
Avaya Agile Communication
Environment™ Foundation Toolkit Sample
Basic Java SE Application Guide

Release 6.2
NN10850-062, 03.01

November 2012

© 2012 Avaya Inc.

All Rights Reserved.

Notice

While reasonable efforts have been made to ensure that the
information in this document is complete and accurate at the time of
printing, Avaya assumes no liability for any errors. Avaya reserves the
right to make changes and corrections to the information in this
document without the obligation to notify any person or organization of
such changes.

Documentation disclaimer

“Documentation” means information published by Avaya in varying
mediums which may include product information, operating instructions
and performance specifications that Avaya generally makes available
to users of its products. Documentation does not include marketing
materials. Avaya shall not be responsible for any modifications,
additions, or deletions to the original published version of
documentation unless such modifications, additions, or deletions were
performed by Avaya. End User agrees to indemnify and hold harmless
Avaya, Avaya's agents, servants and employees against all claims,
lawsuits, demands and judgments arising out of, or in connection with,
subsequent modifications, additions or deletions to this documentation,
to the extent made by End User.

Link disclaimer

Avaya is not responsible for the contents or reliability of any linked
websites referenced within this site or documentation provided by
Avaya. Avaya is not responsible for the accuracy of any information,
statement or content provided on these sites and does not necessarily
endorse the products, services, or information described or offered
within them. Avaya does not guarantee that these links will work all the
time and has no control over the availability of the linked pages.

Warranty

Avaya provides a limited warranty on its hardware and Software
(“Product(s)”). Refer to your sales agreement to establish the terms of
the limited warranty. In addition, Avaya’s standard warranty language,
as well as information regarding support for this Product while under
warranty is available to Avaya customers and other parties through the
Avaya Support website: http://support.avaya.com. Please note that if
you acquired the Product(s) from an authorized Avaya reseller outside
of the United States and Canada, the warranty is provided to you by
said Avaya reseller and not by Avaya. “Software” means computer
programs in object code, provided by Avaya or an Avaya Channel
Partner, whether as stand-alone products or pre-installed on hardware
products, and any upgrades, updates, bug fixes, or modified versions
thereto.

Licenses

THE SOFTWARE LICENSE TERMS AVAILABLE ON THE AVAYA
WEBSITE, HTTP://SUPPORT.AVAYA.COM/LICENSEINFO/ ARE
APPLICABLE TO ANYONE WHO DOWNLOADS, USES AND/OR
INSTALLS AVAYA SOFTWARE, PURCHASED FROM AVAYA INC.,
ANY AVAYA AFFILIATE, OR AN AUTHORIZED AVAYA RESELLER
(AS APPLICABLE) UNDER A COMMERCIAL AGREEMENT WITH
AVAYA OR AN AUTHORIZED AVAYA RESELLER. UNLESS
OTHERWISE AGREED TO BY AVAYA IN WRITING, AVAYA DOES
NOT EXTEND THIS LICENSE IF THE SOFTWARE WAS OBTAINED
FROM ANYONE OTHER THAN AVAYA, AN AVAYA AFFILIATE OR AN
AVAYA AUTHORIZED RESELLER; AVAYA RESERVES THE RIGHT
TO TAKE LEGAL ACTION AGAINST YOU AND ANYONE ELSE
USING OR SELLING THE SOFTWARE WITHOUT A LICENSE. BY
INSTALLING, DOWNLOADING OR USING THE SOFTWARE, OR
AUTHORIZING OTHERS TO DO SO, YOU, ON BEHALF OF
YOURSELF AND THE ENTITY FOR WHOM YOU ARE INSTALLING,
DOWNLOADING OR USING THE SOFTWARE (HEREINAFTER
REFERRED TO INTERCHANGEABLY AS “YOU” AND “END USER”),
AGREE TO THESE TERMS AND CONDITIONS AND CREATE A
BINDING CONTRACT BETWEEN YOU AND AVAYA INC. OR THE
APPLICABLE AVAYA AFFILIATE (“AVAYA”).

Avaya grants you a license within the scope of the license types
described below, with the exception of Heritage Nortel Software, for
which the scope of the license is detailed below. Where the order
documentation does not expressly identify a license type, the
applicable license will be a Designated System License. The applicable
number of licenses and units of capacity for which the license is granted
will be one (1), unless a different number of licenses or units of capacity
is specified in the documentation or other materials available to you.
“Designated Processor” means a single stand-alone computing device.
“Server” means a Designated Processor that hosts a software
application to be accessed by multiple users.

License types

CPU License (CP). End User may install and use each copy of the
Software on a number of Servers up to the number indicated in the
order provided that the performance capacity of the Server(s) does not
exceed the performance capacity specified for the Software. End User
may not re-install or operate the Software on Server(s) with a larger
performance capacity without Avaya’s prior consent and payment of an
upgrade fee.

Named User License (NU). You may: (i) install and use the Software
on a single Designated Processor or Server per authorized Named
User (defined below); or (ii) install and use the Software on a Server so
long as only authorized Named Users access and use the Software.
“Named User”, means a user or device that has been expressly
authorized by Avaya to access and use the Software. At Avaya’s sole
discretion, a “Named User” may be, without limitation, designated by
name, corporate function (e.g., webmaster or helpdesk), an e-mail or
voice mail account in the name of a person or corporate function, or a
directory entry in the administrative database utilized by the Software
that permits one user to interface with the Software.

Heritage Nortel Software

“Heritage Nortel Software” means the software that was acquired by
Avaya as part of its purchase of the Nortel Enterprise Solutions
Business in December 2009. The Heritage Nortel Software currently
available for license from Avaya is the software contained within the list
of Heritage Nortel Products located at http://support.avaya.com/
licenseinfo under the link “Heritage Nortel Products”. For Heritage
Nortel Software, Avaya grants Customer a license to use Heritage
Nortel Software provided hereunder solely to the extent of the
authorized activation or authorized usage level, solely for the purpose
specified in the Documentation, and solely as embedded in, for
execution on, or (in the event the applicable Documentation permits
installation on non-Avaya equipment) for communication with Avaya
equipment. Charges for Heritage Nortel Software may be based on
extent of activation or use authorized as specified in an order or invoice.

Copyright

Except where expressly stated otherwise, no use should be made of
materials on this site, the Documentation, Software, or hardware
provided by Avaya. All content on this site, the documentation and the
Product provided by Avaya including the selection, arrangement and
design of the content is owned either by Avaya or its licensors and is
protected by copyright and other intellectual property laws including the
sui generis rights relating to the protection of databases. You may not
modify, copy, reproduce, republish, upload, post, transmit or distribute
in any way any content, in whole or in part, including any code and
software unless expressly authorized by Avaya. Unauthorized
reproduction, transmission, dissemination, storage, and or use without
the express written consent of Avaya can be a criminal, as well as a
civil offense under the applicable law.

Third Party Components

“Third Party Components” mean certain software programs or portions
thereof included in the Software that may contain software (including
open source software) distributed under third party agreements (“Third
Party Components”), which contain terms regarding the rights to use
certain portions of the Software (“Third Party Terms”). Information
regarding distributed Linux OS source code (for those Products that
have distributed Linux OS source code) and identifying the copyright

2 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

http://support.avaya.com
http://www.avaya.com/support/LicenseInfo
http://support.avaya.com/licenseinfo
http://support.avaya.com/licenseinfo
mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

holders of the Third Party Components and the Third Party Terms that
apply is available in the Documentation or on Avaya’s website at: http://
support.avaya.com/Copyright. You agree to the Third Party Terms for
any such Third Party Components.

Preventing Toll Fraud

“Toll Fraud” is the unauthorized use of your telecommunications system
by an unauthorized party (for example, a person who is not a corporate
employee, agent, subcontractor, or is not working on your company's
behalf). Be aware that there can be a risk of Toll Fraud associated with
your system and that, if Toll Fraud occurs, it can result in substantial
additional charges for your telecommunications services.

Avaya Toll Fraud Intervention

If you suspect that you are being victimized by Toll Fraud and you need
technical assistance or support, call Technical Service Center Toll
Fraud Intervention Hotline at +1-800-643-2353 for the United States
and Canada. For additional support telephone numbers, see the Avaya
Support website: http://support.avaya.com. Suspected security
vulnerabilities with Avaya products should be reported to Avaya by
sending mail to: securityalerts@avaya.com.

Trademarks

The trademarks, logos and service marks (“Marks”) displayed in this
site, the Documentation and Product(s) provided by Avaya are the
registered or unregistered Marks of Avaya, its affiliates, or other third
parties. Users are not permitted to use such Marks without prior written
consent from Avaya or such third party which may own the Mark.
Nothing contained in this site, the Documentation and Product(s)
should be construed as granting, by implication, estoppel, or otherwise,
any license or right in and to the Marks without the express written
permission of Avaya or the applicable third party.

Avaya is a registered trademark of Avaya Inc.

Avaya Aura is a registered trademark of Avaya Inc.

Avaya ACE is a registered trademark of Avaya Inc.

All non-Avaya trademarks are the property of their respective owners,
and “Linux” is a registered trademark of Linus Torvalds.

Downloading Documentation

For the most current versions of Documentation, see the Avaya
Support website: http://support.avaya.com.

Contact Avaya Support

See the Avaya Support website: http://support.avaya.com for product
notices and articles, or to report a problem with your Avaya product.
For a list of support telephone numbers and contact addresses, go to
the Avaya Support website: http://support.avaya.com, scroll to the
bottom of the page, and select Contact Avaya Support.

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 3

http://support.avaya.com/Copyright
http://support.avaya.com/Copyright
http://support.avaya.com
http://support.avaya.com
http://support.avaya.com
http://support.avaya.com

4 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Contents

Chapter 1: Introduction.. 7
Prerequisites... 7
Terminology... 8

Chapter 2: Application tools.. 11
Java runtime environment... 11
Installing Eclipse IDE.. 11

Chapter 3: Basic Eclipse settings... 13
Perspectives.. 13
Setting IDE preferences.. 13
Importing a sample application... 14

Project references to the JRE do not match the installed JRE... 14
Starting a sample application.. 16

Chapter 4: Building Applications.. 17
Building applications using Eclipse IDE.. 17
Building applications using ANT... 17

Chapter 5: Sample Applications.. 19
API considerations.. 19

Foundation Toolkit API... 19
Sequenced Template API... 19

Application structure.. 20
Application classes... 22
Connection to the Foundation Toolkit Runtime Services.. 24
Application configuration.. 24

Libraries.. 25
Sample application details.. 25

Call Screening application.. 27
Call Screening asynchronous application.. 30
Deflect to IVR application... 31
Call Recorder application... 33
Call Director application... 37
Call Blocker application.. 39

Chapter 6: Run sample applications... 43
Run sample applications outside IDE... 43
Configuration of test environment... 43

Test Environment Configuration... 43
Configuration of Session Manager... 44
Configuration of AMS... 45

Handling sample applications... 45
Setting up Call Screening application... 45
Setting up Deflect to IVR application.. 46
Setting up Call Recorder application.. 46
Setting up Call Director application.. 46
Setting up Call Blocker application... 47

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 5

6 Foundation Toolkit Sample Basic Java SE Application Guide November 2012

Chapter 1: Introduction

The Foundation Toolkit allows integration of applications within the Avaya Aura® network for midsize to
large enterprises.

The Foundation Toolkit is comprised of a set of runtime services and a Java API or library that enables
an application to connect to the runtime services. The Foundation Toolkit runtime services are an integral
part of Avaya Agile Communication Environment™, Avaya's application enablement platform.

The Foundation SDK includes sample applications and documentation which demonstrate the usage of
the Foundation Toolkit API. The Foundation SDK facilitates application development with tools and source
code.

In addition to the Foundation Toolkit API, the Sequenced Template API is provided to simplify
implementation of some typical call handling patterns. The Foundation SDK includes sample applications
and documentation which demonstrate the usage of the Sequenced Template API as well.

Many types of applications can be built on the Foundation Toolkit:

• web applications running on an application server

• applications which provide their own non-web user interface

• applications which do not include a user interface

The samples described in this document are Java standard applications designed with the objective of
simplicity. Because of the very "basic" character of these applications, they should be examined first by
users of the SDK.

Prerequisites
This document describes the "Basic" JSE sample applications delivered with the Foundation
SDK, covering:

• the structure of the sample code

• how the Foundation API and the Sequenced Template API are used

• how the applications can be started and utilized

In order to successfully run the sample applications as well as write your own applications,
ensure that the following knowledge requirements are met:

• You must have a basic understanding of Avaya Aura®

• You should be familiar with the following technologies

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 7

- Java

- Java SE Applications structures

- Eclipse IDE concepts

You can get additional information on any of the tools used on the Web sites of the tool
providers.

Terminology

Term Meaning
Avaya ACE™ Avaya Agile Communication Environment™

AJAX Asynchronous Javascript and XML

API Application Programming Interface

AOR Address of Record (SIP address)

CM Avaya Aura® Communication Manager

CSS Cascading Stylesheets

DWR Direct Web Remoting (a Java library
implementing AJAX communication)

F-API Foundation Toolkit API

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IVR Interactive Voice Response

JAR Java Archive

Java SE, JSE Java Standard Edition

Java EE, JEE Java Enterprise Edition

JDK Java Development Kit

JRE Java Runtime Environment

JSP Java Server Pages

AMS Avaya Media Server

PAI P-Asserted-Identity (header)

SDK Software Development Kit

SIP Session Initiation Protocol

SMTP Simple Mail Transport Protocol

Introduction

8 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Term Meaning
UA SIP User Agent (phone station)

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

WAR Web Archive

WTP Web Tools Platform (a set of Eclipse plug ins)

Terminology

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 9

Introduction

10 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Chapter 2: Application tools

The Foundation SDK is based on Java technologies and therefore does not target a particular operating
system platform. The SDK was tested on workstations based on Microsoft Windows XP.

Java runtime environment
Java Tools run on top of a Java Runtime Environment, therefore a JRE or JDK must be installed
on your workstation.

The Foundation Toolkit libraries and the sample applications require a JRE version 6, which
can be downloaded from http://www.oracle.com/technetwork/java/javase/downloads/
index.html.

To utilize ANT (http://ant.apache.org) as a Java build tool, install the full Java Development Kit
instead of the JRE since the JDK includes a Java compiler.

The Foundation SDK contains an ANT script which can be used to build the sample
applications but the main focus is to build the applications in the Eclipse IDE. Eclipse comes
with its own Java compiler und therefore does not necessarily need to be run on a JDK
(although it can).

Developers often have multiple JRE versions installed on their workstations, therefore it is not
recommended to install the JRE in the default path preset by the installer. Please install the
JRE in C:\Program Files\Java\jre6_21.

The JRE version available at the time of preparation of the Foundation SDK was JRE 6 Update
21. If you install a different JRE or a JDK, some minor path adaptations need to be done to
run tools or to refer to Java standard libraries in Eclipse. You will find appropriate notes in this
document where path modification might be necessary.

Installing Eclipse IDE
For development of the sample applications, the Eclipse IDE for Java EE Developers, Version
3.6 "Helios" (www.eclipse.org) is used.

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 11

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org

 Note:
You can use any other suitable Java IDE tool or version. However, since this document refers
to the IDE mentioned above, it is recommended to use exactly this one or a more recent
version.

Before you begin
Ensure that you have Java Runtime Environment installed. For information on installing Java
Runtime Environment, see Java runtime environment on page 11

Procedure

1. Download the Eclipse IDE for Java EE Developers, Version 3.6 from
Eclipse downloads Web site.

2. Extract eclipse-jee-helios-win32.zip in a directory. The recommended
location is C:\Program Files\Eclipse36.

3. Set up a link ,for example, on the desktop, with the following target “C:\Program
Files\Eclipse36\eclipse\eclipse.exe" -vm "C:\Program Files
\Java\jre6_21\bin\javaw.exe"
The additional parameter points to the JRE used to run Eclipse . A JRE 6 Update
21 is referenced here, adjust the link to match the JRE or JDK you have installed.

4. Start Eclipse through the added link.
Eclipse prompts for selection of a workspace.

5. Create a directory C:\FOUNDATION-SDK\IDE and select it as workspace for the
IDE.

 Note:

You can select any workspace directory, but for easiest import of the sample
application's code into the IDE, create the recommended directory.

Application tools

12 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/heliossr2
mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Chapter 3: Basic Eclipse settings

Perspectives
Eclipse provides the feature to display project content in different ways, called Perspectives.

Java Perspective is the default perspective for Java IDE.

This documentation refers to Java Perspective only

You can select a perspective at any time in the Eclipse workbench.

Figure 1: Eclipse Perspective switching

Setting IDE preferences
About this task
Set basic preferences before working with the IDE. Preferences are specific to a workspace.
You can open the Preferences dialog through Window > Preferences. A list of editor
preference settings used during the sample application development is included here.

Procedure

1. In the Preferences page, select General > Editors > Text Editors.

2. Set :

• Displayed tab width to 2
• Insert spaces for tabs to yes

3. Select General > Editors > Text Editors > Spelling.

4. Set Enable Spell checking to false.

5. Select Java > Code Style > Formatter.

6. Set :

• Tab-Policy to Spaces Only

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 13

• Indentation Size to 2
• Tab Size to 2

Importing a sample application
Before you begin
Ensure that :

• you have installed the Foundation SDK .
• you have the jse-ft-samples file in the sub folder FOUNDATION-SDK\IDE.

• you have created the Eclipse workspace directory at C:\FOUNDATION-SDK\IDE on your
workstation.

Procedure

1. Copy the contents of FOUNDATION-SDK\IDE\jse-ft-samples in the
Foundation SDK distribution into your Eclipse workspace directory.

2. In the Eclipse IDE, select File > Import.

3. On the Import page, select General > Existing Projects and click Next.

4. On the Existing Projects page, select root and browse to the work space
directory .

5. Select jse-ft-samples and click Finish.

Result
The project is imported and validated.

Related topics:
Project references to the JRE do not match the installed JRE on page 14

Project references to the JRE do not match the installed JRE
Project references to the Java Runtime Environment will not match your JRE installation if :

• you have installed the JRE in a different location.
• you use a JDK.

The Eclipse IDE will show validation errors which are caused by missing Java standard library
references.

Basic Eclipse settings

14 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Figure 2: Validation errors

Related topics:
Solution on page 15

Solution

Procedure

1. Right-click on the project jse-ft-samples in the Project Explorer and select
Properties.

2. Click Java Build Path and select Libraries.

3. Select JRE System Library [...] and click Edit > Installed JREs....

4. Ensure that your installed JRE 6 is included in the JRE list. If not, add your JRE and
select the checkbox in front of the list entry to set the JRE as the workspace
default.

5. Click OK.

6. Select Workspace default JRE and click Finish.
The IDE should perform a new validation of the project automatically.

7. If the IDE does not validate the project automatically, right-click the project in the
Project Explorer and select Validate.

Importing a sample application

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 15

Starting a sample application
Before you begin
Adjust the file/config/fServerLink.properties in the Eclipse project to point to the
Foundation Runtime Service URL.

Procedure

1. Select the project jse-ft-samples in the Project Explorer.

2. Open one of the Java package folders in/src
for example, com.avaya.ft.samples.callscreening

3. Right-click the main application file in the selected folder. For example,
CallScreening.java

 Note:

The main application file has a name similar to the trailing part of the classpath.

4. Select Run As > Java Application.

Basic Eclipse settings

16 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Chapter 4: Building Applications

Building applications using Eclipse IDE
Before you begin
Ensure that the application project delivered with the Foundation Toolkit SDK contains an ANT
build script.

Procedure

1. Select jse-ft-samples in the Project Explorer.

2. Right-click build.xml in the topmost level of the project.

3. Select Run As > 1 Ant Build.

Result
The application is created in folder C:\FOUNDATION-SDK\IDE-Export\jse-ftsample-
Applications.

 Note:

• The build script does not perform compilation. The build script assumes that Java
source files have been compiled by Eclipse.

• The compiled classes are packaged in file \lib\jse-ft-samples.jar.

Building applications using ANT
Before you begin
Ensure that you have JDK Version 6 installed.

Procedure

1. Download the ANT build tool from http://ant.apache.org.

2. Unzip the file into a folder. For example, C:\Program Files\Apache Software
Foundation.

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 17

http://ant.apache.org

 Note:

• In folder \Ant-Build\jse-ft-samples of the SDK distribution you will find
the ANT build script build.xml and the script to start ANT, run-ant.bat.

• Ensure that the variable ANT_HOME points to the ANT installation folder and
the variable JAVA_HOME points to the JDK folder.

3. Enter the command: run-ant.bat.
run-ant.bat creates a new folder \build in the ANT build folder. It copies all
needed files and folders from the sample application Eclipse projects into the ANT
build folder, compiles the Java sources, builds the jar file, and finally removes
intermediate working files. The created application resides in the subfolder
\build.

 Note:
Source files copying works under the assumption that you have stored the SDK
distribution in the folder C:\FOUNDATION-SDK. If this is not true, adjust the
reference inside of the build.xml file.

Building Applications

18 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Chapter 5: Sample Applications

The Foundation SDK distribution contains sample applications which demonstrate the use of the
Foundation Toolkit API (F-API) as well as of the Sequenced Template API (ST-API).

As already mentioned before, this document focuses on basic Java SE sample applications which have
been designed to be simple and easy to understand. These applications are delivered as project jse-ft-
samples in the SDK.

All the applications in the project are sequenced applications

API considerations

Foundation Toolkit API
The F-API is the standard API of the Foundation Toolkit. It provides various services to be
used by sequenced or endpoint applications with a maximum degree of flexibility.

Foundation Toolkit services can be obtained through the ServiceFactory.

Connection of client applications to the Foundation Services called application binding has to
be done through the AppBindingService of the F-API. The reference to the
AppBindingService can be obtained from the ServiceFactory.

The F-API is implemented as a set of jar-libraries. Applications using the API must include all
those libraries in their Java classpath.

The API description of the F-API client libraries is provided in JavaDoc format. The client library
documentation is in the folder Documentation/Foundation-Client-API-JavaDoc of
the Foundation SDK distribution.

Sequenced Template API
The ST-API is an API for a typical, limited set of call handling patterns in sequenced
applications. The API is very easy to use and understand. SIP terminology, for example, a
Dialog, is completely removed.

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 19

The current version of the ST-API offers two services:

• The OutgoingCallDirectorService which supports applications for originating
application sequences which includes allow, block or redirect outgoing calls.

• The IncomingCallDirectorService which supports applications for terminating
application sequences which includes allow, reject, redirect incoming calls or reject them
with playback of an announcement to the caller.

Template services can be obtained through the TemplateServiceFactory.

To connect the client applications to the Foundation Services

Connection of client applications to the Foundation Services or application binding has to be
done through the AppBindingService of the F-API. The reference to the
AppBindingService can be obtained from the TemplateServiceFactory.

The ST-API does not provide application callbacks which allow monitoring of a call state after
having decided how to handle the call.

The ST-API is implemented as a single jar-library. Applications using the ST-API must include
this library and all client libraries of the F—API in their Java classpath.

The description of the ST-API client library is provided in JavaDoc format. The client library
documentation is in folder Documentation/Sequenced-Template-API-JavaDoc of the
Foundation SDK distribution.

 Note:

Do not use the ST-API and the F-API together in an application.

Application structure
The structure of each of the JSE applications is shown in the following figure.

Sample Applications

20 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Figure 3: JSE application structure

The sample application communicates with the Foundation Toolkit Runtime Services provided
by an Avaya ACE™ server. The Runtime Services expose the F-API which is mirrored by the
client application through a CometD transport link (see http://cometd.org). The transport
mechanism is hidden by Foundation Toolkit Client Libraries provided by Avaya.

A client application is written in the F—API or, as a convenient alternative for sequenced
applications, the ST-API.

All sample applications have their own simple user interface(UI). Depending on the application,
the application UI:

• provides a means to shutdown the application

• enables the user to set call handling policies

• provides means to interact with a call

The UI parts of an application are almost completely separated from the application logic which
interacts with the F-API. The UI makes use of the Java Swing library.

 Note:
The application UI is not usually required for an application using the Foundation Toolkit.

The following functions are not provided in the basic sample applications:

• There is no identification of the application user. The SIP address of the user phone station
is unknown, therefore calls from or to his station cannot be handled in a specific way.

• Internal application events are not displayed on the UI, they are stored in a log file
instead.

• The applications are not designed to handle multiple calls simultaneously.

• The application binding status is not monitored.

Application structure

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 21

http://cometd.org

Related topics:
Application classes on page 22
Connection to the Foundation Toolkit Runtime Services on page 24
Application configuration on page 24

Application classes
Some functionality is common to all the applications and are bundled in a superclass. All
application main classes inherit from the superclass. The common functions are:

• A basic user interface window which provides a button for application shutdown

• Loading of properties which define the link towards the Foundation Toolkit server (server
URL, optional TLS settings)

• Loading of optional settings of the application from a properties file

• Connection establishment or application binding towards the server.

The basic UI of the superclass com.avaya.ft.samples.FoundationToolkitSample
serves an additional purpose: It keeps one additional application thread active, the Swing
Event Dispatch Thread. As long as this user thread is spinning, the application Java process
cannot terminate.

 Note:

Threads spawned by the CometD server link are configured to be daemon threads which
automatically terminate if there is no remaining user thread.

The independent sample applications reside in Java packages
com.avaya.ft.samples.<application> where, <application> is the name of the application. Each
of the packages contains a main application class. The main application class implements a
main method and therefore can be started. The main class is named similar to the application
package, for example,CallScreening.java for an application package
com.avaya.ft.samples.callscreening.

The following figure shows the application class relationships.

Sample Applications

22 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Figure 4: Application class relationships

Each main application class inherits from the superclass. The application class creates an
instance or userInterface of the application UI class which adds UI elements to the inherited
UI window or uiFrame. The connection to the Foundation Toolkit server is established through
the method bindToServer() which adjusts the binding identifier bindId attribute.

An instance of a main application class connects, application binding, to the Foundation Toolkit
Runtime Services and registers for reception of inbound dialog events by:

• setting of a SequencedDialogListener through the InboundDialogService in
case of the F-API.

 Note:
the main application class instance serves as listener for all samples

• setting of an IncomingCallDirectorListener or
OutgoingCallDirectorListener through the IncomingCallDirectorService
or OutgoingCallDirectorService in case of the ST-API.

A dialog listener registration requires supplying the application handle name which must match
the application configuration on Session Manager. Application configuration is done through
System Manager.

The application main class solely contains handling of the F-API or the ST-API. Reading from
UI elements or UI status adjustment is done through methods of the object attribute
userInterface.

Application structure

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 23

 Note:
Since UI status updates usually are caused by events delivered by the Foundation Services
on a CometD thread, it is good practice to shift adjustment of the UI elements to the Event
Dispatch Thread of the Swing runtime. Swing safely paints on its dispatch thread only.

Connection to the Foundation Toolkit Runtime Services
Each application main class instance establishes a connection to the Foundation Toolkit
Runtime Services on the Avaya ACE™ server by creation of a binding through the
AppBindingService of the F-API. Connection parameters are read from file config/
fServerLink.properties.

The connection can be either through http or https. In the usual case of a secure link (TLS),
keystore and truststore files and their corresponding access passwords have to be provided
in the properties file.

Keystore and truststore files may be obtained through utilities of System Manager. For more
information, seeFoundation Toolkit Developers Guide .

The default settings of the sample application must match a reference test environment
configuration. Any other test environment parameters have to be replaced. Successful binding
results in a bind id . The bind id is stored as a superclass attribute. The bind id is later
used by the application to obtain references to various service objects from the F-API or from
the ST-API.

 Note:
Application binding status is not monitored in order to keep the applications simple.

Application configuration
Each application optionally may apply the name of a properties file in the constructor of the
superclass FoundationToolkitSample to load application specific configuration items from a file
in subfolder /config. The configuration key/value- pairs are available in the superclass
attribute applicationProperties.

Sample Applications

24 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Libraries
In order to access the F-API or ST-API, you need to include several libraries in an application.
The libraries are in folder Software-Libraries/Foundation-Client-API of the
Foundation SDK distribution. The complete set of library jar-files must be included.

Applications which use the ST-API must add the library sequenced-template-api-
1.0.x.jar where x is the current sub release.

The library is in folder Software-Libraries/Sequenced-Template-API of the
Foundation SDK distribution.

You need the Log4J-library (log4j-1.2.15.jar) to receive logging information and the
Servlet-API, servlet-api-2.5.6.1.14.jar to fulfill interface references required by
CometD transport libraries.

The Basic JSE sample applications contain all the needed libraries in the subfolder /lib.

Sample application details
Applications utilize the Foundation Toolkit API or Sequenced Template API through
service objects which can be obtained from the APIs using methods of a factory,
com.avaya.service.client. ServiceFactory or
com.avaya.service.template.client.TemplateServicefactory. The factory
methods require the provision of a bind id parameter which is available as attribute bindId of
the superclass.

Services accessed by the sample applications are:

Sample Application API Foundation Runtime Service
General use by the
superclass

F-API or ST-API ServiceFactory or
TemplateServicefactory
AppBindingService

Call Screening F-API ServiceFactory
InboundDialogService
ProxyRoutingService

Call Screening Async F-API ServiceFactory
AsynchronousInboundDialogServic
e
AsynchronousProxyRoutingService

Libraries

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 25

Sample Application API Foundation Runtime Service
Deflect To IVR F-API InboundDialogService

ProxyRoutingService
B2buaRoutingService
MediaService

Call Recorder F-API ServiceFactory
InboundDialogService
ProxyRoutingService
B2buaRoutingService
MediaService

Call Director ST-API TemplateServiceFactory
IncomingCallDirectorService
Implicit usage of ServiceFactory,
InboundDialogService,
ProxyRoutingService,
B2buaRoutingService and
MediaService

Call Blocker ST-API TemplateServiceFactory
OutgoingCallDirectorService
Implicit usage of ServiceFactory,
InboundDialogService and
ProxyRoutingService

 Note:

• F-API is Foundation Toolkit API
• ST-API is Sequenced Template API

Sequenced applications listen for new inbound SIP dialogs and handle them according to
specific application logic.

Application handle names to be supplied as a dialog listener parameter must be configured in
the Avaya Aura®environment through the System Manager in order to get the applications
working.

Application sequences to be executed for Session Manager SIP users must be configured
through the administration Web interface of the System Manager. Each application in a
sequence is associated with the Foundation Runtime Services on an Avaya ACE™ server.

Use the following short description to locate the settings in the System Manager menu:

• The applications are defined in Elements > Session Manager > Application
Configuration > Applications. The most relevant attributes of an application definition
are

- the application handle

Sample Applications

26 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

- the SIP entity, in this case, the Avaya ACE™ server which executes the
application.

• Application sequence definitions in Elements > Session Manager > Application
Configuration > Application Sequences contain one or more applications in a certain
execution order.

• For each Session Manager SIP user in Users > Manage Users, a sequence can be set
as originating sequence or as a terminating sequence. An originating sequence is
executed upon outbound call establishment by the user. A terminating sequence is
executed upon inbound call reception by the user. The sequence configuration can be
found in Communication Profile or Session Manager Profile of a user definition.

Related topics:
Call Screening application on page 27
Call Screening asynchronous application on page 30
Deflect to IVR application on page 31
Call Recorder application on page 33
Call Director application on page 37
Call Blocker application on page 39

Call Screening application
Call Screening, com.avaya.ft.samples.callscreening, is a sequenced application to be called
in the terminating sequence of a SIP user. The internal name or handle of this application is
callscreening.

Call Screening enables a user to screen dialogs by means of the sample application.
Based on a user-adjustable policy, received inbound dialogs may be rejected, proxied to the
original target UA or redirected or proxied to a different target.

 Note:

A dialog represents a SIP transaction which starts with an INVITE message. Such a transaction
is subject to time supervision by the initiator. Because timeout durations may be low, for
example, 4 seconds between sending of an INVITE and reception of the first 1xx provisional
response, it is a good practice not to let a user interactively handle a received dialog before it
has been proxied. Instead, the dialog should be rejected, redirected or proxied as quickly as
possible by the application.

The CallScreening application object registers in the InboundDialogService as
listener, SequencedDialogListener for inbound dialogs. A received dialog,
newInboundDialog() event fired by the Foundation API, is handled according to a policy
set in the application UI.

The application UI or CallScreeningUi, allows setting of policy rules for rejection, acceptance
(proxy to original target), proxying (to different target) or redirection. The policy rules are

Sample application details

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 27

evaluated by the application in a top-down way (the first match counts). Policy strings may
contain wildcards “ *” representing any string or “?” representing any character.

Rejection of dialogs is done with status code 486 (”Busy Here”) or redirection with status 302
(“Moved temporarily”).

Figure 5: Call Screening User Interface

Sample Applications

28 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

The following figure shows the interaction between the CallScreening application and the F-
API:

Figure 6: Call Screening F-API interaction

Sample application details

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 29

Call Screening asynchronous application
Call Screening (Asynchronous) or com.avaya.ft.samples.callscreening.CallScreeningAsync,
is a sequenced application to be called in the terminating sequence of a SIP user. The internal
name or handle of this application iscallscreening.

CallScreeningAsync offers functionality and a user interface identical to the CallScreening
application. The difference is that it utilizes asynchronous API services.

Many service methods of the F-API return only after the server has completed servicing the
request , especially if return values have to be delivered. In order to do this, the client F-API
libraries block the application thread until a server response is received. For a heavily loaded
application this might be not acceptable.

The way to increase performance is to use the asynchronous services. Methods of these
services return a request-identifier immediately and, after having received the server
response, call methods of a "callback" handler provided by the application. The callback
handler can identify the operation by means of the stored request identifier. However, the gain
of performance is at the price of additional status management.

CallScreeningAsync is an example of how asynchronous operations may be tracked. Each
time an asynchronous API call is made, the request identifier and additional information
describing the operation is put in an AsynchronousOperation object which is stored in the
application hash table for asynchronous operations. If a callback occurs,
CallScreeningAsync implements interfaces AsynchronousInboundDialogCallback and
AsynchronousInboundProxyRoutingCallback, the asynchronous operation may be
identified for further processing and the operation object is removed from hash table
storage.

Sample Applications

30 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Figure 7: Call Screening Asynchronous F-API interaction

Deflect to IVR application
Deflect to IVR com.avaya.ft.samples.deflecttoivr.DeflectToIvr is a sequenced application to be
called in the terminating sequence of a SIP user. The internal name or handle of this application
isdeflect_to_IVR.

Deflect to IVR enables the application user to choose how to handle a call. He may either
answer a call arriving at the called SIP UA or play a selectable audio information to the
caller.

The application might be seen as a first step towards an auto-attendant functionality which, for
example, might implement an IVR conversation with the caller. The DeflectToIvr
application object registers in the InboundDialogService as listener
(SequencedDialogListener) for inbound dialogs. Having received a newInboundDialog()
event fired by the Foundation API, the application utilizes the B2buaRoutingService to
route the dialog onward without target modification. The call is signaled in the application user
interface, DeflectToIvrUi and upon reception of the first provisional response from the called
station, dialogEarly() event fired by the API, the UI buttons for media playback become
enabled. The user may answer the call at the called UA or he can decide to play one of three
selectable audible information items to the caller. If the user answers the call, the audio

Sample application details

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 31

playback buttons are disabled again. If an announcement is played, the application terminates
the dialog towards the called UA, thus the UA reverts to idle state.

MediaService of the F-API is used for media playback. Audio file location and names on
the media server are configurable in config/deflectToIvr.properties.

 Note:
The application cannot handle multiple calls simultaneously. Until a call is processed, that
is, application waits for called station answer or audio playback started by the user, newer
dialogs will be rejected using the ProxyRoutingService.

Figure 8: Deflect to IVR user interface

The following figures show the interaction between the F-API application and the F-API.

Sample Applications

32 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Figure 9: Deflect to IVR – F-API Interaction (Part 1)

Figure 10: Deflect to IVR – F-API Interaction (Part 2)

Call Recorder application
Call Recorder or com.avaya.ft.samples.callrecorder.CallRecorder is a sequenced application
to be called in the terminating sequence of a SIP user. The internal name or handle of this
application is call_recorder.

Call Recorder enables the application user to play an announcement to the caller during
a call or to record audio of the call to a file.

The CallRecorder application object registers in the InboundDialogService as listener
SequencedDialogListener for inbound dialogs. Having received a newInboundDialog()

Sample application details

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 33

event fired by the Foundation API, the application utilizes the B2buaRoutingService to
route the dialog onward without target modification. Upon receiving an answer from the called
station, that is, the dialogConfirmed() event, the call is signaled in the application user
interface CallRecorderUi, the MediaService is utilized to add a media server to the call and
UI buttons for audio playback or audio recording become enabled. During the call the
application user may, repeatedly if required, play audio to the caller or record audio fragments
of the call into files located on the media server.

Recorded files are stored in media server folder /opt/avaya/ma/MAS/platdata/
filestorage/SampleAppsMedia/recording. The automatically selected names of the
files are call-recording_<date>_<time>.wav where, date and time represent the date
and time at start of recording.

Configuration of the Call Recorder application may be done through the file config/
callRecorder.properties. Configuration items are:

• Location and file names of the audio files for playback

• Enabling of repeated, single or loop, playback of the audio announcement

• Storage location of recorded audio files

• Enabling of audio prompt playback upon recording start

 Note:

• In order to conserve expensive media resources, it is good practice to add a media server
only when required during a call.

• If a media server is added to the call prior to the called station answering, the calling
station will not hear a ringback tone unless the application plays an audio signal to the
caller.

• The application cannot handle multiple calls simultaneously. While a call is being
processed, new calls will be rejected using the ProxyRoutingService.

Sample Applications

34 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Figure 11: Call Recorder user interface

The figure shows the interaction of the Call Recorder application with F-API

Sample application details

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 35

Figure 12: Call Recorder F-API interaction (part1)

Sample Applications

36 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Figure 13: Call Recorder F-API interaction (part2)

Call Director application
Call Director or com.avaya.ft.samples.calldirector.CallDirector is a sequenced application to
be called in the terminating sequence of a SIP user. The internal name or handle of this
application is calldirector. The Call Director application is written for the ST-API.

Call Director enables a user to set a policy for the handling of incoming calls. Based on
the policy which evaluates the calling party SIP address, incoming calls may be allowed,
blocked, redirected to a predefined different target or an audible announcement can be played
to the caller.

Sample application details

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 37

Sequenced applications should handle a call as quick as possible and not in a user interactive
way. For more information, see Call Screening application on page 27. The Call Director
application adopts a policy based operation.

The CallDirector application object registers in the IncomingCallDirectorServiceas
listener, IncomingCallDirectorListener, for incoming calls. Received calls, incomingCall()
event fired by the ST-API, are handled according to the policy set in the application UI.

The application UI,CallDirectorUi, allows setting of policy rules for blocking, permission to
proceed (proxy onward to original target), redirection (to different target) or block with
selectable announcement playback towards the caller. The policy rules are evaluated by the
application in a topdown way (the first match counts). Policy strings may contain wildcards "*"
representing any string or "?" representing any character.

Configuration of the Call Director application can be done using the file config/
callDirector.properties. Configuration items are:

• Location of audio files on the media server

• List of available audio announcement files

Figure 14: Call Director user interface

Sample Applications

38 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

The following figure shows the interaction between the application and the Sequenced
Template API.

Figure 15: Call Director — Sequenced Template API interaction

Call Blocker application
Call Blocker or com.avaya.ft.samples.callblocker.CallBlocker is a sequenced application to be
called in the originating sequence of a SIP user. The internal name or handle of this application
is callblocker. The application is written for the Sequenced Template API.

Call Blocker enables a user to set a policy for the handling of outgoing calls. Based on the
policy which evaluates the called party SIP address, outgoing calls may be allowed, blocked
or redirected to a predefined different target.

Sample application details

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 39

 Note:

• Outbound call policies would most likely be set by an administrator rather than by the
end user.

• Sequenced applications should handle a call as quick as possible and not in a user
interactive way.

• Policy based operation is adopted in the application for fast response.

The CallBlocker application object registers in the OutgoingCallDirectorService as
listener, OutgoingCallDirectorListener, for outgoing calls. Placed calls, outgoingCall()
event fired by the ST-API are handled according to the policy set in the application UI.

The application UI CallBlockerUi allows setting of policy rules for blocking, permission to
proceed (proxy onward to original target) or redirection (proxy to different target). The policy
rules are evaluated by the application in a top-down way (the first match counts). Policy strings
may contain wildcards "*" representing any string or "?" representing any character.

Figure 16: Call Blocker user interface

The following figure shows the interaction between the application and the Sequenced
Template API.

Sample Applications

40 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Figure 17: Call Blocker ST-API interaction

Sample application details

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 41

Sample Applications

42 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Chapter 6: Run sample applications

Run sample applications outside IDE
Applications can also be run as independent Java processes outside Eclipse.

A ready to run sample application package jse-ft-sample-Applications is provided in
the directory IDE-Export of the Foundation SDK distribution. The package contains:

• the sample application binaries as Java archive /lib/jse-ft-samples.jar.

• all needed libraries in folder /lib.

• configuration files in folder /config.

• start scripts or Windows batch files for each application. For example,
callscreening.bat

Double-click one of the script files to start an application. Each of the start scripts includes the
file preparepathes.cmd which defines the location of the Java Runtime Environment and
builds a Java classpath environment variable which contains a list of all the libraries available
in folder /lib.

 Note:

• Ensure that the JRE_HOME environment variable in preparepaths.cmd meets
settings on your workstation

• Use provided shell scripts, for example, callscreening.sh, on a Unix system.

Configuration of test environment

Test Environment Configuration
Although the basic Java SE sample applications do not need to have specific SIP user
addresses supported by Session Manager, it is recommended to review the document Avaya
ACE™ Foundation Toolkit Sample Web Application Guide (NN10850–060) for more information

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 43

on required applications definitions, possible application sequences, and their relationship to
SIP users.

Configuration of Session Manager
Applications
All applications are executed by the Foundation Toolkit Services running on the Avaya ACE™

server.

The handles for the applications are hard coded in the sample software (registration of listeners
for dialogs or calls), hence ensure that the handles are used without any alteration.

1. On the System Manager menu, go to Elements > Session Manager > Application
Configuration > Applications.

2. When creating any of the following applications, ensure that the application has the
handle listed below:

• CallScreening (handle=callscreening)
• DeflectToIVR (handle=deflect_to_IVR)
• CallRecorder (handle=call_recorder)
• CallDirector (handle=calldirector)
• CallBlocker (handle=callblocker)

Application sequences
To create application sequences, On the System Manager menu, go to Elements > Session
Manager > Application Configuration > Application Sequences.

 Note:

• You need to have different application sequences defined, each of which contains one
of the applications.

• You can include the Communication Manager (CM) in an application sequence. The
CM can be configured as either an Evolution Server or a Feature Server. As
an Evolution Server, CM must be the last application in originating sequences and
the first application in terminating sequences.

• Sequenced applications using the B2buaRoutingService , for example, DeflectToIVR,
are not allowed to have CM as Evolution Server in sequence.

User Profiles
To define User profiles, On the system Manager menu, go to Users > User Management >
Manage Users. Ensure that application sequences that can be associated with a user profile
have already been created. You find application sequence settings in Communication Profile
or Session Manager profile.

Set up the following User Profiles:

Run sample applications

44 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

• UA1 and UA2: At least two test user profiles with none of the applications in sequence or
CM only if you want to include CM in all sequences.

• UA3: A user profile with CallScreening in the terminating sequence.
• UA4: A user profile with DeflectToIVR in the terminating sequence.
• UA5: A user profile with CallRecorder in the terminating sequence.
• UA6: A user profile with CallDirector in the terminating sequence.
• UA7: A user profile with CallBlocker in the originating sequence.

Configuration of AMS
The needed audio files must be stored in folder /opt/avaya/ma/MAS/platdata/
filestorage/SampleAppsMedia on the Avaya Media Server (AMS).

You find the files in folder \Audio of the Foundation SDK distribution.

The audio wav file content is linear 16-Bit PCM with a sample rate of 8 KHz.

If you intend to record your own audio files, you find various free tools offered in the Internet.
A powerful tool is Audacity (http://audacity.sourceforge.net). If you would prefer a tool that
is simpler but less powerful, try Fox Magic Audio Recorder (http://www.fox-
magic.com).

Handling sample applications

Setting up Call Screening application
About this task
The following steps can be used to set up either the Call Screening application or the Call
screening (Asynchronous) application.

Procedure

1. Register three SIP user agents UA1, UA2 and UA3 to the Session Manager. Let
UA3 be the user with CallScreening in the terminating sequence.

2. Set suitable policies through the application UI and call UA3 from UA1 to see calls
being accepted or rejected.

Handling sample applications

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 45

http://audacity.sourceforge.net
http://www.fox-magic.com
http://www.fox-magic.com

3. Set suitable policies and call UA3 from UA1 to see calls being proxied or redirected
to UA2.

Setting up Deflect to IVR application
Procedure

1. Register two SIP user agents UA1 and UA4 to the Session Manager. Let UA4 be
the user with DeflectToIVR in the terminating sequence.

2. Call UA4 from UA1 and you can deflect calls to selectable audio announcements
through the application UI.

Setting up Call Recorder application
Procedure

1. Register two SIP user agents UA1 and UA5 to the Session Manager. Let UA5 be
the user with CallRecorder in the terminating sequence.

2. Call UA5 from UA1 and answer the call from UA5.

3. Use the application UI to play an announcement towards UA1 or record parts of the
call into a file on the media server.

Setting up Call Director application
Procedure

1. register three SIP user agentsUA1, UA2 and UA6 with the Session Manager. Let
UA6 be the user with CallDirector in the terminating sequence.

2. Set suitable policies through the application UI and call UA6 from UA1 to see calls
being accepted or rejected.

3. Set suitable policies and call UA6 from UA1 to see calls being redirected to UA2.

4. Set suitable policies and call UA6 from UA1 to see calls being blocked with playback
of an audio announcement to the caller.

Run sample applications

46 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

Setting up Call Blocker application
Set basic preferences before working with the IDE. Preferences are specific to a workspace.
You can open the Preferences dialog through Window > Preferences.

About this task
A list of editor preference settings used during the sample application development is included
here.

Procedure

1. Register three SIP user agents UA1, UA2 and UA7 to the Session Manager. Let
UA7 be the user with CallBlocker in the originating sequence.

2. Set suitable policies and call UA1 from UA7 to see calls being allowed or blocked.

3. Set suitable policies and call UA1 from UA7 to see calls being redirected to UA2.

Handling sample applications

Foundation Toolkit Sample Basic Java SE Application Guide November 2012 47

Run sample applications

48 Foundation Toolkit Sample Basic Java SE Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject= Foundation Toolkit Sample Basic Java SE Application Guide

	Contents
	Chapter 1: Introduction
	Prerequisites
	Terminology

	Chapter 2: Application tools
	Java runtime environment
	Installing Eclipse IDE

	Chapter 3: Basic Eclipse settings
	Perspectives
	Setting IDE preferences
	Importing a sample application
	Project references to the JRE do not match the installed JRE
	Solution

	Starting a sample application

	Chapter 4: Building Applications
	Building applications using Eclipse IDE
	Building applications using ANT

	Chapter 5: Sample Applications
	API considerations
	Foundation Toolkit API
	Sequenced Template API

	Application structure
	Application classes
	Connection to the Foundation Toolkit Runtime Services
	Application configuration

	Libraries
	Sample application details
	Call Screening application
	Call Screening asynchronous application
	Deflect to IVR application
	Call Recorder application
	Call Director application
	Call Blocker application

	Chapter 6: Run sample applications
	Run sample applications outside IDE
	Configuration of test environment
	Test Environment Configuration
	Configuration of Session Manager
	Configuration of AMS

	Handling sample applications
	Setting up Call Screening application
	Setting up Deflect to IVR application
	Setting up Call Recorder application
	Setting up Call Director application
	Setting up Call Blocker application

