group

728 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 NO_CALL_TO_ANSWER (28) (CS3/30) The call has been

redirected. The switch has canceled or terminated any

outstanding CSTARouteRequestExtEvent(s) for the call after

receiving the first valid cstaRouteSelectInv() message. The

switch sends a Route End Event with this cause to all other

outstanding CSTARouteRequestExtEvent(s) for the call. Note

that this error can happen when Route Registers are registered
for the same routing device from two different AE Servers and
the switch is set to send multiple Route Requests for the same
call.

 PRIVILEGE_VIOLATION_ON_SPECIFIED_DEVICE (8)

(CS3/43) The adjunct route request to route using NCR

resulted in the call not being routed by NCR because the PSTN
NCD exceeds the maximum redirections.

 RESOURCE_BUSY (33) (CS0/17) The destination is busy and

does not have coverage. The caller will hear either a reorder or
busy tone.

 PERFORMANCE_LIMIT_EXCEEDED (52) (CS0/102) Call vector

processing encounters any steps other than wait,
announcement, goto, or stop after the

CSTARouteRequestExtEvent (adjunct routing command) has

been issued. This can also happen when a wait step times out.

When the switch sends CSTARouteEndEvent with this cause,

call vector processing continues.

 VALUE_OUT_OF_RANGE (3) (CS0/96) The adjunct route

request to route using NCR resulted in the call not being routed
by NCR because Route Select does not contain a called
number.

Detailed Information:

An application may receive one Route End Event and one Universal Failure for a Route

Select request for the same call in the following call scenario:

 The TSAPI Service sends a Route Request to the application on behalf of the
switch.

 The caller drops the call.

 The application sends a Route Select Request to the TSAPI Service.

 The TSAPI Service sends a Route End Event (errorValue = NO_ACTIVE_CALL)

to the application before receiving the Route Select Request.

 The TSAPI Service receives the Route Select Request, but the call has been
dropped.

 The TSAPI Service sends a Universal Failure for the Route Select request

(errorValue = INVALID_CROSS_REF_ID) to the application.

 Route End Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 729

Syntax

#include <acs.h>

#include <csta.h>

/* CSTARouteEndEvent - Route Select Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAEVENTREPORT */

 EventType_t eventType; /* CSTA_ROUTE_END */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 union

 {

 CSTARouteEndEvent_t routeEnd;

 } u;

 } cstaEventReport;

 } event;

} CSTAEvent_t

typedef struct CSTARouteEndEvent_t {

 RouteRegisterReqID_t routeRegisterReqID,

 RoutingCrossRefID_t routingCrossRefID,

 CSTAUniversalFailure_t errorValue,

} CSTARouteEndEvent_t;

typedef long RouteRegisterReqID_t;

typedef long RoutingCrossRefID_t;

Chapter 12: Routing Service Group

730 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Route End Service (TSAPI Version 2)

Summary

 Direction: Client to Switch

 Function: cstaRouteEndInv()

 Service Parameters: routeRegisterReqID, routingCrossRefID, errorValue

 Ack Parameters: noData

 Nak Parameter: universalFailure

Functional Description:

This service is sent by the routing server application to terminate a routing dialog for a

call. The service request includes a cause value giving the reason for the routing dialog

termination.

Service Parameters:

routeRegisterReqID [mandatory] Contains the handle to the routing registration session
for which the application is providing routing services. The routing

server application received this handle in a CSTARouteRegister-

ReqConfEvent confirmation to a cstaRouteRegisterReq()

request.

routingCrossRefID [mandatory] Contains the handle to the CSTA call routing dialog for
a call. The routing server application previously received this

handle in the CSTARouteRequestExtEvent for the call. This is the

routing dialog that the application is terminating.

errorValue [mandatory] Contains the cause code for the reason why the
application is terminating the routing dialog. Any CSTA
universalFailure error code can be sent.

 The errorValue is ignored by Communication Manager and has

no effect for the routed call, but it must be present in the API.
Suggested error codes that may be useful for error logging
purposes are:

 GENERIC_UNSPECIFIED (0) Normal termination (for example,

the application does not want to route the call or does not know
how to route the call).

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid

routeRegisterReqID has been specified in the

cstaRouteEndInv() request.

 Route End Service (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 731

 RESOURCE_BUSY (33) The routing server is too busy to handle

the route request.

 RESOURCE_OUT_OF_SERVICE (34) The routing service

temporarily unavailable due to internal problem (for example,
the database is out of service).

Ack Parameters:

 None for this service.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this event

may contain the following error value, or one of the error values
described in Table 20: Common switch-related CSTA Service errors -
- universalFailure on page 817.

 INVALID_CROSS_REF_ID (17) An invalid routeRegisterReqID

or routeCrossRefID has been specified in the Route Ended

request.

Detailed Information:

 If an application terminates a Route Request via a cstaRouteEndInv() service

request, the switch continues vector processing.

 An application may receive one Route End Event and one Universal Failure for a

cstaRouteEndInv() request for the same call in the following call scenario:

– The TSAPI Service sends a CSTARouteRequestEvent to the application on

behalf of the switch.

– The caller drops the call.

– The application sends a cstaRouteEndInv() request to the TSAPI Service.

– The TSAPI Service sends a CSTARouteEndEvent (errorValue =

NO_ACTIVE_CALL) to the application before receiving the Route Select

Request.

– The TSAPI Service receives the cstaRouteEndInv() request, but the call

has been dropped.

– The TSAPI Service sends a universalFailure for the cstaRouteEndInv()

request (errorValue = INVALID_CROSS_REF_ID) to the application.

Chapter 12: Routing Service Group

732 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaRouteEndInv() - Service Request */

RetCode_t cstaRouteEndInv(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 RouteRegisterReqID_t routeRegisterReqID,

 RoutingCrossRefID_t routingCrossRefID,

 CSTAUniversalFailure_t errorValue,

 PrivateData_t *privateData);

typedef long RouteRegisterReqID_t;

typedef long RoutingCrossRefID_t;

 Route End Service (TSAPI Version 1)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 733

Route End Service (TSAPI Version 1)

Summary

 Direction: Client to Switch

 Function: cstaRouteEnd()

 Service Parameters: routeRegisterReqID, routingCrossRefID, errorValue

Functional Description:

This service is sent by the routing server application to terminate a routing dialog for a

call. The service request includes a cause value giving the reason for the routing dialog

termination.

Detailed Information:

An application may receive two CSTARouteEndEvent(s) for the same call in one of the

following call scenarios:

 The TSAPI Service sends a CSTARouteRequestEvent to the application on

behalf of the switch.

 The caller drops the call.

 The application sends a cstaRouteSelect() to the TSAPI Service.

 The TSAPI Service sends a CSTARouteEndEvent (errorValue =

NO_ACTIVE_CALL) to the application before receiving the Route Select request.

 The TSAPI Service receives the cstaRouteSelect() request, but the call has

been dropped.

 The TSAPI Service sends a CSTARouteEndEvent (errorValue =

INVALID_CROSS_REF_ID) to the application.

Syntax

#include <acs.h>

#include <csta.h>

/* cstaRouteEnd() - Service Request */

RetCode_t cstaRouteEnd(

 ACSHandle_t acsHandle,

 RouteRegisterReqID_t routeRegisterReqID,

 RoutingCrossRefID_t routingCrossRefID,

 CSTAUniversalFailure_t errorValue,

 PrivateData_t *privateData);

typedef long RouteRegisterReqID_t;

typedef long RoutingCrossRefID_t;

Chapter 12: Routing Service Group

734 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Route Register Abort Event

Summary

 Direction: Switch to Client

 Event: CSTARouteRegisterAbortEvent

 Service Parameters: routeRegisterReqID

Functional Description:

This event notifies the application that the TSAPI Service or switch aborted a routing

registration session. After the abort occurs, the application receives no more CSTA-

RouteRequestExtEvent(s) from this routing registration session and the route-

RegisterReqID is no longer valid. The routing requests coming from the routing device

will be sent to the default routing server, if a default routing registration is still active.

Service Parameters:

routeRegisterReqID [mandatory] Contains the handle to the routing registration session
for which the application is providing routing services. The

application received this handle in a CSTARouteRegisterReqConf-

Event confirmation to a cstaRouteRegisterReq() request.

Detailed Information:

 If no CTI link has ever received any CSTARouteRequestExtEvent(s) for the

registered routing device and all of the CTI links are down, then this event is not
sent.

 In a multi-link configuration, if at least one link that has received at least one

CSTARouteRequestExtEvent for the registered routing device is up, this event is

not sent. It is sent only when all of the CTI links that have received at least one

CSTARouteRequestExtEvent for the registered routing device are down.

 NOTE:

How Communication Manager sends the CSTARouteRequestExtEvent(s) for

the registered routing device, via which CTI links, is controlled by the call
vectoring administered on the switch. A routing device can receive

CSTARouteRequestExtEvent(s) from different CTI links. It is possible that

links are up and down without generating this event.

 If the application wants to continue the routing service after the CTI link comes

back up, it must issue a cstaRouteRegisterReq() to re-establish a routing

registration session for the routing device.

 The Route Register Abort Event is sent when a competing application sends a
route request and it has the same criteria (login, application name, and IP
address).

 Route Register Abort Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 735

Syntax

#include <acs.h>

#include <csta.h>

/* CSTARouteRegisterAbortEvent */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAEVENTREPORT */

 EventType_t eventType; /* CSTA_ROUTE_REGISTER_ABORT */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 { struct

 {

 union

 {

 CSTARouteRegisterAbortEvent_t registerAbort;

 } u;

 } cstaEventReport;

 } event;

} CSTAEvent_t;

typedef struct CSTARouteRegisterAbortEvent_t {

 RouteRegisterReqID_t routeRegisterReqID,

} CSTARouteRegisterAbortEvent_t;

typedef long RouteRegisterReqID_t;

Chapter 12: Routing Service Group

736 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Route Register Cancel Service

Summary

 Direction: Client to Switch

 Function: cstaRouteRegisterCancel()

 Confirmation Event: CSTARouteRegisterCancelConfEvent

 Service Parameters: routeRegisterReqID

 Ack Parameters: noData

 Nak Parameter: universalFailure

Functional Description:

Client applications use cstaRouteRegisterCancel() to cancel a previously registered

cstaRouteRegisterReq() session. When this service request is positively

acknowledged, the client application is no longer a routing server for the specific routing

device and the TSAPI Service stops sending CSTARouteRequestEvent(s) for the

specific routing device associated with the routeRegisterReqID to the requesting client

application. The TSAPI Service will send any further CSTARouteRequestEvent(s) from

the routing device to the default routing server application, if there is one registered.

Service Parameters:

routeRegisterReqID [mandatory] Contains the handle to the routing registration session
for which the application is canceling. The routing server

application received this handle in a CSTARouteRegisterReqConf-

Event confirmation to a cstaRouteRegisterReq() request.

Ack Parameters:

 None for this service.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error value, or one of the error values
described in Table 20: Common switch-related CSTA Service errors -
- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid

routeRegisterReqID has been specified in the request.

 Route Register Cancel Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 737

Detailed Information:

An application may receive CSTARouteRequestExtEvent after a cstaRouteRegister-

Cancel() request is sent and before a CSTARouteRegisterCancelConfEvent response

is received. The application should ignore the CSTARouteRequestExtEvent. If a

cstaRouteSelectInv() request is sent for the CSTARouteRequestExtEvent, a

CSTARouteEndEvent response will be received with error INVALID_CSTA_DEVICE_-

IDENTIFIER. If a cstaRouteEndInv() request is sent for the CSTARouteRequestExt-

Event, it will be ignored. The outstanding CSTARouteRequestExtEvent will receive no

response and will time out eventually.

Chapter 12: Routing Service Group

738 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaRouteRegisterCancel() - Service Request */

RetCode_t cstaRouteRegisterCancel(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 RouteRegisterReqID_t routeRegisterReqID,

 PrivateData_t *privateData);

typedef long RouteRegisterReqID_t;

/* CSTARouteRegisterCancelConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType;

 /* CSTA_ROUTE_REGISTER_CANCEL_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTARouteRegisterCancelConfEvent_t routeCancel;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTARouteRegisterCancelConfEvent_t {

 RouteRegisterReqID_t routeRegisterReqID;

} CSTARouteRegisterCancelConfEvent_t;

 Route Register Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 739

Route Register Service

Summary

 Direction: Client to Switch

 Function: cstaRouteRegisterReq()

 Service Parameters: routingDevice

 Ack Parameters: routeRegisterReqID

 Nak Parameter: universalFailure

Functional Description:

Client applications use cstaRouteRegisterReq() to register as a routing server for a

specific device. As such, the application will we receive CSTARouteRequestExt-

Event(s) for that device. The application must register for routing services before it can

receive any CSTARouteRequestExtEvent(s) from the routing device. An application

may be a routing server for more than one routing device. For a specific routing device,

however, the TSAPI Service allows only one application registered as the routing server.

If a routing device already has a routing server registered, subsequent cstaRoute-

RegisterReq() requests will be negatively acknowledged, except as described in

Special usage cases. This special usage is introduced with AE Services 4.0.

Special usage cases

In some cases it is desirable to allow an application to re-register as a routing device.

For example, if the application loses its connection to the AE Services server and then

establishes a new connection to the AE Services server (i.e., opens a new ACS stream),

the application is allowed to re-register itself as a routing server for the same device as

long as the following criteria are met:

 The login (LoginID_t) provided by the application in the acsOpenStream()

request matches that of the previously registered application

 The application name (AppName_t) provided by the application in the

acsOpenStream() request matches that of the previously registered application

 The IP address of the client machine matches that of the previously registered
application.

Chapter 12: Routing Service Group

740 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Service Parameters:

routingDevice [mandatory] Contains the device identifier of the routing device for
which the application is registering to be the routing server. A valid
routing device on Communication Manager is a VDN extension which
has the proper routing vector step set up to send the Route Requests

to a TSAPI Service. A NULL device identifier indicates that the

requesting application will be the default routing server for
Communication Manager. A default routing server will receive

CSTARouteRequestExtEvent(s) from routing devices of

Communication Manager that do not have a registered routing
server.

Ack Parameters:

routeRegisterReqID [mandatory] Contains a handle to the routing registration session
for a specific routing device (or for the default routing server). All

routing dialogs (identified by routingCrossRefID[s]) for a routing

device occur over this routing registration session.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error value, or one of the error values
described in Table 20: Common switch-related CSTA Service errors -
- universalFailure on page 817.

 OUTSTANDING_REQUEST_LIMIT_EXCEEDED (44) The specified

routing device already has a registered routing server.

Detailed Information:

 The cstaRouteRegisterReq() service is handled by the TSAPI Service, not by

Communication Manager. The Route Requests are sent from the switch to the
TSAPI Service through call vector processing. From the perspective of the
switch, the TSAPI Service is the routing server. The TSAPI Service processes

the Route Requests and sends the CSTARouteRequestExtEvent(s) to the

proper routing servers based on the route registrations from applications.

 If no routing server is registered for Communication Manager, all Route Requests
from the switch will be terminated by the TSAPI Service with a Route End

Request, as if cstaRouteEndInv() requests were received from a routing

server.

 Route Register Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 741

Syntax

#include <acs.h>

#include <csta.h>

/* cstaRouteRegisterReq() - Service Request */

RetCode_t cstaRouteRegisterReq(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 DeviceID_t *routingDevice,

 PrivateData_t *privateData);

typedef long RouteRegisterReqID_t;

/* CSTARouteRegisterReqConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_ROUTE_REGISTER_REQ_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTARouteRegisterReqConfEvent_t routeRegister;

 } u;

 } cstaConfirmation;

 }event;

} CSTAEvent_t;

typedef struct CSTARouteRegisterReqConfEvent_t {

 RouteRegisterReqID_t registerReqID;

} CSTARouteRegisterReqConfEvent_t;

Chapter 12: Routing Service Group

742 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Route Request Event (TSAPI Version 2)

Summary

 Direction: Switch to Client

 Event: CSTARouteRequestExtEvent

 Private Data Event: ATTRouteRequestEvent (private data version 7 and later),

ATTV6RouteRequestEvent (private data version 6), ATTV5RouteRequestEvent

(private data version 5), ATTV4RouteRequestEvent (private data versions 2, 3,

and 4)

 Service Parameters: routeRegisterReqID, routingCrossRefID,

currentRoute, callingDevice, routedCall, routedSelAlgorithm, priority,
setupInformation

 Private Parameters: trunkGroup, trunkMember, lookaheadInfo,

userEnteredCode, userInfo, ucid, callOrigintorInfo, flexibleBilling,
deviceHistory

Functional Description:

The TSAPI Service sends a CSTARouteRequestExtEvent to a routing server application

in order to request a destination for a call arrived on a routing device. The application

may have registered as the routing server for the routing device on the switch that is

making the request, or it may have registered as the default routing server. The

CSTARouteRequestExtEvent includes call-related information. A routing server

application typically uses the call-related information and a database to determine the

destination for the call. The routing server application responds to the

CSTARouteRequestExtEvent via a cstaRouteSelectInv() request that specifies a

destination for the call or a cstaRouteEndInv() request, if the application has no

destination for the call.

 Route Request Event (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 743

Service Parameters:

routeRegisterReqID [mandatory] Contains a handle to the routing registration session
for which the application is providing routing service. The routing

server application received this handle in a CSTARouteRegister-

ReqConfEvent confirmation to a cstaRouteRegisterReq()

request.

routingCrossRefID [mandatory] Contains the handle for the routing dialog of this call.
This identifier is unique within a routing session identified by the

routeRegisterReqID.

currentRoute [mandatory] Specifies the destination of the call. This is the VDN
extension number first entered by the call (see Detailed
Information)

callingDevice [optional - supported] Specifies the call origination device. This is
the calling device number for on-PBX originators or incoming calls
over PRI facilities. For incoming calls over non-PRI facilities, the
trunk identifier is provided.

 NOTE:

The trunk identifier is a dynamic device identifier. It cannot
be used to access a trunk in Communication Manager.

routedCall [optional - supported] Specifies the callID of the call that is to be

routed. This is the connectionID of the routed call at the routing

device.

routedSelAlgorithm [optional - partially supported] Indicates the type of routing
algorithm requested. It is set to SV_NORMAL.

priority [optional - not supported] Indicates the priority of the call and may
affect selection of alternative routes.

setupInformation [optional - not supported] Contains an ISDN call setup message if
available.

Chapter 12: Routing Service Group

744 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Parameters:

trunkGroup [optional] Specifies the trunk group number from which the call is

originated. The callingDevice and trunk parameters are mutually

exclusive. This parameter is supported by private data version 5 and
later only.

trunkMember [optional] This parameter specifies the trunk member number from
which this call originated.

trunk [optional] Specifies the trunk group number from which the call is
originated. This parameter is supported by private data versions 2, 3,
and 4.

lookaheadInfo [optional] Specifies the lookahead interflow information received
from the incoming call that is to be routed. The lookahead interflow is
a Communication Manager feature that routes some of the incoming
calls from one switch to another so that they can be handled more
efficiently and will not be lost. The switch that overflows the call
provides the lookahead interflow information. The routing server
application may use the lookahead interflow information to determine
the destination of the call. Please refer to the Communication
Manager Feature Description for more information about lookahead
interflow. If the lookahead interflow type is set to

"LAI_NO_INTERFLOW", no lookahead interflow private data is provided

with this event.

userEnteredCode [optional] Specifies the code/digits that may have been entered by
the caller through the Communication Manager call prompting

feature or the collected digits feature. If the userEnteredCode code

is set to "UE_NONE", no userEnteredCode private data is provided

with this event.

userInfo [optional] Contains user-to-user information. This parameter allows
the application to associate caller information, up to 32 (private data
versions 2-5) or 96 (private data versions 6 and later) bytes, with a
call. It may be a customer number, credit card number,
alphanumeric digits, or a binary string.

 NOTE:

An application using private data version 5 or earlier can only

receive a maximum of 32 bytes of data in userInfo,

regardless of the size of the data sent by the switch.

 Route Request Event (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 745

 The following UUI protocol types are supported:

 UUI_NONE — There is no data provided in the data parameter.

 UUI_USER_SPECIFIC — The content of the data parameter is a

binary string. The correct size (maximum of 32 or 96 bytes) of

data must be specified in the size parameter.

 UUI_IA5_ASCII — The content of the data parameter must be a

null-terminated IA5 (ASCII) character string. The correct size

(maximum of 32 or 96 bytes excluding the null terminator) of

data must be specified in the size parameter.

ucid [optional] Specifies the Universal Call ID (UCID) of the routed call.
The UCID is a unique call identifier across switches and the network.
A valid UCID is a null-terminated ASCII character string. If there is no

UCID associated with this call, the ucid contains the ATT_NULL_UCID

(a 20-character string of all zeros). This parameter is supported by
private data version 5 and later only.

callOriginator [optional] Specifies the callOriginatorInfo of the call originator

such as coin call, 800-service call, or cellular call. This information is
from the network, not from Communication Manager. The type is
defined in Bellcore publication "Local Exchange Routing Guide"
(document number TR-EOP-000085). A list of the currently defined
codes, as of June 1994, is provided in the Detailed Information sub-
section of the "Delivered Event" section. This parameter is supported
by private data version 5 and later only.

flexibleBilling [optional] Specifies whether the Flexible Billing feature is allowed for
this call and the Flexible Billing customer option is assigned on the

switch. If this parameter is set to TRUE, the billing rate can be

changed for the incoming 900-type call using the Set Bill Rate
Service. This parameter is supported by private data version 5 and
later only.

deviceHistory The deviceHistory parameter type specifies a list of DeviceIDs

that were previously associated with the call. A device becomes
associated with the call whenever there is a CSTA connection
created at the device for the call. The association may also result
from a relationship between a device and a call outside the CSTA

switching function. A device becomes part of the deviceHistory list

when it is no longer associated with the call (for example: when a call
is redirected from a device, when a call is transferred away from a
device, and when a device clears from a call).

Chapter 12: Routing Service Group

746 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 Conceptually, the deviceHistory parameter consists of a list of

entries, where each entry contains information about a DeviceID that

had previously been associated with the call, and the list is ordered
from the first device that left the call to the device that most recently
left the call. However, for AE Services, the list will contain at most
one entry.

The entry consists of:

 olddeviceID - the device that left the call. This information

should be consistent with the subject device in the event that
represented the device leaving the call. For example: the

divertingDevice provided in the Diverted event for that

redirection, the transferring device in the Transferred event for a
transfer, or the clearing device in the Connection Cleared event.

 cause - the reason the device left the call or was redirected. This

information should be consistent with the cause provided in the

event that represented the device leaving the call (for example,
the cause provided in the Diverted, Transferred, or Connection
Cleared event).

 oldconnectionID - the CSTA ConnectionID that represents the

last ConnectionID associated with the device that left the call.

This information should be consistent with the subject connection
in the event that represented the device leaving the call (for

example, the ConnectionID provided in the Diverted,

Transferred, or Connection Cleared event).

 NOTE:

The Device History cannot be guaranteed for events that
happened before monitoring started. Notice that the cause

value should be EC_NETWORK_SIGNAL if an ISDN Redirected

Number was provided; otherwise the cause value is set to
match the cause value of the event that was flowed to report
the dropped connection.

 Route Request Event (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 747

Detailed Information:

 The Routing Request Service can only be administered through the Basic Call
Vectoring feature. The switch initiates the Routing Request when the Call
Vectoring processing encounters the adjunct routing command in a call vector.
The vector command will specify a CTI link number through which the switch will
send the Route Request to the TSAPI Service.

 Multiple adjunct routing commands are allowed in a call vector. The Multiple
Outstanding Route Requests feature allows 16 outstanding Route Requests per
call. The Route Requests can be over the same or different CTI links. The
requests are all made from the same vector. They may be specified back-to-
back, without intermediate (wait, announcement, goto, or stop) steps. If the
adjunct routing commands are not specified back-to-back, previous outstanding
Route Requests are canceled when an adjunct routing vector step is executed.

 The first Route Select response received by the switch is used as the route for
the call, and all other Route Requests for the call are canceled via

CSTARouteEndEvent(s).

 If an application terminates the CSTARouteRequestExtEvent request via a

cstaRouteEndInv() service request, the switch continues vector processing.

 A CSTARouteRequestExtEvent request will not affect the Call Event Reports.

 Like the Delivered and Established Events, the Route Request currentRoute

parameter contains the called device. The currentRoute in Route Request

contains the originally called device if there is no distributing device, or the
distributing device if the call vectoring with VDN override feature of the PBX is
turned on. In the latter case, the originally called device is not reported. The

distributingDevice feature is not supported in the Route Request private

data. See the "Delivered Event" section for detailed information on the

distributingDevice parameter.

Chapter 12: Routing Service Group

748 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* CSTARouteRequestExtEvent - CSTA Request */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAREQUEST */

 EventType_t eventType; /* CSTA_ROUTE_REQUEST_EXT */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTARouteRequestExtEvent_t routeRequestExt;

 } u;

 } cstaRequest;

 } event;

} CSTAEvent_t;

typedef struct CSTARouteRequestExtEvent_t {

 RouteRegisterReqID_t routeRegisterReqID;

 RoutingCrossRefID_t routingCrossRefID;

 CalledDeviceID_t currentRoute;

 CallingDeviceID_t callingDevice;

 ConnectionID_t routedCall;

 SelectValue_t routedSelAlgorithm;

 unsigned char priority;

 SetUpValues_t setupInformation;

} CSTARouteRequestExtEvent_t;

typedef long RouteRegisterReqID_t;

typedef long RoutingCrossRefID_t;

typedef ExtendedDeviceID_t CallingDeviceID_t;

typedef ExtendedDeviceID_t CalledDeviceID_t;

typedef struct ExtendedDeviceID_t {

 DeviceID_t deviceID;

 Route Request Event (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 749

 DeviceIDType_t deviceIDType;

 DeviceIDStatus_t deviceIDStatus;

} ExtendedDeviceID_t;

typedef struct ConnectionID_t {

 long callID;

 DeviceID_t deviceID;

 ConnectionID_Device_t devIDType;

} ConnectionID_t;

typedef enum ConnectionID_Device_t {

 STATIC_ID = 0,

 DYNAMIC_ID = 1

} ConnectionID_Device_t;

typedef enum SelectValue_t {

 SV_NORMAL = 0,

 SV_LEAST_COST = 1,

 SV_EMERGENCY = 2,

 SV_ACD = 3,

 SV_USER_DEFINED = 4

} SelectValue_t;

typedef struct SetupValues_t {

 unsigned int length;

 unsigned char *value;

} SetupValues_t;

Chapter 12: Routing Service Group

750 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Syntax

If private data accompanies a CSTARouteRequestExtEvent, then the private data would

be stored in the location that the application specified as the privateData parameter in

the acsGetEventBlock() or acsGetEventPoll() request. If the privateData pointer

is set to NULL in these requests, then the CSTARouteRequestExtEvent does not deliver

private data to the application.

If acsGetEventBlock() or acsGetEventPoll() returns a Private Data length of 0, then

no private data is provided with this Route Request Event.

Private Data Version 7 and Later Syntax

The deviceHistory parameter is added for private data version 7.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTRouteRequestEvent - CSTA Request Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_ROUTE_REQUEST */

 union

 {

 ATTRouteRequestEvent_t v6routeRequest;

 } u;

} ATTEvent_t;

typedef struct ATTRouteRequestEvent_t {

 DeviceID_t trunkGroup;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTUserToUserInfo_t userInfo;

 ATTUCID_t ucid;

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

 DeviceID_t trunkMember;

 DeviceHistory_t deviceHistory;

} ATTRouteRequestEvent_t;

typedef struct ATTLookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

 ATTUnicodeDeviceID_t uSourceVDN; /* sourceVDN in Unicode */

 Route Request Event (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 751

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t {

 unsigned short count;

 short value[64];

} ATTUnicodeDeviceID_t

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

Chapter 12: Routing Service Group

752 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 struct {

 unsigned short length; /* 0 indicates UUI not

 * present */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t {

 unsigned char hasInfo; /* if FALSE, no

 * callOriginatorType */

 short callOriginatorType;

} ATTCallOriginatorInfo_t;

typedef struct DeviceHistory_t {

 unsigned int count; /* at most 1 */

 DeviceHistoryEntry_t *deviceHistoryList;

} DeviceHistory_t;

typedef struct DeviceHistoryEntry_t {

 DeviceID_t olddeviceID;

 CSTAEventCause_t cause;

 ConnectionID_t oldconnectionID;

} DeviceHistoryEntry_t;

 Route Request Event (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 753

Private Data Version 6 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV6RouteRequestEvent - CSTA Request Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV6_ROUTE_REQUEST */

 union

 {

 ATTV6RouteRequestEvent_t v6routeRequest;

 } u;

} ATTEvent_t;

typedef struct ATTV6RouteRequestEvent_t {

 DeviceID_t trunkGroup;

 ATTLookaheadInfo_t lookaheadInfo;

 ATTUserEnteredCode_t userEnteredCode;

 ATTUserToUserInfo_t userInfo;

 ATTUCID_t ucid;

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

 DeviceID_t trunkMember;

} ATTV6RouteRequestEvent_t;

typedef struct ATTLookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

 ATTUnicodeDeviceID_t uSourceVDN; /* sourceVDN in Unicode */

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t {

 unsigned short count;

 short value[64];

Chapter 12: Routing Service Group

754 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

} ATTUnicodeDeviceID_t

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct {

 unsigned short length; /* 0 indicates UUI not

 * present */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t {

 unsigned char hasInfo; /* if FALSE, no

 * callOriginatorType */

 short callOriginatorType;

} ATTCallOriginatorInfo_t;

 Route Request Event (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 755

Private Data Version 5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV5RouteRequestEvent - CSTA Request Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV5_ROUTE_REQUEST */

 union

 {

 ATTV5RouteRequestEvent_t v5routeRequest;

 } u;

} ATTEvent_t;

typedef struct ATTV5RouteRequestEvent_t {

 DeviceID_t trunkGroup;

 ATTLookaheadInfo_t lookaheadInfo

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

 ATTUCID_t ucid;

 ATTCallOriginatorInfo_t callOriginatorInfo;

 unsigned char flexibleBilling;

} ATTV5RouteRequestEvent_t;

typedef struct ATTLookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

 ATTUnicodeDeviceID_t uSourceVDN; /* sourceVDN in Unicode */

} ATTLookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

typedef struct ATTUnicodeDeviceID_t {

 unsigned short count;

 short value[64];

} ATTUnicodeDeviceID_t

Chapter 12: Routing Service Group

756 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

#define ATT_MAX_USER_CODE 25

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

typedef char ATTUCID_t[64];

typedef struct ATTCallOriginatorInfo_t {

 unsigned char hasInfo; /* if FALSE, no

 * callOriginatorType */

 short callOriginatorType;

} ATTCallOriginatorInfo_t;

 Route Request Event (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 757

Private Data Versions 2-4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV4RouteRequestEvent - CSTA Request Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV4_ROUTE_REQUEST */

 union

 {

 ATTV4RouteRequestEvent_t v4routeRequest;

 } u;

} ATTEvent_t;

typedef struct ATTV4RouteRequestEvent_t {

 DeviceID_t trunk;

 ATTV4LookaheadInfo_t lookaheadInfo

 ATTUserEnteredCode_t userEnteredCode;

 ATTV5UserToUserInfo_t userInfo;

} ATTV4RouteRequestEvent_t;

typedef struct ATTV4LookaheadInfo_t {

 ATTInterflow_t type;

 ATTPriority_t priority;

 short hours;

 short minutes;

 short seconds;

 DeviceID_t sourceVDN;

} ATTV4LookaheadInfo_t;

typedef enum ATTInterflow_t {

 LAI_NO_INTERFLOW = -1, /* indicates info not present */

 LAI_ALL_INTERFLOW = 0,

 LAI_THRESHOLD_INTERFLOW = 1,

 LAI_VECTORING_INTERFLOW = 2

} ATTInterflow_t;

typedef enum ATTPriority_t {

 LAI_NOT_IN_QUEUE = 0,

 LAI_LOW = 1,

 LAI_MEDIUM = 2,

 LAI_HIGH = 3,

 LAI_TOP = 4

} ATTPriority_t;

#define ATT_MAX_USER_CODE 25

Chapter 12: Routing Service Group

758 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

typedef struct ATTUserEnteredCode_t {

 ATTUserEnteredCodeType_t type;

 ATTUserEnteredCodeIndicator_t indicator;

 char data[ATT_MAX_USER_CODE];

 DeviceID_t collectVDN;

} ATTUserEnteredCode_t;

typedef enum ATTUserEnteredCodeType_t {

 UE_NONE = -1, /* indicates not provided */

 UE_ANY = 0,

 UE_LOGIN_DIGITS = 2,

 UE_CALL_PROMPTER = 5,

 UE_DATA_BASE_PROVIDED = 17,

 UE_TONE_DETECTOR = 32

} ATTUserEnteredCodeType_t;

typedef enum ATTUserEnteredCodeIndicator_t {

 UE_COLLECT = 0,

 UE_ENTERED = 1

} ATTUserEnteredCodeIndicator_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

 Route Request Event (TSAPI Version 1)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 759

Route Request Event (TSAPI Version 1)

Summary

 Direction: Switch to Client

 Event: CSTARouteRequestEvent

 Service Parameters: routeRegisterReqID, routingCrossRefID,

currentRoute, callingDevice, routedCall, routedSelAlgorithm, priority,
setupInformation

Functional Description:

The TSAPI Service sends a CSTARouteRequestEvent to a routing server application in

order to request a destination for a call arrived on a routing device. The application may

have registered as the routing server for the routing device on the switch that is making

the request, or it may have registered as the default routing server. The

CSTARouteRequestEvent includes call-related information. A routing server application

typically uses the call-related information and a database to determine the destination for

the call. The routing server application responds to the CSTARouteRequestEvent via a

cstaRouteSelect() request that specifies a destination for the call or a

cstaRouteEnd() request, if the application has no destination for the call.

Chapter 12: Routing Service Group

760 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Service Parameters:

routeRegisterReqID [mandatory] Contains a handle to the routing registration session
for which the application is providing routing service. The routing

server application received this handle in a CSTARouteRegister-

ReqConfEvent confirmation to a cstaRouteRegisterReq()

request.

routingCrossRefID [mandatory] Contains the handle for the routing dialog of this call.
This identifier is unique within a routing session identified by the

routeRegisterReqID.

currentRoute [mandatory] Specifies the destination of the call. This is the VDN
extension number first entered by the call (see Detailed
Information)

callingDevice [optional - supported] Specifies the call origination device. This is
the calling device number for on-PBX originators or incoming calls
over PRI facilities. For incoming calls over non-PRI facilities, the
trunk identifier is provided.

 NOTE:

The trunk identifier is a dynamic device identifier. It cannot
be used to access a trunk in Communication Manager.

routedCall [optional - supported] Specifies the callID of the call that is to be

routed. This is the connectionID of the routed call at the routing

device.

routedSelAlgorithm [optional - partially supported] Indicates the type of routing
algorithm requested. It is set to SV_NORMAL.

priority [optional - not supported] Indicates the priority of the call and may
affect selection of alternative routes.

setupInformation [optional - not supported] Contains an ISDN call setup message if
available.

Detailed Information:

 The first Route Select response received by the switch is used as the route for
the call, and all other Route Requests for the call are canceled via

CSTARouteEndEvents.

 If application terminates the CSTARouteRequestEvent request via a

cstaRouteEnd() service request, the switch continues vector processing.

 A CSTARouteRequestEvent request will not affect the Call Event Reports.

 Route Request Event (TSAPI Version 1)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 761

Syntax

#include <acs.h>

#include <csta.h>

/* CSTARouteRequestEvent - CSTA Request */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAREQUEST */

 EventType_t eventType; /* CSTA_ROUTE_REQUEST */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID; /* Not used for this event */

 union

 {

 CSTARouteRequestEvent_t routeRequest;

 } u;

 } cstaRequest;

 } event;

} CSTAEvent_t;

typedef struct CSTARouteRequestEvent_t {

 RouteRegisterReqID_t routeRegisterReqID;

 RoutingCrossRefID_t routingCrossRefID;

 DeviceID_t currentRoute;

 DeviceID_t callingDevice;

 ConnectionID_t routedCall;

 SelectValue_t routedSelAlgorithm;

 unsigned char priority;

 SetUpValues_t setupInformation;

} CSTARouteRequestEvent_t;

typedef long RouteRegisterReqID_t;

typedef long RoutingCrossRefID_t;

typedef char DeviceID_t[64];

typedef struct ConnectionID_t {

 long callID;

 DeviceID_t deviceID;

 ConnectionID_Device_t devIDType;

Chapter 12: Routing Service Group

762 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

} ConnectionID_t;

typedef enum ConnectionID_Device_t {

 STATIC_ID = 0,

 DYNAMIC_ID = 1

} ConnectionID_Device_t;

typedef enum SelectValue_t {

 SV_NORMAL = 0,

 SV_LEAST_COST = 1,

 SV_EMERGENCY = 2,

 SV_ACD = 3,

 SV_USER_DEFINED = 4

} SelectValue_t;

typedef struct SetupValues_t {

 unsigned int length;

 unsigned char *value;

} SetupValues_t;

 Route Select Service (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 763

Route Select Service (TSAPI Version 2)

Summary

 Direction: Client to Switch

 Function: cstaRouteSelectInv()

 Private Data Function: attV7RouteSelect() (private data version 7 and later),

attV6RouteSelect() (private data version 6), attV5RouteSelect() (private

data versions 2, 3, 4, and 5)

 Service Parameters: routeRegisterReqID, routingCrossRefID,

routeSelected, remainRetry, setupInformation, routeUsedReq

 Private Parameters: callingDevice, directAgentCallSplit,

priorityCalling, destRoute, collectCode, userProvidedCode, userInfo,
redirectType

 Ack Parameters: noData

 Nak Parameter: universalFailure

Functional Description:

The routing server application uses cstaRouteSelectInv() to provide a destination to

the switch in response to a CSTARouteRequestExtEvent for a call.

Chapter 12: Routing Service Group

764 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Service Parameters:

routeRegisterReqID [mandatory] Contains a handle to the routing registration session
for which the application is providing routing service. The routing

server application received this handle in a CSTARouteRegister-

ReqConfEvent confirmation to a cstaRouteRegisterReq()

request.

routingCrossRefID [mandatory] Contains the handle for the routing dialog of this call.

The application previously received this handle in the CSTARoute-

RequestExtEvent for the call.

routeSelected [mandatory] Specifies a destination for the call. If the destination is
an off-PBX number, it can contain the TAC/ARS/AAR information
(see destRoute).

remainRetry [optional - not supported] Specifies the number of times that the

application is willing to receive a CSTARouteRequestExtEvent for

this call in case the switch needs to request an alternate route.

setupInformation [optional - not supported] Contains a revised ISDN call setup
message that the switch will use to route the call.

routeUsedReq [optional - supported] Indicates a request to receive a CSTARoute-

UsedExtEvent for the call.

 If specified, the TSAPI Service always returns the same

destination information that is specified in the routeSelected

and destRoute of this cstaRouteSelectInv().

 Route Select Service (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 765

Private Parameters:

callingDevice [optional] Specifies the calling device. A NULL specifies that this

parameter is not present.

directAgentCallSplit [optional] Specifies the ACD agent‘s split extension for Direct-
Agent call routing. A Direct-Agent call is a special type of ACD
call that is directed to a specific agent rather than to any available

agent. The agent specified by routeSelected must be logged

into this split. A NULL parameter specifies that this is not a Direct-

Agent call.

priorityCalling [mandatory] Specifies the priority of the call. Values are "On"

(TRUE) or "Off" (FALSE). When "On" is selected, a priority call is

placed if the routeSelected is an on-PBX destination. When

"On" is selected for an off-PBX destination, the call will be denied.

destRoute [optional] Specifies the TAC/ARS/AAR information for off-PBX
destinations, if the information is not included in the

routeSelected. A NULL parameter specifies no TAC/ARS/AAR

information.

collectCode [optional] This parameter allows the application to request that a
DTMF tone detector (TN744) be connected to the routed call and
to detect and collect caller (call originator) entered code/digits.

 These digits are collected while the call is not in vector
processing. The switch handles these digits like dial-ahead
digits, and they may be used by Call Prompting features. The
code/digits collected are passed to the application via event
reports.

 The collectParty parameter in collectCode indicates to

which party on the call the tone detector should listen.
Currently, the call originator is the only option supported.

 The collectCode and userProvidedCode are mutually

exclusive. If collectCode is present, then

userProvidedCode cannot be present. A NULL indicates this

parameter is not specified. If the collectCode type is set to

"UC_NONE", it also indicates that no collectCode is sent with

this request.

 NOTE:

The collectCode parameter is no longer supported.

Applications should either set this parameter to NULL or

set the collectCode type to UC_NONE.

Chapter 12: Routing Service Group

766 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

userProvidedCode [optional] This parameter allows the application to send
code/digits (ASCII string with 0-9, *, and # only) with the routed
call. These code/digits are treated as dial-ahead digits for the
call, and are stored in a dial-ahead digit buffer.

 They can be collected (one at a time or in a group) using the
collect digits vector command(s) on the switch.

 The userProvidedCode and collectCode parameters are

mutually exclusive. If userProvidedCode is present, then

collectCode cannot be present.

 A NULL indicates no user provided code. If the

userProvidedCode type is set to "UP_NONE", it also indicates

no userEnteredCode is sent with this request.

 The # character terminates the Communication Manager
collection of user input so it is the last character present in the
string if it is sent.

 NOTE:

The user-to-user code collection stops when the user
enters the requested number of digits or enters a #
character to end the digit entry. If a user enters the #
before entering the requested number of digits, then the #
appears in the character string.

 Application designers must be aware that if a user enters
more digits than requested, the excess digits remain in the
Communication Manager prompting buffer and may therefore
interfere with any later digit collection or reporting.

userInfo [optional] Contains user-to-user information. This parameter
allows the application to associate caller information, up to 32
(private data versions 2-5) or 96 (private data versions 6 and
later) bytes, with a call. It may be a customer number, credit card
number, alphanumeric digits, or a binary string.

It is propagated with the call whether the call is routed to a
destination on the local switch or to a destination on a remote
switch over PRI trunks. The switch sends the user-to-user
information (UUI) in the ISDN SETUP message over the PRI
trunk to establish the call. The local and the remote switch
include the UUI in the Delivered Event Report and in the

CSTARouteRequestExtEvent to the application. A NULL indicates

that this parameter is not present.

An application using private data version 5 or earlier can only

receive a maximum of 32 bytes of data in userInfo, regardless of

the size of the data sent by the switch.

 Route Select Service (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 767

 The following UUI protocol types are supported:

 UUI_NONE — There is no data provided in the data parameter.

 UUI_USER_SPECIFIC — The content of the data parameter is

a binary string. The correct size (maximum of 32 or 96 bytes)

of data must be specified in the size parameter.

 UUI_IA5_ASCII — The content of the data parameter must

be a null-terminated IA5 (ASCII) character string. The correct
size (maximum of 32 or 96 bytes excluding the null terminator)
of data must be specified in the size parameter.

redirectType This optional parameter specifies whether or not Network Call

Redirection (NCR) should be invoked. Values are "On" (TRUE) or

"Off" (FALSE). When "On" is selected, the routeSelected service

parameter specifies a PSTN routing number (without an access
code) for NCR requests. If the parameter is not specified, then
the value defaults to "Off".

Ack Parameters:

 None for this service.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain one of the following error values, or one of the
error values described in Table 20: Common switch-related CSTA
Service errors -- universalFailure on page 817.

 INVALID_CSTA_DEVICE_IDENTIFIER (12) An invalid

routeRegisterReqID has been specified in the

cstaRouteSelectInv() request.

 INVALID_CROSS_REF_ID (17) An invalid routeCrossRefID has

been specified in the Route Select request.

Chapter 12: Routing Service Group

768 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Detailed Information:

An application may receive one CSTARouteEndEvent and one universalFailure for a

cstaRouteSelectInv() request for the same call in the following call scenario:

 The TSAPI Service sends a CSTARouteRequestExtEvent to the application on

behalf of the switch.

 The caller drops the call.

 The application sends a cstaRouteSelectInv() request to the TSAPI Service.

 The TSAPI Service sends a CSTARouteEndEvent (errorValue =

NO_ACTIVE_CALL) to the application before receiving the Route Select request.

 The TSAPI Service receives the cstaRouteSelectInv() request, but the call

has been dropped.

 The TSAPI Service sends a universalFailure for the cstaRouteSelectInv()

request (errorValue = INVALID_CROSS_REF_ID) to application.

Syntax

#include <acs.h>

#include <csta.h>

/* cstaRouteSelectInv() - Service Request */

RetCode_t cstaRouteSelectInv(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 RouteRegisterReqID_t routeRegisterReqID,

 RoutingCrossRefID_t routingCrossRefID,

 DeviceID_t *routeSelected,

 RetryValue_t remainRetry,

 SetUpValues_t *setupInformation,

 Boolean routeUsedReq,

 PrivateData_t *privateData);

typedef long RouteRegisterReqID_t;

typedef long RoutingCrossRefID_t;

typedef char DeviceID_t[64];

typedef short RetryValue_t;

typedef struct SetUpValues_t {

 unsigned int length;

 unsigned char *value;

} SetUpValues_t;

 Route Select Service (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 769

Private Data Version 7 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attV7RouteSelect() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attV7RouteSelect_t(

 ATTPrivateData_t *attPrivateData,

 DeviceID_t *callingDevice,

 DeviceID_t *directAgentCallSplit,

 Boolean priorityCalling,

 DeviceID_t *destRoute,

 ATTUserCollectCode_t *collectCode,

 ATTUserProvidedCode_t *userProvidedCode,

 ATTUserToUserInfo_t *userInfo,

 ATTRedirectType_t redirectType);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTUserCollectCode_t {

 ATTCollectCodeType_t type;

 short digitsToBeCollected; /* 1-24 digits */

 short timeout; /* 0-63 secs */

 ConnectionID_t collectParty; /* not supported

 * (defaults to

 * call

 * originator) */

 ATTSpecificEvent_t specificEvent; /* not supported

 * (defaults to

 * answer) */

} ATTUserCollectCode_t;

typedef enum ATTCollectCodeType_t {

 UC_NONE = 0, /* indicates UCC not present */

 UC_TONE_DETECTOR = 32

} ATTCollectCodeType_t;

typedef enum ATTSpecificEvent_t {

 SE_ANSWER = 11,

 SE_DISCONNECT = 4

Chapter 12: Routing Service Group

770 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

} ATTSpecificEvent_t;

typedef struct ATTUserProvidedCode_t {

 ATTProvidedCodeType_t type;

 char data[25];

} ATTUserProvidedCode_t;

typedef enum ATTProvidedCodeType_t {

 UP_NONE = 0, /* indicates UPC not present */

 UP_DATA_BASE_PROVIDED = 17

} ATTProvidedCodeType_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct {

 unsigned short length; /* 0 indicates UUI not

 * present */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

typedef enum ATTRedirectType_t {

 VDN = 0,

 NETWORK = 1

} ATTRedirectType_t;

 Route Select Service (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 771

Private Data Version 6 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attV6RouteSelect() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attV6RouteSelect(

 ATTPrivateData_t *attPrivateData,

 DeviceID_t *callingDevice,

 DeviceID_t *directAgentCallSplit,

 Boolean priorityCalling,

 DeviceID_t *destRoute,

 ATTUserCollectCode_t *collectCode,

 ATTUserProvidedCode_t *userProvidedCode,

 ATTUserToUserInfo_t *userInfo);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTUserCollectCode_t {

 ATTCollectCodeType_t type;

 short digitsToBeCollected; /* 1-24 digits */

 short timeout; /* 0-63 secs */

 ConnectionID_t collectParty; /* not supported

 * (defaults to

 * call

 * originator) */

 ATTSpecificEvent_t specificEvent; /* not supported

 * (defaults to

 * answer) */

} ATTUserCollectCode_t;

typedef enum ATTCollectCodeType_t {

 UC_NONE = 0, /* indicates UCC not present */

 UC_TONE_DETECTOR = 32

} ATTCollectCodeType_t;

typedef enum ATTSpecificEvent_t {

 SE_ANSWER = 11,

 SE_DISCONNECT = 4

} ATTSpecificEvent_t;

Chapter 12: Routing Service Group

772 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

typedef struct ATTUserProvidedCode_t {

 ATTProvidedCodeType_t type;

 char data[25];

} ATTUserProvidedCode_t;

typedef enum ATTProvidedCodeType_t {

 UP_NONE = 0, /* indicates UPC not present */

 UP_DATA_BASE_PROVIDED = 17

} ATTProvidedCodeType_t;

#define ATT_MAX_USER_INFO 129

typedef struct ATTUserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct {

 unsigned short length; /* 0 indicates UUI not

 * present */

 unsigned char value[ATT_MAX_USER_INFO];

 } data;

} ATTUserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

 Route Select Service (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 773

Private Data Version 2-5 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * attRouteSelect() - Service Request Private Data

 * Formatting Function

 */

RetCode_t attRouteSelect(

 ATTPrivateData_t *attPrivateData,

 DeviceID_t *callingDevice,

 DeviceID_t *directAgentCallSplit,

 Boolean priorityCalling,

 DeviceID_t *destRoute,

 ATTUserCollectCode_t *collectCode,

 ATTUserProvidedCode_t *userProvidedCode,

 ATTV5UserToUserInfo_t *userInfo);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

typedef struct ATTUserCollectCode_t {

 ATTCollectCodeType_t type;

 short digitsToBeCollected; /* 1-24 digits */

 short timeout; /* 0-63 secs */

 ConnectionID_t collectParty; /* not supported

 * (defaults to

 * call

 * originator) */

 ATTSpecificEvent_t specificEvent; /* not supported

 * (defaults to

 * answer) */

} ATTUserCollectCode_t;

typedef enum ATTCollectCodeType_t {

 UC_NONE = 0, /* indicates UCC not present */

 UC_TONE_DETECTOR = 32

} ATTCollectCodeType_t;

typedef enum ATTSpecificEvent_t {

 SE_ANSWER = 11,

 SE_DISCONNECT = 4

} ATTSpecificEvent_t;

Chapter 12: Routing Service Group

774 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

typedef struct ATTUserProvidedCode_t {

 ATTProvidedCodeType_t type;

 char data[25];

} ATTUserProvidedCode_t;

typedef enum ATTProvidedCodeType_t {

 UP_NONE = 0, /* indicates UPC not present */

 UP_DATA_BASE_PROVIDED = 17

} ATTProvidedCodeType_t;

typedef struct ATTV5UserToUserInfo_t {

 ATTUUIProtocolType_t type;

 struct

 {

 short length; /* 0 indicates no UUI */

 unsigned char value[33];

 } data;

} ATTV5UserToUserInfo_t;

typedef enum ATTUUIProtocolType_t {

 UUI_NONE = -1, /* indicates not specified */

 UUI_USER_SPECIFIC = 0, /* user-specific */

 UUI_IA5_ASCII = 4 /* null terminated ASCII

 * character string

} ATTUUIProtocolType_t;

 Route Select Service (TSAPI Version 1)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 775

Route Select Service (TSAPI Version 1)

Summary

 Direction: Client to Switch

 Function: cstaRouteSelect()

 Service Parameters: routeRegisterReqID, routingCrossRefID,

routeSelected, remainRetry, setupInformation, routeUsedReq

Functional Description:

The routing server application uses cstaRouteSelect() to provide a destination to the

switch in response to a CSTARouteRequestEvent for a call.

Detailed Information:

An application may receive two CSTARouteEndEvent(s) for a cstaRouteSelect()

request for the same call in the following call scenario:

 The TSAPI Service sends a CSTARouteRequestEvent to the application on

behalf of the switch.

 The caller drops the call.

 The application sends a cstaRouteSelect() request to the TSAPI Service.

 The TSAPI Service sends a CSTARouteEndEvent (errorValue =

NO_ACTIVE_CALL) to the application before receiving the Route Select request.

 The TSAPI Service receives the cstaRouteSelect() request, but the call has

been dropped.

 The TSAPI Service sends a CSTARouteEndEvent for the cstaRouteSelect()

request (errorValue = INVALID_CROSS_REF_ID) to the application.

Chapter 12: Routing Service Group

776 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaRouteSelect() - Service Request */

RetCode_t cstaRouteSelect(

 ACSHandle_t acsHandle,

 RouteRegisterReqID_t routeRegisterReqID,

 RoutingCrossRefID_t routingCrossRefID,

 DeviceID_t *routeSelected,

 RetryValue_t remainRetry,

 SetUpValues_t *setupInformation,

 Boolean routeUsedReq,

 PrivateData_t *privateData);

typedef long RouteRegisterReqID_t;

typedef long RoutingCrossRefID_t;

typedef char DeviceID_t[64];

typedef short RetryValue_t;

typedef struct SetUpValues_t {

 unsigned int length;

 unsigned char *value;

} SetUpValues_t;

 Route Used Event (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 777

Route Used Event (TSAPI Version 2)

Summary

 Direction: Switch to Client

 Event: CSTARouteUsedExtEvent

 Private Data Event: ATTRouteUsedEvent

 Service Parameters: routeRegisterReqID, routingCrossRefID, routeUsed,

callingDevice, domain

 Private Parameters: destRoute

Functional Description:

The switch uses a CSTARouteUsedExtEvent to provide a destination to the routing

server application with the actual destination of a call for which the application previously

sent a Route Select service request containing a destination. The routeUsed parameter

and destRoute private parameter contain the same information specified in the

routeSelected and destRoute parameters, respectively, of the previous

cstaRouteSelectInv() request of this call. The callingDevice parameter contains

the same calling device number provided in the previous CSTARouteRequestExtEvent

of this call.

Service Parameters:

routeRegisterReqID [mandatory] Contains a handle to the routing registration session
for which the application is providing routing service. The routing

server application received this handle in a CSTARouteRegister-

ReqConfEvent confirmation to a cstaRouteRegisterReq()

request.

routingCrossRefID [mandatory] Contains the handle for the routing dialog of this call.

The application previously received this handle in the CSTARoute-

RequestExtEvent for the call.

routeUsed [mandatory] Specifies the destination of the call. This parameter

has the same destination specified in the routeSelected

parameter of the previous cstaRouteSelectInv() request for this

call.

callingDevice [optional - supported] Specifies the call origination device. It
contains the same calling device number provided in the previous
CSTARouteRequestExtEvent for this call.

Chapter 12: Routing Service Group

778 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

domain [optional - not supported] Indicates whether the call has left the
switching domain accessible to the TSAPI Service. Typically, a call
leaves a switching domain when it is routed to a trunk connected to
another switch or to the public switch network. This parameter is

not supported and is always set to FALSE. This does not mean that

the call has (or has not) left Communication Manager. An
application should ignore this parameter.

Private Parameters:

destRoute [optional] Specifies the TAC/ARS/AAR information for off-PBX
destinations. This parameter contains the same information specified in the
destRoute of the previous cstaRouteSelectInv() request for this call.

Detailed Information:

 Note that the number provided in the routeUsed parameter is from the

routeSelected parameter of the previous cstaRouteSelectInv() request

received by the TSAPI Service for this call. The information in routeUsed is not

from Communication Manager and it may not represent the true route that
Communication Manager used.

 Note that the number provided in the destRoute parameter is from the

destRoute parameter of the previous cstaRouteSelectInv() request received

by the TSAPI Service for this call. The information in destRoute is not from the

Communication Manager and it may not represent the true route that the
Communication Manager used.

 The number provided in the callingDevice parameter is from the

callingDevice parameter of the previous CSTARouteRequestExtEvent sent by

the TSAPI Service for this call.

 Route Used Event (TSAPI Version 2)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 779

Syntax

#include <acs.h>

#include <csta.h>

/* CSTARouteUsedExtEvent - Route Select Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAEVENTREPORT */

 EventType_t eventType; /* CSTA_ROUTE_USED_EXT */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 union

 {

 CSTARouteUsedExtEvent_t routeUsedExt;

 } u;

 } cstaEventReport;

 } event;

} CSTAEvent_t;

typedef struct CSTARouteUsedExtEvent_t {

 RouteRegisterReqID_t routeRegisterReqID;

 RoutingCrossRefID_t routingCrossRefID;

 CalledDeviceID_t routeUsed;

 CallingDeviceID_t callingDevice;

 unsigned char domain;

} CSTARouteUsedExtEvent_t;

Chapter 12: Routing Service Group

780 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Syntax

If private data accompanies a CSTARouteUsedExtEvent, then the private data would be

stored in the location that the application specified as the privateData parameter in the

acsGetEventBlock() or acsGetEventPoll() request. If the privateData pointer is

set to NULL in these requests, then CSTARouteUsedExtEvent does not deliver private

data to the application.

If the acsGetEventBlock() or acsGetEventPoll() returns Private Data length of 0,

then no private data is provided with this Route Request.

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTRouteUsedEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_ROUTE_USED */

 union

 {

 ATTRouteUsedEvent_t routeUsed;

 }u;

} ATTEvent_t;

typedef struct ATTRouteUsedEvent_t {

 DeviceID_t destRoute;

} ATTRouteUsedEvent_t;

 Route Used Event (TSAPI Version 1)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 781

Route Used Event (TSAPI Version 1)

Summary

 Direction: Switch to Client

 Event: CSTARouteUsedEvent

 Service Parameters: routeRegisterReqID, routingCrossRefID, routeUsed,

callingDevice, domain

Functional Description:

The switch uses a CSTARouteUsedEvent to provide a destination to the routing server

application with the actual destination of a call for which the application previously sent a

Route Select service request containing a destination. The routeUsed parameter

contains the same information specified in the routeSelected parameter of the

previous cstaRouteSelect() request for this call. The callingDevice parameter

contains the same calling device number provided in the previous

CSTARouteRequestEvent for this call.

Service Parameters:

routeRegisterReqID [mandatory] Contains a handle to the routing registration session
for which the application is providing routing service. The routing

server application received this handle in a CSTARouteRegister-

ReqConfEvent confirmation to a cstaRouteRegisterReq()

request.

routingCrossRefID [mandatory] Contains the handle for the routing dialog of this call.

The application previously received this handle in the CSTARoute-

RequestExtEvent for the call.

routeUsed [mandatory] Specifies the destination of the call. This parameter

has the same destination specified in the routeSelected

parameter of the previous cstaRouteSelect() request for this

call.

callingDevice [optional - supported] Specifies the call origination device. It
contains the same calling device number provided in the previous
CSTARouteRequestExtEvent for this call.

domain [optional - not supported] Indicates whether the call has left the
switching domain accessible to the TSAPI Service. Typically, a call
leaves a switching domain when it is routed to a trunk connected to
another switch or to the public switch network. This parameter is

not supported and is always set to FALSE. This does not mean that

the call has (or has not) left Communication Manager. An
application should ignore this parameter.

782 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Detailed Information:

 The number provided in the routeUsed parameter is from the routeSelected

parameter of the previous cstaRouteSelect() request received by the TSAPI

Service for this call.

 The number provided in the callingDevice parameter is from the

callingDevice parameter of the previous CSTARouteRequestEvent sent by the

TSAPI Service for this call.

Syntax

#include <acs.h>

#include <csta.h>

/* CSTARouteUsedEvent - Route Select Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAEVENTREPORT */

 EventType_t eventType; /* CSTA_ROUTE_USED */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 union

 {

 CSTARouteUsedEvent_t routeUsed;

 } u;

 } cstaEventReport;

 } event;

} CSTAEvent_t;

typedef struct CSTARouteUsedEvent_t {

 RouteRegisterReqID_t routeRegisterReqID;

 RoutingCrossRefID_t routingCrossRefID;

 DeviceID_t routeUsed;

 DeviceID_t callingDevice;

 unsigned char domain;

} CSTARouteUsedEvent_t;

783 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Chapter 13: System Status Service Group

The System Status Services Group provides services that allow an application to receive

reports on the status of the switching system. (System Status services with the

driver/switch as the client are not supported.)

The following System Status services and events are available:

 System Status Request Service on page 784

 System Status Start Service on page 791

 System Status Stop Service on page 799

 Change System Status Filter Service on page 801

 System Status Event on page 810

Overview

System Status Request Service - cstaSysStatReq()

This service is used by a client application to request system status information from the

driver/switch domain.

System Status Start Service - cstaSysStatStart()

This service allows an application to register for System Status event reporting.

System Status Stop Service - cstaSysStatStop()

This service allows an application to cancel a previously registered request for System

Status event reporting.

Change System Status Filter Service cstaChangeSysStatFilter()

This service allows an application to request a change in the filter options for System

Status event reporting.

System Status Event - CSTASysStatEvent

This unsolicited event informs the application of changes in the system status of the

driver/switch.

System Status Events - Not Supported

The following System Status Events are not supported:

 System Status Request Event – CSTASysStatReqEvent

 System Status Request Confirmation – cstaSysStatReqConf()

 System Status Event Send – cstaSysStatEventSend()

Chapter 13: System Status Service Group

784 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

System Status Request Service

Summary

 Direction: Client to Switch

 Function: cstaSysStatReq()

 Confirmation Event: CSTASysStatReqConfEvent

 Service Parameters: none

 Ack Parameters: systemStatus

 Ack Private Parameters: count, plinkStatus (private data version 5 and later),

linkStatus (private data versions 2, 3, and 4)

 Nak Parameter: universalFailure

Functional Description:

This service is used by a client application to request system status information from the

driver/switch.

Service Parameters:

 None for this service.

Ack Parameters:

systemStatus [mandatory - partially supported] Provides the application with a
cause code defining the overall system status as follows:

 SS_NORMAL - This status indication indicates that the CTI link to the

switch is available. The system status is normal, and TSAPI requests
and responses are enabled.

 SS_DISABLED - This system status indicates that there is no available

CTI link to the switch. The SS_DISABLED status implies that there are

no active Monitor requests or Route Register sessions. TSAPI
requests that are dependent on Communication Manager are
disabled, and will fail.

 System Status Request Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 785

Ack Private Parameters:

count Identifies the number of CTI links described in the private ack

parameter plinkStatus (private data versions 5 and later) or

linkStatus (private data versions 2-4). For AE Services, this

number is always one.

plinkStatus Specifies the status of each CTI link to the switch. For AE Services,
the TSAPI Service supports a single CTI link to the switch, although
this CTI link may be administered to use multiple CLAN cards. The
routing of TSAPI service requests and responses over individual
CLAN cards is hidden from the application.

 (A TSAPI application programmer does not need to consider the
individual CLAN connections to the switch when sending/receiving

TSAPI service requests/responses.) The plinkStatus private data

parameter may be used to check the availability of the administered
CTI link. The status of the link will be provided in the linkState field:

 LS_LINK_UP - The link is able to support telephony services to the

switch.

 LS_LINK_DOWN - The link is unable to support telephony services

to the switch.

 LS_LINK_UNAVAIL - The link has been disabled (busied-out) via

the OA&M interface and will not support new CSTA requests.
Existing telephony service requests maintained by this link will
continue.

 This parameter is supported by private data version 5 and later only.

linkStatus Specifies the status of each CTI link to the switch. For details, see the
description for the plinkStatus private ack parameter. This parameter
is supported by private data versions 2, 3, and 4.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain one of the error values described in Table 20:
Common switch-related CSTA Service errors -- universalFailure on
page 817.

Chapter 13: System Status Service Group

786 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Detailed Information:

 Multiple CLAN Connections - If multiple CLAN connections are connected and

administered for a specific switch, the systemStatus parameter will indicate the

aggregate link status. If at least one CLAN connection is available to support

TSAPI requests and responses, the systemStatus will be set to SS_NORMAL. If

there are no CLAN or Processor Ethernet connections to a switch able to support

TSAPI requests and responses, the systemStatus will be set to SS_DISABLED.

 System Status Request Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 787

Syntax

#include <acs.h>

#include <csta.h>

/* cstaSysStatReq() - Service Request */

RetCode_t cstaSysStatReq(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t *privateData);

/* CSTASysStatReqConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_SYS_STAT_REQ_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 union

 {

 CSTASysStatReqConfEvent_t sysStatReq;

 } u;

 } cstaConfirmation;

 } event;

 char heap[CSTA_MAX_HEAP];

} CSTAEvent_t;

typedef struct CSTASysStatReqConfEvent_t {

 SystemStatus_t systemStatus;

} CSTASysStatReqConfEvent_t;

typedef enum SystemStatus_t {

 SS_INITIALIZING = 0, /* not supported */

 SS_ENABLED = 1, /* not supported */

 SS_NORMAL = 2, /* supported */

 SS_MESSAGES_LOST = 3, /* not supported */

 SS_DISABLED = 4, /* supported */

 SS_OVERLOAD_IMMINENT = 5, /* not supported */

 SS_OVERLOAD_REACHED = 6, /* not supported */

 SS_OVERLOAD_RELIEVED = 7 /* not supported */

} SystemStatus_t;

Chapter 13: System Status Service Group

788 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 5 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTLinkStatusEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_LINK_STATUS */

 union

 {

 ATTLinkStatusEvent_t linkStatus;

 } u;

} ATTEvent_t;

typedef struct ATTLinkStatusEvent_t {

 unsigned int count;

 ATTLinkStatus_t *pLinkStatus;

} ATTLinkStatusEvent_t;

typedef struct ATTLinkStatus_t {

 short linkID;

 ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {

 LS_LINK_UNAVAIL = 0, /* the link is disabled */

 LS_LINK_UP = 1, /* the link is up */

 LS_LINK_DOWN = 2 /* the link is down */

} ATTLinkState_t;

 System Status Request Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 789

Private Data Version 4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV4LinkStatusEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV4_LINK_STATUS */

 union

 {

 ATTV4LinkStatusEvent_t v4linkStatus;

 } u;

} ATTEvent_t;

typedef struct ATTV4LinkStatusEvent_t {

 unsigned short count;

 ATTLinkStatus_t linkStatus[8];

} ATTV4LinkStatusEvent_t;

typedef struct ATTLinkStatus_t {

 short linkID;

 ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {

 LS_LINK_UNAVAIL = 0, /* the link is disabled */

 LS_LINK_UP = 1, /* the link is up */

 LS_LINK_DOWN = 2 /* the link is down */

} ATTLinkState_t;

Chapter 13: System Status Service Group

790 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Versions 2 and 3 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV3LinkStatusEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV3_LINK_STATUS */

 union

 {

 ATTV3LinkStatusEvent_t v3linkStatus;

 } u;

} ATTEvent_t;

typedef struct ATTV3LinkStatusEvent_t {

 unsigned short count;

 ATTLinkStatus_t linkStatus[4];

} ATTV3LinkStatusEvent_t;

typedef struct ATTLinkStatus_t {

 short linkID;

 ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {

 LS_LINK_UNAVAIL = 0, /* the link is disabled */

 LS_LINK_UP = 1, /* the link is up */

 LS_LINK_DOWN = 2 /* the link is down */

} ATTLinkState_t;

 System Status Start Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 791

System Status Start Service

Summary

 Direction: Client to Switch

 Function: cstaSysStatStart()

 Confirmation Event: CSTASysStatStartConfEvent

 Private Data Function: attSysStat()

 Service Parameters: statusFilter

 Private Parameters: linkStatReq

 Ack Parameters: statusFilter

 Ack Private Parameters: count, plinkStatus (private data version 5 and later),

linkStatus (private data versions 2, 3, and 4)

 Nak Parameter: universalFailure

Functional Description:

This service allows the application to register for System Status event reporting from the

driver/switch. The application can register to receive a CSTASysStatEvent each time

the status of the TSAPI CTI link changes. The service request includes a filter so the

application can filter those status events that are not of interest to the application. Only

one active cstaSysStatStart() request is allowed for an acsOpenStream() request. If

a cstaSysStatStart() request is active, the second request will be rejected.

Service Parameters:

statusFilter [mandatory - partially supported] A filter used to specify the system status

events that are not of interest to the application. If a bit in statusFilter is

set to TRUE (1), the corresponding event will not be sent to the application.

The only System Status events that are supported are SS_ENABLED,

SS_NORMAL and SS_DISABLED. A request to filter any other System Status

events will be ignored.

Chapter 13: System Status Service Group

792 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Parameters:

linkStatReq [optional] The application can use the linkStatReq private parameter

to request System Status events for changes in the state of individual
CTI links. This capability is a holdover from the Avaya Computer-
Telephony product, and is not useful for AE Services configurations.

The Avaya Computer-Telephony product allowed multiple CTI links to
be configured between the Telephony Server and Avaya
Communication Manager. For AE Services, only a single TSAPI CTI
link may be configured for any given switch; the use of multiple CLAN
cards to support that switch connection is hidden from the TSAPI
Service.

 If linkStatReq is set to TRUE (ON), System Status Event Reports will

be sent for changes in the states of each individual CTI link. When a

CTI link changes between up (LS_LINK_UP), down (LS_LINK_DOWN), or

unavailable/busied-out (LS_LINK_UNAVAIL), a System Status Event

Report will be sent to the application. The private data in the System
Status Event Report will include the link ID and state for each CTI link
to Communication Manager, and not just the link ID and state of the
CTI link that experienced a state transition.

 If the linkStatReq private parameter was not specified or set to

FALSE, changes in the states of individual CTI links will not result in

System Status Event Reports unless all links are down, or the first link
is established. (The System Status Event Report is always sent when
all links are down, or when the first link is established from an "all CTI
links down" state.)

Ack Parameters:

statusFilter [optional - partially supported] Specifies the System Status Event
Reports that are to be filtered before they reach the application. The

statusFilter may not be the same as the statusFilter specified in

the service request, because filters for System Status Events that are
not supported are always turned on (TRUE) in systemFilter.

The following filters will always be set to ON, meaning that there are no

reports supported for these events:

 SF_INITIALIZING

 SF_MESSAGES_LOST

 SF_OVERLOAD_IMMINENT

 SF_OVERLOAD_REACHED

 SF_OVERLOAD_RELIEVED

 System Status Start Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 793

Ack Private Parameters:

count Identifies the number of CTI links described in the private ack

parameter plinkStatus (private data versions 5 or later) or

linkStatus (private data versions 2-4). This parameter is only

provided when the linkStatusReq private parameter was set to TRUE.

For AE Services, this number is always one.

plinkStatus Specifies the status of each CTI link to the switch. For AE Services,
the TSAPI Service supports a single CTI link to the switch, although
this CTI link may be administered to use multiple CLAN cards.

This parameter is only provided when the linkStatusReq private

parameter was set to TRUE. The plinkStatus private data parameter

will indicate the availability of the administered CTI link to which the
application is connected.

The status of the link will be provided in the linkState field:

 LS_LINK_UP - The link is able to support telephony services to the

switch.

 LS_LINK_DOWN - The link is unable to support telephony services to

the switch.

 LS_LINK_UNAVAIL -The link has been disabled (busied-out) via the

OA&M interface and will not support new CSTA requests. Existing
telephony service requests maintained by this link will continue.

 This parameter is supported by private data version 5 and later only.

linkStatus Specifies the status of each CTI link to the switch. For details, see the
description for the plinkStatus private ack parameter. This parameter is
supported by private data versions 2, 3, and 4.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error value, or one of the error
values described in Table 20: Common switch-related CSTA Service
errors -- universalFailure on page 817.

 GENERIC_OPERATION_REJECTION (71)Only one active

cstaSysStatStart() request is allowed for an

acsOpenStream() request. If an active request exists, the

second request will be rejected.

Chapter 13: System Status Service Group

794 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Detailed Information:

 The linkStatReq private parameter is no longer useful for AE Services; it is a

holdover from the Avaya Computer Telephony product.

 Only one active cstaSysStatStart() request is allowed for an

acsOpenStream() request. If an active request exists, the second request will be

rejected. An application can cancel a request for System Status event reporting

via cstaSysStatStop(), and then issue a subsequent cstaSysStatStart()

request.

 The count and plinkStatus private ack parameters will only be provided when

the linkStatReq parameter was set to TRUE in the System Status Start service

request.

 A CSTASysStatEvent event report will be sent with the systemStatus set to

SS_DISABLED when the CTI link to Communication Manager has failed. The

application can examine the private data portion of the event report, but it will

always indicate that the CTI link is down (LS_LINK_DOWN) or unavailable

(LS_LINK_UNAVAILABLE). All Call and Device Monitors will be terminated, all

Routing Sessions will be aborted, and all outstanding CSTA requests should be
negatively acknowledged.

 A CSTASysStatEvent Event Report will be sent with the systemStatus set to

SS_ENABLED when the CTI link to Communication Manager has been

established. No Call or Device Monitors, or Routing Sessions should exist at this
point.

 A CSTASysStatEvent Event Report will be sent with the systemStatus set to

SS_NORMAL when the CTI link to Communication Manager has been established.

For AE Services, this event is redundant with the CSTASysStatEvent Event

Report just received with the systemStatus set to SS_ENABLED.

 System Status Start Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 795

Syntax

#include <acs.h>

#include <csta.h>

/* cstaSysStatStart() - Service Request */

RetCode_t cstaSysStatStart(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 SystemStatusFilter_t statusFilter,

 PrivateData_t *privateData);

typedef unsigned SystemStatusFilter_t;

#define SF_INITIALIZING 0x80 /* not supported */

#define SF_ENABLED 0x40 /* supported */

#define SF_NORMAL 0x20 /* supported */

#define SF_MESSAGES_LOST 0x10 /* not supported */

#define SF_DISABLED 0x08 /* supported */

#define SF_OVERLOAD_IMMINENT 0x04 /* not supported */

#define SF_OVERLOAD_REACHED 0x02 /* not supported */

#define SF_OVERLOAD_RELIEVED 0x01 /* not supported */

/* CSTASysStatStartConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_SYS_STAT_START_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTASysStatStartConfEvent_t sysStatStart;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTASysStatStartConfEvent_t {

 SystemStatusFilter_t statusFilter;

} CSTASysStatStartConfEvent_t;

Chapter 13: System Status Service Group

796 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 5 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* attSysStat() - Service Request Private Data Formatting Function */

RetCode_t attSysStat(

 ATTPrivateData_t *privateData,

 Boolean linkStatusReq);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTLinkStatusEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_LINK_STATUS */

 union

 {

 ATTLinkStatusEvent_t linkStatus;

 } u;

} ATTEvent_t;

typedef struct ATTLinkStatusEvent_t {

 unsigned int count;

 ATTLinkStatus_t *pLinkStatus;

} ATTLinkStatusEvent_t;

typedef struct ATTLinkStatus_t {

 short linkID;

 ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {

 LS_LINK_UNAVAIL = 0, /* the link is disabled */

 LS_LINK_UP = 1, /* the link is up */

 LS_LINK_DOWN = 2 /* the link is down */

} ATTLinkState_t;

 System Status Start Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 797

Private Data Version 4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* attSysStat() - Service Request Private Data Formatting Function */

RetCode_t attSysStat(

 ATTPrivateData_t *privateData,

 Boolean linkStatusReq);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTV4LinkStatusEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV4_LINK_STATUS */

 union

 {

 ATTV4LinkStatusEvent_t v4linkStatus;

 } u;

} ATTEvent_t;

typedef struct ATTV4LinkStatusEvent_t {

 unsigned short count;

 ATTLinkStatus_t linkStatus[8];

} ATTV4LinkStatusEvent_t;

typedef struct ATTLinkStatus_t {

 short linkID;

 ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {

 LS_LINK_UNAVAIL = 0, /* the link is disabled */

 LS_LINK_UP = 1, /* the link is up */

 LS_LINK_DOWN = 2 /* the link is down */

} ATTLinkState_t;

Chapter 13: System Status Service Group

798 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Versions 2 and 3 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* attSysStat() - Service Request Private Data Formatting Function */

RetCode_t attSysStat(

 ATTPrivateData_t *privateData,

 Boolean linkStatusReq);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTV3LinkStatusEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV3_LINK_STATUS */

 union

 {

 ATTV3LinkStatusEvent_t v3linkStatus;

 } u;

} ATTEvent_t;

typedef struct ATTV3LinkStatusEvent_t {

 unsigned short count;

 ATTLinkStatus_t linkStatus[4];

} ATTV3LinkStatusEvent_t;

typedef struct ATTLinkStatus_t {

 short linkID;

 ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {

 LS_LINK_UNAVAIL = 0, /* the link is disabled */

 LS_LINK_UP = 1, /* the link is up */

 LS_LINK_DOWN = 2 /* the link is down */

} ATTLinkState_t;

 System Status Stop Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 799

System Status Stop Service

Summary

 Direction: Client to Switch

 Function: cstaSysStatStop()

 Confirmation Event: CSTASysStatStopConfEvent

 Service Parameters: none

 Ack Parameters: none

 Nak Parameter: universalFailure

Functional Description:

This service allows the application to cancel a previously registered monitor for System

Status event reporting from the driver/switch domain

Service Parameters:

 None for this service.

Ack Parameters:

 None for this service.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain one of the error values described in Table 20:
Common switch-related CSTA Service errors -- universalFailure on
page 817.

Detailed Information:

 An application may receive CSTASysStatEvents from the driver/switch until the

CSTASysStatStopConfEvent response is received. The application should

check the confirmation event to verify that the System Status monitor has been
deactivated.

After the TSAPI Service has issued the CSTASysStatStopConfEvent, automatic

notification of System Status Events will be terminated.

Chapter 13: System Status Service Group

800 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaSysStatStop() - Service Request */

RetCode_t cstaSysStatStop(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 PrivateData_t privateData);

/* CSTASysStatStopConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_SYS_STAT_STOP_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTASysStatStopConfEvent_t sysStatStop;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTASysStatStopConfEvent_t {

 Nulltype null;

} CSTASysStatStopConfEvent_t;

typedef char Nulltype;

 Change System Status Filter Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 801

Change System Status Filter Service

Summary

 Direction: Client to Switch

 Function: cstaChangeSysStatFilter()

 Confirmation Event: CSTAChangeSysStatFilterConfEvent

 Private Data Function: attSysStat()

 Service Parameters: statusFilter

 Private Parameters: linkStatReq

 Ack Parameters: statusFilterSelected, statusFilterActive

 Ack Private Parameters: count, plinkStatus (private data version 5 and later),

linkStatus (private data versions 2, 3, and 4)

 Nak Parameter: universalFailure

Functional Description:

This service allows the application to modify the filter used for System Status event

reporting from the driver/switch domain. The application can filter those System Status

events that it does not wish to receive. A CSTASysStatEvent will be sent to the

application if the event occurs and the application has not specified a filter for that

System Status Event. The application must have previously requested System Status

Event reports via the cstaSysStatStart() request, else the cstaChangeSysStat-

Filter() request will be rejected.

Service Parameters:

statusFilter [mandatory - partially supported] A filter used to specify the System
Status Events that are not of interest to the application. If a bit in

statusFilter is set to TRUE (1), the corresponding event will not be

sent to the application. The only System Status Events that are

supported are SS_ENABLED, SS_NORMAL and SS_DISABLED. A request

to filter any other System Status Events will be ignored.

Chapter 13: System Status Service Group

802 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Parameters:

linkStatReq [optional] The application can use the linkStatReq private

parameter to request System Status Events for changes in the state
of individual CTI links. This capability is a holdover from the Avaya
Computer-Telephony product, and is not useful for AE Services
configurations.

The Avaya Computer-Telephony product allowed multiple CTI links to
be configured between the Telephony Server and Avaya
Communication Manager. For AE Services, only a single TSAPI CTI
link may be configured for any given switch; the use of multiple CLAN
cards to support that switch connection is hidden from the TSAPI
Service.

 If linkStatReq is set to TRUE (ON), System Status Event Reports

will be sent for changes in the states of each individual CTI link.

When a CTI link changes between up (LS_LINK_UP), down

(LS_LINK_DOWN), or unavailable/busied-out (LS_LINK_UNAVAIL), a

System Status Event Report will be sent to the application. The
private data in the System Status Event Report will include the link
ID and state for each CTI link to Communication Manager, and not
just the link ID and state of the CTI link that experienced a state
transition.

 If the linkStatReq private parameter was set to FALSE, changes

in the states of individual CTI links will not result in System Status
Event Reports unless all links are down, or the first link is
established. (The System Status Event Report is always sent
when all links are down, or when the first link is established from
an "all links down" state.)

 If the linkStatReq private parameter was not specified, there will

be no change in the reporting changes in the state of individual
CTI links. (If System Status Event Reports were sent for changes

in individual CTI links before a cstaChangeSysStatFilter()

service request with no private data, the System Status Event
Reports will continue to be sent after the

CSTAChangeSysStatFilterConfEvent service response is

received, and vice-versa.)

 Change System Status Filter Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 803

Ack Parameters:

statusFilterSelected [mandatory - partially supported] specifies the System Status
Event Reports that are to be filtered before they reach the

application. The statusFilterSelected may not be the same

as the statusFilter specified in the service request, because

filters for System Status Events that are not supported are always

turned on in statusFilterSelected. The following filters will

always be set to ON, meaning that there are no reports supported
for these events:

 SF_INITIALIZING

 SF_MESSAGES_LOST

 SF_OVERLOAD_IMMINENT

 SF_OVERLOAD_REACHED

 SF_OVERLOAD_RELIEVED

statusFilterActive [mandatory - partially supported] Specifies the System Status
Event Reports that were already active before the

CSTAChangeSysStatFilterConfEvent was issued by the driver.

The following filters will always be set to ON, meaning that there

are no reports supported for these events:

 SF_INITIALIZING

 SF_MESSAGES_LOST

 SF_OVERLOAD_IMMINENT

 SF_OVERLOAD_REACHED

 SF_OVERLOAD_RELIEVED

Chapter 13: System Status Service Group

804 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Ack Private Parameters:

count Identifies the number of CTI links described in the private ack

parameter plinkStatus (private data versions 5 or later) or

linkStatus (private data versions 2-4). This parameter is only

provided when the linkStatusReq private parameter was set to

TRUE. For AE Services, this number is always one.

plinkStatus Specifies the status of each CTI link to the switch. For AE Services,
the TSAPI Service supports a single CTI link to the switch, although
this CTI link may be administered to use multiple CLAN cards.

This parameter is only provided when the linkStatusReq private

parameter was set to TRUE. The plinkStatus private data parameter

will indicate the availability of the administered CTI link to which the
application is connected. The status of the link will be provided in the

linkStatus field:

 LS_LINK_UP - The link is able to support traffic.

 LS_LINK_DOWN - The link is unable to support traffic.

 LS_LINK_UNAVAIL - The link has been disabled (busied-out) via

the OA&M interface and will not support new CSTA requests.
Existing telephony service requests maintained by this link will
continue.

 This parameter is supported by private data version 5 and later only.

linkStatus Specifies the status of each CTI link to the switch. For details, see the
description for the plinkStatus private ack parameter. This parameter
is supported by private data versions 2, 3, and 4.

Nak Parameters:

universalFailure If the request is not successful, the application will receive a

CSTAUniversalFailureConfEvent. The error parameter in this

event may contain the following error value, or one of the error values
described in Table 20: Common switch-related CSTA Service errors -
- universalFailure on page 817.

 GENERIC_OPERATION_REJECTION (71) If the application has not

registered to receive System Status Event reports, the

cstaChangeSysStatFilter() request will be rejected.

 Change System Status Filter Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 805

Detailed Information:

 The linkStatReq private parameter is no longer useful for AE Services; it is a

holdover from the Avaya Computer Telephony product.

 The count and plinkStatus private ack parameters will only be provided when

the linkStatReq parameter was set to TRUE in the Change System Status Start

service request.

 For more information, refer to System Status Event in this chapter.

Chapter 13: System Status Service Group

806 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* cstaChangeSysStatFilter() - Service Request */

RetCode_t cstaChangeSysStatFilter(

 ACSHandle_t acsHandle,

 InvokeID_t invokeID,

 SystemStatusFilter_t statusFilter,

 PrivateData_t *privateData);

typedef unsigned SystemStatusFilter_t;

#define SF_INITIALIZING 0x80 /* not supported */

#define SF_ENABLED 0x40 /* supported */

#define SF_NORMAL 0x20 /* supported */

#define SF_MESSAGES_LOST 0x10 /* not supported */

#define SF_DISABLED 0x08 /* supported */

#define SF_OVERLOAD_IMMINENT 0x04 /* not supported */

#define SF_OVERLOAD_REACHED 0x02 /* not supported */

#define SF_OVERLOAD_RELIEVED 0x01 /* not supported */

/* CSTAChangeSysStatFilterConfEvent - Service Response */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_CHANGE_SYS_STAT_FILTER_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAChangeSysStatFilterConfEvent_t

 changeSysStatFilter;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAChangeSysStatFilterConfEvent_t {

 SystemStatusFilter_t statusFilterSelected;

 SystemStatusFilter_t statusFilterActive;

} CSTAChangeSysStatFilterConfEvent_t;

 Change System Status Filter Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 807

Private Data Version 5 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* attSysStat() - Service Request Private Data Formatting Function */

RetCode_t attSysStat(

 ATTPrivateData_t *privateData,

 Boolean linkStatusReq);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTLinkStatusEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_LINK_STATUS */

 union

 {

 ATTLinkStatusEvent_t linkStatus;

 } u;

} ATTEvent_t;

typedef struct ATTLinkStatusEvent_t {

 unsigned int count;

 ATTLinkStatus_t *pLinkStatus;

} ATTLinkStatusEvent_t;

typedef struct ATTLinkStatus_t {

 short linkID;

 ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {

 LS_LINK_UNAVAIL = 0, /* the link is disabled */

 LS_LINK_UP = 1, /* the link is up */

 LS_LINK_DOWN = 2 /* the link is down */

} ATTLinkState_t;

Chapter 13: System Status Service Group

808 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* attSysStat() - Service Request Private Data Formatting Function */

RetCode_t attSysStat(

 ATTPrivateData_t *privateData,

 Boolean linkStatusReq);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTV4LinkStatusEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV4_LINK_STATUS */

 union

 {

 ATTV4LinkStatusEvent_t v4linkStatus;

 } u;

} ATTEvent_t;

typedef struct ATTV4LinkStatusEvent_t {

 unsigned short count;

 ATTLinkStatus_t linkStatus[8];

} ATTV4LinkStatusEvent_t;

typedef struct ATTLinkStatus_t {

 short linkID;

 ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {

 LS_LINK_UNAVAIL = 0, /* the link is disabled */

 LS_LINK_UP = 1, /* the link is up */

 LS_LINK_DOWN = 2 /* the link is down */

} ATTLinkState_t;

 Change System Status Filter Service

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 809

Private Data Versions 2 and 3 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* attSysStat() - Service Request Private Data Formatting Function */

RetCode_t attSysStat(

 ATTPrivateData_t *privateData,

 Boolean linkStatusReq);

typedef struct ATTPrivateData_t {

 char vendor[32];

 unsigned short length;

 char data[ATT_MAX_PRIVATE_DATA];

} ATTPrivateData_t;

/* ATTV3LinkStatusEvent - Service Response Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV3_LINK_STATUS */

 union

 {

 ATTV3LinkStatusEvent_t v3linkStatus;

 } u;

} ATTEvent_t;

typedef struct ATTV3LinkStatusEvent_t {

 unsigned short count;

 ATTLinkStatus_t linkStatus[4];

} ATTV3LinkStatusEvent_t;

typedef struct ATTLinkStatus_t {

 short linkID;

 ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {

 LS_LINK_UNAVAIL = 0, /* the link is disabled */

 LS_LINK_UP = 1, /* the link is up */

 LS_LINK_DOWN = 2 /* the link is down */

} ATTLinkState_t;

Chapter 13: System Status Service Group

810 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

System Status Event

Summary

 Direction: Switch to Client

 Event: CSTASysStatEvent

 Service Parameters: systemStatus

 Private Parameters: count, plinkStatus (private data version 5 and later),

linkStatus (private data versions 2, 3, and 4)

Functional Description:

This unsolicited event is sent by the TSAPI Service to inform the application of changes

in system status. The application must have previously registered to receive System

Status Events via the cstaSysStatStart() service request. The System Status Event

Reports will be sent for those events that have not been filtered by the application via the

cstaSysStatStart() and cstaChangeSysStatFilter() service requests.

Service Parameters:

systemStatus [mandatory - partially supported] This parameter contains a value that
identifies the change in overall system status detected by the TSAPI
Service. The following System Status events will be sent to the
application if the application has not filtered the event:

 SS_ENABLED - A CSTASysStatEvent event report will be sent with the

systemStatus set to SS_ENABLED when the CTI link to Communication

Manager has been established. No Call or Device Monitors, or
Routing Sessions should exist at this point.

 SS_DISABLED - A CSTASysStatEvent event report will be sent with the

systemStatus set to SS_DISABLED when the CTI link to

Communication Manager has failed. The application can examine the
private data portion of the event report, but it will always indicate that

all CTI links are down (LS_LINK_DOWN) or unavailable

(LS_LINK_UNAVAILABLE). All Call and Device Monitors will be

terminated, all Routing Sessions will be aborted, and all outstanding
CSTA requests should be negatively acknowledged.

 SS_NORMAL - A CSTASysStatEvent event report will be sent with the

systemStatus set to SS_NORMAL when the CTI link changes state to

up (LS_LINK_UP). The systemStatus normal (SS_NORMAL) indicates

that the CTI link to the switch is available.

 System Status Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 811

Private Parameters:

count Identifies the number of CTI links described in the private ack parameter

plinkStatus (private data version 5 and later) or linkStatus (private

data versions 2-4). This parameter is only provided when the

linkStatusReq private parameter was set to TRUE. For AE Services, this

number is always one.

plinkStatus Specifies the status of each CTI link to the switch. For AE Services, the
TSAPI Service supports a single CTI link to the switch, although this CTI
link may be administered to use multiple CLAN cards.

This parameter is only provided when the linkStatusReq private

parameter was set to TRUE. The plinkStatus private data parameter will

indicate the availability of the administered CTI link to which the application
is connected.

The status of the link will be provided in the linkStatus field:

 LS_LINK_UP - The link is able to support telephony services to the

switch.

 LS_LINK_DOWN - The link is unable to support telephony services to the

switch.

 LS_LINK_UNAVAIL -The link has been disabled (busied-out) via the

OA&M interface and will not support new CSTA requests. Existing
telephony service requests maintained by this link will continue.

 This parameter is supported by private data version 5 and later only.

linkStatus Specifies the status of each CTI link to the switch. For details, see the
description for the plinkStatus private ack parameter. This parameter is
supported by private data versions 2, 3, and 4.

Detailed Information:

 When the CTI link is established, a System Status Event Report will be sent to

the application with the systemStatus set to SS_ENABLED, followed by a System

Status Event Report with the systemStatus set to SS_NORMAL. When the CTI

link fails, a System Status Event Report will be sent to the application with the

systemStatus set to SS_DISABLED.

Chapter 13: System Status Service Group

812 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Syntax

#include <acs.h>

#include <csta.h>

/* CSTASysStatEvent - System Status Event */

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTAEVENTREPORT */

 EventType_t eventType; /* CSTA_SYS_STAT */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 union

 {

 CSTASysStatEvent_t sysStat;

 } u;

 } cstaEventReport;

 } event;

} CSTAEvent_t;

typedef struct CSTASysStatEvent_t {

 SystemStatus_t systemStatus;

} CSTASysStatEvent_t;

typedef enum SystemStatus_t {

 SS_INITIALIZING = 0, /* not supported */

 SS_ENABLED = 1, /* not supported */

 SS_NORMAL = 2, /* supported */

 SS_MESSAGES_LOST = 3, /* not supported */

 SS_DISABLED = 4, /* supported */

 SS_OVERLOAD_IMMINENT = 5, /* not supported */

 SS_OVERLOAD_REACHED = 6, /* not supported */

 SS_OVERLOAD_RELIEVED = 7 /* not supported */

} SystemStatus_t;

 System Status Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 813

Private Data Version 5 and Later Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTLinkStatusEvent - System Status Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATT_LINK_STATUS */

 union

 {

 ATTLinkStatusEvent_t linkStatus;

 } u;

} ATTEvent_t;

typedef struct ATTLinkStatusEvent_t {

 unsigned int count;

 ATTLinkStatus_t *pLinkStatus;

} ATTLinkStatusEvent_t;

typedef struct ATTLinkStatus_t {

 short linkID;

 ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {

 LS_LINK_UNAVAIL = 0, /* the link is disabled */

 LS_LINK_UP = 1, /* the link is up */

 LS_LINK_DOWN = 2 /* the link is down */

} ATTLinkState_t;

Chapter 13: System Status Service Group

814 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 4 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV4LinkStatusEvent - System Status Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV4_LINK_STATUS */

 union

 {

 ATTV4LinkStatusEvent_t v4linkStatus;

 } u;

} ATTEvent_t;

typedef struct ATTV4LinkStatusEvent_t {

 unsigned short count;

 ATTLinkStatus_t linkStatus[8];

} ATTV4LinkStatusEvent_t;

typedef struct ATTLinkStatus_t {

 short linkID;

 ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {

 LS_LINK_UNAVAIL = 0, /* the link is disabled */

 LS_LINK_UP = 1, /* the link is up */

 LS_LINK_DOWN = 2 /* the link is down */

} ATTLinkState_t;

 System Status Event

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 815

Private Data Versions 2 and 3 Syntax

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/* ATTV3LinkStatusEvent - System Status Event Private Data */

typedef struct

{

 ATTEventType_t eventType; /* ATTV3_LINK_STATUS */

 union

 {

 ATTV3LinkStatusEvent_t v3linkStatus;

 } u;

} ATTEvent_t;

typedef struct ATTV3LinkStatusEvent_t {

 unsigned short count;

 ATTLinkStatus_t linkStatus[4];

} ATTV3LinkStatusEvent_t;

typedef struct ATTLinkStatus_t {

 short linkID;

 ATTLinkState_t linkState;

} ATTLinkStatus_t;

typedef enum ATTLinkState_t {

 LS_LINK_UNAVAIL = 0, /* the link is disabled */

 LS_LINK_UP = 1, /* the link is up */

 LS_LINK_DOWN = 2 /* the link is down */

} ATTLinkState_t;

816 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Appendix A: Universal Failure Events

This appendix contains listings of TSAPI related CSTA messages. It provides the

following error summaries:

 Common switch-related CSTA Service errors on page 816

 TSAPI Client library error codes on page 823

 ACSUniversalFailureConfEvent error values on page 826

 ACS Related Errors on page 844

Common switch-related CSTA Service errors

Table 20 lists the most commonly used CSTA errors returned by CSTA Services in the

CSTAUniversalFailureConfEvent for a negative acknowledgment to any CSTA

service.

Bear in mind that this table does not include all possible errors. For example, it does not

include error codes that are returned by the TSAPI Service (rather than the switch

driver). Those error codes are enumerated in Syntax on page 821.

An application program should be able to handle any CSTA error defined by

CSTAUniversalFailure_t. Failure to do so may cause the application program to

fail.

Because the following errors apply to every CSTA Service supported by the TSAPI

Service, they are not repeated for each service description.

 Common switch-related CSTA Service errors

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 817

Table 20: Common switch-related CSTA Service errors -- universalFailure

Error Description

GENERIC_UNSPECIFIED (0) An error has occurred. The TSAPI Service
could not provide one of the more specific error
values described below.

GENERIC_OPERATION (1) The CTI protocol has been violated or the
service invoked is not consistent with a CTI
application association. Report this error -- see
Customer Support on page 9.

REQUEST_INCOMPATIBLE_WITH_OBJECT (2) The service request does not correspond to a
CTI application association. Report this error --
Customer Support on page 9.

VALUE_OUT_OF_RANGE (3) Communication Manager detects that a
required parameter is missing from the request
or an out-of-range value has been specified.

OBJECT_NOT_KNOWN (4) The TSAPI Service detects that a required
parameter is missing in the request. For

example, the deviceID of a connectionID is

not specified in a service request.

INVALID_FEATURE (15) The TSAPI Service detects a CSTA Service
request that is not supported by
Communication Manager.

GENERIC_SYSTEM_RESOURCE_AVAILABILITY

(31)
The request cannot be executed due to a lack
of available switch resources.

RESOURCE_OUT_OF_SERVICE (34) An application can receive this error code
when a single CSTA Service request is ending
abnormally due to protocol error.

NETWORK_BUSY (35) Communication Manager is not accepting the
request at this time because of processor
overload. The application may wish to retry the
request but should not do so immediately.

GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY

(41)

The TSAPI Service could not acquire the
license(s) needed to satisfy the request.

OUTSTANDING_REQUEST_LIMIT_EXCEEDED

(44)
The given request cannot be processed due to
a system resource limit on the device.

Appendix A: Universal Failure Events

818 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 20: Common switch-related CSTA Service errors -- universalFailure

Error Description

GENERIC_UNSPECIFIED_REJECTION (70) This is a TSAPI Service internal error, but it
cannot be any more specific. A system
administrator may find more detailed
information about this error in the AE Services
OAM error logs. Report this error -- see
Customer Support on page 9.

GENERIC_OPERATION_REJECTION (71) This is a TSAPI Service internal error, but not a
defined error. A system administrator should
check the TSAPI Service error logs for more
detailed information about this error. Report
this error -- see Customer Support on page 9.

DUPLICATE_INVOCATION_REJECTION (72) The TSAPI Service detects that the invokeID

in the service request is being used by another
outstanding service request. This service
request is rejected. The outstanding service
request with the same invokeID is still valid.

UNRECOGNIZED_OPERATION_REJECTION (73) The TSAPI Service detects that the service
request from a client application is not defined
in the API. A CSTA request with a 0 or

negative invokeID will receive this error.

RESOURCE_LIMITATION_REJECTION (75) The TSAPI Service detects that it lacks internal
resources such as the memory or data records
to process a service request. A system
administrator should check the TSAPI Service
error logs for more detailed information about
this error. This failure may reflect a temporary
situation. The application should retry the
request.

 Common switch-related CSTA Service errors

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 819

Table 20: Common switch-related CSTA Service errors -- universalFailure

Error Description

ACS_HANDLE_TERMINATION_REJECTION (76) The TSAPI Service detects that an

acsOpenStream session is terminating. The

TSAPI Service sends this error for every
outstanding CSTA request of this ACS Handle.
If the session is not closed in an orderly
fashion, the application may not receive this
error. For example, a user may power off the
PC before the application issues an

acsCloseStream request and waits for the

confirmation event. In this case, the

acsCloseStream is issued by the TSAPI

Service on behalf of the application and there
is no application to receive this error. If an

application issues an acsCloseStream request

and waits for its confirmation event, the
application will receive this error for every
outstanding request.

SERVICE_TERMINATION_REJECTION (77) The TSAPI Service detects that it cannot
provide the service due to the failure or
shutting down of the communication link
between the Telephony Server and
Communication Manager. The TSAPI Service
sends this error for every outstanding CSTA
request for every ACS Handle affected.
Although the link is down or Communication
Manager is out of service, the TSAPI Service
remains loaded and advertised. When the
TSAPI Service is in this state, all CSTA
Service requests from a client will receive a
negative acknowledgment with this unique
error code.

REQUEST_TIMEOUT_REJECTION (78) The TSAPI Service did not receive the
response of a service request sent to
Communication Manager more than 9 seconds
ago. The timer of the request has expired. The
request is canceled and negatively
acknowledged with this unique error code.
When this occurs, the communication link
between the TSAPI Service and
Communication Manager may be congested.
This can happen when the TSAPI Service
exceeds its capacity.

Appendix A: Universal Failure Events

820 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 20: Common switch-related CSTA Service errors -- universalFailure

Error Description

REQUESTS_ON_DEVICE_EXCEEDED_REJECTION (79) For a device, the TSAPI Service processes
one service request at a time. The TSAPI
Service queues CSTA requests for a device.
Only a limited number of CSTA requests can
be queued on a device. Report this error -- see
Customer Support on page 9.

If this number is exceeded, the incoming client
request is negatively acknowledged with this
unique error code. Usually an application
sends one request and waits for its completion

before it makes another request. The MAX_-

REQS_QUEUED_PER_DEVICE parameter has no

effect on this class of applications. Situations
of sending a sequence of requests without
waiting for their completion are rare. However,

if this is the case, the MAX_REQS_QUEUED_-

PER_DEVICE parameter should be set to a

proper value. The default value for MAX_-

REQS_QUEUED_PER_DEVICE is 4.

 Common switch-related CSTA Service errors

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 821

Syntax

The following structure shows only the relevant portions of the unions for this message:

#include <acs.h>

#include <csta.h>

typedef struct

{

 ACSHandle_t acsHandle;

 EventClass_t eventClass; /* CSTACONFIRMATION */

 EventType_t eventType; /* CSTA_UNIVERSAL_FAILURE_CONF */

} ACSEventHeader_t;

typedef struct

{

 ACSEventHeader_t eventHeader;

 union

 {

 struct

 {

 InvokeID_t invokeID;

 union

 {

 CSTAUniversalFailureConfEvent_t

 universalFailure;

 } u;

 } cstaConfirmation;

 } event;

} CSTAEvent_t;

typedef struct CSTAUniversalFailureConfEvent_t {

 CSTAUniversalFailure_t error;

} CSTAUniversalFailureConfEvent_t;

typedef enum CSTAUniversalFailure_t {

 GENERIC_UNSPECIFIED = 0,

 GENERIC_OPERATION = 1,

 REQUEST_INCOMPATIBLE_WITH_OBJECT = 2,

 VALUE_OUT_OF_RANGE = 3,

 OBJECT_NOT_KNOWN = 4,

 INVALID_CALLING_DEVICE = 5,

 INVALID_CALLED_DEVICE = 6,

 INVALID_FORWARDING_DESTINATION = 7,

 PRIVILEGE_VIOLATION_ON_SPECIFIED_DEVICE = 8,

 PRIVILEGE_VIOLATION_ON_CALLED_DEVICE = 9,

 PRIVILEGE_VIOLATION_ON_CALLING_DEVICE = 10,

 INVALID_CSTA_CALL_IDENTIFIER = 11,

 INVALID_CSTA_DEVICE_IDENTIFIER = 12,

 INVALID_CSTA_CONNECTION_IDENTIFIER = 13,

 INVALID_DESTINATION = 14,

 INVALID_FEATURE = 15,
 INVALID_ALLOCATION_STATE = 16,

 INVALID_CROSS_REF_ID = 17,

 INVALID_OBJECT_TYPE = 18,

 SECURITY_VIOLATION = 19,

Appendix A: Universal Failure Events

822 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 GENERIC_STATE_INCOMPATIBILITY = 21,

 INVALID_OBJECT_STATE = 22,

 INVALID_CONNECTION_ID_FOR_ACTIVE_CALL = 23,

 NO_ACTIVE_CALL = 24,

 NO_HELD_CALL = 25,

 NO_CALL_TO_CLEAR = 26,

 NO_CONNECTION_TO_CLEAR = 27,

 NO_CALL_TO_ANSWER = 28,

 NO_CALL_TO_COMPLETE = 29,

 GENERIC_SYSTEM_RESOURCE_AVAILABILITY = 31,

 SERVICE_BUSY = 32,

 RESOURCE_BUSY = 33,

 RESOURCE_OUT_OF_SERVICE = 34,

 NETWORK_BUSY = 35,

 NETWORK_OUT_OF_SERVICE = 36,

 OVERALL_MONITOR_LIMIT_EXCEEDED = 37,

 CONFERENCE_MEMBER_LIMIT_EXCEEDED = 38,

 GENERIC_SUBSCRIBED_RESOURCE_AVAILABILITY = 41,

 OBJECT_MONITOR_LIMIT_EXCEEDED = 42,

 EXTERNAL_TRUNK_LIMIT_EXCEEDED = 43,

 OUTSTANDING_REQUEST_LIMIT_EXCEEDED = 44,

 GENERIC_PERFORMANCE_MANAGEMENT = 51,

 PERFORMANCE_LIMIT_EXCEEDED = 52,

 SEQUENCE_NUMBER_VIOLATED = 61,

 TIME_STAMP_VIOLATED = 62,

 PAC_VIOLATED = 63,

 SEAL_VIOLATED = 64,

 /* The errors listed above may be provided by either the switch

 * or by the TSAPI Service.

 * The following errors are only provided by the TSAPI Service

 * and not by the switch.

 */

 GENERIC_UNSPECIFIED_REJECTION = 70,

 GENERIC_OPERATION_REJECTION = 71,

 DUPLICATE_INVOCATION_REJECTION = 72,

 UNRECOGNIZED_OPERATION_REJECTION = 73,

 MISTYPED_ARGUMENT_REJECTION = 74,

 RESOURCE_LIMITATION_REJECTION = 75,

 ACS_HANDLE_TERMINATION_REJECTION = 76,

 SERVICE_TERMINATION_REJECTION = 77,

 REQUEST_TIMEOUT_REJECTION = 78,

 REQUESTS_ON_DEVICE_EXCEEDED_REJECTION = 79,

 UNRECOGNIZED_APDU_REJECTION = 80,

 MISTYPED_APDU_REJECTION = 81,

 BADLY_STRUCTURED_APDU_REJECTION = 82,

 INITIATOR_RELEASING_REJECTION = 83,

 UNRECOGNIZED_LINKEDID_REJECTION = 84,

 LINKED_RESPONSE_UNEXPECTED_REJECTION = 85,

 UNEXPECTED_CHILD_OPERATION_REJECTION = 86,

 MISTYPED_RESULT_REJECTION = 87,

 UNRECOGNIZED_ERROR_REJECTION = 88,

 UNEXPECTED_ERROR_REJECTION = 89,

 MISTYPED_PARAMETER_REJECTION = 90,

 NON_STANDARD = 100

} CSTAUniversalFailure_t;

 TSAPI Client library error codes

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 823

TSAPI Client library error codes

Table 21 describes TSAPI Client library error codes. The first column provides the

number identifying the error. The second column provides a description of the error. The

third column provides possible corrective action for the error or indicates a contact to

help you determine the problem.

Table 21: TSAPI Client Library Error Codes

Error Description Corrective Action

-1 The API version requested is not
supported by the existing API client
library.

This is an application error; contact the
application developer.

-2 One or more of the parameters is
invalid.

This is an application error; contact the
application developer.

-5 This error code indicates the requested
server is not present in the network.

Does the TSAPI library configuration file
(TSLIB.INI or tslibrc) contain the correct
server name or IP address for the AE
Services server? When using host
names instead of IP addresses, can the
host name be resolved to an IP
address? Is the TSAPI Service up
(online)? Are physical network
connections (wiring) intact?

-6 This return value indicates that there are
insufficient resources to open a
connection.

Contact the application developer. The
application may be trying to open too
many connections or may be opening
streams but not closing them.

-7 The user buffer size was smaller than
the size of the next available event.

This is an application error; contact the
application developer.

-8 Following initial connection, the server
has failed to respond within a specified
amount of time (typically 10 seconds)

Is host name resolution properly
configured on the AE Services server,
such that the server is able to resolve
the IP address of the client machine to a
host name? Call Customer Support and
report this error. See Customer Support
on page 9.

Appendix A: Universal Failure Events

824 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 21: TSAPI Client Library Error Codes

Error Description Corrective Action

-9 The connection has encountered an
unspecified error.

This error is often the result of a
software version mismatch. Has some
software been replaced or upgraded
recently? Call Customer Support and
report this error. See Customer Support
on page 9.

-10 The ACS handle is invalid. This is an application error; contact the
application developer.

-11 The connection has failed due to
network problems. No further operations
are possible on this stream. A
connection has been lost.

Check whether the TSAPI Service is
running. From the AE Services
Management Console (OAM), select
Status > Status and Control > TSAPI
Service Summary. Also, check that
physical network connections are intact.

-12 Not enough buffers were available to
place an outgoing message on the send
queue. No message has been sent.
This could be either an application error
or an indication that the TSAPI Service
is overloaded.

Consult the application developer.

-13 The send queue is full. No message has
been sent. This could be either an
application error or an indication that the
TSAPI Service is overloaded.

Consult the application developer.

-14 This return value indicates that a secure
connection could not be opened
because there was a problem initializing
the OpenSSL library.

See Customer Support on page 9.

-15 This return value indicates that a stream
could not be opened because there was
a problem establishing an SSL
connection to the server. It may be that
the server failed to provide a certificate,
or that the server certificate is not
signed by a trusted Certificate Authority.

Check with your network administrator
to determine whether the AE Services
server certificate is using the default
certificate for TSAPI client connections.
If not, edit the TSAPI library
configuration file (TSLIB.INI or tslibrc)
and change the ―Trusted CA File‖
setting in the ―[Config]‖ section to the full
path name of the appropriate trusted CA
certificate.

 TSAPI Client library error codes

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 825

Table 21: TSAPI Client Library Error Codes

Error Description Corrective Action

-16 This return value indicates that a stream
could not be opened because the Fully
Qualified Domain Name (FQDN) in the
server certificate does not match the
expected FQDN.

Check with your network administrator
to determine whether the AE Services
server certificate contains the correct
FQDN for the AE Services server. If
not, edit the TSAPI library configuration
file (TSLIB.INI or tslibrc) and change the
―Verify Server FQDN‖ setting in the
―[Config]‖ section from ―1‖ to ―0‖.

Appendix A: Universal Failure Events

826 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

ACSUniversalFailureConfEvent error values

Error values in this category indicate that the TSAPI Service detected an ACS-related

error. Table 22 describes ACS Universal Failure event error codes.

 NOTE:

An ACSUniversalFailureConfEvent does not indicate a failure or loss of the

ACS Stream with the TSAPI Service. If the ACS Stream has failed, then an ACS-

UniversalFailureEvent (the unsolicited version of this confirmation event) is

sent to the application, see ACSUniversalFailureEvent on page 101.

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

0 TSERVER_STREAM_FAILED TSAPI

Service

The client library detected

that the connection failed.

1. Other errors may have been
sent by the TSAPI Service
before the connection was
taken down. If so, follow the
procedures for this error.

2. If no other errors were
received from the TSAPI
Service first, then verify that
the TSAPI Service/AE Server
is still running and look for
LAN problems.

1 TSERVER_NO_THREAD TSAPI

Service

The TSAPI Service could

not begin execution of a

thread group which is

necessary for it to run

properly.

There is a serious system

problem. These errors will appear

in the TSAPI Service error logs.

Consult the logs for the return

code.

2 TSERVER_BAD_DRIVER_ID TSAPI

Service

The TSAPI Service has an

internal system error.

This error should never be

returned to an application or

appear in the TSAPI Service error

logs. If this event is generated by

the TSAPI Service, then there is a

software problem with the TSAPI

Service. Call Customer Support

and report this error. See

Customer Support on page 9.

3 TSERVER_DEAD_DRIVER TSAPI

Service

The specified driver has not

sent any heart beat

messages to the TSAPI

Service for the last three

minutes. The driver may be

in an inoperable state.

Look for driver error messages

and/or contact the driver vendor to

determine why it is no longer

sending the heartbeat messages.

4 TSERVER_MESSAGE_HIGH_-

WATER_MARK

TSAPI

Service

Obsolete message. Obsolete message.

 ACSUniversalFailureConfEvent error values

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 827

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

5 TSERVER_FREE_BUFFER_FAILED TSAPI

Service

The TSAPI Service was

unable to release TSAPI

Service driver interface

(TSDI) memory back to the

operating system.

Consult the error log files for a

corresponding error message. The

error code associated with this

error message should be one of

the following:

 -1 A corresponding CRITICAL
error will be generated
indicating the call failed.
Follow the description for this
error message.

 -2, -9, or -10 Internal TSAPI
Service software error. Collect
the error log files and
message trace files and
escalate the problem.

6 TSERVER_SEND_TO_DRIVER TSAPI

Service

The TSAPI Service was

unable to send a message

to the G3PD.

Consult the error log files for a

corresponding error message.

 This error can indicate that
the driver unregistered while
the TSAPI Service was
processing messages for it or
that there is a software
problem with the TSAPI
Service. Verify that the driver
was loaded at the time of the
error.

 The error code (rc) should be
one of the following: -2, -6, -9,
-10. All these errors indicate
an internal TSAPI Service
software error. Collect the
error log files and message
trace files and escalate the
problem.

7 TSERVER_RECEIVE_FROM_-

DRIVER

TSAPI

Service

The TSAPI Service was

unable to receive a

message from the G3PD.

Consult the error log files for a

corresponding error message. The

error code (rc) should be one of

the following:

 -1 A corresponding FATAL

error will be generated
indicating the call failed.
Follow the description for this
error message.

 -2 Internal TSAPI Service
software error. Collect the
error log files and message
trace files and escalate the
problem.

Appendix A: Universal Failure Events

828 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

8 TSERVER_REGISTRATION_-

FAILED

TSAPI

Service

The G3PD, which is internal

to the TSAPI Service, failed

to register properly. The

TSAPI Service will not run

properly without this driver.

There is a serious system

problem. These errors will appear

in the TSAPI Service error logs.

Consult the logs for the return

code.

9 TSERVER_SPX_FAILED TSAPI

Service

Obsolete message. Obsolete message.

10 TSERVER_TRACE TSAPI

Service

This error code has multiple

meanings and should not be

returned to the application.

Consult the error log files for a

corresponding error message.

11 TSERVER_NO_MEMORY TSAPI

Service

The TSAPI Service was

unable to allocate a piece of

memory.

1. Verify that the server has
enough memory to run the
TSAPI Service.

2. If the server has enough
memory, then the driver has
reached its limit of how much
memory the TSAPI Service
will allocate. This limit is
chosen by the driver when it
registers with the TSAPI
Service. Call Customer
Support and report this error.
See Customer Support on
page 9.

12 TSERVER_ENCODE_FAILED TSAPI

Service

The TSAPI Service was

unable to encode a

message from the G3PD to

a client workstation.

This error should never be

returned to an application. Consult

the error log files for a

corresponding error message. If

the error appears in the error logs,

it indicates that the TSAPI Service

does not recognize the message

from the G3PD. Call Customer

Support and report this error. See

Customer Support on page 9.

13 TSERVER_DECODE_FAILED TSAPI

Service

The TSAPI Service was

unable to decode a

message from a client

workstation.

The application is most likely using

an old version of the client library.

Check the version to ensure that it

supports this message. If you

have the latest DLL. Call

Customer Support and report this

error. See Customer Support on

page 9.

 ACSUniversalFailureConfEvent error values

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 829

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

14 TSERVER_BAD_CONNECTION TSAPI

Service

The TSAPI Service tried to

process a request with a

bad client connection ID

number.

This error should never be

returned to an application.

If it appears in the TSAPI Service

error logs, it indicates one of the

following:

 an application may have been
terminated

 the client workstation was
disconnected from the
network while the TSAPI
Service was processing
messages for it.

Determine if either of these two

cases is true.

If this error occurs repeatedly and

these conditions are not true, Call

Customer Support and report this

error. See Customer Support on

page 9.

15 TSERVER_BAD_PDU TSAPI

Service

The TSAPI Service received

a message from the client

that is not a valid TSAPI

request.

Verify that the message the client

is sending is a valid TSAPI

request. If it is then there is a

problem with the TSAPI Service.

Contact Customer Support (see

Customer Support on page 9).

16 TSERVER_NO_VERSION TSAPI

Service

The TSAPI Service received
an ACSOpenStreamConf-

Event from the G3PD

which does not have one of

the version fields set

correctly. The confirmation

event will still be sent to the

client with the version field

set to ―UNKNOWN.‖

This error will appear in the error

log files and will indicate which

field is invalid. Contact Customer

Support (see Customer Support

on page 9).

17 TSERVER_ECB_MAX_EXCEEDED TSAPI

Service

Obsolete message. Obsolete message.

18 TSERVER_NO_ECBS TSAPI

Service

Obsolete message. Obsolete message.

19 TSERVER_NO_SDB SDB The TSAPI Service was

unable to initialize the

Security Database when

loading.

Look for other errors that might

indicate a data base initialization

problem.

Appendix A: Universal Failure Events

830 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

20 TSERVER_NO_SDB_CHECK_-

NEEDED

SDB The TSAPI Service

determined that a particular

TSAPI message did not

require Security Database

validation. This code is an

internal one and should

never be returned to an

application.

This error should never be

returned to an application or

appear in the TSAPI Service error

logs. If this event is generated by

the TSAPI Service, then there is a

software problem with the TSAPI

Service. Call Customer Support

and report this error. See

Customer Support on page 9.

21 TSERVER_SDB_CHECK_NEEDED SDB The TSAPI Service

determined that a particular

TSAPI message did require

a Security Database

validation. This code is an

internal one and should

never be returned to an

application.

This error should never be

returned to an application or

appear in the TSAPI Service error

logs. If this event is generated by

the TSAPI Service, then there is a

software problem with the TSAPI

Service. Call Customer Support

and report this error. See

Customer Support on page 9.

22 TSERVER_BAD_SDB_LEVEL SDB The TSAPI Service‘s

internal table of API calls

indicating which level of

security to perform on a

specific request is

corrupted.

This error should never be

returned to an application or

appear in the TSAPI Service error

logs. If this event is generated by

the TSAPI Service, then there is a

software problem with the TSAPI

Service. Call Customer Support

and report this error. See

Customer Support on page 9.

23 TSERVER_BAD_SERVERID SDB The TSAPI Service rejected
an acsOpenStream

request because the server

ID in the message did not

match a Tlink supported by

TSAPI Service.

A software problem has occurred

with the application or the client

library. Use the TSAPI Spy to

verify that the application is

attempting to open a stream to the

correct Tlink.

24 TSERVER_BAD_STREAM_TYPE SDB The stream type of an

acsOpenStream request

was invalid.

A software problem has occurred

with the client library. Call

Customer Support and report this

error. See Customer Support on

page 9.

 ACSUniversalFailureConfEvent error values

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 831

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

25 TSERVER_BAD_PASSWORD_-

OR_LOGIN

SDB The password, login, or both

from an acsOpenStream

request did not pass the

TSAPI Service

authentication checks.

For more information see

―Alternative AE Services

Authentication Methods,‖

Chapter 5, of the AE

Services Administration and

Maintenance Guide (02-

300357)

1. Validate that the user login
and password were entered
correctly into the application.

2. Verify that the user‘s login
and password are correct.

3. If the user must change their
password at next login, log in
and change the password
before starting the application.

26 TSERVER_NO_USER_RECORD SDB No user object was found in

the security database for the

login specified in the

acsOpenStream request.

Verify the user has a user object in

the security database by using the

CTI OAM.

 Validate that the user‘s login
in the security database
exactly matches the Windows
username. Create a user
object for this user if none
exists.

27 TSERVER_NO_DEVICE_RECORD SDB No device object was found

in the security database for

the device specified in the

API call.

Create a device object for the

device the user is trying to control

in the TSAPI Service security

database by using the AE

Services Operations

Administration and Maintenance

Web pages (Security > Security

Database > Devices)

Note: Make sure the assigned

Tlink group for this device includes

the correct Tlink.

28 TSERVER_DEVICE_NOT_ON_LIST SDB The specified device did not

appear on any of the

searched lists, and more

than one of the lists was not

blank.

Change the user‘s administration

so that the user has permission to

control the device through either

the user‘s worktop object (worktop

administration) or through one of

the Access Rights (user

administration).

Appendix A: Universal Failure Events

832 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

30 TSERVER_USERS_RESRTICTED_-

HOME

SDB The user tried to access a

worktop other than his/her

own worktop while the

―Extended Worktop Access‖

feature was disabled;

however, permission to

access this device on this

worktop was granted.

Either enable the ―Extended

Worktop Access‖ feature or

change the user‘s worktop or

Access Rights options to include

permissions for the device at the

worktop where the user is logged

in.

31 TSERVER_NOAWAYPERMISSION SDB Obsolete message. Obsolete message.

32 TSERVER_NOHOMEPERMISSION SDB Obsolete message. Obsolete message.

33 TSERVER_NOAWAYWORKTOP SDB Obsolete message. Obsolete message.

34 TSERVER_BAD_DEVICE_RECORD SDB The TSAPI Service read a

device object from the

security database that

contained corrupted

information. The device

object did not contain a PBX

index value which is a

violation of the SDB

structure.

This error should never be

returned to an application or

appear in the TSAPI Service error

logs. If this event is generated by

the TSAPI Service, then there is a

software problem with the TSAPI

Service. Call Customer Support

and report this error. See

Customer Support on page 9.

35 TSERVER_DEVICE_NOT_-

SUPPORTED

SDB The Tlink group

administered for this device

does not contain the CTI

link to which the user

opened a connection.

1. Validate that the user opened
the connection to the correct
CTI link.

2. If the CTI link to which the
stream was opened can
support this device, use AE
Services Operations
Administration and
Maintenance Web pages
(Security > Security
Database > Devices) to

ensure that the correct Tlink
group is assigned to the
device or change the Tlink
group for the device to ―Any
Tlink.‖

36 TSERVER_INSUFFICIENT_-

PERMISSION

SDB Obsolete message. Obsolete message.

37 TSERVER_NO_RESOURCE_TAG TSAPI

Service

A memory allocation call

failed in the TSAPI Service.

There is a serious system

problem. These errors will appear

in the TSAPI Service error logs.

Consult the logs for the return

code.

 ACSUniversalFailureConfEvent error values

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 833

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

38 TSERVER_INVALID_MESSAGE TSAPI

Service

The TSAPI Service has

received a message from

the application or the driver

that it does not recognize.

Verify that the offending message

is valid according to TSAPI. If it is

a valid message then there may

be a software problem with the

TSAPI Service. Call Customer

Support and report this error. See

Customer Support on page 9.

39 TSERVER_EXCEPTION_LIST SDB The device in the API call is

a member of an exception

group which is administered

as part of the user‘s

worktop, Access Rights, or

―Extended Worktop Access‖

is enabled and the user is

logged in.

Determine which of the device

groups is an exception group and

either remove this device from the

group or create a new group that

reflects the correct access

permissions.

40 TSERVER_NOT_ON_OAM_LIST TSAPI

Service

Obsolete message. Obsolete message.

41 TSERVER_PBXID_NOT_IN_SDB TSAPI

Service

Obsolete message. Obsolete message.

42 TSERVER_USER_LICENSES_-

EXCEEDED

TSAPI

Service

Obsolete message. Obsolete message.

43 TSERVER_OAM_DROP_-

CONNECTION

TSAPI

Service

The TSAPI Service was

used to drop the connection

for this client.

Determine why the TSAPI Service

administrator dropped the client

connection.

44 TSERVER_NO_VERSION_-

RECORD

TSAPI

Service

Obsolete message. Obsolete message.

45 TSERVER_OLD_VERSION_-

RECORD

TSAPI

Service

Obsolete message. Obsolete message.

46 TSERVER_BAD_PACKET TSAPI

Service

Obsolete message. Obsolete message.

47 TSERVER_OPEN_FAILED TSAPI

Service

The TSAPI Service rejected

a user‘s request to open a

connection, so the

connection was dropped.

An error code should have been

returned in response to the

acsOpenStream() request in the

ACSUniversalFailureConf-

Event. Follow the procedures

defined for that error code.

48 TSERVER_OAM_IN_USE TSAPI

Service

Obsolete message. Obsolete message.

Appendix A: Universal Failure Events

834 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

49 TSERVER_DEVICE_NOT_ON_-

HOME_LIST

SDB The TSAPI Service rejected

a user‘s request to control a

device because all of the

following are true:

 The Primary Device ID
of the user‘s Worktop
does not match the
device and the device
is not a member of the
Secondary Device
Group of the user‘s
Worktop.

 The Access Group in
the ―Access Rights‖
administration in this
user‘s record which
corresponds to the
action being attempted
(Call Control or
Device/Device
Monitoring) is empty.

 The ―Extended Worktop
Access" feature is
enabled and the user is
not working from his or
her own worktop, and
either the other worktop
is not in the SDB or
does not have any
devices associated with
it.

Grant this user permission to

control the device through either of

the following ways:

 Edit the worktop object
(Security > Security
Database > Worktop)

 Edit the user‘s ―Access
Rights‖ (Security > Security
Database > CTI User > Edit
CTI User).

50 TSERVER_DEVICE_NOT_ON_-

CALL_CONTROL_LIST

SDB The telephony server

rejected a user‘s request to

control a device because all

of the following are true:

 There is no worktop or
the user has no devices
associated with the
worktop.

 The ―Extended Worktop
Access‖ feature is
enabled and the user is
not working from his or
her own worktop, and
either the other worktop
is not in the SDB or
does not have any
devices associated with
it.

Change the user‘s administration

so that the user has permission to

control the device through either

the worktop object (worktop

administration) or through the Call

Control Access Group ―Access

Rights‖ (user administration).

 ACSUniversalFailureConfEvent error values

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 835

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

51 TSERVER_DEVICE_NOT_ON_-

AWAY_LIST

SDB The telephony server

rejected a user‘s request to

control a device because all

of the following are true:

 There is no worktop or
the user has no devices
associated with the
worktop.

 The Access Group in
the ―Access Rights‖
administration in this
user‘s record which
corresponds to the
action being attempted
(Call Control or
Device/Device
Monitoring) is empty.

 The ―Extended Worktop
Access‖ feature is
enabled and the user is
not working from his or
her own worktop, and
either the other worktop
is not in the SDB or
does not have any
devices associated with
it.

Change the user‘s administration

so that the user has permission to

control the device through either

the user‘s worktop object (worktop

administration) or through one of

the ―Access Rights‖ (user

administration).

52 TSERVER_DEVICE_NOT_ON_-

ROUTE_LIST

SDB The telephony server has

rejected a user‘s routing

request for a device

because the user has a

routing access group in their

Access Rights but the

device is not a member of

that group.

Change the user‘s administration

so that the user has permission to

control the device through the

Routing Access Group ―Access

Rights" (User administration).

53 TSERVER_DEVICE_NOT_ON_-

MONITOR_DEVICE_LIST

SDB The telephony server

rejected a user‘s monitor

device request because the

user has a device/device

monitoring access group,

but the device is not a

member of that group.

Change the user‘s administration

so that the user has permission to

control the device through either

the worktop record (worktop

administration) or through the

Device/Device Monitoring Access

Group ―Access Rights‖ (User

administration).

Appendix A: Universal Failure Events

836 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

54 TSERVER_NOT_ON_MONITOR_-

CALL_DEVICE_LIST

SDB The telephony server

rejected a user‘s request to

monitor a device because

the device does not appear

on the user‘s call/device

monitor list and the

call/device monitor list is not

blank.

Change the user‘s administration

so that the user has permission to

control the device through the

Call/Device Monitoring Access

Group ―Access Rights‖ (user

administration).

55 TSERVER_NO_CALL_CALL_-

MONITOR_PERMISSION

SDB The telephony server

rejected a user‘s request to

monitor a device because

the Allow option for Call/Call

Monitoring Access Group in

the ―Access Rights‖

administration in this user‘s

record is disabled.

Enable the Allow option for

Call/Call Monitoring Access Group

in the ―Access Rights‖

administration in this user‘s record

(user administration).

56 TSERVER_HOME_DEVICE_LIST_-

EMPTY

SDB Obsolete message. Obsolete message.

57 TSERVER_CALL_CONTROL_-

LIST_EMPTY

SDB Obsolete message. Obsolete message.

58 TSERVER_AWAY_LIST_EMPTY SDB Obsolete message. Obsolete message.

59 TSERVER_ROUTE_LIST_EMPTY SDB The telephony server

rejected a user‘s request to

control a device because

the ―Routing Access Group‖

in the ―Access Rights‖

administration in this user‘s

record is empty.

Change the user‘s administration

so that the user has permission to

control the device through the

―Routing Access Group‖ in

―Access Rights‖ (user

administration) by specifying a

Device Group for the Routing

Access Group.

60 TSERVER_MONITOR_DEVICE_-

LIST_EMPTY

SDB Obsolete message. Obsolete message.

61 TSERVER_MONITOR_CALL_-

DEVICE_LIST_EMPTY

SDB The telephony server

rejected a user‘s request to

control a device because

the Call/Device Monitoring

Access Group in the

―Access Rights‖

administration in this user‘s

record is empty.

Change the user‘s administration

so that the user has permission to

control the device through the

Call/Device Monitoring Access

Group under ―Access Rights‖

(user administration).

62 TSERVER_USER_AT_HOME_-

WORKTOP

SDB Obsolete message. Obsolete message.

 ACSUniversalFailureConfEvent error values

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 837

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

63 TSERVER_DEVICE_LIST_EMPTY SDB All the device groups in a

user‘s worktop and Access

Rights are empty (in the set

of lists searched for this

type of message).

Change the user‘s administration

so that the user has permission to

control the device through either

the user‘s worktop record (worktop

administration) or through one of

the ―Access Rights‖ (user

administration).

64 TSERVER_BAD_GET_DEVICE_-

LEVEL

SDB A cstaGetDeviceList

query was made with a bad

CSTALevel_t value. Valid

CSTALevels are:

 CSTA_HOME_WORK_-

TOP

 CSTA_AWAY_WORK_-

TOP

 CSTA_DEVICE_-

DEVICE_MONITOR

 CSTA_CALL_DEVICE_

MONITOR

 CSTA_CALL_CONTROL

 CSTA_ROUTING

The application has called

cstaGetDeviceList with an

invalid device level. Consult the

application developer.

65 TSERVER_DRIVER_-

UNREGISTERED

SDB The connection was torn

down because the PBX

driver associated with this

stream terminated and

unregistered with the TSAPI

Service.

Verify that the driver unregistered.

If it did not, call Customer Support

and report this error. See

Customer Support on page 9.

66 TSERVER_NO_ACS_STREAM TSAPI

Service

The TSAPI Service has

received a message from

the client or the Tlink over a

stream which has not been

confirmed. The Tlink may

have rejected the
acsOpenStream request or

violated the protocol by not

returning an ACSOpen-

StreamConfEvent.

1. The TSAPI Service will

terminate this stream when

this error occurs. Verify that

the application waits for an
ACSOpenStreamConf-

Event before it makes any

further requests.

2. If the application is written

correctly, call Customer

Support and report this error.

See Customer Support on

page 9.

67 TSERVER_DROP_OAM TSAPI

Service

Obsolete message. Obsolete message.

68 TSERVER_ECB_TIMEOUT TSAPI

Service

Obsolete message. Obsolete message.

Appendix A: Universal Failure Events

838 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

69 TSERVER_BAD_ECB TSAPI

Service

Obsolete message. Obsolete message.

70 TSERVER_ADVERTISE_FAILED TSAPI

Service

The TSAPI Service cannot

perform service advertising

due to an error.

There is a serious system

problem. These errors will appear

in the TSAPI Service error logs.

Consult the logs for the return

code. Call Customer Support and

report this error. See Customer

Support on page 9.

71 TSERVER_ADVERTISE_FAILED TSAPI

Service

Obsolete message. Obsolete message.

72 TSERVER_TDI_QUEUE_FAULT TSAPI

Service

This error indicates that

there is a software problem

with the TSAPI Service.

This error should never be

returned to an application or

appear in the TSAPI Service error

logs. If this event is generated by

the TSAPI Service, then there is a

software problem with the TSAPI

Service. Call Customer Support

and report this error. See

Customer Support on page 9.

73 TSERVER_DRIVER_CONGESTION TSAPI

Service

The TSDI buffer is

congested, which means

that the amount of allocated

TSDI space has reached

the highwater mark. This

occurs when the TSAPI

Service is not processing

messages fast enough.

1. Increase the TSDI space. In

AE Services > TSAPI >

TSAPI Links > Edit Link >

Advanced Settings.

2. If the driver has indicated to

the TSAPI Service that it can

accept flow control

information, you can change

the default flow control level

to a higher value.

3. If the driver still cannot handle

the message flow, then

check with your Customer

Support for load capabilities

of the TSAPI Service.

 ACSUniversalFailureConfEvent error values

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 839

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

74 TSERVER_NO_TDI_BUFFERS TSAPI

Service

The TSAPI Service cannot

allocate any more memory

for the Tlink to which the

application is connected.

The driver registers an

amount of memory with the

TSAPI Service when it

loads. The TSAPI Service

uses this value as a

maximum amount that can

be allocated at one time.

1. Increase the TSDI space. In

AE Services > TSAPI >

TSAPI Links > Edit Link >

Advanced Settings.

2. If the driver has indicated to

the TSAPI Service that it can

accept flow control

information, you can change

the default flow control level

to a higher value.

3. If the driver can still not

handle the message flow,

call Customer Support.

75 TSERVER_OLD_INVOKEID TSAPI

Service

The TSAPI Service has

received a message from a

driver which contains an
invokeID that it does not

recognize. The TSAPI

Service will still send this

message to the application.

The TSAPI Service may be taking

a very long time to respond to

client requests. If this continues to

happen call Customer Support.

76 TSERVER_HWMARK_TO_LARGE TSAPI

Service

The TSAPI Service

attempted to set the high

water mark for the TSDI

size to a value that was

larger than the TSDI size

itself.

The TSAPI Service should have

prevented the user from entering a

TSDI size that was smaller than

the high water mark. This error

indicates a problem with the

TSAPI Service itself.

77 TSERVER_SET_ECB_TO_LOW TSAPI

Service

Obsolete message. Obsolete message.

78 TSERVER_NO_RECORD_IN_FILE TSAPI

Service

Obsolete message. Obsolete message.

79 TSERVER_ECB_OVERDUE TSAPI

Service

Obsolete message. Obsolete message.

80 TSERVER_BAD_PW_ENCRYPTION TSAPI

Service

Obsolete message. Obsolete message.

81 TSERVER_BAD_TSERV_-

PROTOCOL

TSAPI

Service

A client application

attempted to open a stream

with a protocol version

(apiVer field in

acsOpenStream()) set to

a value that the TSAPI

Service does not support.

From the client workstation, use

the TSAPI Spy to determine what

protocol version(s) the application

is requesting in the

acsOpenStream() request.

Currently, the supported protocol

versions are 1 and 2.

Appendix A: Universal Failure Events

840 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

82 TSERVER_TSERVER_BAD_-

DRIVER_PROTOCOL

TSAPI

Service

A client application

attempted to open a stream

with a protocol version
(apiVer field in

acsOpenStream()) set to

a value that the PBX Driver

the stream was destined for

does not support.

Use Status > Status and Control

> TSAPI Service Summary. From

the TSAPI Link Details page,

select TLink Status. Check the

Supported Protocols field on the

Tlink Status page to see which

protocol version the TSAPI

Service supports. Compare this to

the requirements of the client

application.

83 TSERVER_BAD_TRANSPORT_-

TYPE

TSAPI

Service

Obsolete message. Obsolete message.

84 TSERVER_PDU_VERSION_-

MISMATCH

TSAPI

Service

A client application

attempted to use a TSAPI

call that is not supported by

the negotiated protocol

version for the current

connection.

Use Status > Status and Control

> TSAPI Service Summary. From

the TSAPI Link Details page,

select TLink Status. Check the

Supported Protocols field on the

Tlink Status page to see which

protocol version the TSAPI

Service supports. Compare this to

the requirements of the client

application.

85 TSERVER_TSERVER_VERSION_-

MISMATCH

TSAPI

Service

The application is sending a

request which is not valid

based on the TSAPI version

negotiation performed when

the stream was opened.

The application should verify that it

is requesting the appropriate

version of TSAPI and that the

driver can support this version.

86 TSERVER_LICENSE_MISMATCH TSAPI

Service

Obsolete message. Obsolete message.

87 TSERVER_BAD_ATTRIBUTE_LIST TSAPI

Service

Obsolete message. Obsolete message.

88 TSERVER_BAD_TLIST_TYPE TSAPI

Service

Obsolete message. Obsolete message.

89 TSERVER_BAD_PROTOCOL_-

FORMAT

TSAPI

Service

A client application

attempted to open a stream

with a protocol version
(apiVer field in

acsOpenStream()) that

was set to a format that the

TSAPI Service could not

decipher.

The application being used has a

software problem.

 ACSUniversalFailureConfEvent error values

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 841

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

90 TSERVER_OLD_TSLIB TSAPI

Service

A client application

attempted to open a stream

using an outdated version of

the TSLIB software that is

incompatible with the

current TSLIB software.

Upgrade the client to the current

version of the TSLIB.

91 TSERVER_BAD_LICENSE_FILE TSAPI

Service

Obsolete message. Obsolete message.

92 TSERVER_NO_PATCHES TSAPI

Service

Obsolete message. Obsolete message.

93 TSERVER_SYSTEM_ERROR TSAPI

Service

This indicates that the

TSAPI Service has a

software problem.

Call Customer Support and report

this error. See Customer Support

on page 9.

94 TSERVER_OAM_LIST_EMPTY TSAPI

Service

Obsolete message. Obsolete message.

95 TSERVER_TCP_FAILED TSAPI

Service

The TSAPI Service has

encountered an error with

the TCP/IP transport.

These errors will appear in the

TSAPI Service error logs. Call

Customer Support and report this

error. See Customer Support on

page 9.

96 TSERVER_SPX_DISABLED TSAPI

Service

Obsolete message. Obsolete message.

97 TSERVER_TCP_DISABLED TSAPI

Service

Obsolete message. Obsolete message.

98 TSERVER_REQUIRED_-

MODULES_NOT_LOADED

TSAPI

Service

Obsolete message. Obsolete message.

99 TSERVER_TRANSPORT_IN_USE_-

BY_OAM

TSAPI

Service

Obsolete message. Obsolete message.

100 TSERVER_NO_NDS_OAM_-

PERMISSION

TSAPI

Service

Obsolete message. Obsolete message.

101 TSERVER_OPEN_SDB_LOG_-

FAILED

TSAPI

Service

Obsolete message. Obsolete message.

102 TSERVER_INVALID_LOG_SIZE TSAPI

Service

Obsolete message. Obsolete message.

103 TSERVER_WRITE_SDB_LOG_-

FAILED

TSAPI

Service

Obsolete message. Obsolete message.

Appendix A: Universal Failure Events

842 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

104 TSERVER_NT_FAILURE TSAPI

Service

Obsolete message. Obsolete message.

105 TSERVER_LOAD_LIB_FAILED TSAPI

Service

The TSAPI Service cannot

load the G3PD.

Verify that the driver and its

supporting shared object files are

located in the proper directory. If

the TSAPI Service software was

just installed, try rebooting the

server (Software Only). For a

Bundled AE Server, contact

Customer Support.

106 TSERVER_INVALID_DRIVER TSAPI

Service

Obsolete message. Obsolete message.

107 TSERVER_REGISTRY_ERROR TSAPI

Service

Obsolete message. Obsolete message.

108 TSERVER_DUPLICATE_ENTRY TSAPI

Service

Obsolete message. Obsolete message.

109 TSERVER_DRIVER_LOADED TSAPI

Service

Obsolete message. Obsolete message.

110 TSERVER_DRIVER_NOT_LOADED TSAPI

Service

Obsolete message. Obsolete message.

111 TSERVER_NO_LOGON_-

PERMISSION

TSAPI

Service

Obsolete message. Obsolete message.

112 TSERVER_ACCOUNT_DISABLED TSAPI

Service

Obsolete message. Obsolete message.

113 TSERVER_NO_NET_LOGON TSAPI

Service

Obsolete message. Obsolete message.

114 TSERVER_ACCT_RESTRICTED TSAPI

Service

The account for accessing

the TSAPI Service is

restricted.

This may be due to too many

failed login attempts. Make sure

the user name and password are

valid in your user authentication

system (for example, the AE

Services User Service or Active

Directory Services).

 ACSUniversalFailureConfEvent error values

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 843

Table 22: ACS Universal Failure Events

Error Message Type Description Corrective Action

115 TSERVER_INVALID_LOGON_TIME TSAPI

Service

Obsolete message. Make sure the user name and

password are valid in your user

authentication system (for

example, the AE Services User

Service or Active Directory

Services).Then wait and try to log

in to the TSAPI Service at a later

time.

116 TSERVER_INVALID_-

WORKSTATION

TSAPI

Service

Obsolete message. Obsolete message.

117 TSERVER_ACCT_LOCKED_OUT TSAPI

Service

The account has been

locked out by the

administrator.

Have the administrator reinstate

the account, in your user

authentication system (for

example, the AE Services User

Service or Active Directory

Services).

118 TSERVER_PASSWORD_EXPIRED TSAPI

Service

The password has expired. Change or update expiration

information for the password in

your user authentication system

(for example, the AE Services

User Service or Active Directory

Services).

119 TSERVER_INVALID_HEARTBEAT_-

INTERVAL

TSAPI

Service

The client has requested an

invalid heartbeat interval.

This is an application error. The
application has invoked acsSet-

HeartbeatInterval() with an

invalid value. The valid range of

values is 5 to 60 (seconds).

844 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

ACS Related Errors

Table 23: ACS Related Errors

Error Message Type Description

1000 DRIVER_DUPLICATE_ACSHANDLE TSAPI

Service

The ACS Handle given for an ACS Stream request is

already in use for a session. The already open session with

the ACS Handle remains open.

1001 DRIVER_INVALID_ACS_REQUEST TSAPI

Service

The ACS message contains an invalid or unknown request.

The request is rejected.

1002 DRIVER_ACS_HANDLE_REJECTION TSAPI

Service

The request is rejected because a CSTA request was issued

with no prior acsOpenStream() request, or the ACS Handle

given for an acsOpenStream() request is 0 or negative.

1003 DRIVER_INVALID_CLASS_REJECTION TSAPI

Service

The driver received a message containing an invalid or

unknown message class. The request is rejected.

1004 DRIVER_GENERIC_REJECTION TSAPI

Service

The driver detected an invalid message for something other

than message type or message class. This is an internal

error and should be reported -- see Customer Support on

page 9.

1005 DRIVER_RESOURCE_LIMITATION TSAPI

Service

The driver did not have adequate resources (that is memory,

etc.) to complete the requested operation. This is an internal

error and should be reported -- see Customer Support on

page 9.

1006 DRIVER_ACSHANDLE_TERMINATION TSAPI

Service

Due to problems with the link to Communication Manager,

the TSAPI Service has found it necessary to terminate the

session with the given ACS Handle. The session will be

closed, and all outstanding requests will terminate.

1007 DRIVER_LINK_UNAVAILABLE TSAPI

Service

The TSAPI Service was unable to open the new session

because no link was available to Communication Manager.

The link may have been placed in the BLOCKED state, it

may have been taken off line, or some other link failure may

have occurred. When the link is in this state, the TSAPI

Service remains loaded and advertised and sends this error

for every new acsOpenStream() request until the link

becomes available again. A previously opened session will

remain open when the link is in this state. It will receive no

specific notification about the link status unless it has

requested system status event reports via the

cstaSysStatStart() service.

845 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Appendix B: Summary of Private data
support

This appendix provides historical information about private date versions in previous

releases.

Private Data Version 9 features

The TSAPI Service supports private data version 9 beginning with AE Services Release

6.1. Private data version 9 provides the following new features:

 Consult Modes

 UCID in Single Step Transfer Call Confirmation event

Consult Modes

Beginning with private data version 9, private data associated with the Held, Service

Initiated, and Originated events includes a consultMode parameter to indicate whether

these events are associated with a conference operation, a transfer operation, or a

Consultation Call service request

When these events are associated with a conference operation initiated at the telephone

set (i.e., the user initiates a conference by pressing the Conference button and dialing

the added party), the consult mode is set to ATT_CM_CONFERENCE.11

When these events are associated with a transfer operation initiated at the telephone set

(i.e., the user initiates a transfer by pressing the Transfer button and dialing the transfer

destination), the consult mode is set to ATT_CM_TRANSFER.12

When an application invokes the Consultation Call service, the consult mode in the

Originated event private data is set to ATT_CM_CONSULTATION.

UCID in Single Step Transfer Call Confirmation event

Beginning with private data version 9, the confirmation event for the Single Step Transfer

Call escape service includes a ucid parameter to provide the Universal Call ID (UCID)

of the merged call.

Private Data Version 9 features, services, and events

The following table maps the Private Data Version 9 features to the services and events

that they affect.

11

 Communication Manager Release 6.0.1 with Service Pack 1, or later, is required.
12

 Communication Manager Release 6.0.1 with Service Pack 1, or later, is required.

Appendix B: Summary of Private data support

846 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 24: Private Data Version 9 features, services, and events

Private Data Version 9 feature Updated services and events

Consult Modes Held Event on page 648

 Originated Event on page 666

 Service Initiated Event on page 684

UCID in Single Step Transfer Call
Confirmation event

 Single Step Transfer Call (Private Data Version
8 and later) on page 334

 Private Data Version 8 features

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 847

Private Data Version 8 features

The TSAPI Service supports private data version 8 beginning with AE Services Release

4.0. Private data version 8 provides the following new features:

 Single Step Transfer Call escape service

 Calling Device in Failed Event

Single Step Transfer Call Escape Service

Normally, performing an unsupervised transfer requires at least two steps:

 The application invokes the Consultation Call service to place the original call on
hold and place a consultation call to the transfer destination.

 The application invokes the Transfer Call service to transfer the held call.

The Single Step Transfer Call escape service allows an application to perform an

unsupervised transfer using a single service request.

Calling Device in Failed Event

Beginning with private data version 8, the ATTFailedEvent_t includes a

callingDevice parameter to identify the calling device for the failed call.

Private Data Version 8 features, services, and events

The following table maps the Private Data Version 8 features to the services and events

that they affect.

Table 25: Private Data Version 8 features, services, and events

Private Data Version 8 feature Updated services and events

Single Step Transfer Call Escape
Service

 Single Step Transfer Call (Private Data Version
8 and later) on page 334

Calling Device in Failed Event Failed Event on page 637

Appendix B: Summary of Private data support

848 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 7 features

AE Services TSAPI Service, Release 3.1, provides the following new features for Private

Data Version 7.

 Network Call Redirection - see Network Call Redirection for Routing

 ISDN Redirecting Number - see Redirecting Number Information Element
(presented through DeviceHistory)

 Query Device Name - see Query Device Name for Attendants on page 848.

 Enhanced Get API Capabilities function - see Enhanced cstaGetAPICaps
Version on page 849.

 Expanded list of Auxiliary Work Reason codes - see Increased Aux Reason
Codes on page 849.

Network Call Redirection for Routing

The Adjunct Route support for Network Call Redirection capability allows an application

to request that an incoming trunk call be rerouted using the Network Call Redirection

feature supported by the serving PSTN instead of having the call routed via a tandem

trunk configuration. This support is provided by using the existing called party field in the

route-select message. For the list of TSAPI messages that this feature affects, see Table

26: Private Data Version 7 features on page 850.

Redirecting Number Information Element (presented through
DeviceHistory)

The ―ISDN Redirecting Number for ASAI Events‖ Communication Manager feature

allows CTI applications to provide enhanced treatment of incoming ISDN calls routed

over an Integrated Services Digital Network (ISDN) facility. For the list of TSAPI

messages that this feature affects, see Table 26: Private Data Version 7 features on

page 850.

To implement this feature, the TSAPI Service relies on a new parameter, called

deviceHistory. The TSAPI service uses the deviceHistory parameter to provide the

following information to applications:

 ISDN redirecting number

 the length of the device list

 merging rules

For more information about the deviceHistory parameter, see Device History on page

139.

Query Device Name for Attendants

The private Query Device Name service allows an application to query the switch to

identify the Integrated Directory name assigned to an extension.

 Private Data Version 7 features

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 849

When a name has been assigned to an Attendant station extension, and an application

issues a Query Device Name service request, the deviceType parameter in the

confirmation event will contain DT_OTHER (a new value for PDV7) and the name

parameter will contain the configured Integrated Directory name assigned to that

attendant extension.

Enhanced cstaGetAPICaps Version

The cstaGetAPICaps() function is enhanced to return the following information.

 Administered Switch Version

 Software Version

 Offer Type (deprecated)

 Server Type (more values to be added in future releases of TSAPI Service)

– Valid values for Linux systems include: s8300c, s8300d, icc, premio,

tn8400, laptop, CtiSmallServer, ibmx306, ibmx306m, dell1950, xen,

hs20, hs20_8832_vm, CtiMediumServer, isp2100, bimx305, dl380g3,

dl385gl, dl385g2, unknown, and CtiLargeServer

 the maximum number of device history entries (deviceHistoryCount)

For the list of TSAPI messages that this feature affects, see Table 26: Private Data

Version 7 features on page 850.

Increased Aux Reason Codes

AE Services supports the full range of Aux reason codes (values 0-99) that

Communication Manager provides. Communication Manager returns a range of values

from 0-99 in private data for the Query Agent State Confirmation Event and the Agent

Logged Off event. Also, the private parameter reasonCode for the Set Agent State

service request can be specified as a value from the wider range (0-99). The TSAPI

Service will return whatever value is provided by the switch in a new private message. A

new private message is required to accommodate the new wider value (previously the

range was 0-9). For the list of TSAPI messages that this feature affects, see Table 26:

Private Data Version 7 features on page 850.

Appendix B: Summary of Private data support

850 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Version 7 features, services, and events

The following table maps the Private Data Version 7 features to the services and events

that they affect.

Table 26: Private Data Version 7 features

Private Data Version 7 feature Updated services and events

Network Call Redirection for Routing Conferenced Event on page 524

 Connection Cleared Event on page 546

 Delivered Event on page 555

 Diverted Event on page 597

 Established Event on page 608

 Failed Event on page 637

 Network Reached Event on page 658

 Queued Event on page 674

 Transferred Event on page 689

 Route Select Service (TSAPI Version 2) on
page 763

ISDN Redirecting Number Information
Element

 Conferenced Event on page 524

 Connection Cleared Event on page 546

 Delivered Event on page 555

 Diverted Event on page 597

 Established Event on page 608

 Failed Event on page 637

 Network Reached Event on page 658

 Queued Event on page 674

 Transferred Event on page 689

 Route Select Service (TSAPI Version 2) on
page 763

 Snapshot Call Service on page 443

Query Device Name for Attendants Query Device Name Service on page 409

Enhanced GetAPICaps Version CSTA Get API Capabilities confirmation
structures for Private Data

Increased Aux Reason Codes Logged Off Event on page 652

 Query Agent State Service on page 389

 Set Agent State Service on page 351

 Private Data Version 7 features

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 851

CSTA Get API Capabilities confirmation structures for Private
Data Version 7

The TSAPI Service provides version-dependent private services in the CSTAGetAPICaps

Confirmation private data interface. For Private Data Version 7 the

ATTGetAPICapsConfEvent has been updated to include the fields described in Table 27.

See also, Code for the ATTGetAPICapsConfEvent - PDV 7 on page 852.

Table 27: New ATTGetAPICapsConfEvent fields

New field Description

char

adminSoftwareVersion[256];
Administered switch software version. For example,
if the switch version is administered to be 15, then
15 will be passed in the connection accepted
message

char softwareVersion[256]; Actual switch software version-- the same software
version string that is shown when a customer logs
into a SAT for a switch

char offerType[256]; Offer type.

Deprecated.

char serverType[256]; Server type. Valid values for Linux systems include:

s8300c, s8300d, icc, premio, tn8400, laptop,

CtiSmallServer, ibmx306, ibmx306m, dell1950,

xen, hs20, hs20_8832_vm, CtiMediumServer,

isp2100, bimx305, dl380g3, dl385gl, dl385g2,

unknown, and CtiLargeServer

unsigned char

deviceHistoryCount
The maximum length for a device history list. For AE
Services, this value is 1.

Appendix B: Summary of Private data support

852 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Code for the ATTGetAPICapsConfEvent - PDV 7

The ATT_Private_Identifiers.h file, which is provided in the AE Services TSAPI

SDK, contains the code for ATTGetAPICapsConfEvent. Here is the code for the

ATTGetAPICapsConfEvent.

typedef struct ATTGetAPICapsConfEvent_t {

 char switchVersion[65];

 unsigned char sendDTMFTone;

 unsigned char enteredDigitsEvent;

 unsigned char queryDeviceName;

 unsigned char queryAgentMeas;

 unsigned char querySplitSkillMeas;

 unsigned char queryTrunkGroupMeas;

 unsigned char queryVdnMeas;

 unsigned char singleStepConference;

 unsigned char selectiveListeningHold;

 unsigned char selectiveListeningRetrieve;

 unsigned char setBillingRate;

 unsigned char queryUCID;

 unsigned char chargeAdviceEvent;

 unsigned char singleStepTransfer

 unsigned char monitorCallsViaDevice;

 unsigned char deviceHistoryCount;

 char adminSoftwareVersion[256];

 char softwareVersion[256];

 char offerType[256];

 char serverType[256];

} ATTGetAPICapsConfEvent_t;

 Private Data Version Feature Support prior to AE Services TSAPI R3.1.0

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 853

Private Data Version Feature Support prior to AE Services TSAPI
R3.1.0

All currently supported Communication Manager servers provide call prompting digits,

the only private data item in version 1. Private data versions 2 through 6 encompass a

much broader feature set, where some features may be dependent upon the switch

version.

 Private data version 2 includes support for some features that are available only
on the G3V3 and later releases.

 Private data versions 3 and 4 include support for some features that are available
only with the G3V4 and later releases.

 Private data version 5 includes support for some features that are available only
on the G3V5, G3V6, G3V7 and later releases.

 Private data version 6 includes support for some features that are available only
on the G3V8 and later releases.

Appendix B: Summary of Private data support

854 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Summary of private data versions 2 through 6

Table 28 provides a complete list of private data features prior to Application

Enablement Services (AE Services) 3.1.0. The associated initial DEFINITY (or

Communication Manager) and G3PD releases that support each one are included, as

well as the version of private data in which the feature was first introduced.

Table 28: Private Data Summary

Private Data Feature Initial DEFINITY
or
Communication
Manager
Release

Initial DEFINITY PBX
Driver Release

Initial
Private
Data
Version

Prompted Digits in Delivered Events All R2.1 (private data) V1

Priority, Direct Agent, Supervisor
Assist Calling

All R2.1 (private data) V2

Enhanced Call Classification All R2.1 (private data) V2

Trunk, Classifier Queries All R2.1 (private data) V2

LAI in Events All R2.1 (private data) V2

Launching Predictive Calls from Split All R2.1 (private data) V2

Application Integration with Expert
Agent Selection

G3V3 R2.1 (private data) V2

User-to-User Info (Reporting and
Sending)

G3V3 R2.1 (private data) V2

Multiple Notification Monitors (two on
ACD/VDN)

G3V3 All V2

Launching Predictive Calls from VDN G3V3 R2.1 V2

Multiple Outstanding Route Requests
for One Call

G3V3 R2.1 V2

Answering Machine Detection G3V3 R2.1 (private data) V2

Established Event for Non-ISDN
Trunks

G3V3 All V2

Provided Prompter Digits on Route
Select

G3V3 R2.1 (private data) V2

 Summary of private data versions 2 through 6

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 855

Table 28: Private Data Summary

Private Data Feature Initial DEFINITY
or
Communication
Manager
Release

Initial DEFINITY PBX
Driver Release

Initial
Private
Data
Version

Requested Digit Selection G3V3 R2.1 (private data) V2

VDN Return Destination (Serial
Calling)

G3V3 R2.1 (private data) V2

Deflect Call G3V4 R2.2 V3

Pickup Call G3V4 R2.2 V3

Originated Event Report G3V4 R2.2 V3

Agent Logon Event Report G3V4 R2.2 (private data) V3

Reason for Redirection in Alerting
Event Report

G3V4 R2.2 (private data) V3

Agent, Split, Trunk, VDN
Measurements Query

G3V4 R2.2 (private data) V3

Device Name Query G3V4 R2.2 (private data) V3

Send DTMF Tone G3V4 R2.2 (private data) V3

Distributing Device in Conferenced,
Delivered, Established, and
Transferred Events

All R2.2 (private data) V4

G3 Private Capabilities in

cstaGetAPICaps Confirmation Private

Data

G3V3 R2.2 (private data) V4

Support Detailed DeviceIDType_t in

Events

G3V3 R3.10 (private data) V5

Set Bill Rate G3V4 R3.10 (private data) V5

Flexible Billing in Delivered Event,
Established Event, and Route Request

G3V4 R3.10 (private data) V5

Call Originator Type in Delivered
Event, Established Event, and Route

G3V4 R3.10 (private data) V5

Appendix B: Summary of Private data support

856 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 28: Private Data Summary

Private Data Feature Initial DEFINITY
or
Communication
Manager
Release

Initial DEFINITY PBX
Driver Release

Initial
Private
Data
Version

Request

Selective Listening Hold G3V5 R3.10 (private data) V5

Selective Listening Retrieve G3V5 R3.10 (private data) V5

Set Advice of Charge G3V5 R3.10 (private data) V5

Charge Advice Event G3V5 R3.10 (private data) V5

Reason Code in Set Agent State,
Query Agent State, and Logout Event

G3V5 R3.10 (private data) V5

27-Character Display Query Device
Name Confirmation

G3V5 R3.10 (private data) V5

Unicode Device ID in Events G3V6 R3.10 (private data) V5

Trunk Group and Trunk Member
Information in Network Reached Event

G3V6 R3.10 (private data) V5

Universal Call ID (UCID) in Events G3V6 R3.10 (private data) V5

Single Step Conference G3V6 R3.10 (private data) V5

Pending Work Mode and Pending
Reason Code in Set Agent State and
Query Agent State

G3V8 R3.30 (private data) V6

Trunk Group and Trunk Member
Information in Delivered Event and
Established Event regardless of
whether Calling Party is Available

G3V8 R3.30 (private data) V6

Trunk Group Information in Route
Request Events regardless of whether
Calling Party is Available

G3V8 R3.30 (private data) V6

Trunk Group Information for Every
Party in Transferred Events and
Conferenced Events

G3V8 R3.30 (private data) V6

 Summary of private data versions 2 through 6

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 857

Table 28: Private Data Summary

Private Data Feature Initial DEFINITY
or
Communication
Manager
Release

Initial DEFINITY PBX
Driver Release

Initial
Private
Data
Version

User-to-User Info (UUI) is increased

from 32 to 96 bytes

G3V8 R3.30 (private data) V6

Appendix B: Summary of Private data support

858 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 29: Renaming PDUs and structures - Private Data Version 7

If your code contains these PDUs and structure
member names

Rename them as follows:

ATT_CONFERENCED

ATTConferencedEvent_t

conferencedEvent

ATTV6_CONFERENCED

ATTV6ConferencedEvent_t

v6conferencedEvent

ATT_CONNECTION_CLEARED

ATTConnectionClearedEvent_t

connectionClearedEvent

ATTV6_CONNECTION_CLEARED

ATTV6ConnectionClearedEvent_t

v6connectionClearedEvent

ATT_DELIVERED

ATTDeliveredEvent_t

deliveredEvent

ATTV6_DELIVERED

ATTV6DeliveredEvent_t

v6deliveredEvent

ATT_ESTABLISHED

ATTEstablishedEvent_t

establishedEvent

ATTV6_ESTABLISHED

ATTV6EstablishedEvent_t

v6establishedEvent

ATT_NETWORK_REACHED

ATTNetworkReachedEvent_t

networkReached

ATTV6_NETWORK_REACHED

ATTV6NetworkReachedEvent_t

v6networkReached

ATT_TRANSFERRED

ATTTransferredEvent_t

transferredEvent

ATTV6_TRANSFERRED

ATTV6TransferredEvent_t

v6transferredEvent

ATT_ROUTE_REQUEST

ATTRouteRequestEvent_t

routeRequest

ATTV6_ROUTE_REQUEST

ATTV6RouteRequestEvent_t

v6routeRequest

ATT_QUERY_DEVICE_NAME_CONF

ATTQueryDeviceNameConfEvent_t

queryDeviceName

ATTV6_QUERY_DEVICE_NAME_CONF

ATTV6QueryDeviceNameConfEvent_t

v6queryDeviceName

ATT_GETAPI_CAPS_CONF

ATTGetAPICapsConfEvent_t

getAPICaps

ATTV6_GETAPI_CAPS_CONF

ATTV6GetAPICapsConfEvent_t

v6getAPICaps

 Summary of private data versions 2 through 6

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 859

Table 30: Migration of PDV 5 PDUs and Structure Members to PDV 6

Original V5 PDU or Structure
Member Name

Required Changes to V5 PDU or
Structure Member Name for V6
Interface

New V6 PDU or Structure
Member Name

ATT_QUERY_AGENT_STATE_CONF

ATTQueryAgentStateConfEvent_t

queryAgentState

ATTV5_QUERY_AGENT_STATE_CONF

ATTV5QueryAgentStateConfEvent_t

v5queryAgentState

ATT_QUERY_AGENT_STATE_CONF

ATTQueryAgentStateConfEvent_t

queryAgentState

ATT_SET_AGENT_STATE

ATTSetAgentState_t

setAgentStateReq

ATTV5_SET_AGENT_STATE

ATTV5SetAgentState_t

v5setAgentStateReq

ATT_SET_AGENT_STATE

ATTSetAgentState_t

setAgentStateReq

N/A New for private data version 6 ATT_SET_AGENT_STATE_CONF

ATTSetAgentStateConfEvent_t

ATT_ROUTE_REQUEST

ATTRouteRequestEvent_t

ATTV5_ROUTE_REQUEST

ATTV5RouteRequestEvent_t

ATT_ROUTE_REQUEST

ATTRouteRequestEvent_t

ATT_TRANSFERRED

ATTTransferredEvent_t

ATTV5_TRANSFERRED

ATTV5TransferredEvent_t

ATT_TRANSFERRED

ATTTransferredEvent_t

ATT_CONFERENCED

ATTConferencedEvent_t

ATTV5_CONFERENCED

ATTV5ConferencedEvent_t

ATT_CONFERENCED

ATTConferencedEvent_t

ATT_CLEAR_CONNECTION

ATTClearConnection_t

ATTV5_CLEAR_CONNECTION

ATTV5ClearConnection_t

ATT_CLEAR_CONNECTION

ATTClearConnection_t

ATT_CONSULTATION_CALL

ATTConsultationCall_t

ATTV5_CONSULTATION_CALL

ATTConsultationCall_t

ATT_CONSULTATION_CALL

ATTConsultationCall_t

ATT_MAKE_CALL

ATTMakeCall_t

ATTV5_MAKE_CALL

ATTV5MakeCall_t

ATT_MAKE_CALL

ATTMakeCall_t

ATT_DIRECT_AGENT_CALL

ATTDirectAgentCall_t

ATTV5_DIRECT_AGENT_CALL

ATTV5DirectAgentCall_t

ATT_DIRECT_AGENT_CALL

ATTDirectAgentCall_t

ATT_MAKE_PREDICTIVE_CALL

ATTMakePredictiveCall_t

ATTV5_MAKE_PREDICTIVE_CALL

ATTV5MakePredictiveCall_t

ATT_MAKE_PREDICTIVE_CALL

ATTMakePredictiveCall_t

ATT_SUPERVISOR_ASSIST_CALL

ATTSupervisorAssistCall_t

ATTV5_SUPERVISOR_ASSIST_CALL

ATTV5SupervisorAssistCall_t

ATT_SUPERVISOR_ASSIST_CALL

ATTSupervisorAssistCall_t

Appendix B: Summary of Private data support

860 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

ATT_RECONNECT_CALL

ATTReconnectCall_t

ATTV5_RECONNECT_CALL

ATTV5ReconnectCall_t

ATT_RECONNECT_CALL

ATTReconnectCall_t

ATT_CONNECTION_CLEARED

ATTConnectionClearedEvent_t

ATTV5_CONNECTION_CLEARED

ATTV5ConnectionClearedEvent_t

ATT_CONNECTION_CLEARED

ATTConnectionClearedEvent_t

ATT_ROUTE_SELECT

ATTRouteSelect_t

ATTV5_ROUTE_SELECT

ATTV5RouteSelect_t

ATT_ROUTE_SELECT

ATTRouteSelect_t

ATT_DELIVERED

ATTDeliveredEvent_t

ATTV5_DELIVERED

ATTV5DeliveredEvent_t

ATT_DELIVERED

ATTDeliveredEvent_t

ATT_ESTABLISHED

ATTEstablishedEvent_t

ATTV5_ESTABLISHED

ATTV5EstablishedEvent_t

ATT_ESTABLISHED

ATTEstablishedEvent_t

ATT_ORIGINATED

ATTOriginatedEvent_t

ATTV5_ORIGINATED

ATTV5OriginatedEvent_t

ATT_ORIGINATED

ATTOriginatedEvent_t

 CSTA Device ID Type (Private Data Version 4 and Earlier)

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 861

CSTA Device ID Type (Private Data Version 4 and Earlier)

If an application opens an ACS stream with Private Data version 4 and earlier, the

TSAPI Service supports only a limited number of types of DeviceIDType_t for the

deviceIDType parameter of an ExtendedDeviceID_t. The types supported are

described in CSTA Device Type and Status (Private Data Version 4 and Earlier).

Table 31: CSTA Device Type and Status (Private Data Version 4 and Earlier)

DeviceIDType_t ConnectionID_Device_t DeviceIDStatus_t Type of Devices

DEVICE_IDENTIFIER STATIC_ID ID_PROVIDED Internal or external

endpoints that have a

known device identifier

TRUNK_IDENTIFIER DYNAMIC_ID ID_PROVIDED Internal or external

endpoints that do not

have a known device

identifier

EXPLICIT_PUBLIC_UNKNOWN ID_NOT_KNOWN or

ID_NOT_REQUIRED

Appendix B: Summary of Private data support

862 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

CSTAGetAPICaps Confirmation interface structures for Private
Data Versions 4, 5, and 6

Beginning with private data version 4, the TSAPI Service provides the Communication

Manager version-dependent private services in the CSTAGetAPICaps Confirmation

private data interface, as defined by the following structures:

 Private Data Version 5 and 6 Syntax

 Private Data Version 4 Syntax

 CSTAGetAPICaps Confirmation interface structures for Private Data Versions 4, 5, and 6

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 863

Private Data Version 5 and 6 Syntax

typedef struct ATTV6GetAPICapsConfEvent_t

{

 char switchVersion[16];

 unsigned char sendDTMFTone;

 unsigned char enteredDigitsEvent;

 unsigned char queryDeviceName;

 unsigned char queryAgentMeas;

 unsigned char querySplitSkillMeas;

 unsigned char queryTrunkGroupMeas;

 unsigned char queryVdnMeas;

 unsigned char singleStepConference;

 unsigned char selectiveListeningHold;

 unsigned char selectiveListeningRetrieve;

 unsigned char setBillingRate;

 unsigned char queryUcid;

 unsigned char chargeAdviceEvent;

 unsigned char reserved1;

 unsigned char reserved2;

} ATTV6GetAPICapsConfEvent_t;

Private Data Version 4 Syntax

typedef struct ATTV4GetAPICapsConfEvent_t

{

 char switchVersion[16];

 unsigned char sendDTMFTone;

 unsigned char enteredDigitsEvent;

 unsigned char queryDeviceName;

 unsigned char queryAgentMeas;

 unsigned char querySplitSkillMeas;

 unsigned char queryTrunkGroupMeas;

 unsigned char queryVdnMeas;

 unsigned char reserved1;

 unsigned char reserved2;

} ATTV4GetAPICapsConfEvent_t;

Appendix B: Summary of Private data support

864 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Private Data Function Changes between V5 and V6

Please note that the following Private Data functions are changed between V5 and V6.

Set Agent State

/* attSetAgentState() - Private Data V5 Interface */

RetCode_t attSetAgentStateExt(

 ATTPrivateData_t *privateData,

 ATTWorkMode_t workMode,

 long reasonCode);

/* attSetAgentStateExt() - Private Data V6 and LaterInterface */

RetCode_t attV6SetAgentState(

 ATTPrivateData_t *privateData,

 ATTWorkMode_t workMode,

 long reasonCode,

 Boolean enablePending);

 CSTAGetAPICaps Confirmation interface structures for Private Data Versions 4, 5, and 6

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 865

Private Data Sample Code

This section provides the following examples of Private Data sample code:

 Sample Code 1 - Direct-Agent Make Call Service

 Sample Code 2 - Set Agent State to Log In with Initial Work Mode Auto-In

 Sample Code 3 - Query ACD Split escape service

Sample Code 1

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * Make Direct Agent Call - from "1000" to ACD Agent extension "1001"

 * - ACD agent must be logged into split "2000"

 * - no User to User info

 * - not a priority call

 */

ACSHandle_t acsHandle; /* An opened ACS Stream Handle */

InvokeID_t invokeID = 1; /* Application-generated invoke

 * ID */

DeviceID_t calling = "1000"; /* Call originator, an on-PBX

 * extension */

DeviceID_t called = "1001"; /* Call destination, an ACD

 * Agent extension */

DeviceID_t split = "2000"; /* ACD Agent is logged into

 * this split */

Boolean priorityCall = FALSE; /* Not a priority call */

RetCode_t rc; /* Return code for service

 * requests */

CSTAEvent_t cstaEvent; /* CSTA event buffer */

unsigned short eventBufSize; /* CSTA event buffer size */

unsigned short numEvents; /* Number of events queued */

ATTPrivateData_t privateData; /* ATT service request private

 * data buffer */

/* Format private data for the subsequent cstaMakeCall() request */

rc = attDirectAgentCall(&privateData, &split, priorityCall, NULL);

if (rc < 0)

{

 /* Some kind of failure, handle error here. */

}

/* Invoke cstaMakeCall() with the formatted private data */

rc = cstaMakeCall(acsHandle, invokeID, &calling, &called,

 (PrivateData_t *)&privateData);

if (rc != ACSPOSITIVE_ACK)

{

 /* Some kind of failure, handle error here. */

Appendix B: Summary of Private data support

866 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

}

/* cstaMakeCall() succeeded. Wait for the confirmation event. */

/* Initialize buffer sizes before calling acsGetEventBlock() */

eventBufSize = sizeof(cstaEvent);

privateData.length = ATT_MAX_PRIVATE_DATA;

rc = acsGetEventBlock(acsHandle, (void *)&cstaEvent,

 &eventBufSize, (PrivateData_t *)&privateData, &numEvents);

if (rc != ACSPOSITIVE_ACK)

{

 /* Some kind of failure, handle error here. */

}

/* Is this the event that we are waiting for? */

if ((cstaEvent.eventHeader.eventClass == CSTACONFIRMATION) &&

 (cstaEvent.eventHeader.eventType == CSTA_MAKE_CALL_CONF))

{

 if (cstaEvent.event.cstaConfirmation.invokeID == 1)

 {

 /* Invoke ID matches, cstaMakeCall() is confirmed. */

 }

 else

 {

 /* Wrong invoke ID, need to wait for another event */

 }

}

else

{

 /* Wrong event, need to wait for another event */

}

 CSTAGetAPICaps Confirmation interface structures for Private Data Versions 4, 5, and 6

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 867

Sample Code 2

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * Set Agent State - Request to log in an ACD agent with initial work

 * mode of "Auto-In".

 */

ACSHandle_t acsHandle; /* An opened ACS Stream Handle */

InvokeID_t invokeID = 1; /* Application-generated invoke

 * ID */

DeviceID_t device = "1000"; /* Device associated with ACD

 * agent */

AgentMode_t agentMode = AM_LOG_IN; /* Requested Agent Mode */

AgentID_t agentID = "3000"; /* Agent login identifier */

AgentGroup_t agentGroup = "2000"; /* ACD split to log Agent into */

AgentPassword_t *agentPassword = NULL; /* No password */

RetCode_t rc; /* Return code for service

 * requests */

CSTAEvent_t cstaEvent; /* CSTA event buffer */

unsigned short eventBufSize; /* CSTA event buffer size */

unsigned short numEvents; /* Number of events queued */

ATTPrivateData_t privateData; /* ATT service request private

 * data buffer */

ATTEvent_t attEvent; /* Private data event structure */

/*

 * Format private data for the subsequent cstaSetAgentState() request

 */

rc = attV6SetAgentState(&privateData, WM_AUTO_IN, 0, TRUE);

if (rc < 0)

{

 /* Some kind of failure, handle error here. */

}

/* Invoke cstaSetAgentState() with the formatted private data */

rc = cstaSetAgentState(acsHandle, invokeID, &device, agentMode,

 &agentID, &agentGroup, agentPassword,

 (PrivateData_t *)&privateData);

if (rc != ACSPOSITIVE_ACK)

{

 /* Some kind of failure, handle error here. */

}

/* cstaSetAgentState() succeeded. Wait for the confirmation event. */

/* Initialize buffer sizes before calling acsGetEventBlock() */

eventBufSize = sizeof(cstaEvent);

privateData.length = ATT_MAX_PRIVATE_DATA;

rc = acsGetEventBlock(acsHandle, (void *)&cstaEvent,

Appendix B: Summary of Private data support

868 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

 &eventBufSize, (PrivateData_t *)&privateData, &numEvents);

if (rc != ACSPOSITIVE_ACK)

{

 /* Some kind of failure, handle error here. */

}

/* Is this the event that we are waiting for? */

if ((cstaEvent.eventHeader.eventClass == CSTACONFIRMATION) &&

 (cstaEvent.eventHeader.eventType == CSTA_SET_AGENT_STATE_CONF))

{

 if (cstaEvent.event.cstaConfirmation.invokeID == 1)

 {

 /* Invoke ID matches, cstaSetAgentState() is confirmed. */

 /* See if the confirmation event includes private data. */

 if (privateData.length > 0)

 {

 /*

 * The confirmation event contains private data.

 * Decode it.

 */

 if (attPrivateData(&privateData, &attEvent) !=

 ACSPOSITIVE_ACK)

 {

 /* Handle decoding error here. */

 }

 if (attEvent.eventType == ATT_SET_AGENT_STATE_CONF)

 {

 /*

 * See whether the requested change is pending

 */

 ATTSetAgentStateConfEvent_t *setAgentStateConf;

 setAgentStateConf =

 &privateData.u.setAgentState;

 if (setAgentStateConf->isPending == TRUE)

 {

 /* The request is pending */

 }

 }

 }

 }

}

 CSTAGetAPICaps Confirmation interface structures for Private Data Versions 4, 5, and 6

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 869

Sample Code 3

#include <acs.h>

#include <csta.h>

#include <attpriv.h>

/*

 * Query ACD Split via cstaEscapeService()

 */

ACSHandle_t acsHandle; /* An opened ACS Stream Handle */

InvokeID_t invokeID = 1; /* Application-generated invoke

 * ID */

DeviceID_t device = "1000"; /* Device associated with ACD

 * agent */

RetCode_t rc; /* Return code for service

 * requests */

CSTAEvent_t cstaEvent; /* CSTA event buffer */

unsigned short eventBufSize; /* CSTA event buffer size */

unsigned short numEvents; /* Number of events queued */

ATTPrivateData_t privateData; /* ATT service request private

 * data buffer */

ATTEvent_t attEvent; /* Private data event structure */

ATTQueryAcdSplitConfEvent_t /* Query ACD Split confirmation

 *queryAcdSplitConf; * event pointer */

/*

 * Format private data for the subsequent cstaEscapeService() request

 */

rc = attQueryAcdSplit(&privatedata, &deviceID);

if (rc < 0)

{

 /* Some kind of failure, handle error here. */

}

/* Invoke cstaEscapeService() with the formatted private data */

rc = cstaEscapeService(acsHandle, invokeID,

 (PrivateData_t *)&privateData);

if (rc != ACSPOSITIVE_ACK)

{

 /* Some kind of failure, handle error here. */

}

/*

 * cstaEscapeService() succeeded. Now wait for the confirmation event.

 *

 * To retrieve private data accompanying the confirmation event,

 * the application must provide a pointer to a private data buffer as

 * a parameter to either an acsGetEventBlock() or acsGetEventPoll()

 * request. After receiving an event, the application passes the

 * address of the private data buffer to attPrivateData() for decoding.

*/

/* Initialize buffer sizes before calling acsGetEventBlock() */

870 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

eventBufSize = sizeof(cstaEvent);

privateData.length = ATT_MAX_PRIVATE_DATA;

rc = acsGetEventBlock(acsHandle, (void *)&cstaEvent,

 &eventBufSize, (PrivateData_t *)&privateData, &numEvents);

if (rc != ACSPOSITIVE_ACK)

{

 /* Some kind of failure, handle error here. */

}

/* Is this the event that we are waiting for? */

if ((cstaEvent.eventHeader.eventClass == CSTACONFIRMATION) &&

 (cstaEvent.eventHeader.eventType == CSTA_ESCAPE_SVC_CONF))

{

 if (cstaEvent.event.cstaConfirmation.invokeID == 1)

 {

 /* Invoke ID matches, cstaEscapeService() is confirmed. */

 /* See if the confirmation event includes private data. */

 if (privateData.length > 0)

 {

 /*

 * The confirmation event contains private data.

 * Decode it.

 */

 if (attPrivateData(&privateData, &attEvent) !=

 ACSPOSITIVE_ACK)

 {

 /* Handle decoding error here. */

 }

 if (attEvent.eventType == ATT_QUERY_ACD_SPLIT_CONF)

 {

 queryAcdSplitConf =

 (ATTQueryAcdSplitConfEvent_t *)

 &attEvent.u.queryAcdSplit;

 /* Process event field values here */

 }

 }

 else

 {

 /* Error - no private data in confirmation event */

 }

 }

}

871 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Appendix C: Server-Side Capacities

This appendix describes server-side capacities, which include Avaya Communication

Manager capacities and AE Services TSAPI Service capacities.

Appendix C: Server-Side Capacities

872 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Communication Manager CSTA system capacities

Table 32 provides Communication Manager CSTA System Capacities. These are

maximum system capacities. The defined capacities, as well as the server‘s hardware

configuration and the switch configuration, limit the capacity of the TSAPI Service.

The number of users that can access a telephony server is independent of these

numbers. User access to the TSAPI Service may be limited by the AE Services

purchase agreement.

Refer to the Avaya Aura® Communication Manager System Capacities Table

(http://support.avaya.com/css/P8/documents/100092572), document number 03-

300511, for Communication Manager system capacities.

http://support.avaya.com/css/P8/documents/100092572

 Communication Manager CSTA system capacities

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 873

Table 32: Communication Manager System Capacities

Feature Name Comments

Communication Manager servers

supported by one AES server

Defines the number of switch connections that may

be administered on AE Services.

AE Services allows a TSAPI CTI link to be

administered for each switch connection

AES Servers per Communication Manager Defines the total number of AE Services server

connections that may be active simultaneously.

Adjunct Control Associations per Call Defines the maximum number of monitors per call.

Note that certain TSAPI services (e.g., Make

Predictive Call, Clear Call, Selective Listening Hold,

and Selective Listening Retrieve) may initiate a call

monitor even though a monitor was not explicitly

requested by any application.

The TSAPI Service multiplexes cstaMonitorCall()

requests for the same call into a single association,

so the CM maximum does not come into play when

there is a single AE Services server and the TSAPI

Service is the only service monitoring the call.

However, when multiple AE Services servers are

trying to monitor the same call, or when the CVLAN

and/or DLG services are also trying to monitor the

same call, the CM maximum may be reached.

Active Adjunct Control Associations Defines the total number of calls that may be

monitored simultaneously.

Active Adjunct Route Requests Defines the total number of call routing sessions

that may be active simultaneously.

Appendix C: Server-Side Capacities

874 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 32: Communication Manager System Capacities

Feature Name Comments

Active Notifications per Split Domain Defines the maximum number of calls-via-device

monitors per ACD split.

The TSAPI Service multiplexes

cstaMonitorCallsViaDevice() requests for the same

ACD split into a single association, so the CM

maximum does not come into play when there is a

single AE Services server and the TSAPI Service is

the only service monitoring the ACD split.

However, when multiple AE Services servers are

trying to monitor the same ACD split, or when the

CVLAN and/or DLG services are also trying to

monitor the same ACD split, the CM maximum may

be reached.

Active Notifications per VDN Domain Defines the maximum number of calls-via-device

monitors per VDN.

The TSAPI Service multiplexes

cstaMonitorCallsViaDevice() requests for the same

VDN into a single association, so the CM maximum

does not come into play when there is a single AE

Services server and the TSAPI Service is the only

service monitoring the VDN.

However, when multiple AE Services servers are

trying to monitor the same VDN, or when the

CVLAN and/or DLG services are also trying to

monitor the same VDN, the CM maximum may be

reached.

Domain-Control Associations per Call Defines the maximum number of monitored

stations that may be involved in a call.

3rd-party Domain-Control Station

Associations

Defines the maximum number of station monitors

that may be active simultaneously.

Note that many of the TSAPI call control services

(e.g., Make Call, Answer Call, Hold Call, etc.) may

initiate a station monitor even though a monitor was

not explicitly requested by any application.

The TSAPI Service may also initiate station

monitors that were not explicitly requested by any

application in order to obtain accurate call state

information.

 Communication Manager CSTA system capacities

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 875

Table 32: Communication Manager System Capacities

Feature Name Comments

Domain-Control Split/Skill Associations Defines the total number of Splits/Skills that may be

monitored simultaneously

Domain-controllers per Station Domain Defines the maximum number of device monitors

per station.

The TSAPI Service multiplexes

cstaMonitorDevice() requests for the same station

into a single association, so the CM maximum does

not come into play when there is a single AE

Services server and the TSAPI Service is the only

service monitoring the station.

However, when multiple AE Services servers are

trying to monitor the same station, or when the

CVLAN and/or DLG services are also trying to

monitor the same station, the CM maximum may

be reached.

Domain-controllers per Split/skill Domain Defines the maximum number of device monitors

per ACD split/skill.

The TSAPI Service multiplexes

cstaMonitorDevice() requests for the same ACD

split/skill into a single association, so the CM

maximum does not come into play when there is a

single AE Services server and the TSAPI Service is

the only service monitoring the ACD split/skill.

However, when multiple AE Services servers are

trying to monitor the same ACD split/skill, or when

the CVLAN and/or DLG services are also trying to

monitor the same ACD split/skill, the CM maximum

may be reached.

Event Notification Associations Defines the total number of ACD split/skills and

VDNs that may be monitored simultaneously using

cstaMonitorCallsViaDevice().

Max Calls With Send DTMF Active Defines the maximum number of calls where the

Send DTMF Tones service may be used

simultaneously.

Appendix C: Server-Side Capacities

876 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

Table 32: Communication Manager System Capacities

Feature Name Comments

Max Simultaneous Calls Being Classified Defines the total number of calls that can be

classified simultaneously.

Note that certain TSAPI services, such as the Make

Predictive Call service, use call classifiers.

Simultaneous Selective Listening

Disconnected Paths

Defines the total number of call participants that

can be on Selective Hold simultaneously.

Maximum ASAI Links (Open and

Proprietary)

Defines the maximum number of CTI links that may

be administered on CM.

 Index

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 877

Index
*

* and # characters
send DTMF tone ... 310

A

AAR/ARS
make call ... 253

Abbreviated dialing
originated event ... 669

Account codes
originated event ... 669

ACD destination
make call ... 253

ACD group
device type ... 134

ACD originator
make call ... 253

ACD split
monitor calls via device 481
monitor device ... 492

Ack parameters
alternate call ... 191
answer call .. 194
change monitor filter 462
change system status filter 803
clear call .. 198
clear connection ... 201
conference call ... 208
consultation call.. 215
consultation direct-agent call 224
consultation supervisor-assist call 234
conventions .. 11
deflect call .. 241
hold call .. 245
make call ... 251
make direct-agent call 264
make predictive call 275
make supervisor-assist call 286
monitor call .. 469
monitor calls via device 480
monitor device ... 490
monitor stop ... 503
monitor stop on call 499
pickup call ... 293
query ACD split ... 378
query agent login .. 383
query agent state 390
query call classifier 398
query device info .. 402
query device name 409
query do not disturb 416
query forwarding .. 418
query message waiting indicator 422
query station status 426
query time of day 430
query trunk group....................................... 434
query UCID.. 438
reconnect call ... 298
retrieve call ... 303
route end service (TSAPI v2) 731

route register ... 740
route register cancel 736
route select (TSAPI v2) 767
selective listening hold 315
selective listening retrieve 321
send DTMF tone .. 308
set advice of charge 348
set agent state ... 354
set billing rate .. 363
set do not disturb 367
set forwarding feature 370
set MWI feature ... 374
single step conference call......................... 327
single step transfer call 334
snapshot call .. 444
snapshot device ... 449
system status request 784
system status start 792
system status stop 799
transfer call .. 341

Ack private parameters
change monitor filter 462
change system status filter 804
conference call ... 208
consultation call ... 215
consultation direct-agent call 225
consultation supervisor-assist call 234
conventions ... 11
make call .. 252
make direct-agent call 265
make predictive call 275
make supervisor-assist call 286
monitor call .. 469
monitor calls via device 480
monitor device ... 490
monitor stop on call 499
query ACD split .. 378
query agent login 383
query agent state 391
query call classifier 398
query device info 403
query device name 410
query message waiting indicator 422
query station status 426
query time of day....................................... 430
query trunk group 434
query UCID ... 438
set advice of charge 348
set agent state ... 354
single step conference call......................... 327
single step transfer call 335
snapshot device ... 449
system status request 785
system status start 793
transfer call .. 341

ACS ... 49
Unsolicited Events 101

ACS Data Types . 74, 101, 105, 118, 121, 123, 604
Common .. 106
Event .. 109

ACS parameter syntax 14

Index

878 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

ACS stream
Aborting .. 50, 51, 53
Access ... 51
Checking establishment of 51
Closing .. 50, 51, 52
CSTA services available on 50
Freeing associated resources 52, 53
Opening .. 49, 50, 51
Per advertised service 30
Receiving events on 52
Releasing... 51
Sending requests and responses over 54
set advice of charge 348

ACS universal failure events 816
acsAbortStream().. 53, 76
acsCloseStream() 52, 53, 70
ACSCloseStreamConfEvent 52, 72
acsEnumServerNames().................................... 91
acsEventNotify()

Windows ... 86
acsFlushEventQueue() 89
acsGetEventBlock() 55, 77
acsGetEventPoll() 56, 80
acsGetFile() (Linux) ... 83
acsGetServerID() ... 93
acsHandle 51, 52, 53, 54, 55, 56

Freeing .. 52
acsOpenStream() 51, 61, 95, 96
ACSOpenStreamConfEvent 51, 54, 55, 68
acsQueryAuthInfo() 94, 95, 96
acsSetESR() ... 56

Windows ... 84
acsSetHeartbeatInterval() 97
ACSUniversalFailureConfEvent 74
ACSUniversalFailureEvent 74, 101

Possible values .. 102
Activation

set forwarding feature 371
Active state

reconnect call ... 305
retrieve call ... 305

Adjunct messages
set MWI feature ... 375

Adjunct-controlled splits
monitor calls via device 481

Administration .. 50
Administration without hardware

deflect call .. 243
monitor device ... 492
pickup call ... 295

Advertised services
Getting list of available 49

Advice of charge event report
monitor call .. 471

Agent event filters .. 459
AgentMode service parameter 356
Alternate call

ack parameters ... 191
description .. 190
detailed information 192
functional description 190
nak parameters... 191
overview ... 181
service parameters 191

syntax ... 193
Analog ports

monitor device ... 492
Analog sets .. 710
Analog station operation

alternate call .. 196
answer call ... 196
reconnect call .. 196

Analog stations
alternate call .. 246
clear connection .. 203
conference call ... 209
consultation call ... 246
hold call.. 246
make call .. 253
reconnect call .. 203
transfer call .. 343

ANI screen pop application requirements 711
Announcement destination

make call .. 254
Announcements711, 714

selective listening hold 317
selective listening retrieve 317

Answer call
ack parameters .. 194
analog station operation 196
description ... 194
detailed information 192, 195, 300
nak parameters .. 195
overview .. 181
service parameters 194
syntax ... 197

Answer supervision timeout 712
API capabilities

private data v4 syntax................................ 862
private data v5-6 syntax 862

API Control Services See ACS
Application Programming Interface Control

Services .. See ACS
Applications ... 49

designing using original call info 36
designing with screen pop information 33
remote, passing UUI 38

AT&T MultiQuest 900 Vari-A-Bill 362
Attendant auto-manual splitting 713
Attendant call waiting.................................... 713
Attendant control of trunk group access 713
Attendant groups ... 712

monitor device ... 492
Attendant specific button operation 712
Attendants ... 712

deflect call.. 243
make call .. 254
monitor device ... 492
pickup call .. 295
selective listening hold 317
selective listening retrieve 317

AUDIX ... 713
send DTMF tone .. 310

Authorization codes
make call .. 254
originated event .. 669

Auto call back
deflect call.. 243

 Index

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 879

pickup call ... 295
Auto-available split ... 714
Automatic Call Distribution (ACD) 711, 714
Automatic callback

originated event ... 669

B

Blind transfer
established event 618

Bridged call appearance 714
alternate call ... 246
clear connection ... 203
conference call ... 209
consultation call.. 246
deflect call .. 243
hold call .. 246
make call ... 254
originated event ... 669
pickup call ... 295
reconnect call 203, 305
retrieve call ... 305
single step conference call 329
transfer call ... 343

Busy Hour Call Completions (BHCC)
set advice of charge 348

Busy verification of terminals 715
alternate call ... 247
consultation call.. 247
hold call .. 247

C

Call appearance button 712
Call classification

established event 618
make call ... 254

Call cleared event ... 546
description .. 514
detailed information 516
functional description 514
monitor device ... 488
private parameter syntax 518
private parameters 516
redirection on no answer 710
service parameters 515
syntax ... 517

Call clearing state
charge advice event 521

Call control service group
supported services 128
unsupported services 131

Call coverage .. 715
Call coverage path containing VDNs 716

make call ... 254
Call delivered

to ACD device ... 556
to ACD split ... 557
to station device ... 555
to VDN .. 557

Call destination
make call ... 254

Call event filters .. 458
Call event reports

Monitor stop on call 500
Call forwarding

pickup call .. 295
Call forwarding all calls 716

make call .. 254
set forwarding feature 371

Call identifier
syntax ... 141

Call monitoring event sequences
single step conference call......................... 329

Call objects ... 141
Call park ... 716

originated event .. 669
Call pickup .. 717
Call prompting ... 719

for screen pop .. 33
Call state .. 142

send DTMF tone .. 310
single step conference call......................... 329

Call states ... 450
Call vectoring ... 717

interactions with feedback 717
selective listening hold 317
selective listening retrieve 317

Call waiting .. 719
deflect call.. 243
pickup call .. 295

Called number
for screen pop .. 33

Calling number
for screen pop .. 33

Calls
phantom .. 133

Calls In queue, number 720
Cancel button .. 713
Cancel monitor .. 457
Capacities

system .. 872
Change monitor filter

ack parameters .. 462
ack private parameters 462
description ... 461
detailed information 462
functional description 461
nak parameters .. 462
overview .. 456
private data v2-4 syntax 466
private data v5 and later syntax 465
private parameters 462
service parameters 461
syntax ... 463

Change system status filter
ack parameters .. 803
ack private parameters 804
description ... 801
detailed information 805
functional description 801
nak parameters .. 804
overview .. 783
private data v2-3 syntax 809
private data v4 syntax................................ 808
private data v5 and later syntax 807
private parameters 802
service parameters 801
syntax ... 806

Charge advice event

Index

880 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

description .. 519
detailed information 520
functional description 519
private parameter syntax 523
private parameters 519
service parameters 519
syntax ... 522

Charge advice events 489
Class of Restrictions (COR)

make call ... 254
Class of Service (COS)

make call ... 254
Clear call

ack parameters ... 198
description .. 198
detailed information 198
functional description 198
nak parameters... 198
overview ... 182
service parameters 198
syntax ... 199

Clear connection
ack parameters ... 201
description .. 200
detailed information 203, 300
nak parameters... 202
overview ... 182
private data v6 and later syntax 205
private parameters 201
service parameters 200
syntax ... 204
userInfo parameter 201

Communication Manager
event minimization feature 513

Communication Manager local call state
mapped to CSTA local call state.................. 450

Conference ... 719
conference call

ack private parameters 208
Conference call

ack parameters ... 208
description .. 207
detailed information 209
nak parameters... 208
overview ... 183
private data v5 and later syntax 212
selective listening hold 317
selective listening retrieve 317
service parameters 207
syntax ... 210

Conferenced event
description .. 524
detailed information 531
functional description 524
private data v2-3 syntax 544
private data v4 syntax 542
private data v5 syntax 539
private data v6 syntax 536
private data v7 and later syntax 533
private parameters 527
service parameters 525
syntax ... 532
trunkList parameter 529
userInfo parameter 528

Conferencing call
with screen pop information 33

Conferencing calls
CSTA services used..................................34, 36

Confirmation event
format .. 11

Connection cleared event
description ... 546
detailed information 550
functional description 546
private data v2-5 syntax 554
private data v6 and later syntax 553
private parameters 549
service parameters 547
syntax ... 551
userInfo parameter 549

Connection identifier
syntax ... 143

Connection identifier conflict 142
Connection object ... 142
Connection state.. 143

send DTMF tone .. 310
syntax ... 146

Connection state definitions144, 145
Consult ... 719
Consultation call

ack parameters .. 215
ack private parameters 215
description ... 213
detailed information 216
functional description 213
nak parameters .. 216
overview .. 183
private data v2-5 syntax 220
private data v6 and later syntax 218
private parameters 214
service parameters 214
syntax ... 217

Consultation direct-agent call
ack parameters .. 224
ack private parameters 225
description ... 222
detailed information 226
functional description 222
nak parameters .. 225
overview .. 184
private data v2-5 syntax 230
private parameters 224
service parameters 223
syntax ... 227

Consultation supervisor-assist call 232
ack parameters .. 234
ack private parameters 234
description ... 232
detailed information 235
nak parameters .. 234
overview .. 184
private data v2-5 syntax 239
private data v6 and later syntax 237
private parameters 233
service parameters 233
syntax ... 236
userInfo parameter 233

Consultation transfer

 Index

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 881

established event 619
Conventions

ack parameters ... 11
ack private parameters 11
confirmation event 11
format ... 11
function .. 11
functional description 12
nak parameters... 11
private data .. 11
private parameters 11
service parameters 11

Converse agent
selective listening hold 317
selective listening retrieve 317

Cover all
pickup call ... 295

CSTA
Confirmation Events 110
Control Services 49, 50, 110
Event Data Types . 74, 101, 109, 113, 118, 121,

123, 604
Services ... 51
Services available on ACS stream 50

CSTA local call state
mapped to Communication Manager local call

state .. 450
CSTA objects

call .. 141
CSTA services

supported ... 128
unsupported ... 131

cstaDeflectCall
pickup call ... 295

CSTAEventCause, values 506
cstaGetAPICaps() 50, 111
CSTAGetAPICapsConfEvent 113
cstaGetDeviceList() 50, 116
CSTAGetDeviceListConfEvent 118
cstaMakePredictiveCall

originated event ... 669
cstaQueryCallMonitor() 50, 120
CSTAQueryCallMonitorConfEvent 121
CTI link failure ... 720
CTI links

multiple, considerations for 47

D

Data calls .. 720
make call ... 255

Data Types
ACS .. 105

DCS
make call ... 255
set do not disturb feature 368
set forwarding feature 371

DCS network, event reporting 720
Deactivation

set forwarding feature 371
Deflect call

ack parameters ... 241
description .. 241
detailed information 243
functional description 241

nak parameters .. 242
overview .. 185
service parameters 241
syntax ... 244

Deflect from queue
deflect call.. 243
pickup call .. 295

Delivered event
call coverage path to ACD device 716
call scenarios567, 570
deflect call.. 243
description ... 555
detailed information 566
functional description 555
last redirection device 566
pickup call .. 295
private data v2-3 syntax 594
private data v4 syntax................................ 591
private data v5 syntax................................ 587
private data v6 and later syntax 583
private parameters 560
redirection ... 710
redirection on no answer 710
service parameters 557
syntax ... 578
userInfo parameter 561

Delivered events
consecutive .. 556

Designing applications
with screen pop information 33

Bridged state
with bridged state 451

Device
Query for controllable devices 50

Device class .. 134
Device ID type

private data v2-4 .. 861
private data version 5 and later................. 135

Device identifier... 134
Device identifiers

dynamic ... 135
static .. 134

Device monitoring event sequences
single step conference call......................... 329

Device type
ACD group .. 134
definitions .. 133
trunk .. 134
trunk group .. 134

Device types
station .. 133

Dialing, abbreviated 669
Digits collected

for screen pop .. 33
Direct agent calls

redirection on no answer 710
Direction

format .. 11
Display

make call .. 255
make direct-agent call 266

Diverted event ... 710
call coverage path (VDNs) 716
deflect call.. 243

Index

882 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

description .. 597
detailed information 601
functional description 597
pickup call ... 295
redirection on no answer 710
service parameters 599
syntax ... 601

Do not disturb event
description .. 603
functional description 603
service parameters 603
syntax ... 604

Drop button
single step conference call 329

Drop button operation 720
clear connection ... 203
reconnect call ... 203

DTMF receiver
selective listening hold 317
selective listening retrieve 317
send DTMF tone ... 310

DTMF sender
send DTMF tone ... 310

DTMF tones, unsupported 310
Dynamic device identifier 135

E

Enable pending private parameter 356
EnablePending private parameter 354
En-bloc sets

service initiated event 721
Entered digits event

description .. 605
detailed information 605
functional description 605
private data syntax 607
private parameters 605
service parameters 605
syntax ... 606

Error codes
TSLIB ... 823
TSLIB ... 823

Escape service group
supported services 130
unsupported services 131

Established event
description .. 608
detailed information 618
functional description 608
multiple .. 609
private data v2-3 syntax 634
private data v4 syntax 631
private data v5 syntax 628
private data v6 syntax 625
private data v7 and later syntax 621
private parameters 612
service parameters 609
syntax ... 620
userInfo parameter 613

Event
Service Routine (ESR) 49, 56

Initializing ... 49
Event filters... 457

agent ... 459

call .. 458
feature ... 459
maintenance .. 459

Event minimization feature
on Communication Manager 513

Event report service group
supported services 130
unsupported services 131

Event reports
detailed information 710

Events .. 55
advice of charge ... 489
Blocking for ...49, 55
call cleared ... 514
charge advice ... 519
Chronological order 55
conferenced ... 524
connection cleared 546
delivered .. 555
diverted ... 597
do not disturb .. 603
entered digits ... 605
established ... 608
failed .. 637
forwarding ... 645
From all streams55, 56
held .. 648
logged off ... 652
logged on ... 655
monitor ended ... 497
network reached.. 658
originated .. 666
Polling for .. 49, 55, 56
Preventing queue overflow 56
queued ... 674
retrieved .. 681
route end ... 726
route register abort 734
route request (TSAPI v1) 759
route request (TSAPI v2) 742
route used (TSAPI v1) 781
route used (TSAPI v2) 777
service initiated ... 684
system status ... 810
system status, overview 783
transferred ... 689

Expert Agent Selection (EAS) 721

F

Failed event
description ... 637
detailed information 641
functional description 637
private data v7 syntax................................ 644
private data v8 and later syntax 643
private parameters 640
service parameters 638
syntax ... 642

Feature access monitoring
monitor device ... 492

Feature event filters 459
Feature summary

for private data .. 854
Feedback interactions

 Index

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 883

with call vectoring 717
Filters

agent events ... 459
call events ... 458
feature events .. 459
maintenance events 459
private .. 459

Forced entry of account codes
make call ... 255

Formats
ack parameters ... 11
ack private parameters 11
confirmation event 11
direction ... 11
function .. 11
functional description 12
nak parameters... 11
private data .. 11
private parameters 11
service parameters 11

Forwarded calls
deflect call .. 243
pickup call ... 295

Forwarding event
description .. 645
functional description 645
service parameters 646
syntax ... 647

Functional description
conventions .. 12

G

Get API capabilities
private data v4 syntax 863
private data v5-6 syntax 863

H

Held event
description .. 648
detailed information 649
functional description 648
generating .. 721
private data v9 syntax 651
private parameters 649
service parameters 648
switch hook operation 710
syntax ... 650

Held state
alternate call ... 247
consultation call.. 247
hold call .. 247

Hold button .. 712
Hold call

ack parameters ... 245
description .. 245
detailed information ... 192, 216, 226, 235, 246
functional description 245
nak parameters... 246
overview ... 185
selective listening hold 317
selective listening retrieve 317
service parameters 245
syntax ... 248

Hold state

reconnect call .. 305
retrieve call .. 305

Holding calls, generating held event report .. 721
Hot line

make call .. 255

I

Integrated Services Digital Network (ISDN) ... 721
Interactions

between feedback and call vectoring 717
Interflow .. 714
InvokeID

Application generated 54
Correlating responses 54
In confirmation event 54
In service request ... 54
Library generated .. 54
Type ... 54

ISDN BRI station, single step conference call 325

L

Last added party
single step conference call......................... 329

Last number dialed
make call .. 255

Last redirection device
delivered event .. 566
established event 618
queued event ... 678

Links
multiple, considerations for......................... 47

Local call states .. 450
LocalConnectionInfo parameter

monitor services .. 460
LocalConnectionState, values 506
Logged off event

description ... 652
detailed information 653
functional description 652
private data syntax 654
private parameters 652
service parameters 652
syntax ... 653

Logged on event
description ... 655
detailed information 656
functional description 655
private data syntax 657
private parameters 655
service parameters 655
syntax ... 656

Logical
Link... 50

Logical agents .. 721
make call .. 255
make direct agent call................................ 266
monitor device ... 492
set do not disturb feature 368
set forwarding feature 371

Lookahead interflow 719
Lookahead interflow info

for screen pop .. 33
Loop back

deflect call.. 243

Index

884 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

pickup call ... 295

M

Maintenance event filters 459
Maintenance service group

supported services 131
unsupported services 132

Make call
ack parameters ... 251
ack private parameters 252
detailed information 216, 253, 266, 287
functional description 249
nak parameters... 252
overview ... 185
private data v2-5 syntax 260
private data v6 and later syntax 258
private parameters 251
service parameters 250
syntax ... 257
userInfo parameter 251

Make call service
description .. 249

Make direct-agent call
ack parameters ... 264
description .. 262
detailed information 226, 266
functional description 262
nak parameters... 265
overview ... 186
private data v2-5 syntax 270
private data v6 and later syntax 268
private parameters 264, 265
service parameters 263
syntax ... 267

Make predictive call
ack parameters ... 275
ack private parameters 275
description .. 272
detailed information 278
functional description 272
nak parameters... 276
overview ... 186
private data v2-5 syntax 282
private data v6 and later syntax 280
private parameters 273
service parameters 273
syntax ... 279
userInfo parameter 274

Make supervisor-assist call
ack parameters ... 286
ack private parameters 286
description .. 284
detailed information 235, 287
functional description 284
nak parameters... 286
overview ... 187
private data v2-5 syntax 291
private data v6 and later syntax 289
private parameters 285
service parameters 285
syntax ... 288
userInfo parameter 285

Manual transfer
established event 619

Maximum number of monitors
monitor calls via device 481

Maximum requests from multiple AE Services
Servers
monitor call .. 471

Monitor call
ack parameters .. 469
ack private parameters 469
description ... 467
detailed information 471
functional description 467
nak parameters .. 470
overview .. 456
private data v2-4 syntax 476
private data v5 and later syntax 474
private parameters 468
service parameters 468
syntax ... 472

Monitor calls via device
ack parameters .. 480
ack private parameters 480
description ... 478
detailed information 481
functional description 478
nak parameters .. 481
overview .. 456
private data v2-4 syntax 487
private data v5 syntax................................ 486
private data v7 and later syntax 485
private parameters 479
service parameters 479
syntax ... 483

Monitor device
ack parameters .. 490
ack private parameters 490
description ... 488
detailed information 492
functional description 488
nak parameters .. 491
overview .. 457
private data v2-4 syntax 496
private data v5 and later syntax 495
private parameters 490
service parameters 489
syntax ... 493

Monitor ended event
description ... 497
detailed information 497
functional description 497
overview .. 457
service parameters 497
syntax ... 498

Monitor ended event report
monitor call .. 471

Monitor requests, multiple
monitor calls via device 481

Monitor service group
overview .. 456
supported services 129

Monitor services
localConnectionInfo parameter 460

Monitor stop
ack parameters .. 503
description ... 503

 Index

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 885

detailed information 504
functional description 503
nak parameters... 503
overview ... 457
service parameters 503
syntax ... 504

Monitor stop on call
ack parameters ... 499
ack private parameters 499
description .. 499
detailed information 500
functional description 499
nak parameters... 500
overview ... 457
private data syntax 502
private parameters 499
syntax ... 501

Monitor stop on call service
monitor call .. 471

Multifunction station operation
alternate call ... 195
answer call .. 195
reconnect call ... 195

Multiple application requests
monitor call .. 471

Multiple CLAN connections
system status request 786

Multiple events
established event 609

Multiple requests
monitor calls via device 481
monitor device ... 492

Multiple split queueing 719, 722
Multiple telephony servers 46
Music on hold

alternate call ... 247
consultation call.. 247
hold call .. 247
selective listening hold 317
selective listening retrieve 317

MWI status sync
set MWI feature ... 375

N

Nak parameters
alternate call ... 191
answer call .. 195
change monitor filter 462
change system status filter 804
clear call .. 198
clear connection ... 202
conference call ... 208
consultation call.. 216
consultation direct-agent call 225
consultation supervisor-assist call 234
conventions .. 11
deflect call .. 242
hold call .. 246
make call ... 252
make direct-agent call 265
make predictive call 276
make supervisor-assist call 286
monitor call .. 470
monitor calls via device 481

monitor device ... 491
monitor stop .. 503
monitor stop on call 500
pickup call .. 294
query ACD split .. 379
query agent login 383
query agent state 392
query call classifier 399
query device info 403
query device name 412
query do not disturb 416
query forwarding 419
query message waiting indicator 423
query station status 427
query time of day....................................... 431
query trunk group 435
query UCID ... 439
reconnect call .. 299
retrieve call .. 304
route end service (TSAPI v2) 731
route register ... 740
route register cancel 736
route select (TSAPI v2) 767
selective listening hold 316
selective listening retrieve 322
send DTMF tone .. 309
set advice of charge 348
set agent state ... 354
set billing rate .. 364
set do not disturb 367
set forwarding feature 371
set MWI feature ... 374
single step conference call......................... 328
single step transfer call 335
snapshot call .. 445
snapshot device ... 450
system status request 785
system status start 793
system status stop 799
transfer call .. 342

Network reached event
description ... 658
detailed information 661
functional description 658
private data v2-4 syntax 665
private data v5-6 syntax 664
private data v7 and latersyntax 663
private parameters 660
service parameters 659
syntax ... 662

Night service .. 714
make call .. 255

O

Objects
connection ... 142

Off-PBX destination
deflect call.. 243
pickup call .. 295

Original call info
for screen pop .. 36

Originated event
description ... 666
detailed information 669

Index

886 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

functional description 666
private data v2-5 syntax 673
private data v6-8 syntax 672
private data v9 syntax 671
private parameters 668
service parameters 667
syntax ... 670
userInfo parameter 668

P

Park/unpark call
selective listening hold 317
selective listening retrieve 317

Party, last added
single step conference call 329

Personal Central Office Line (PCOL) 722
make call ... 255
monitor calls via device 481
monitor device ... 492

Phantom calls ... 133
make call ... 250
make direct-agent call 263
make predictive call 273
make supervisor-assist call 285

Pickup call
ack parameters ... 293
description .. 293
detailed information 295
functional description 293
nak parameters... 294
overview ... 187
service parameters 293
syntax ... 296

PRI
make call ... 255

Primary old call in conferenced event
single step conference call 329

Primary Rate Interface (PRI) 722
Priority calling

make call ... 255
Priority calls

deflect call .. 243
pickup call ... 295

Private data
feature summary .. 854
sample code.. 162

Private data features
initial PBX Driver release 854
initial private data version 152, 854
initial switch release 854
list of ... 854

Private data function
convention .. 11
format ... 11

Private data version 6
function changes .. 864

Private data version 7
features .. 848

Private data version 8
features .. 847

Private data version 9
features .. 845

Private data:version feature support 853
Private event parameters

query agent login 383
Private filter ... 459
Private Filter, set to On 458
Private parameters

call cleared event 516
change monitor filter 462
change system status filter 802
charge advice event 519
clear connection .. 201
conferenced event 527
connection cleared event 549
consultation call ... 214
consultation direct-agent call 224
consultation supervisor-assist call 233
conventions ... 11
delivered event .. 560
entered digits event 605
established event 612
failed event .. 640
held event .. 649
logged off event ... 652
logged on event ... 655
make call .. 251
make direct-agent call 264
make predictive call 273
make supervisor-assist call 285
monitor call .. 468
monitor calls via device 479
monitor device ... 490
monitor stop on call 499
network reached event 660
originated event .. 668
query ACD split .. 378
query agent login 383
query agent state 389
query call classifier 398
query device name 409
query station status 426
query trunk group 434
query UCID ... 438
queued event ... 677
reconnect call .. 298
route request event (TSAPI v2) 744
route select (TSAPI v2) 765
route used event (TSAPI v2) 778
selective listening hold 315
selective listening retrieve 321
send DTMF tone .. 308
service initiated event 685
set advice of charge 347
set agent state ... 353
set billing rate .. 363
single step conference call......................... 326
single step transfer call 334
snapshot call .. 444
system status event 811
system status start 792
transferred event 691

Q

Query
Call/Call Monitoring 50

Query ACD split
ack parameters .. 378

 Index

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 887

ack private parameters 378
description .. 378
nak parameters... 379
private parameter syntax 381
private parameters 378
service parameters 378
syntax ... 380

Query agent login
ack parameters ... 383
ack private parameters 383
description .. 382
nak parameters... 383
private event parameters 383
private parameter syntax 387
private parameters 383
service parameters 382
syntax ... 385

Query agent state
ack parameters ... 390
ack private parameters 391
description .. 389
detailed information 393
functional description 389
nak parameters... 392
private data v2-4 syntax 397
private data v5 syntax 396
private data v6 and later syntax 395
private parameters 389
service parameters 389
syntax ... 394

Query call classifier
ack parameters ... 398
ack private parameters 398
description .. 398
functional description 398
nak parameters... 399
private data syntax 401
private parameters 398
service parameters 398
syntax ... 400

Query device info
ack parameters ... 402
ack private parameters 403
description .. 402
detailed information 404
functional description 402
nak parameters... 403
private data v2-4 syntax 408
Private data v5 and later syntax 407
service parameters 402
syntax ... 405

Query device name
ack parameters ... 409
ack private parameters 410
description .. 409
detailed information 412
functional description 409
nak parameters... 412
private data v4 syntax 415
private data v5 and later syntax 414
private parameters 409
service parameters 409
syntax ... 413

Query do not disturb

ack parameters .. 416
description ... 416
functional description 416
nak parameters .. 416
service parameters 416
syntax ... 417

Query forwarding
ack parameters .. 418
description ... 418
detailed information 419
functional description 418
nak parameters .. 419
service parameters 418
syntax ... 420

Query message waiting indicator
ack parameters .. 422
ack private parameters 422
description ... 422
detailed information 423
functional description 422
nak parameters .. 423
private data syntax 425
service parameters 422
syntax ... 424

Query service group
supported services 129
unsupported services 131

Query station status
ack parameters .. 426
ack private parameters 426
description ... 426
functional description 426
nak parameters .. 427
private data syntax 429
private parameters 426
service parameters 426
syntax ... 428

Query time of day
ack parameters .. 430
ack private parameters 430
description ... 430
functional description 430
nak parameters .. 431
private data syntax 433
service parameters 430
syntax ... 432

Query trunk group
ack parameters .. 434
ack private parameters 434
description ... 434
functional description 434
nak parameters .. 435
private data syntax 437
private parameters 434
service parameters 434
syntax ... 436

Query UCID
ack parameters .. 438
ack private parameters 438
description ... 438
functional description 438
nak parameters .. 439
private data syntax 441
private parameters 438

Index

888 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

service parameters 438
syntax ... 440

Queued event
description .. 674
detailed information 674, 678
functional description 674
private data v7 and later syntax 680
private parameters 677
redirection on no answer 710
service parameters 675
syntax ... 679

Queued event reports, multiple 674

R

Reason code private parameter 356
Reconnect call

ack parameters ... 298
description .. 297
detailed information 300
functional description 297
nak parameters... 299
overview ... 187
private data v2-5 syntax 302
private data v6 and later syntax 301
private parameters 298
service parameters 298
syntax ... 300
userInfo parameter 298

Recording device, dropping
single step conference call 329

Release button ... 713
Remote agent trunk

single step conference call 329
Remote applications, designing for 38
Requests, multiple

monitor device ... 492
Retrieve call

ack parameters ... 303
description .. 303
detailed information 300, 305
functional description 303
nak parameters... 304
overview ... 188
selective listening hold 317
selective listening retrieve 317
service parameters 303
syntax ... 306

Retrieved event
description .. 681
detailed information 682
functional description 681
service parameters 681
switch hook operation 711
syntax ... 683

Ringback queueing ... 723
Route end event

description .. 726
detailed information 728
functional description 726
service parameters 726
syntax ... 729

Route end service (TSAPI v1)
description .. 733
detailed information 733

functional description 733
syntax ... 733

Route end service (TSAPI v2)
ack parameters .. 731
description ... 730
detailed information 731
functional description 730
nak parameters .. 731
service parameters 730
syntax ... 732

Route register
ack parameters .. 740
description ... 739
detailed information 740
functional description 739
nak parameters .. 740
service parameters 740
syntax ... 741

Route register abort event
description ... 734
detailed information 734
functional description 734
service parameters 734
syntax ... 735

Route register cancel
ack parameters .. 736
description ... 736
detailed information 737
functional description 736
nak parameters .. 736
service parameters 736
syntax ... 738

Route request (TSAPI v2)
description ... 742

Route request event (TSAPI v1)
description ... 759
detailed information 760
functional description 759
service parameters 760
syntax ... 761

Route request event (TSAPI v2)
detailed information 747
functional description 742
private data v2-4 syntax 757
private data v5 syntax................................ 755
private data v6 syntax................................ 753
private data v7 and later syntax 750
private parameters 744
service parameters 743
syntax ... 748

Route select (TSAPI v1)
description ... 775
detailed information 775
functional description 775
syntax ... 776

Route select (TSAPI v2)
ack parameters .. 767
description ... 763
detailed information 768
functional description 763
nak parameters .. 767
private data v2-5 syntax 773
private data v6 syntax................................ 771
private data v7 and later syntax 769

 Index

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 889

private parameters 765
service parameters 764
syntax ... 768

Route used event (TSAPI v1)
description .. 781
detailed information 782
functional description 781
service parameters 781
syntax ... 782

Route used event (TSAPI v2)
description .. 777
detailed information 778
functional description 777
private data syntax 780
private parameters 778
service parameters 777
syntax ... 779

Routing service group
supported services 130
unsupported services 131

Routing service group, overview 725

S

Sample code ... 865
Screen pop info

using original call info 36
Screen pop information

called number ... 33
calling number .. 33
conferencing call... 33
digits collected by call prompting 33
lookahead interflow information 33
transferring call .. 33
user-to-user information (UUI) 33

Security
single step conference call 330

Selective listening hold
ack parameters ... 315
description .. 314
detailed information 317, 322
functional description 314
nak parameters... 316
private data v5 and later syntax 319
private parameters 315
service parameters 314
syntax ... 318

Selective listening retrieve
ack parameters ... 321
description .. 320
detailed information 322
functional description 320
nak parameters... 322
private data v5 and later syntax 324
private parameters 321
service parameters 320
syntax ... 323

Send all calls
pickup call ... 295

Send All Calls (SAC) ... 723
make call ... 255
set do not disturb feature 368

Send DTMF tone
ack parameters ... 308
description .. 307

detailed information 310
nak parameters .. 309
private data v4 syntax................................ 313
private data v5 and later syntax 312
private parameters 308
service parameters 307
syntax ... 311

Send DTMF Tone
functional description 307

Send DTMF tone requests, multiple 310
Service description

route request event (TSAPI v1) 760
Service groups

call control ... 128
escape .. 130
event report ... 130
maintenance .. 131
monitor .. 129
query .. 129
routing ... 130
supported .. 128
set feature ... 128
snapshot .. 129
system status ... 131

Service initiated event
description ... 684
detailed information 685
functional description 684
not sent with en-bloc sets 721
private data syntax 687
private data v5-8 syntax 688
private data v9 syntax................................ 687
private parameters 685
service parameters 684
switch hook operation 710
syntax ... 686

Service observing ... 714
Service parameters

alternate call .. 191
answer call ... 194
call cleared event 515
change monitor filter 461
change system status filter 801
charge advice event 519
clear call ... 198
clear connection .. 200
conference call ... 207
conferenced event 525
connection cleared event 547
consultation call ... 214
consultation direct-agent call 223
consultation supervisor-assist call 233
deflect call.. 241
delivered event .. 557
diverted event ... 599
do not disturb event 603
entered digits event 605
established event 609
failed event .. 638
format .. 11
forwarding event 646
held event .. 648
hold call.. 245
logged off event ... 652

Index

890 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

logged on event .. 655
make call ... 250
make direct-agent call 263
make predictive call 273
make supervisor-assist call 285
monitor call .. 468
monitor calls via device 479
monitor device ... 489
monitor ended event 497
monitor stop ... 503
network reached event 659
originated event ... 667
pickup call ... 293
query ACD split ... 378
query agent login .. 382
query agent state 389
query call classifier 398
query device info .. 402
query device name 409
query do not disturb 416
query forwarding .. 418
query message waiting indicator 422
query station status 426
query time of day 430
query trunk group....................................... 434
query UCID.. 438
queued event.. 675
reconnect call ... 298
retrieve call ... 303
retrieved event ... 681
route end event .. 726
route end service (TSAPI v2) 730
route register .. 740
route register abort event 734
route register cancel 736
route request event (TSAPI v2) 743
route select (TSAPI v2) 764
route used event (TSAPI v1) 781
route used event (TSAPI v2) 777
selective listening hold 314
selective listening retrieve 320
send DTMF Tone ... 307
service initiated event 684
set advice of charge 347
set agent state .. 352
set billing rate ... 362
set do not disturb 367
set forwarding feature 370
set MWI feature ... 374
single step conference call 325
single step transfer call 334
snapshot call ... 443
snapshot device .. 449
system status event 810
system status request 784
system status start 791
system status stop 799
transfer call ... 340
transferred event.. 690

Service-observing ... 723
Services

alternate call ... 190
alternate call, overview 181
answer call .. 194

answer call, overview 181
change monitor filter 461
change system status filter 801
change system status filter, overview 783
clear call ... 198
clear call, overview 182
clear connection .. 200
clear connection, overview 182
conference call ... 207
conference call, overview 183
consultation call ... 213
consultation call, overview 183
consultation direct-agent call 222
consultation direct-agent call, overview ... 184
consultation supervisor-assist call 232
consultation supervisor-assist call, overview

 ... 184
deflect call.. 241
deflect call, overview 185
hold call.. 245
hold call, overview 185
make call .. 249
make call, overview 185
make direct-agent call 262
make direct-agent call, overview 186
make predictive call 272
make predictive call, overview 186
make supervisor-assist call 284
make supervisor-assist call, overview........ 187
monitor call .. 467
monitor calls via device 478
monitor device ... 488
monitor stop .. 503
monitor stop on call 499
pickup call .. 293
pickup call, overview 187
query ACD split .. 378
query agent login 382
query agent state 389
query call classifier 398
query device info 402
query device name 409
query do not disturb 416
query forwarding 418
query message waiting indicator 422
query station status 426
query time of day....................................... 430
query trunk group 434
query UCID ... 438
reconnect call .. 297
reconnect call, overview 187
retrieve call .. 303
retrieve call overview 188
route end (TSAPI v2) 730
route end service (TSAPI v1) 733
route register ... 739
route register cancel 736
route select (TSAPI v1) 775
route select (TSAPI v2) 763
selective listening hold 314
selective listening retrieve 320
send DTMF tone .. 307
set advice of charge347, 489
set agent state ... 351

 Index

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 891

set billing rate ... 362
set do not disturb 367
set forwarding feature 370
set MWI feature ... 374
single step conference call 325
single step conference call, overview 188
single step transfer call 334
single step transfer call, overview 189
snapshot call ... 443
snapshot device .. 449
supported ... 128
system status request 784
system status request, overview 783
system status start 791
system status start, overview 783
system status stop 799
system status stop, overview 783
transfer call ... 340
transfer call, overview 189
unsupported ... 131

Set advice of charge 489
ack parameters ... 348
ack private parameters 348
description .. 347
detailed information 347, 348
nak parameters... 348
private parameter syntax 350
private parameters 347
service parameters 347
syntax ... 349

Set agent state
ack parameters ... 354
ack private parameters 354
description .. 351
detailed information 356
functional description 351
nak parameters... 354
private data v2-4 syntax 361
private data v5 syntax 360
private data v6 and later syntax 359
private parameters 353
service parameters 352
syntax ... 357

Set billing rate
ack parameters ... 363
description .. 362
detailed information 364
functional description 362
nak parameters... 364
private parameter syntax 366
private parameters 363
service parameters 362
syntax ... 365

Set do not disturb
ack parameters ... 367
functional description 367
nak parameters... 367
service parameters 367

Set do not disturb feature
description .. 367
detailed information 368
syntax ... 369

Set feature service group
supported services 128

Set forwarding
functional description 370

Set forwarding feature
ack parameters .. 370
description ... 370
nak parameters .. 371
service parameters 370
syntax ... 372

Set MWI feature
ack parameters .. 374
description ... 374
detailed information 375
functional description 374
nak parameters .. 374
service parameters 374
syntax ... 376

Single step conference call
ack parameters .. 327
ack private parameters 327
description ... 325
detailed information 329
functional description 325
nak parameters .. 328
overview .. 188
private data v5 and later syntax 332
private parameters 326
service parameters 325
syntax ... 331

Single step transfer call
ack parameters .. 334
ack private parameters 335
description ... 334
functional description 334
nak parameters .. 335
private data v8 syntax................................ 339
private data v9 and later syntax 338
private parameters 334
service parameters 334
syntax ... 337

Single Step Transfer Call
overview .. 189

Single-digit dialing
make call .. 256

Skill hunt groups
make call .. 256
monitor calls via device 482
monitor device ... 492

Snapshot call
ack parameters .. 444
description ... 443
functional description 443
nak parameters .. 445
private parameters 444
service parameters 443

Snapshot call service
CSTA connection states 443
syntax ... 446

Snapshot device
ack parameters .. 449
ack private parameters 449
description ... 449
detailed information 450
functional description 449
nak parameters .. 450

Index

892 TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011

private data v2-4 syntax 455
private data v5 and later syntax 454
service parameters 449
syntax ... 452

Snapshot service group
supported services 129

Snapsnot call service
private data syntax 448

Split button ... 713
Start button .. 712
State of added station

single step conference call 330
Static device identifier 134
Station

device type ... 133
monitor calls via device 482

Station Message Detail Recording (SMDR)
make call ... 256

Subdomain boundary
switching ... 658

Switch administration
selective listening hold 317
selective listening retrieve 317

Switch hook operation 710
Switch operation

retrieve call ... 305
Switch operation

after clear call ... 198
alternate call ... 247
clear connection ... 203
consultation call.. 247
hold call .. 247
make call ... 256
reconnect call ... 203

Switch operation
reconnect call ... 305

Switch operation
monitor stop ... 504

Switch-hook flash field 343
Switching subdomain boundary 658
Synthesized message retrieval

set MWI feature ... 375
System capacity .. 872
System starts

set MWI feature ... 375
System status event

description .. 810
detailed information 811
functional description 810
overview ... 783
private data v2-3 syntax 815
private data v4 syntax 814
private data v5 and later syntax 813
private parameters 811
service parameters 810
syntax ... 812

System status events
not supported ... 783

System status group
unsupported services 132

System status request
ack parameters ... 784
ack private parameters 785
description .. 784

detailed information 786
functional description 784
multiple CLAN connections 786
nak parameters .. 785
overview .. 783
private data v2-3 syntax 790
private data v4 syntax................................ 789
private data v5 and later syntax 788
service parameters 784
syntax ... 787

System status service group
supported services 131

System status start
ack parameters .. 792
ack private parameters 793
description ... 791
detailed information 794
functional description 791
nak parameters .. 793
overview .. 783
private data v2-3 syntax 798
private data v4 syntax................................ 797
private data v5 and later syntax 796
private parameters 792
service parameters 791
syntax ... 795

System status stop
ack parameters .. 799
description ... 799
detailed information 799
functional description 799
nak parameters .. 799
overview .. 783
service parameters 799
syntax ... 800

T

Telephony servers
multiple .. 46

Temporary bridged appearance
clear connection .. 203
reconnect call .. 203

Temporary bridged appearances............710, 723
Terminating Extension Group (TEG) 723

make call .. 256
monitor calls via device 482
monitor device ... 492

Tone cadence and level
send DTMF tone .. 310

Transfer.. 724
established event 619

Transfer call
ack parameters .. 341
ack private parameters 341
description ... 340
detailed information 343
functional description 340
nak parameters .. 342
overview .. 189
private data v5 and later syntax 345
selective listening hold 317
selective listening retrieve 317
service parameters 340
syntax ... 344

 Index

TSAPI for Avaya Communication Manager Programmer‘s Reference, Issue 5, June 2011 893

Transferred event
description .. 689
detailed information 695
functional description 689
private data v2-3 syntax 708
private data v4 syntax 706
private data v5 syntax 703
private data v6 syntax 700
private data v7 and later syntax 697
private parameters 691
service parameters 690
syntax ... 696
trunkList parameter 693
userInfo parameter 692

Transferring call
with screen pop information 33

Transferring calls
CSTA services used 34, 36

Troubleshooting
ACS universal failure events 816

Trunk
device type ... 134

Trunk group
device type ... 134

Trunk group access ... 713
Trunk group administration

charge advice event 521
Trunk to trunk transfer

transfer call ... 343
TrunkList parameter

conferenced event 529
transferred event.. 693

Trunk-to-trunk transfer 724
TSLIB

error codes... 823

U

Unsolicited Events
ACS ... 101

UserInfo parameter
maximum size 201, 233, 251, 274, 285, 298,

528, 549, 561, 613, 692
not supported by switch 668

User-to-user info
passing info to remote applications 38

User-to-user information (UUI)
for screen pop .. 33

V

VDN
make call ...253, 256
monitor device ... 492

VDN destination
make call .. 256

Vector-controlled split
monitor calls via device 482
monitor device ... 492

Voice (synthesized) message retrieval
set MWI feature ... 375

W

Work mode private parameter 356

	Avaya Aura® Application Enablement Services
	TSAPI for Avaya Communication Manager Programmer’s Reference
	Release 6.1
	Contents
	About this document
	Intended audience
	Structure and organization of this document
	Reason for Reissue
	AE Services 6.1.0 clients and backward compatibility
	About installing the SDK
	Related Documents
	Related Ecma International documents
	Related Avaya documents

	Web based training
	Customer Support
	Conventions used in this document
	Format of Service Description Pages
	Common ACS Parameter Syntax

	Chapter 1: Overview of the TSAPI Client and the TSAPI SDK
	Introduction
	Ecma International and the CSTA Standards
	The TSAPI Specification
	TSAPI for Avaya Communication Manager
	The TSAPI Client
	The TSAPI SDK

	Chapter 2: The TSAPI Programming Environment
	Contents of the TSAPI SDK
	TSAPI SDK header files
	TSAPI Service client libraries
	TSAPI client library configuration file (TSLIB)
	Code Samples (Windows client only)

	TSAPI for Windows SDK Overview
	Event Notification
	Blocking Versus Polling
	Receiving Events from Any Stream
	Sharing ACS Streams between Threads

	TSAPI SDK for Linux
	Event Notification
	Receiving Events

	Blocking Versus Polling
	Receiving Events from Any Stream
	Message Trace

	Basic TSAPI programming tips
	Opening and closing streams
	Monitoring switch object state changes
	Client/server roles and the routing service
	The client/server session and the operation invocation model

	Advanced TSAPI Programming Techniques
	Transferring or conferencing a call together with screen pop information
	CSTA Services Used to Conference or Transfer Calls
	Using the Consultation Call Service
	Unique Advantage of the Consultation Call Service

	Using Original Call Information to Pop a Screen
	Using UUI to Pass Information to Remote Applications
	Re-registering as a Routing Server after a TCP/IP failure
	Who can benefit from this route register request feature?

	Routing transactions
	Server-side programming considerations
	Multiple AE Services server considerations
	CTI Link Availability

	Chapter 3: Control Services
	Control Services provided by TSAPI
	API Control Services
	CSTA Control Services

	Opening, Closing and Aborting an ACS stream
	Opening an ACS stream
	Closing an ACS stream
	Aborting an ACS stream

	Sending CSTA Requests and Responses
	Receiving Events
	Blocking Event Reception
	Non-Blocking Event Reception

	Specifying TSAPI versions when you open a stream
	Providing a list of TSAPI versions in the API version parameter
	How the TSAPI version is negotiated

	Requesting private data when you open an ACS stream
	Querying for Available Services
	ACS functions and confirmation events
	acsOpenStream()
	ACSOpenStreamConfEvent
	acsCloseStream()
	acsHandle
	invokeID
	privateData

	ACSCloseStreamConfEvent
	acsHandle
	eventClass
	eventType
	invokeID

	ACSUniversalFailureConfEvent
	acsHandle
	eventClass
	eventType
	error

	acsAbortStream()
	acsHandle
	privateData
	ACSERR_BADHDL

	acsGetEventBlock()
	acsHandle
	eventBuf
	eventBufSize
	privateData
	numEvents

	acsGetEventPoll()
	acsHandle
	eventBuf
	eventBufSize
	privateData
	numEvents

	acsGetFile() (Linux)
	acsHandle

	acsSetESR() (Windows)
	acsHandle
	esr
	esrParam
	notifyAll

	acsEventNotify() (Windows)
	acsHandle
	hwnd
	msg
	notifyAll

	acsFlushEventQueue()
	acsHandle
	Return Values

	acsEnumServerNames()
	streamType
	callback
	lParam

	acsGetServerID()
	acsHandle

	acsQueryAuthInfo()
	serverID
	authInfo

	acsSetHeartbeatInterval()
	acsHandle
	invokeID
	privateData

	ACSSetHeartbeatIntervalConfEvent
	acsHandle
	eventClass
	eventType
	invokeID
	heartbeatInterval

	ACS Unsolicited Events
	ACSUniversalFailureEvent
	acsHandle
	eventClass
	eventType
	error

	ACS Data Types
	ACS Common Data Types
	ACS Event Data Types

	CSTA control services and confirmation events
	cstaGetAPICaps()
	acsHandle
	invokeID

	CSTAGetAPICapsConfEvent
	acsHandle
	eventClass
	eventType
	getAPIcaps

	cstaGetDeviceList()
	acsHandle
	invokeID
	index
	level

	CSTAGetDeviceListConfEvent
	acsHandle
	eventClass
	eventType
	invokeID
	driverSdbLevel
	index
	devlist

	cstaQueryCallMonitor()
	acsHandle
	invokeID

	CSTAQueryCallMonitorConfEvent
	acsHandle
	eventClass
	eventType
	invokeID
	callMonitor

	CSTA Event Data Types

	Chapter 4: CSTA Service Groups supported by the TSAPI Service
	Supported Services and Service Groups
	CSTA Objects
	The CSTA Device object
	Device Type
	CSTA Device Types that the TSAPI Service does not support

	Device Class
	Device Identifier
	Device History
	Merging calls - DeviceHistory
	Interactions:

	The CSTA Call object
	The CSTA Connection object
	Connection Identifier Conflict

	CSTAUniversalFailureConfEvent

	Chapter 5: Avaya TSAPI Service Private Data
	What is private data?
	What is a private data version?
	Linking your application to the private data functions
	Summary of TSAPI Service Private Data
	Private Data Version 9 Features
	Consult Mode for Held, Service Initiated, and Originated Events
	UCID in Single Step Transfer Call Confirmation Event

	Private Data Version 8 Features
	Single Step Transfer Call
	Calling Device in Failed Event

	Requesting private data
	Sample code for requesting private data
	Applications that do not use private data

	CSTA Get API Capabilities confirmation structures for Private Data Version 8
	Code for the ATTGetAPICapsConfEvent - PDV 8

	Private Data Service sample code
	Upgrading and maintaining applications that use private data
	Using the private data header files
	The attpdefs.h file -- PDU names and numbers
	The attpriv.h file -- other related PDU elements
	Upgrading PDV 8 applications to PDV 9
	Upgrading PDV 7 applications to PDV 8
	Upgrading PDV 6 applications to PDV 7
	Maintaining applications that use prior versions of private data
	Maintaining a PDV 8 application in a PDV 9 environment
	Maintaining a PDV 7 application in a PDV 8 environment

	Recompiling against the same SDK

	Chapter 6: Call Control Service Group
	Graphical Notation Used in the Diagrams
	Alternate Call Service
	Answer Call Service
	Clear Call Service
	Clear Connection Service
	Conference Call Service
	Consultation Call Service
	Consultation Direct-Agent Call Service
	Consultation Supervisor-Assist Call Service
	Deflect Call Service
	Hold Call Service
	Make Call Service
	Make Direct-Agent Call Service
	Make Predictive Call Service
	Make Supervisor-Assist Call Service
	Pickup Call Service
	Reconnect Call Service
	Retrieve Call Service
	Single Step Conference Call
	Single Step Transfer Call
	Transfer Call Service

	Alternate Call Service
	Answer Call Service
	Clear Call Service
	Clear Connection Service
	Conference Call Service
	Consultation Call Service
	Consultation Direct-Agent Call Service
	Consultation Supervisor-Assist Call Service
	Deflect Call Service
	Hold Call Service
	Make Call Service
	Make Direct-Agent Call Service
	Make Predictive Call Service
	Make Supervisor-Assist Call Service
	Pickup Call Service
	Reconnect Call Service
	Retrieve Call Service
	Send DTMF Tone Service (Private Data Version 4 and Later)
	Selective Listening Hold Service (Private Data Version 5 and Later)
	Selective Listening Retrieve Service (Private Data Version 5 and Later)
	Single Step Conference Call Service (Private Data Version 5 and Later)
	Single Step Transfer Call (Private Data Version 8 and later)
	Transfer Call Service

	Chapter 7: Set Feature Service Group
	Set Advice of Charge Service (Private Data Version 5 and Later)
	Set Agent State Service
	Set Billing Rate Service (Private Data Version 5 and Later)
	Set Do Not Disturb Feature Service
	Set Forwarding Feature Service
	Set Message Waiting Indicator (MWI) Feature Service

	Chapter 8: Query Service Group
	Query ACD Split Service
	Query Agent Login Service
	Query Agent State Service
	Query Call Classifier Service
	Query Device Info
	Query Device Name Service
	Query Do Not Disturb Service
	Query Forwarding Service
	Query Message Waiting Indicator Service
	Query Station Status Service
	Query Time of Day Service
	Query Trunk Group Service
	Query Universal Call ID Service (Private)

	Chapter 9: Snapshot Service Group
	Snapshot Call Service
	Snapshot Device Service

	Chapter 10: Monitor Service Group
	Overview
	Change Monitor Filter Service — cstaChangeMonitorFilter()
	Monitor Call Service — cstaMonitorCall()
	Monitor Calls Via Device Service — cstaMonitorCallsViaDevice()
	Monitor Device Service — cstaMonitorDevice()
	Monitor Ended Event — CSTAMonitorEndedEvent
	Monitor Stop On Call Service (Private) — attMonitorStopOnCall()
	Monitor Stop Service — cstaMonitorStop()
	Event Filters and Monitor Services
	The localConnectionInfo Parameter for Monitor Services

	Change Monitor Filter Service
	Monitor Call Service
	Monitor Calls Via Device Service
	Special Rules - Monitor Calls Via Device Service

	Monitor Device Service
	Monitor Ended Event Report
	Monitor Stop On Call Service (Private)
	Monitor Stop Service

	Chapter 11: Event Report Service Group
	CSTAEventCause and LocalConnectionState
	Event Minimization Feature on Communication Manager

	Call Cleared Event
	Charge Advice Event (Private)
	Conferenced Event
	Connection Cleared Event
	Delivered Event
	Diverted Event
	Do Not Disturb Event
	Entered Digits Event (Private)
	Established Event
	Failed Event
	Forwarding Event
	Held Event
	Logged Off Event
	Logged On Event
	Network Reached Event
	Originated Event
	Queued Event
	Retrieved Event
	Service Initiated Event
	Transferred Event
	Event Report Detailed Information
	Analog Sets
	Redirection
	Redirection on No Answer
	Switch Hook Operation

	ANI Screen Pop Application Requirements
	Announcements
	Answer Supervision
	Attendants and Attendant Groups
	Attendant Specific Button Operation
	Attendant Auto-Manual Splitting
	Attendant Call Waiting
	Attendant Control of Trunk Group Access
	AUDIX
	Automatic Call Distribution (ACD)
	Announcements
	Interflow
	Night Service
	Service Observing
	Auto-Available Split

	Bridged Call Appearance
	Busy Verification of Terminals
	Call Coverage
	Call Coverage Path Containing VDNs
	Call Forwarding All Calls
	Call Park
	Call Pickup
	Call Vectoring
	Call Prompting
	Lookahead Interflow
	Multiple Split Queuing
	Call Waiting

	Conference
	Consult Button
	CTI Link Failure
	Data Calls
	DCS
	Direct Agent Calling and Number of Calls In Queue
	Drop Button Operation
	Expert Agent Selection (EAS)
	Logical Agents

	Hold
	Integrated Services Digital Network (ISDN)
	Multiple Split Queuing
	Personal Central Office Line (PCOL)
	Primary Rate Interface (PRI)
	Ringback Queuing
	Send All Calls (SAC)
	Service-Observing
	Temporary Bridged Appearances
	Terminating Extension Group (TEG)
	Transfer
	Trunk-to-Trunk Transfer

	Chapter 12: Routing Service Group
	Route End Event
	Route End Service (TSAPI Version 2)
	Route End Service (TSAPI Version 1)
	Route Register Abort Event
	Route Register Cancel Service
	Route Register Service
	Special usage cases

	Route Request Event (TSAPI Version 2)
	Route Request Event (TSAPI Version 1)
	Route Select Service (TSAPI Version 2)
	Route Select Service (TSAPI Version 1)
	Route Used Event (TSAPI Version 2)
	Route Used Event (TSAPI Version 1)

	Chapter 13: System Status Service Group
	Overview
	System Status Request Service - cstaSysStatReq()
	System Status Start Service - cstaSysStatStart()
	System Status Stop Service - cstaSysStatStop()
	Change System Status Filter Service cstaChangeSysStatFilter()
	System Status Event - CSTASysStatEvent
	System Status Events - Not Supported

	System Status Request Service
	System Status Start Service
	System Status Stop Service
	Change System Status Filter Service
	System Status Event

	Appendix A: Universal Failure Events
	Common switch-related CSTA Service errors
	TSAPI Client library error codes
	ACSUniversalFailureConfEvent error values
	ACS Related Errors

	Appendix B: Summary of Private data support
	Private Data Version 9 features
	Consult Modes
	UCID in Single Step Transfer Call Confirmation event
	Private Data Version 9 features, services, and events

	Private Data Version 8 features
	Single Step Transfer Call Escape Service
	Calling Device in Failed Event
	Private Data Version 8 features, services, and events

	Private Data Version 7 features
	Network Call Redirection for Routing
	Redirecting Number Information Element (presented through DeviceHistory)
	Query Device Name for Attendants
	Enhanced cstaGetAPICaps Version
	Increased Aux Reason Codes

	Private Data Version 7 features, services, and events
	CSTA Get API Capabilities confirmation structures for Private Data Version 7
	Private Data Version Feature Support prior to AE Services TSAPI R3.1.0
	Summary of private data versions 2 through 6
	CSTA Device ID Type (Private Data Version 4 and Earlier)
	CSTAGetAPICaps Confirmation interface structures for Private Data Versions 4, 5, and 6
	Private Data Version 5 and 6 Syntax
	Private Data Version 4 Syntax
	Private Data Function Changes between V5 and V6
	Private Data Sample Code

	Appendix C: Server-Side Capacities
	Communication Manager CSTA system capacities

	Index

