
Avaya Agile Communication
Environment™Sample Web Application
Guide

Release 6.2
NN10850-061, 03.01

November 2012

© 2012 Avaya Inc.

All Rights Reserved.

Notice

While reasonable efforts have been made to ensure that the
information in this document is complete and accurate at the time of
printing, Avaya assumes no liability for any errors. Avaya reserves the
right to make changes and corrections to the information in this
document without the obligation to notify any person or organization of
such changes.

Documentation disclaimer

“Documentation” means information published by Avaya in varying
mediums which may include product information, operating instructions
and performance specifications that Avaya generally makes available
to users of its products. Documentation does not include marketing
materials. Avaya shall not be responsible for any modifications,
additions, or deletions to the original published version of
documentation unless such modifications, additions, or deletions were
performed by Avaya. End User agrees to indemnify and hold harmless
Avaya, Avaya's agents, servants and employees against all claims,
lawsuits, demands and judgments arising out of, or in connection with,
subsequent modifications, additions or deletions to this documentation,
to the extent made by End User.

Link disclaimer

Avaya is not responsible for the contents or reliability of any linked
websites referenced within this site or documentation provided by
Avaya. Avaya is not responsible for the accuracy of any information,
statement or content provided on these sites and does not necessarily
endorse the products, services, or information described or offered
within them. Avaya does not guarantee that these links will work all the
time and has no control over the availability of the linked pages.

Warranty

Avaya provides a limited warranty on its hardware and Software
(“Product(s)”). Refer to your sales agreement to establish the terms of
the limited warranty. In addition, Avaya’s standard warranty language,
as well as information regarding support for this Product while under
warranty is available to Avaya customers and other parties through the
Avaya Support website: http://support.avaya.com. Please note that if
you acquired the Product(s) from an authorized Avaya reseller outside
of the United States and Canada, the warranty is provided to you by
said Avaya reseller and not by Avaya. “Software” means computer
programs in object code, provided by Avaya or an Avaya Channel
Partner, whether as stand-alone products or pre-installed on hardware
products, and any upgrades, updates, bug fixes, or modified versions
thereto.

Licenses

THE SOFTWARE LICENSE TERMS AVAILABLE ON THE AVAYA
WEBSITE, HTTP://SUPPORT.AVAYA.COM/LICENSEINFO/ ARE
APPLICABLE TO ANYONE WHO DOWNLOADS, USES AND/OR
INSTALLS AVAYA SOFTWARE, PURCHASED FROM AVAYA INC.,
ANY AVAYA AFFILIATE, OR AN AUTHORIZED AVAYA RESELLER
(AS APPLICABLE) UNDER A COMMERCIAL AGREEMENT WITH
AVAYA OR AN AUTHORIZED AVAYA RESELLER. UNLESS
OTHERWISE AGREED TO BY AVAYA IN WRITING, AVAYA DOES
NOT EXTEND THIS LICENSE IF THE SOFTWARE WAS OBTAINED
FROM ANYONE OTHER THAN AVAYA, AN AVAYA AFFILIATE OR AN
AVAYA AUTHORIZED RESELLER; AVAYA RESERVES THE RIGHT
TO TAKE LEGAL ACTION AGAINST YOU AND ANYONE ELSE
USING OR SELLING THE SOFTWARE WITHOUT A LICENSE. BY
INSTALLING, DOWNLOADING OR USING THE SOFTWARE, OR
AUTHORIZING OTHERS TO DO SO, YOU, ON BEHALF OF
YOURSELF AND THE ENTITY FOR WHOM YOU ARE INSTALLING,
DOWNLOADING OR USING THE SOFTWARE (HEREINAFTER
REFERRED TO INTERCHANGEABLY AS “YOU” AND “END USER”),
AGREE TO THESE TERMS AND CONDITIONS AND CREATE A
BINDING CONTRACT BETWEEN YOU AND AVAYA INC. OR THE
APPLICABLE AVAYA AFFILIATE (“AVAYA”).

Avaya grants you a license within the scope of the license types
described below, with the exception of Heritage Nortel Software, for
which the scope of the license is detailed below. Where the order
documentation does not expressly identify a license type, the
applicable license will be a Designated System License. The applicable
number of licenses and units of capacity for which the license is granted
will be one (1), unless a different number of licenses or units of capacity
is specified in the documentation or other materials available to you.
“Designated Processor” means a single stand-alone computing device.
“Server” means a Designated Processor that hosts a software
application to be accessed by multiple users.

License types

CPU License (CP). End User may install and use each copy of the
Software on a number of Servers up to the number indicated in the
order provided that the performance capacity of the Server(s) does not
exceed the performance capacity specified for the Software. End User
may not re-install or operate the Software on Server(s) with a larger
performance capacity without Avaya’s prior consent and payment of an
upgrade fee.

Named User License (NU). You may: (i) install and use the Software
on a single Designated Processor or Server per authorized Named
User (defined below); or (ii) install and use the Software on a Server so
long as only authorized Named Users access and use the Software.
“Named User”, means a user or device that has been expressly
authorized by Avaya to access and use the Software. At Avaya’s sole
discretion, a “Named User” may be, without limitation, designated by
name, corporate function (e.g., webmaster or helpdesk), an e-mail or
voice mail account in the name of a person or corporate function, or a
directory entry in the administrative database utilized by the Software
that permits one user to interface with the Software.

Heritage Nortel Software

“Heritage Nortel Software” means the software that was acquired by
Avaya as part of its purchase of the Nortel Enterprise Solutions
Business in December 2009. The Heritage Nortel Software currently
available for license from Avaya is the software contained within the list
of Heritage Nortel Products located at http://support.avaya.com/
licenseinfo under the link “Heritage Nortel Products”. For Heritage
Nortel Software, Avaya grants Customer a license to use Heritage
Nortel Software provided hereunder solely to the extent of the
authorized activation or authorized usage level, solely for the purpose
specified in the Documentation, and solely as embedded in, for
execution on, or (in the event the applicable Documentation permits
installation on non-Avaya equipment) for communication with Avaya
equipment. Charges for Heritage Nortel Software may be based on
extent of activation or use authorized as specified in an order or invoice.

Copyright

Except where expressly stated otherwise, no use should be made of
materials on this site, the Documentation, Software, or hardware
provided by Avaya. All content on this site, the documentation and the
Product provided by Avaya including the selection, arrangement and
design of the content is owned either by Avaya or its licensors and is
protected by copyright and other intellectual property laws including the
sui generis rights relating to the protection of databases. You may not
modify, copy, reproduce, republish, upload, post, transmit or distribute
in any way any content, in whole or in part, including any code and
software unless expressly authorized by Avaya. Unauthorized
reproduction, transmission, dissemination, storage, and or use without
the express written consent of Avaya can be a criminal, as well as a
civil offense under the applicable law.

Third Party Components

“Third Party Components” mean certain software programs or portions
thereof included in the Software that may contain software (including
open source software) distributed under third party agreements (“Third
Party Components”), which contain terms regarding the rights to use
certain portions of the Software (“Third Party Terms”). Information
regarding distributed Linux OS source code (for those Products that
have distributed Linux OS source code) and identifying the copyright

2 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

http://support.avaya.com
http://www.avaya.com/support/LicenseInfo
http://support.avaya.com/licenseinfo
http://support.avaya.com/licenseinfo
mailto:infodev@avaya.com?subject=Sample Web Application Guide

holders of the Third Party Components and the Third Party Terms that
apply is available in the Documentation or on Avaya’s website at: http://
support.avaya.com/Copyright. You agree to the Third Party Terms for
any such Third Party Components.

Preventing Toll Fraud

“Toll Fraud” is the unauthorized use of your telecommunications system
by an unauthorized party (for example, a person who is not a corporate
employee, agent, subcontractor, or is not working on your company's
behalf). Be aware that there can be a risk of Toll Fraud associated with
your system and that, if Toll Fraud occurs, it can result in substantial
additional charges for your telecommunications services.

Avaya Toll Fraud Intervention

If you suspect that you are being victimized by Toll Fraud and you need
technical assistance or support, call Technical Service Center Toll
Fraud Intervention Hotline at +1-800-643-2353 for the United States
and Canada. For additional support telephone numbers, see the Avaya
Support website: http://support.avaya.com. Suspected security
vulnerabilities with Avaya products should be reported to Avaya by
sending mail to: securityalerts@avaya.com.

Trademarks

The trademarks, logos and service marks (“Marks”) displayed in this
site, the Documentation and Product(s) provided by Avaya are the
registered or unregistered Marks of Avaya, its affiliates, or other third
parties. Users are not permitted to use such Marks without prior written
consent from Avaya or such third party which may own the Mark.
Nothing contained in this site, the Documentation and Product(s)
should be construed as granting, by implication, estoppel, or otherwise,
any license or right in and to the Marks without the express written
permission of Avaya or the applicable third party.

Avaya is a registered trademark of Avaya Inc.

Avaya Aura is a registered trademark of Avaya Inc.

Avaya ACE is a registered trademark of Avaya Inc.

All non-Avaya trademarks are the property of their respective owners,
and “Linux” is a registered trademark of Linus Torvalds.

Downloading Documentation

For the most current versions of Documentation, see the Avaya
Support website: http://support.avaya.com.

Contact Avaya Support

See the Avaya Support website: http://support.avaya.com for product
notices and articles, or to report a problem with your Avaya product.
For a list of support telephone numbers and contact addresses, go to
the Avaya Support website: http://support.avaya.com, scroll to the
bottom of the page, and select Contact Avaya Support.

Sample Web Application Guide November 2012 3

http://support.avaya.com/Copyright
http://support.avaya.com/Copyright
http://support.avaya.com
http://support.avaya.com
http://support.avaya.com
http://support.avaya.com

4 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Contents

Chapter 1: Introduction.. 7
Purpose... 7
Prerequisites... 8
Terminology... 8

Chapter 2: Application tools.. 11
Java runtime environment... 11
Installing Tomcat... 12
Installing Eclipse IDE.. 12

Chapter 3: Working with the Eclipse IDE.. 15
Basic Eclipse Settings... 15

Perspectives... 15
Setting IDE preferences... 15
Running Tomcat inside Eclipse IDE... 16

Importing a sample application... 16
Project references to the JRE do not match the installed JRE... 17
Missing Apache Tomcat Reference.. 19

Starting and deploying sample applications.. 20
Chapter 4: Building sample applications.. 23

Building applications using Eclipse IDE.. 23
Building applications using ANT... 23

Chapter 5: Sample Applications using the Foundation Toolkit API............................... 25
Web Application Structure... 25

Foundation API Sample Application Structure... 26
Foundation Toolkit Client API Documentation.. 28

Framework Details.. 28
Connection to the Foundation Toolkit Runtime Services.. 30
User Login Process.. 31
Console Page... 32

Libraries.. 34
F-API Sample Applications... 34

“Call Screening” Application... 38
“Announcement” Application.. 40
"Deflect to IVR" Application.. 44
“Make Calls” Application... 46
“Conference” Application.. 48
"Make Calls (Async)" Application... 52
"Mail Support" Application.. 54
"Call Recorder" Application.. 56

Chapter 6: Sample Applications using the Sequenced Template API........................... 61
The Sequenced Template API.. 61
Web Application Structure... 62

Sequenced Template API Sample Application Structure ... 63
Framework Details.. 64

User Login Process.. 64

Sample Web Application Guide November 2012 5

Libraries.. 65
Sequenced Template API Sample Applications .. 65

"Call Blocker" Application... 67
"Call Director" Application... 70

Chapter 7: Running Sample Applications.. 75
Running Sample Applications Outside the IDE... 75
Web Interface Access... 76
Reference Sample Application and Test Environment Configuration... 76

Reference Configuration of the Test Environment.. 76
Configuration of the Sample Web Applications.. 80
Running "Named" Applications without Endpoint Registration... 83

Sample Application Handling.. 84
Sample Web Application using the Foundation Toolkit API .. 85
Sample Web Application using the Sequenced Template API ... 88

6 Sample Web Application Guide November 2012

Chapter 1: Introduction

The Foundation Toolkit allows integration of applications within the Avaya Aura® network for midsize to
large enterprises.

The Foundation Toolkit is comprised of a set of runtime services and a Java API or library that enables
an application to connect to the runtime services. The Foundation Toolkit runtime services are an integral
part of Avaya Agile Communication Environment™, Avaya's application enablement platform.

The Foundation SDK includes sample applications and documentation which demonstrate the usage of
the Foundation Toolkit API. The Foundation SDK facilitates application development with tools and source
code.

In addition to the Foundation Toolkit API, the Sequenced Template API is provided to simplify
implementation of some typical call handling patterns. The Foundation SDK includes sample applications
and documentation which demonstrate the usage of the Sequenced Template API as well.

Many types of applications can be built on the Foundation Toolkit:

• web applications running on an application server

• applications which provide their own non-web user interface

• applications which do not include a user interface

The samples described in this document are Java standard applications designed with the objective of
simplicity. Because of the very "basic" character of these applications, they should be examined first by
users of the SDK.

Purpose
This document describes the sample applications delivered with the Foundation SDK,
covering:

• the structure of the sample code

• how the Foundation API and the Sequenced Template API are used

• how the applications can be deployed, started, and utilized

Sample Web Application Guide November 2012 7

Prerequisites
In order to successfully run the sample applications as well as write your own applications,
ensure that the following knowledge requirements are met:

• You must have a basic understanding of Avaya Aura®

• You should be familiar with the following technologies

- Java

- JSP (Java Server Pages) and Servlet technologies

- HTML, CSS, Javascript

- Java EE Applications Structures, especially for Web applications

- Eclipse IDE concepts

- Apache Tomcat JSP-Container or similar products

You can get additional information on any of the tools used on the web sites of the tool
providers.

Terminology

Term Meaning
Avaya ACE™ Avaya Agile Communication Environment™

AJAX Asynchronous Javascript and XML

API Application Programming Interface

AOR Address of Record (SIP address)

CM Avaya Aura® Communication Manager

CSS Cascading Stylesheets

DWR Direct Web Remoting (a Java library
implementing AJAX communication)

F-API Foundation Toolkit API

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IVR Interactive Voice Response

Introduction

8 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Term Meaning
JAR Java Archive

Java SE, JSE Java Standard Edition

Java EE, JEE Java Enterprise Edition

JDK Java Development Kit

JRE Java Runtime Environment

JSP Java Server Pages

AMS Avaya Media Server

PAI P-Asserted-Identity (header)

SDK Software Development Kit

SIP Session Initiation Protocol

SMTP Simple Mail Transport Protocol

UA SIP User Agent (phone station)

UI User Interface

URI Uniform Resource Identifier

URL Uniform Resource Locator

WAR Web Archive

WTP Web Tools Platform (a set of Eclipse plug ins)

Terminology

Sample Web Application Guide November 2012 9

Introduction

10 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Chapter 2: Application tools

The Foundation SDK is based on Java technologies and therefore does not target a particular operating
system platform. The SDK was tested on workstations based on Microsoft Windows XP.

Java runtime environment
Java Tools run on top of a Java Runtime Environment, therefore a JRE or JDK must be installed
on your workstation.

The Foundation Toolkit libraries and the sample applications require a JRE version 6, which
can be downloaded from http://www.oracle.com/technetwork/java/javase/downloads/
index.html.

To utilize ANT (http://ant.apache.org) as a Java build tool, install the full Java Development Kit
instead of the JRE since the JDK includes a Java compiler.

The Foundation SDK contains an ANT script which can be used to build the sample
applications but the main focus is to build the applications in the Eclipse IDE. Eclipse comes
with its own Java compiler und therefore does not necessarily need to be run on a JDK
(although it can).

Developers often have multiple JRE versions installed on their workstations, therefore it is not
recommended to install the JRE in the default path preset by the installer. Please install the
JRE in C:\Program Files\Java\jre6_21.

The JRE version available at the time of preparation of the Foundation SDK was JRE 6 Update
21. If you install a different JRE or a JDK, some minor path adaptations need to be done to
run tools or to refer to Java standard libraries in Eclipse. You will find appropriate notes in this
document where path modification might be necessary.

Sample Web Application Guide November 2012 11

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://ant.apache.org

Installing Tomcat
The sample applications in this document are targeted to run on an Apache Tomcat container.
The applications are tested on a Tomcat version 6.0.

About this task
You can download Tomcat from http://tomcat.apache.org/download-60.cgi. On the Webpage,
select Binary Distributions > Windows Service Installer. Use the following steps to install
and run Tomcat.

Procedure

1. Startthe Tomcat installer executable and install Tomcat in any directory of your
choice, recommended location is C:\Program Files\Apache Software
Foundation\Tomcat 6.0.

 Important:
During installation, Select to install Tomcat as a Windows Service, choose the
default port (8080) and the JRE (or JDK) version 6 installed before.

2. After installation, start tomcat6w.exe in subdirectory \bin of the Tomcat
installation to review runtime settings. On the Java tab, the Java Virtual Machine
used to run Tomcat is displayed.

 Note:
If you have multiples JRE versions installed and the selected JRE does not match
the required JRE 6, for example, because there was already a Tomcat 6.0
installed on your workstation, adjust the JRE path.

3. Open the Control Panel > Administrative Tools > Services window, and select
Apache Tomcat 6. Stop the service and configure it for manual start. This offers
the ability to run Tomcat from the Eclipse IDE later.

 Note:
If you intend to use a Tomcat version 7, please read remarks in Framework
Details on page 28.

Installing Eclipse IDE
For development of the sample applications, the Eclipse IDE for Java EE Developers, Version
3.6 "Helios" (www.eclipse.org) is used.

Application tools

12 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

http://tomcat.apache.org/download-60.cgi
mailto:infodev@avaya.com?subject=Sample Web Application Guide

 Note:
You can use any other suitable Java IDE tool or version. However, since this document refers
to the IDE mentioned above, it is recommended to use exactly this one or a more recent
version.

Before you begin
Ensure that you have Java Runtime Environment installed. For information on installing Java
Runtime Environment, see Java runtime environment on page 11

Procedure

1. Download the Eclipse IDE for Java EE Developers, Version 3.6 from
Eclipse downloads Web site.

2. Extract eclipse-jee-helios-win32.zip in a directory. The recommended
location is C:\Program Files\Eclipse36.

3. Set up a link ,for example, on the desktop, with the following target “C:\Program
Files\Eclipse36\eclipse\eclipse.exe" -vm "C:\Program Files
\Java\jre6_21\bin\javaw.exe"
The additional parameter points to the JRE used to run Eclipse . A JRE 6 Update
21 is referenced here, adjust the link to match the JRE or JDK you have installed.

4. Start Eclipse through the added link.
Eclipse prompts for selection of a workspace.

5. Create a directory C:\FOUNDATION-SDK\IDE and select it as workspace for the
IDE.

 Note:

You can select any workspace directory, but for easiest import of the sample
application's code into the IDE, create the recommended directory.

Installing Eclipse IDE

Sample Web Application Guide November 2012 13

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/heliossr2

Application tools

14 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Chapter 3: Working with the Eclipse IDE

For deeper Eclipse knowledge, please refer to online documentation, tutorials and existing literature. This
document mainly focuses on Eclipse functionality relevant to the Foundation SDK sample applications.

Basic Eclipse Settings

Perspectives
Eclipse provides the feature to display project content in different ways, called Perspectives.

Java Perspective is the default perspective for Java IDE.

This documentation refers to Java Perspective only

You can select a perspective at any time in the Eclipse workbench.

Figure 1: Eclipse Perspective switching

Setting IDE preferences
About this task
Set basic preferences before working with the IDE. Preferences are specific to a workspace.
You can open the Preferences dialog through Window > Preferences. A list of editor
preference settings used during the sample application development is included here.

Procedure

1. In the Preferences page, select General > Editors > Text Editors.

2. Set :

• Displayed tab width to 2
• Insert spaces for tabs to yes

Sample Web Application Guide November 2012 15

3. Select General > Editors > Text Editors > Spelling.

4. Set Enable Spell checking to false.

5. Select Java > Code Style > Formatter.

6. Set :

• Tab-Policy to Spaces Only
• Indentation Size to 2
• Tab Size to 2

Running Tomcat inside Eclipse IDE
About this task
Select the Java EE perspective to perform following operations. In this perspective, a tabbed
window (Markers, Properties, Servers, ...) is displayed in the right bottom area of the
workbench.

Procedure

1. Select the Servers tab

2. Right click in the tab window and select New > Server

3. In the following dialog, select the server type Apache/Tomcat v6.0 Server and click
Next.

4. In the following dialog, set the Tomcat installation directory to match your Tomcat
installation. The default directory is C:\Program Files\Apache Software
Foundation\Tomcat 6.0.

5. Click Finish.

Result
In the Project Explorer window on the IDE's left side, a new project Servers appears.

Importing a sample application
Before you begin
Ensure that :

Working with the Eclipse IDE

16 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

• you have installed the Foundation SDK .
• you have the jee—f-api-samples and jee-f-tpapi-samples files as sub folders

of FOUNDATION-SDK\IDE.

• you have created the Eclipse workspace directory at C:\FOUNDATION-SDK\IDE on your
workstation.

Procedure

1. Copy the contents of FOUNDATION-SDK\IDE\jee—f-api-samples and
FOUNDATION-SDK\IDE\jee—f-tpapi-samples and all its sub folders into your
Eclipse workspace directory.

2. In the Eclipse IDE, select File > Import.

3. On the Import page, select General > Existing Projects and click Next.

4. On the Existing Projects page, select root and browse to the work space
directory .

5. Select jee—f-api-samples and jee-f-tpapi-samples and click Finish.

Result
The project is imported and validated.

If the perspective selected by the IDE is not Java EE, then open this perspective. See
Perspectives on page 15 for details.

If you are getting validation errors, see Project references to the JRE do not match the installed
JRE on page 17 for more details.

Project references to the JRE do not match the installed JRE
Project references to the Java Runtime Environment will not match your JRE installation if :

• you have installed the JRE in a different location.
• you use a JDK.

The Eclipse IDE will show validation errors which are caused by missing Java standard library
references.

You detect the failure in the Project Explorer (red error icons in Java Resources- and/or
WebContenttrees) and on the Markers tab in the lower right area of the IDE window.

Importing a sample application

Sample Web Application Guide November 2012 17

Figure 2: Sample Application import failure (wrong JRE reference)

If validation of JSP pages or Java sources results in errors caused by unresolved standard
Java types , for example, classes like java.lang.String cannot be found, the imported
project may be referring to a JRE or JDK which does not match your installation.

Solution

Procedure

1. Right-click on the project jse-ft-samples in the Project Explorer and select
Properties.

2. Click Java Build Path and select Libraries.

3. Select JRE System Library [...] and click Edit > Installed JREs....

4. Ensure that your installed JRE 6 is included in the JRE list. If not, add your JRE and
select the checkbox in front of the list entry to set the JRE as the workspace
default.

5. Click OK.

6. Select Workspace default JRE and click Finish.
The IDE should perform a new validation of the project automatically.

7. If the IDE does not validate the project automatically, right-click the project in the
Project Explorer and select Validate.

Working with the Eclipse IDE

18 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Result
Sometimes the import fails and the project cannot be properly associated to the Tomcat runtime
setting. You can detect the failure by checking the reference to the Apache Tomcat v.6.0
libraries in the directory Java Resources/Libraries of the IDE's Project Explorer.

Figure 3: Sample Application import failure (missing Tomcat libraries)

Missing Apache Tomcat Reference
About this task
If the Apache Tomcat v.6.0 reference is missing, perform the following steps:

Procedure

1. Right-Click the project Servers in the Project Explorer and delete it.

2. Open menu Window/Preferences and select Server/Runtime Environments. In
the list on the right side of the dialog, select the runtime environment Apache Tomcat
v.6.0, remove it and close the dialog.

3. Right-Click one of the projects jee-f-api-samples or jee-f-tpapi-samples
in the Project Explorer and select Properties. In the following dialog, select Project
Facets and the tab Runtimes on the right side of the dialog.

4. Click the New button below the empty window. Select Apache/Apache Tomcat
v.6.0 as runtime environment. Click Next, select the Tomcat installation directory
in the following dialog, and then click Finish.
The new runtime appears on the Runtimes tab.

5. Select the new runtime checkbox, then click Apply and OK.

6. Right-click the other project in the Project Explorer and select Properties. In the
following dialog, select Project Facets and the tab Runtimes on the right side of

Importing a sample application

Sample Web Application Guide November 2012 19

the dialog. Ensure that Apache Tomcat v.6.0 is selected, then click Apply and
OK.
Referenced libraries in the Project Explorer should look like this:

Figure 4: Correct Sample Application import (Tomcat libraries)

7. Finally go to the Servers tab in the Java EE perspective and add a server:

a. Right-click and select New/Server.
b. Select Apache/Tomcat v.6.0 Server as runtime, and click Finish

In the Servers tab, a new server Tomcat v6.0 Server at localhost
appears.

Starting and deploying sample applications
Before you begin
The file /WebContent/WEB-INF/fServerLink.properties in each of the Eclipse
projects must be adjusted to point to your Avaya ACE™ system's Foundation Runtime Service
URL. The content of the file is self-explanatory.

Procedure

1. Select the Servers tab in the Java EE perspective and right click the server Tomcat
v6.0 Server at localhost.

2. Select Add and Remove.

3. In the following dialog, select the resourcesjee-f-api-samples and jee-f-
tpapi-samples in the left window, click Add > Finish.

4. Right click the Server entry again and select Publish.

Working with the Eclipse IDE

20 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

5. Click Finish.
You are now ready to start Tomcat and the sample Web applications.

 Note:

• Right-click the Server entry and select Start or Debug to start Tomcat.
Alternately, you can click the corresponding icons in the right top corner of
the Servers tab.

• Although it is possible to run both Web applications at the same time, tests
are more understandable if you deploy and run only one of the
applications.

•

Result
In the Project Explorer window on the IDE's left side, a new project Servers appears.

Starting and deploying sample applications

Sample Web Application Guide November 2012 21

Working with the Eclipse IDE

22 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Chapter 4: Building sample applications

If you modify the sample Web applications or if you want to permanently adjust the configuration (in
properties files) in the folder /WEB-INF of the applications, you will need to rebuild the sample web
application war files.

There are two ways to do this:

• Let Eclipse build the files

• Use the ANT build tool

The build processes generate different war files, which both work. The difference in war files is caused
by a compiler difference: Eclipse utilizes a build-in compiler whereas ANT takes the compiler of the JDK
it runs on.

The jee-f-api-samples.war and jee-f-tpapi-samples.war , delivered with the SDK (in SDK
folder \IDE-Export), have been built by Eclipse.

Building applications using Eclipse IDE
Before you begin
Ensure that the application projects delivered with the Foundation Toolkit SDK have been
imported into the Eclipse IDE.

Procedure

1. Right-Click the project jee-f-api-samples in the Project Explorer and select
Export/WAR file.

2. In the following dialog, select a target folder for war file storage and click Finish.

3. Repeat the steps with the project jee-f-tpapi-samples.

Building applications using ANT
Before you begin
Ensure that you have JDK (version 6) installed.

Sample Web Application Guide November 2012 23

Procedure

1. Download the ANT build tool from http://ant.apache.org.

2. Unzip the file into a folder. For example, C:\Program Files\Apache Software
Foundation.

• In folder \Ant-Build\jse-samples of the SDK distribution you will find the
ANT build script build.xml and the script to start ANT, run-ant.bat.

• Ensure that the variable ANT_HOME points to the ANT installation folder and
the variable JAVA_HOME points to the JDK folder.

3. Enter the command: run-ant.bat.
run-ant.bat creates a new folder \build in the ANT build folder. It copies all
needed files and folders from the sample application Eclipse projects into the ANT
build folder, compiles the Java sources, builds the war file, and then deletes the
copies of the source files. The created application resides in the subfolder\lib.

 Note:
Source files copying works under the assumption that you have stored the SDK
distribution in the folder C:\FOUNDATION-SDK. If this is not true, adjust the
references inside of the build.xml file.

 Note:
Eclipse has a built-in version of ANT. Thus, it would be reasonable to make up a
project, copy the ANT build file and the Servlet-API library subfolder into it, and
run ANT through the IDE. The issue with doing that is the missing Java compiler
reference. It can be resolved by either running the Eclipse IDE on a JDK or by
modification of the build.xml script (point to an explicitly specified JDK).

Building sample applications

24 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

http://ant.apache.org
mailto:infodev@avaya.com?subject=Sample Web Application Guide

Chapter 5: Sample Applications using the
Foundation Toolkit API

The Foundation SDK distribution contains several sample applications, which demonstrate the use of the
Foundation Toolkit API. In the following description, this API is also called F-API.

This chapter focuses on the sample web application delivered as project jee-f-api-samples in the
SDK.

All sample applications are packaged in a single JEE web application. The target runtime of the web
application is a Tomcat JSP container.

 Note:
Applications using the Foundation Toolkit API are not restricted to JEE web applications and there is
no need to package multiple, independent functionality into a single web application. It is perfectly
reasonable to have a Java Standard application (perhaps with a Swing UI or no UI at all), which
implements a single functionality; for example, an application which represents a conference unit. The
web application was chosen because of its superior presentation capabilities via browsers.

Web Application Structure
The structure of the JEE web application is shown in the following figure.

Sample Web Application Guide November 2012 25

Figure 5: Web Application Structure

The sample web application hosted by a Tomcat container communicates with the Foundation
Toolkit Runtime Services provided by an Avaya ACE™ server. The Runtime Services expose
the Foundation Toolkit API, which is mirrored to the client web application through a CometD
transport link (see http://cometd.org). The transport mechanism is hidden by the Foundation
Toolkit Client Libraries provided by Avaya.

The web application contains some basic framework parts that:

• create instances of the Foundation API sample applications ("F-API" samples)

• implement a user login procedure (login web page and authentication)

• provide a basic "console" web page from which the logged in user can select the
Foundation API sample application to interact with

Framework and F-API sample applications communicate with the client web pages loaded in
the user's browser through a Comet transport link based on the DWR (Direct Web Remoting)
libraries (see http://directwebremoting.org). Thus, scripts (JavaScript) in client web pages are
enabled to call object methods of the F-API sample applications, receive method return values,
and receive asynchronous event notifications.

Foundation API Sample Application Structure
The following figure offers a more detailed view of a Foundation API sample application.

Sample Applications using the Foundation Toolkit API

26 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

http://cometd.org
http://directwebremoting.org
mailto:infodev@avaya.com?subject=Sample Web Application Guide

Figure 6: Foundation API Application Structure

Each of the Foundation API sample applications incorporates two basic parts, represented by
distinct objects during runtime:

• • An Application Context Based Part: This object is created upon the start of the web
application and exists during the web application's lifetime. The application context object
is called the F-API Application in the following descriptions and in software code (even
though it is only a part of the whole Foundation API sample application).

• • A User Session Context Based Part: This object is created if a user has logged in to the
web application (the user enters a basic console web page) and chooses to connect to
one of the F-API sample applications (the user opens an application-specific web page
via control elements on the console page). The user context object exists during the
lifetime of the user's HTTP session as long as the user stays connected (does not
disconnect by operating a Web UI button) to the F-API sample application. This user
context object is called the F-API Application User Context in the following descriptions
and in software code.

 Note:
For an F-API application only one "Application Context" object exists during the web
application's runtime, whereas each user connected to the application has a corresponding
"User Context" object.

Depending on the type of sample application, the majority of the application logic will be located
in either the "F-API Application (Context)" or in the "User Context".

Typically, a Sequenced Application listens for inbound SIP dialogs during the application's
lifetime (done by the "F-API Application" object). As long as no specific user interferes, each
received dialog is proxied onward without modification. If a logged-in user has created a "User
Context" object, this object can decide for each arriving dialog if the dialog is originated by or
terminated on the user's known SIP address. If the address matches, the "User Context" can

Web Application Structure

Sample Web Application Guide November 2012 27

process the dialog and reject it, proxy the dialog to the original or some other SIP UA, or connect
the dialog to a Media Server to, for example, play an audible announcement. Thus, for
sequenced applications, the majority of the application logic resides in the "User Context".

A Named Application typically listens for inbound SIP dialogs, which target the application's
SIP address, and then responds based on the calling party address. For example, the
application may implement a conference unit or perform DTMF controlled operations offered
via an audible menu (IVR). For named/endpoint applications, the role of the "User Context" is
restricted to configuration or monitoring tasks, while the majority of the application logic is inside
of the "F-API Application" object.

Please read the document Avaya Agile Communication Environment™ Foundation Toolkit
Developer's Guide (NN10850-059) for a description of application types.

Foundation Toolkit Client API Documentation
The API description of the F-API client libraries is provided in JavaDoc format. You find the
client library documentation in the folder Documentation/Foundation-Client-API-
JavaDoc of the Foundation SDK distribution.

Framework Details
The F-API sample applications are packaged into a single JEE web application.

This web application is based on a "framework" which serves as basic runtime environment
for F-API applications. The framework can be used as the basis for further applications.

 Note:
Although the framework is a basic part of the code, there is no need to understand it deeply
in order to understand the usage of the Foundation Toolkit Client API. The focus should be
put on the different F-API applications, regarding the framework description as additional
material.

You can find the framework classes of the Web application in the package
com.avaya.fapi.sampleapps.main. Different F-API applications are represented by
packages com.avaya.fapi.sampleapps.app<n>.

Several parts of the web application are initialized upon the start of the application by the JSP
container (Tomcat). The initialization process is controlled by the standard configuration file /
WEB-INF/web.xml.

Sample Applications using the Foundation Toolkit API

28 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

• The Spring Framework (www.springsource.org)

• The DWR-Servlet (DWR = Direct Web Remoting. See http://directwebremoting.org)

• A Login Servlet

Spring Framework:

The Spring Framework's configuration file is /WEB-INF/applicationContext.xml.
Spring is only used to create a single instance of the class WebApplicationMain.

This unique "main" object serves as a central point of access to the web application. It performs
all basic initialization and cleanup tasks (at web application start/stop by the Tomcat JSP
container).

The "main" object establishes a connection to Foundation Runtime Services on the Avaya
ACE™ server (see Connection to the Foundation Toolkit Runtime Services on page 30) and
starts the F-API sample applications afterwards.

Starting the F-API applications means starting the "Application Context Based Parts" of them.
This is done in several steps:

• Reading of the file sampleApps.properties. The file contains "F-API application
definitions" sampleapp.<n>.defprovider. Each of the entries is a reference to a
"definition provider" class defined by one of the F-API sample applications (in packages
com.avaya.fapi.sampleapps.app<n>).

• After creation of an instance of each "definition provider" class, an "F-API application
definition" object (class DwrFapiAppDefinition) is obtained from the provider object
and stored in a list for later use.

The definition objects contain attributes like:

- Type of the F-API application (such as "sequenced app", "named app", ...)

- The name of the F-API application. For sequenced applications, the name is the
"handle" used during the registration of the listener for inbound SIP dialogs. The
same case sensitive handle unambiguously identifies the application in System
Manager. In System Manager, the application can be added to a sequence definition
and the sequence can be applied as the originating or terminating sequence of a
Session Manager user profile. For named applications, the name represents the user
part of the application's SIP AOR.

- The F-API application's main web page name and the initial size of this page

- Class names of the "F-API Application (Context)" class and of the associated "User
Context" class.

- A detailed description of the F-API application that displays to the web application
user

• The collected "F-API application definition" objects are used to create instances of each
F-API application, store the application objects in a hash table for later access, and start
the objects via the predefined interface method "start" (all F-API applications are
subclasses of AbstractFapiApplication or AbstractFapiApplicationAsync

Framework Details

Sample Web Application Guide November 2012 29

http://directwebremoting.org

— they implement the interface FapiApplication and they have to overwrite the
inherited method "start". Upon start, the application performs tasks like "register as
listener for inbound SIP dialogs in the Foundation Toolkit API" (for sequenced
applications) or "register with a SIP AOR on Session Manager" (for named
applications).

DWR Servlet:

The DWR servlet is the transport gate for "Comet" communication between the Web
application's server parts and scripts (JavaScript) running in Web page windows on a client
browser. Via DWR, a browser window can call methods of server interface objects and receive
result values. Furthermore, the server can push information asynchronously to the browser
window ("Reverse AJAX").

The DWR system is configured by /WEB-INF/dwr.xml. The file contains definitions of
exposed server-side DWR interface objects and of transport objects which can be marshalled
by DWR. Each of the defined F-API applications has its own DWR interface and there is an
additional interface of a console page. The console page is the basic UI of the web
application.

Marshalled objects (for "pushes" to browser windows) are:

• DwrFapiAppDefinition: The "application definition" mentioned earlier in this chapter

• DwrLogData: Class for log information transport

• DwrResult: Result objects delivered upon server method calls

• DwrEvent: A generic event transport class

"Pushing" of information to browser windows is done by a unique PushToBrowser object,
which is an attribute of the "main" object. Each piece of "push" information is packaged as a
ReverseAjaxPush. The push objects are queued for transport to browser windows.

 Note:
You may encounter issues with DWR when running the sample web-application on a Tomcat
7 JSP container. Since Tomcat 7 implements the Servlet-Specification 3.0, it restricts access
to session cookies. A workaround is to include <Context useHttpOnly=”false”..>
in ../conf/context.xml of Tomcat.

Login Servlet:

The LoginServlet is the interface for user login and logout.

Connection to the Foundation Toolkit Runtime Services
Initially, the "main" object (see Framework Details on page 28) establishes a connection to the
Foundation Runtime Services on the Avaya ACE™ server by creation of a "binding" via the F-

Sample Applications using the Foundation Toolkit API

30 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

API's AppBindingService. Connection parameters are read from the file/WEB-INF/
fServerLink.properties.

The connection can be either via "http" or "https". In the usual case of a secure link (TLS),
keystore and truststore files, as well as their corresponding access passwords have to be
provided in the properties file.

Keystore and truststore files may be obtained via utilities of System Manager.

For more information, please read the description of "application bindings" in the document
Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide
(NN10850-059).

The sample web application's default settings match a reference test environment
configuration. Any other test environment parameters have to be replaced.

A successful binding results in a "bind id", which is later used by all F-API applications to obtain
references to various service objects from the Foundation Toolkit API.

The "main" object registers as an AppBindingStatusListener; it is therefore enabled to
monitor the status of the server connection.

Changes of the binding state are distributed to all existing F-API applications. In the sample
web application, loss of binding is signaled on the logged-in user's open browser window. There
is no recovery handling; the web application must be restarted.

User Login Process
Connect to the web application by choosing the URL http://<localhost>:8080/jee-
f-api-samples in a browser. You are redirected to the login page /login.jsp.

 Note:
The sample web application has been tested on Internet Explorer 7 and Firefox 3
browsers.

If the client browser sends a first request to one of the web application pages (the login page
or any other page), the JSP container (Tomcat) opens an HTTP session and stores a cookie
for identification of this session in the browser.

 Note:
Cookies have to be enabled in the browser to run the Web application.

Each of the web application's JSP pages contains the JSP directive
<jsp:useBean id="..."
 class="com.avaya.fapi.sampleapps.main.UserSession"
 scope="session"/>

This directive causes the creation of an instance of a UserSession object, which exists during
the lifecycle of the HttpSession.

Framework Details

Sample Web Application Guide November 2012 31

UserSession implements the interface
javax.servlet.http.HttpSessionBindingListener; thus it gets notified if it is bound
to or unbound from the HttpSession. If it is bound or unbound, it informs the web application's
"main" object (WebApplicationMain) through handleSessionBegin() or
handleSessionEnd(). The "main" object stores all current user sessions in a hash table,
using the HttpSession object provided with each browser request as a key.

The UserSession object of each user connected to the web application is the central place of
storage for user session related information. One of the attributes stored in it is the user's
logged-in state.

Each of the web application's JSP pages checks if the current user is logged in (through the
UserSession object). If not, the user is redirected to the login page /login.jsp.

The login page contains a HTML <form> element for input of username/password login
parameters. Upon a login attempt, the form content is sent to the LoginServlet. The servlet
checks the login parameters against attributes stored in sampleApps.properties.

Upon successful authentication, the servlet identifies the UserSession object through the
HttpSession object, updates the login status and redirects to the web application's console
page /console/console.jsp.

Console Page
The console page (/console/console.jsp) is the basic user interface for:

• Establishing a user relation ("User Context") with one of the F-API sample applications

• Presenting log information that visualizes processing steps inside the sample applications

• User logout

Sample Applications using the Foundation Toolkit API

32 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Figure 7: Console Page

The console page script (/console/console.js) retrieves information about available F-
API applications from the web application through the DwrConsoleInterface. The returned
objects are marshalled DwrFapiAppDefinition objects (the objects collected by the Web
application's "main" object upon startup). The F-API applications populate a select box on the
console page. If the user selects one of the items, the detailed application description provided
by the application's definition object (see Framework Details on page 28) is displayed in a text
field beside the box.

The user can "open" one of the F-API applications. The term "open" means creation of a user
context object.

When the console page requests to "open" a selected application through the
DwrConsoleInterface, the following occurs:

1. The appropriate UserSession object is determined

2. The UserSession object creates a "UserContext" object using a factory method of
the web application's "main" object

3. The "main" object starts the user context object. "Starting" means an association to
the selected F-API application is established, such as registering a listener for
events distributed by the F-API application object

Framework Details

Sample Web Application Guide November 2012 33

4. The console page script receives a JavaScript callback and loads the page
configured for this F-API application (defined in DwrFapiAppDefinition) in a separate
browser window

5. The new browser window can now collaborate with the F-API application user
context object through an application specific DWR interface object provided by the
application

You can "open" each of the F-API applications once. In other words, a web application user
can establish a single user context for each available F-API application simultaneously.

Libraries
In order to access the Foundation Toolkit API, several libraries have to be included in an
application. You find them in the folder Software-Libraries/Foundation-Client-API
of the Foundation SDK distribution. The complete set of library jar-files must be included.

Generally, you need the Log4J-library (log4j-1.2.15.jar) to receive logging information.

The sample web application utilizes some additional libraries (see explanations in Framework
Details on page 28). These libraries do not have any relationship with the Foundation Toolkit
client libraries.

• spring.jar: The Spring framework

• dwr.jar: DWR = Direct Web Remoting

• commons-logging-1.1.1.jar: Logging library needed by dwr.jar
• mail-1.4.3.jar: JavaMail implementation used to send e-mail

F-API Sample Applications
F-API applications utilize the Foundation Toolkit API through service objects, which can be
obtained from the API using methods of a factory
(com.avaya.service.client.ServiceFactory). The factory methods require the
provision of a "bind id" parameter. The parameter is retrieved from the web application's central
"main" object, which has established the connection to the Foundation Toolkit runtime
services.

Services accessed by the sample applications are:

F-API Sample Application Foundation Runtime Services
General use by the "framework" AppBindingService

Sample Applications using the Foundation Toolkit API

34 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

F-API Sample Application Foundation Runtime Services
Call Screening InboundDialogService

ProxyRoutingService

Announcement RegistrationService
InboundDialogService
VirtualEndpointService
MediaService

Deflect To IVR InboundDialogService
ProxyRoutingService
B2buaRoutingService
MediaService

Make Calls VirtualEndpointService

Conference RegistrationService
InboundDialogService
VirtualEndpointService
MediaService

Make Calls (Async) AsynchronousVirtualEndpointService

Mail Support InboundDialogService
ProxyRoutingService

Call Recorder InboundDialogService
B2buaRoutingService
MediaService

 Note:
The sample applications do not cover the Foundation Toolkit API completely.

As mentioned above, an F-API sample application actually consists of a web application based
part ("F-API Application"), and a web application user session based part ("F-API Application
User Context"). The user context is established each time a logged-in user connects to one of
the F-API applications.

Depending on the application type, the majority of the logic will be located in either the "F-API
Application" or in the "User Context" (see Foundation API Sample Application Structure on
page 26).

You should be aware that, because of the specific implementation of a JEE web application
that hosts multiple F-API sample applications, each web application user has access to all F-
API sample applications. If multiple users are logged in to the Web application via browsers,
they might affect the sample applications simultaneously. It is left to the F-API sample
applications to decide which events signaled by the Foundation Toolkit API are of relevance
for one of the logged-in users, and it is the duty of the F-API applications to resolve concurrency
conflicts.

The "framework" parts of the web application provide some base classes from which the F-
API application classes are derived (inheritance):

F-API Sample Applications

Sample Web Application Guide November 2012 35

• AbstractFapiApplication: This class serves as superclass of F-API application classes. It
implements a listener for inbound SIP dialogs (either SequencedDialogListener or
EndpointDialogListener) which can be registered in the F-API's InboundDialogService for
reception of inbound dialog events.

The inbound dialog service supports both Sequenced Applications and Named/Endpoint
Applications.

 Note:
The listener registration procedures differ depending on the application type. For
sequenced applications a "handle" must be provided. A SIP URI or URI pattern
parameter must be provided for named applications.

For sequenced applications, new inbound dialog events are fired to user context objects
that have registered as UserFapiAppListener in the F-API application object. For named
applications, new dialogs are not handled by default. Handling may be done by a subclass
implementation of the EndpointDialogListener's newInboundDialog().

AbstractFapiApplication supports registration of a SIP AOR using the F-API's
RegistrationService. This feature may be utilized by Named/Endpoint applications.
Furthermore, the class enables any derived subclass to distribute generic event objects
(UserFapiAppEvent) to listening user context objects.

User context objects registered as UserFapiAppListener in the F-API application object
are managed as a chain of listeners implemented by the class EventMulticaster.

 Note:
If used as a super-class of a sequenced application, AbstractFapiApplication silently
proxies all SIP dialogs (INVITE) which contain a "Join" or "Replaces" header.
Registered user context objects will not receive a notification. This default handling is
reasonable for most situations; for example, a call barring application which prevents
the initiation of international calls does not need to block a call if it detects that the user
is being transferred. An application may disable the default handling via a super-class
method.

• AbstractFapiApplicationAsync: This class has equal functionality as
AbstractFapiApplication and serves as a super-class of F-API application classes that
use asynchronous Foundation services.

 Note:
With regard to "Join" or "Replaces" headers in SIP dialogs, the same considerations
as for AbstractFapiApplication apply.

• AbstractFapiApplicationUserContext: This class serves as a super-class of all F-API
application user context classes. It implements a listener (UserFapiAppListener) for
events fired by the F-API application object (new inbound dialog events or generic
events). Usually, a user context object will register as a listener for its corresponding F-
API application, but other implementations may not do this.

• AbstractDwrFapiAppInterface: This class is a super-class for implementing DWR
interfaces of the F-API applications. A DWR interface offers methods to be called by

Sample Applications using the Foundation Toolkit API

36 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

JavaScript from a web page loaded in a browser. Usually, a DWR interface object will
communicate with the user context object of an application to invoke functionality provided
by the user context.

Upon sequential distribution of certain events to listening user context objects by the F-API
application object (such as new inbound SIP dialogs), the method call contains an
EventResponsibility parameter. Each user context checks if it feels responsible to handle the
event. If it decides to handle it, the user context must modify the responsibility parameter (claim
to be responsible). All user contexts informed later have to respect the already set responsibility
and ignore the event.

If none of the existing user context objects is responsible for the event, a default handling takes
place. For example, with sequenced applications, each new inbound dialog is proxied onward
to its original destination by default.

Sequenced applications listen for new inbound SIP dialogs and check if the dialog needs to
be processed by the application. A criterion might be the calling or called party SIP address
delivered with the dialog; for example, a terminating sequenced application will typically check
the called party address.

The F-API sample applications (the sequenced ones) make SIP address comparisons based
on addresses associated with web application users in the configuration file /WEBINF/
sampleApps.properties. If a dialog's origin or target is the currently logged-in user, the F-
API application (actually the "User Context") can signal the call in the user's open browser
window and offer options for intervention.

If the user opens two browser instances and logs in twice, a conflict would arise upon arrival
of an inbound dialog. The conflict is resolved by the responsibility mechanism: only one of the
user sessions can handle the dialog.

 Note:
Application names appearing in the following F-API application descriptions have to be
configured in the Avaya Aura™ environment (via System Manager) in order to get the
applications working. The name represents the "handle" for sequenced applications, which
is the user part of the application's SIP address for named applications.

The names can be easily modified in /WEB-INF/sampleApps.properties to match a
given runtime environment.

Application sequences to be executed for Session Manager SIP users must be configured via
System Manager's administration web interface. Each application in a sequence is associated
with the Foundation Runtime Services on an Avaya ACE™ server.

The following short description will help to locate the settings in the System Manager menu:

• The applications are defined in Elements/Session Manager/Application
Configuration/Applications. The most relevant attributes of an application
definition are:

- the application "handle"

F-API Sample Applications

Sample Web Application Guide November 2012 37

- the SIP entity (the Avaya ACE™ server) that executes the application

• Application sequence definitions in Elements/Session Manager/Application
Configuration/Application Sequences contain one or more applications in a
certain execution order.

• For each Session Manager SIP user in Users/Manage Users, a sequence can be set
as an originating sequence executed upon outbound call establishment by the user, or
as terminating sequence executed upon inbound call reception by the user. The sequence
configuration can be found in the Communication Profile/Session Manager
Profile of a user definition.

“Call Screening” Application
"Call Screening" (package com.avaya.fapi.sampleapps.app1) is a Sequenced
Application to be called in the terminating sequence of a SIP user. The internal name (handle)
of this application is callscreening.

"Call Screening" enables a user to "screen" dialogs directed to their registered SIP UA by
means of the sample application. Based on a user-adjustable policy, received inbound dialogs
may be rejected, proxied to the original target UA, or redirected/proxied to a different target.

 Note:
Behind the scenes, a "dialog" represents a SIP transaction which starts with an INVITE
message. Such a transaction is subject to time supervision by the initiator. Because time-
out durations may be low; for example, 4 seconds between sending of an INVITE and
receiving of the first 1xx provisional response, it is a good practice not to let a user
interactively handle a received dialog before it has been proxied. Instead, the dialog should
be rejected, redirected, or proxied as quick as possible by the application.

This F-API application is represented by an instance of Application1. If a user connects to the
application, an instance of App1UserContext is created, and it registers as a listener in the
application object.

The F-API application object registers in the InboundDialogService as a listener
(SequencedDialogListener) for inbound dialogs. If a new dialog arrives
(newInboundDialog() event fired by the F-API) and no user context exists, then a default
dialog proxy operation through the F-API's ProxyRoutingService is performed. Afterwards, the
dialog handling is finished and the INVITE message arrives at the user's UA (or, if configured,
at some other sequenced application implemented elsewhere).

If a user context objects exist, the new dialog is distributed sequentially to them. Each user
context compares the dialog's called party SIP address with the address pre-configured for the
logged-in user (sampleApps.properties). If the address matches for a user context, the user
context object claims responsibility to handle the dialog.

The user context provides the majority of the call handling logic.

Sample Applications using the Foundation Toolkit API

38 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

The application's UI is implemented as a page (/pages/sample1/app1.jsp) with
associated script (../app1.js). The UI allows setting a policy which defines how an inbound
dialog must be handled based on the caller's SIP address. The partial policy settings for
rejection, acceptance (proxy to original target), proxying (to different target), or redirection are
evaluated by the application in a top-down way (the first match counts). Policy strings may
contain wildcards "*" (any string) or "?" (any character).

Rejection of dialogs is done with the status code 486 ("Busy Here"). Redirection is done with
the status code 302 ("Moved Temporarily").

Figure 8: "Call Screening" Application Page

The user context specifies itself as listener for proxied dialogs (it implements the interface
ProxyListener) upon F-API proxy operations. Although not ultimately needed, this enables a
user to track a dialog's state after it has been proxied.

The following figure shows the interaction between the F-API application and the F-API.

F-API Sample Applications

Sample Web Application Guide November 2012 39

Figure 9: "Call Screening" – F-API Interaction (Part 1)

Figure 10: "Call Screening" – F-API Interaction (Part 2)

“Announcement” Application
"Announcement" (package com.avaya.fapi.sampleapps.app2) is a Named Application.
The internal name of this application is "40444", which means its SIP address is sip:

Sample Applications using the Foundation Toolkit API

40 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

40444@<sip-domain>. The name may be modified via /WEB_INF/
sampleApps.properties.

"Announcement" is an application which simply plays an audible announcement for users who
call the application's SIP address from their UA. Any user logged in to the sample web
application can monitor the application's activity (arriving dialogs, playing of media,
termination).

This F-API application is represented by an instance of Application2. If a user connects to the
application, an instance of App2UserContext is created.

The user context has a pure monitoring functionality. It registers in the application object and
gets event information (UserFapiAppEvent objects) from there. The event information is
repackaged as DwrEvent objects and sent to the browser window's script for the UI update.

Application2 registers as a SIP endpoint (see above mentioned address) using the F-API's
RegistrationService.

 Note:
Registration as a SIP endpoint is only one of the ways to get calls towards an endpoint SIP
address directed to the "Named" F-API application. The recommended method is to define
a Session Manager routing policy (via System Manager) which points to the application.
Using endpoint registration by default was chosen to demonstrate the RegistrationService.
If you want to re-configure Session Manager and the sample F-API application to work with
a routing policy, please refer to Running "Named" Applications without Endpoint
Registration on page 83).

Having successfully registered as a SIP endpoint, Application2 registers as a listener
(EndpointDialogListener) for inbound dialogs in the F-API's InboundDialogService (through its
super-class).

If some SIP endpoint tries to establish a dialog to the "Announcement" application, the F-API
application object receives a newInboundDialog() event from the F-API, and creates an
instance of InboundDialogHandler2, which takes over the further processing of the dialog. In
order to do this, InboundDialogHandler2 acts as a VirtualEndpointCallListener and a
MediaListener for the F-API's VirtualEndpointService's respective MediaService services.

The dialogs and their processing are presented in tabular form in the user's "Announcement"
browser window.

The application's UI is implemented as a page (/pages/sample2/app2.jsp), and the
associated script is implemented as ../app2.js.

F-API Sample Applications

Sample Web Application Guide November 2012 41

Figure 11: "Announcement" Application Page

The following figures show the interaction between the F-API application and the F-API.

Sample Applications using the Foundation Toolkit API

42 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Figure 12: "Announcement" – F-API Interaction (Part 1)

Figure 13: "Announcement" – F-API Interaction (Part 2)

F-API Sample Applications

Sample Web Application Guide November 2012 43

"Deflect to IVR" Application
"Deflect to IVR" (package com.avaya.fapi.sampleapps.app3) is a Sequenced
Application to be called in the terminating sequence of a SIP user. The internal name (handle)
of this application is deflect_to_IVR.

"Deflect to IVR" enables users to choose how to handle a call. They may either answer calls
arriving at their SIP UA or play selectable audible information to the caller.

Incoming dialogs are shown in the browser window and media playback can be manually
induced.

The application might be seen as a first step towards an "auto-attendant" functionality, which,
for example, might implement an IVR conversation with the caller.

This F-API application is represented by an instance of Application3. If a user connects to the
application, an instance of App3UserContext is created, which registers as a listener in the
application object.

Application3 registers in the InboundDialogService as a listener (SequencedDialogListener)
for inbound dialogs. If a new dialog arrives (newInboundDialog() event fired by the F-API)
and no user context exists, then a default dialog proxy operation through the F-API's
ProxyRoutingService is performed. Afterwards, the dialog handling is finished and the dialog
arrives at the user's UA (or, if configured, at some other sequenced application implemented
elsewhere).

If user context objects exist, the dialog is distributed to them sequentially. Each user context
compares the dialog's called party SIP address with the address pre-configured for the logged-
in user (sampleApps.properties). If the address matches for a user context, the user
context claims responsibility to handle the dialog.

The user context provides the majority of the call handling logic by delegating the processing
to an InboundDialogHandler3 object. InboundDialogHandler3 acts as a B2buaCallListener and
a MediaListener for the F-API's B2buaRoutingService's respective MediaService services.

The application routes a handled dialog to its destination without modification and a call is
signaled at the user's phone station. In parallel, the dialog event is presented in the user's open
"Deflect to IVR" browser window and UI buttons for audio playback are enabled. Users may
answer the call at their UA or may decide to play one of 3 selectable audible information items
to the caller. If the user answers the call, the audio playback buttons are disabled again. If an
announcement is played, the application terminates the dialog towards the UA; thus, the UA
reverts to an idle state.

The application's UI is implemented as a page (/pages/sample3/app3.jsp) and the
associated script is implemented as ../app3.js.

Sample Applications using the Foundation Toolkit API

44 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Figure 14: "Deflect to IVR" Application Page

The following figures show the interaction between the F-API application and the F-API.

F-API Sample Applications

Sample Web Application Guide November 2012 45

Figure 15: "Deflect to IVR" – F-API Interaction (Part 1)

Figure 16: "Deflect to IVR" – F-API Interaction (Part 2)

“Make Calls” Application
"Make Calls" (package com.avaya.fapi.sampleapps.app4) is an Endpoint Application.
The internal name of this application is make_call. Because the application does not register
with a SIP AOR, the name does not have any relevance.

"Make Calls " is an application which establishes outbound calls on behalf of the logged-in
user's phone station ("Click to Dial"). Web application users can select a SIP address to be
called through the UI. If users initiate the call, their UA rings first and , after having answered,
the called party UA rings.

Sample Applications using the Foundation Toolkit API

46 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

If the called party UA answers, the call is established.

This F-API application is represented by an instance of Application4. If a user connects to the
application, an instance of App4UserContext is created. The application neither registers with
a SIP AOR nor registers for reception of inbound dialogs. Operations of the application are
started from the UI through the DWR interface DwrApp4Interface.

The UI presents known SIP addresses in a select box. The user may choose a SIP address,
or enter a different address and then initiate the call. Call establishment is handled by an
instance of OutboundCallhandler4, which is created by the user context object upon request
through the DWR interface. Changes of the current processing state are pushed up to the web
page as DwrEvent objects.

The application's UI is implemented as a page (/pages/sample4/app4.jsp) and the
associated script is implemented as ../app4.js.

Figure 17: "Make Calls" Application Page

The following figure shows the interaction between the F-API application and the F-API.

F-API Sample Applications

Sample Web Application Guide November 2012 47

Figure 18: "Make Calls" – F-API Interaction

“Conference” Application
"Conference" (package com.avaya.fapi.sampleapps.app5) is a Named Application.
The internal name of this application is "40555", which means its SIP address is sip:
40555@<sip-domain>. The name may be modified via /WEB_INF/
sampleApps.properties.

"Conference " is an application which merges inbound dialogs into a conference. Any user
agent that calls the conference will become a participant. Upon entrance to the conference,
an audible welcome greeting is played. Conference participants can be configured to be
moderators. A moderator has permission to remove a participant from the conference or to
mute/un-mute a participant via the application's web UI. For a non-moderator participant, these
operations are restricted (cannot be applied to other participants). A participant who becomes
muted/un-muted receives an audible announcement.

This F-API application is represented by an instance of Application5. If a user connects to the
application, an instance of App5UserContext is created.

The user context registers in the F-API application object to get event information
(UserFapiAppEvent objects). The information is repackaged as DwrEvent objects and sent to
the browser window's script for the UI update.

Sample Applications using the Foundation Toolkit API

48 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Application5 registers as a SIP endpoint (see above mentioned address) using the F-API's
RegistrationService.

 Note:
Registration as a SIP endpoint is only one of the ways to get calls towards an endpoint SIP
address directed to the "Named" F-API application. The recommended method is to define
a Session Manager routing policy (via System Manager) which points to the application.
Using endpoint registration by default was chosen to demonstrate the RegistrationService.
If you want to re-configure Session Manager and the sample F-API application to work with
a routing policy, please refer to Running "Named" Applications without Endpoint
Registration on page 83.

Having successfully registered as a SIP endpoint, Application5 registers as a listener
(EndpointDialogListener) for inbound dialogs in the F-API's InboundDialogService (through its
super-class).

If a SIP endpoint tries to establish a dialog to the "Conference" application, the application
object receives a newInboundDialog() event from the F-API. Upon reception of the first
dialog, an instance of ConferenceCallHandler5 is created. This object handles the first and all
following received inbound dialogs. Upon termination of the last dialog (or some irregular failure
situation), the conference handler will be destroyed and the conference application will return
to its initial state.

The conference handler object manages two hashtables; one for storage of participant dialog
information (ParticipantDialog5) and one for storage of ongoing media operations like playing
audio, muting, or un-muting (MediaOperation5). There are dependencies between both types
of objects. A participant object stores object references and states of a current media operation
applied to the participant. A media operation object contains a reference to the participant. The
objects serve to identify particular participants and operations after receiving events from the
F-API.

If a participant object changes state, a DwrParticipantDialog5 object is derived from it and
distributed (packed in a UserFapiAppEvent) to all listening user context objects, which push it
to the application's web page script for the UI update.

The dialogs and their processing are presented in tabular form in the user's "Conference"
browser window. An authorized user may terminate, mute, or un-mute a participant dialog
through the UI. The permission is evaluated in the page's script; it is provided in the following
way:

• If the application's Web page opens, the page script requests the logged-in user's
moderator privilege. This privilege is granted if the user appears on the list
sampleapp.5.moderator.list in the configuration file /
WEBINF.sampleApps.properties.

• If, upon adding or changing a participant, the corresponding DwrParticipantDialog5
passes through the user context object, a check is made if the dialog is originated by the
logged-in user (caller SIP address of dialog matches the participant user's SIP address).

F-API Sample Applications

Sample Web Application Guide November 2012 49

The result is stored as a privilege flag in the participant object before it is pushed to the
web page.

The latter privilege enables a user to influence his own dialog in a conference.

The application's UI is implemented as a page (/pages/sample5/app5.jsp) and the
associated script is implemented as ../app5.js.

Figure 19: "Conference" Application Page

The following figures show the interaction between the F-API application and the F-API.

Sample Applications using the Foundation Toolkit API

50 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Figure 20: "Conference" – F-API Interaction (Part 1)

Figure 21: "Conference" – F-API Interaction (Part 2)

F-API Sample Applications

Sample Web Application Guide November 2012 51

"Make Calls (Async)" Application
"Make Calls (Async)" (package com.avaya.fapi.sampleapps.app6) is an Endpoint
Application. The internal name of this application is make_call_async. Because the
application does not register with a SIP AOR, the name does not have any relevance.

"Make Calls (Async)" is a clone of the "Make Calls" application (see “Make Calls”
Application on page 46). It provides identical functionality and an identical UI. The difference
is in the implementation. "Make Calls (Async)" is a sample for utilization of "asynchronous"
Foundation API services, especially the AsynchronousVirtualEndpointService.

Some methods of the F-API deliver resulting objects immediately; for example, the creation of
a Call- or a Dialog- object. In order to do this, the client F-API libraries have to request the
server and block the application thread until a response is received. For a heavy loaded
application this might be not acceptable.

The way to increase performance is to use the asynchronous services. Methods of these
services return a "request-identifier" immediately. The result object is delivered later to a known
"callback" handler of the application which must identify the callback by means of a stored
request identifier. The gain of performance has the price of additional status management.

This F-API application is represented by an instance of Application6, which is a subclass of
AbstractFapiApplicationAsync. If a user connects to the application, an instance of
App6UserContext is created. The application neither registers with a SIP AOR nor registers
for reception of inbound dialogs. Operations of the application are started from the UI through
the following DWR interface: DwrApp6Interface.

Call establishment is handled by an instance of OutboundCallhandler6, which is created by
the user context object upon request through the DWR interface. Changes of the current
processing state are pushed up to the web page as DwrEvent objects.

OutboundCallhandler6 represents a VirtualEndpointCallListener (to track the status of
outbound dialogs and the created call), and a AsynchronousVirtualEndpointCallback. It
supplies itself as a "callback" handler upon acquisition of the
AsynchronousVirtualEndpointService reference from the F-API's ServiceFactory. Thus, it
receives callbacks createResponse(...) from the F-API if it creates dialogs and calls.

The identification of asynchronous F-API method calls is stored as AsyncFapiOperation
objects, which serve to identify the operation upon reception of the callback. The storage
mechanism is implemented in AsyncFapiOperationSupport, which serves as a super-class of
OutboundCallhandler6.

The application's UI is implemented as a page (/pages/sample6/app6.jsp) and the
associated script is implemented as ../app6.js.

Sample Applications using the Foundation Toolkit API

52 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Figure 22: "Make Calls (Async)" – F-API Interaction

Identity Propagation

The "Make Calls (Async)" application contains a preview example of a SIP security
mechanism.

The application optionally inserts "P-Asserted-Identity" (PAI) headers. PAI insertion can be
applied to every F-API method call that generates an outbound INVITE message.

The PAI header field can be used to convey the identity of the originator of a request within a
trusted network. It only has meaning within a trusted SIP network through mutual agreement
on the requirements for its use by the parties involved.

Since a FROM header field is populated by the originating UA, it may not necessarily contain
the actual identity. An identity is usually established by means of authentication between the
originating UA and its outgoing proxy. The outgoing proxy then adds a P-Asserted-Identity
header field to assert the identity of the originator to other proxies.

For an F-API application, the information above would mean that the identity could, for
example, be derived from a user login process to the application.

For the sample F-API application, the PAI to be inserted can be defined in /WEBINF/
sampleApps.properties (sampleapp.6.pai_value). If no value is set, the PAI header will
be a copy of the used FROM header.

A code snippet for identity insertion is:
Subject subject = new Subject();
subject.getPrincipals().add(new SipAddressPrincipal(pai-value));
Subject.doAs(subject, new PrivilegedAction<Return-Object>() {
public <Return-Object> run () {
return someFapiServiceObject.someMethod(...);

F-API Sample Applications

Sample Web Application Guide November 2012 53

}
});

 Note:
The Foundation Toolkit Runtime Services currently do not include mechanisms which restrict
operations to specific user identities. Identity propagation will gain importance in future
releases.

"Mail Support" Application
"Mail Support" (package com.avaya.fapi.sampleapps.app7) is a Sequenced
Application to be called in the originating sequence of a SIP user. The internal name (handle)
of this application is mail_support.

"Mail Support " enables a user to send e-mail during outgoing calls; for example if the user
was directed to an answering machine. Outbound calls are signaled by the application UI. If
the e-mail address of the called party can be determined, mail can be sent directly from the
UI.

This F-API application is represented by an instance of Application7. If a user connects to the
application, an instance of App7UserContext is created, and it registers as a listener in the
application object.

The application object registers in the InboundDialogService as listener
(SequencedDialogListener) for inbound dialogs. If a new dialog arrives (newInboundDialog()
event fired by the F-API) and no user context exists, then a default dialog proxy operation
through the F-API's ProxyRoutingService is performed. Afterwards, the dialog handling is
finished and the dialog arrives at the user's UA (or, if configured, at some other sequenced
application implemented elsewhere).

If user context objects exist, the dialog is distributed to them. Each user context compares the
dialog's calling party SIP address with the address pre-configured for the logged-in user
(sampleApps.properties). If the address matches for a user context, the user context
claims responsibility to handle the dialog.

The user context provides the majority of the call handling logic. It proxies the dialog
immediately to its original target and tries to determine the e-mail address associated with the
dialog's target SIP address. Known e-mail addresses can be configured in WEB-INF/
sampleApps.properties (sampleapp.7.email_addresses.user<n>).

The transport protocol for email sending is SMTP. SMTP server connection parameters have
to be adjusted in sampleApps.properties; there is no default setting.

 Note:
Many virus protection software products block port 25. If sending of e-mail fails, ensure that
the SMTP port 25 is open on your workstation.

Sample Applications using the Foundation Toolkit API

54 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

The application's UI is implemented as a page (/pages/sample7/app7.jsp) and the
corresponding script is implemented as ../app7.js.

Figure 23: "Mail Support" Application Page

The following figure shows the interaction between the F-API application and the F-API.

Figure 24: "Mail Support" – F-API Interaction

F-API Sample Applications

Sample Web Application Guide November 2012 55

"Call Recorder" Application
"Call Recorder" (package com.avaya.fapi.sampleapps.app8) is a Sequenced
Application to be called in the terminating sequence of a SIP user. The internal name (handle)
of this application is call_recorder.

"Call Recorder" enables users to play an announcement to callers during a call or to record
audio from the call to a file.

This F-API application is represented by an instance of Application8. If a user connects to the
application, an instance of App8UserContext is created, and it registers as a listener in the
application object.

Application8 registers in the InboundDialogService as the listener (SequencedDialogListener)
for inbound dialogs. If a new dialog arrives (newInboundDialog() event fired by the F-API)
and no user context exists, then a default dialog proxy operation through the F-API's
ProxyRoutingService is performed. Afterwards, the dialog handling is finished and the dialog
arrives at the user's UA (or, if configured, at some other sequenced application implemented
elsewhere).

If user context objects exist, the dialog is distributed to them sequentially. Each user context
compares the dialog's called party SIP address with the address pre-configured for the logged-
in user (sampleApps.properties). If the address matches for a user context, the user
context claims responsibility to handle the dialog.

The user context provides the majority of the call handling logic by delegating the processing
to an InboundDialogHandler8 object. InboundDialogHandler8 acts as a B2buaCallListener and
a MediaListener for the F-API's B2buaRoutingService and MediaService services
respectively.

The application routes a handled dialog to its destination without modification and a call is
signaled at the user's phone station. In parallel, the dialog event is presented in the user's open
"Call Recorder" browser window. If the user answers the call, UI buttons for audio playback
and audio recording become enabled. During the call, the user may (repeatedly) play audio to
the caller or record audio fragments of the call into a file located on the media server.

Recorded files are stored in the /opt/avaya/ma/MAS/platdata/filestorage/
SampleAppsMedia/recording folder on the media server. The automatically selected
names of the files are “call-recording_<user-login-name>_<date>_<time>.wav”. Date/time
represent the start time of the recording.

The application's UI is implemented as a page (/pages/sample8/app8.jsp) and the
associated script is implemented as ../app8.js.

Sample Applications using the Foundation Toolkit API

56 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Figure 25: "Call Recorder" Application Page

The following figures show the interaction between the F-API application and the F-API.

F-API Sample Applications

Sample Web Application Guide November 2012 57

Figure 26: "Call Recorder" – F-API Interaction (Part 1)

Figure 27: "Call Recorder" – F-API Interaction (Part 2)

 Note:
Because of issues detected for calls sequenced through Communication Manager, the SDK
source code contains two versions of this application. The first (preferred) version operates
as described in preceding figures. The second version adds the received inbound dialog to
a created call, adds a media server to the call, and finally adds a dialog for the recipient of
the call (see
com.avaya.fapi.sampleapps.app8.InboundDialogHandler8.javaversion2).

Issues are as follows:

Sample Applications using the Foundation Toolkit API

58 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

• First application version: There is an incorrect opposite station display (SIP domain
only) on user agents connected to Session manager.

• Second application version: Audio is missing for calls to/from stations connected to
Communication Manager when the calls are handled by Implicit User rules on Session
Manager.

 Important:
Avoid adding a media server to a call before the call is answered. There will be no ringback
signal to the caller unless the application plays an audio signal to the caller using the media
server.

F-API Sample Applications

Sample Web Application Guide November 2012 59

Sample Applications using the Foundation Toolkit API

60 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Chapter 6: Sample Applications using the
Sequenced Template API

The Foundation SDK distribution contains several sample applications which demonstrate the use of the
Sequenced Template API. All sample applications are packaged in a single JEE web application. The
target runtime of the web application is a Tomcat JSP container.

This chapter focuses on the sample web application, delivered as project jee-f-tpapi-samples in the
SDK.

 Note:
Applications using the Sequenced Template API do not have to be JEE web applications; they can be
JSE applications as well. Packaging of multiple, independent applications into a single web application
(as done in the SDK web application) is useful for demonstration purposes.

The Sequenced Template API
The Sequenced Template API provides an API for a typical, limited set of call handling patterns
in "sequenced" applications. The API is very easy to use and understand because SIP
terminology (e.g. a "Dialog") has been removed from it.

The current version of the Sequenced Template API offers two services:

• OutgoingCallDirectorService: This service supports applications for originating
application sequences (allow, block, or redirect outgoing calls)

• IncomingCallDirectorService: This service supports applications for terminating
application sequences (allow, reject, and redirect incoming calls. These calls can also be
rejected with playback of an announcement to the caller)

Template services can be obtained through the TemplateServiceFactory.

Connection of client applications to the Foundation Services ("application binding") has to be
done via the AppBindingService of the Foundation Toolkit API. The reference to the
AppBindingService can be obtained from the TemplateServiceFactory.

Because of its straightforwardness, the Sequenced Template API does not provide application
callbacks that allow users to monitor a call's state after they have decided how to handle the
call.

Sample Web Application Guide November 2012 61

 Important:
Utilization of the Sequenced Template API and the Foundation Toolkit API must not be mixed
in an application.

The "Sequenced Template API" is implemented as a jar-library. Applications using the
Sequenced Template API must include this library and all client libraries of the Foundation
Toolkit API in their Java classpath.

The description of the Sequenced Template API client library is provided in JavaDoc format.
You will find the client library documentation in the Documentation/Sequenced-
Template- API-JavaDoc folder of the Foundation SDK distribution.

Web Application Structure
The JEE web application has a structure which is very similar to the structure of the Foundation
Toolkit API sample web application presented in Web Application Structure on page 25. The
difference is that applications do not access the Foundation Toolkit API (except for the
application binding process). Instead, they access the Sequenced Template API.

The web application contains some basic framework parts, which:

• create instances of the Sequenced Template API sample applications ("F-API" samples)

• implement a user login procedure (login web page and authentication)

• provide a basic "console" web page from which the logged-in user can select the
Sequenced Template API sample application to interact with

Framework and F-API sample applications communicate with the client web pages loaded in
the user's browser through a Comet transport link, which is based on the DWR (Direct Web
Remoting) libraries (see http://directwebremoting.org). Thus, scripts (JavaScript) in client web
pages are enabled to call object methods of the F-API sample applications, receive method
return values, and receive asynchronous event notifications.

 Note:
The Sequenced Template API is based on the same Foundation Toolkit Runtime Services
as the Foundation Toolkit API. Therefore, the term "F-API Application" is maintained in parts
of the following description and throughout the application source code.

Please keep in mind that the terms "F-API application" and "Sequenced Template API
application" are interchangeable in this chapter.

Sample Applications using the Sequenced Template API

62 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

http://directwebremoting.org
mailto:infodev@avaya.com?subject=Sample Web Application Guide

Sequenced Template API Sample Application Structure
The following figure offers a detailed view of a Sequenced Template API sample application.

Figure 28: Sequenced Template API Application Structure
Each of the Sequenced Template API sample applications contains the following two basic
parts, which are represented by distinct objects during runtime:

• Application Context Based Part: This object is created upon start of the web application
and exists during the web application's lifetime. The application context object is called
the F-API Application in the following descriptions and in software code, even though it
is only a part of the whole Sequenced Template API sample application.

• User Session Context Based Part: This object is created if a user has logged in to the
web application (the user enters a basic console Web page) and chooses to connect to
one of the Sequenced Template API sample applications (the user opens an application-
specific web page via control elements on the console page). The user context object
exists during the lifetime of the user's HTTP session as long as the user stays connected
(does not disconnect with a web UI button) to the Sequenced Template API sample
application. This user context object is called the F-API Application User Context in the
following descriptions and in software code.

 Note:
For a Sequenced Template API application, only one "Application Context" object exists
during the web application's runtime, but each user connected to the application has a
corresponding "User Context" object.

Sequenced Applications based on the Sequenced Template API listen for incoming or outgoing
calls during the application's lifetime (done by the "F-API Application" object). As long as no

Web Application Structure

Sample Web Application Guide November 2012 63

specific user interferes, each call is allowed (call establishment will be proxied onward). If a
logged-in user has created a "User Context" object, this object can decide for each arriving
call if the call is originated by or terminated on the user's known SIP address. If the address
matches, the "User Context" can process the call and apply some handling offered by the
Sequenced Template API (allow, reject, or redirect the call). Thus, for applications based on
the Sequenced Template API, the majority of the application logic resides in the "User
Context".

Framework Details
The Sequenced Template API sample applications are packaged into a single JEE web
application.

This web application is based on a "framework" which serves as the basic runtime environment
for F-API applications. The framework can be used as the basis for further applications.

 Note:
Although the framework is a basic part of the code, there is no need to understand it deeply
in order to understand how to use the Sequenced Template API. Focus should be put on
the different F-API applications, regarding the framework description as additional
material.

 Important:
The framework classes are very similar (identical names and classpaths) to those classes
used in the web application that demonstrates the Foundation Toolkit API. The web
application console page has identical functionality. Please read explanations in Framework
Details on page 28; they apply to the Sequenced Template API sample web application as
well.

Differences in the implementation of some of the basic classes are described in Sequenced
Template API Sample Applications on page 65.

User Login Process
Connect to the Web application by choosing the URL http://<localhost>:8080/jee-
f-tpapi-samples in a browser. You are redirected to the login page (/login.jsp).

 Important:
Cookies have to be enabled in the browser to run the web application.

Sample Applications using the Sequenced Template API

64 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Libraries
In order to access the Sequenced Template API, all of the libraries mentioned in Libraries on
page 34 have to be included in an application.

Additionally, you need the Sequenced Template API library sequenced-template-
api-1.0.x.jar (x = current sub release).

You find the library in the Software-Libraries/Sequenced-Template-API folder of the
Foundation SDK distribution.

Sequenced Template API Sample Applications
The applications use the Sequenced Template API through service objects, which can be
obtained from the API using methods of the factory
com.avaya.service.template.client.TemplateServiceFactory.

The factory methods require the provision of a "bind id" parameter, retrieved from the web
application's central "main" object, which has established the connection to the Foundation
Toolkit runtime services.

Services accessed by the sample applications are:

Sequence Template API Sample
Application

Sequenced Template API Service

General use by the "framework" AppBindingService

Call Director IncomingCallDirectorService

Call Blocker OutgoingCallDirectorService

As already mentioned, a Sequenced Template API sample application actually consists of a
web application based part ("F-API Application") and a Web application user-session based
part ("F-API Application User Context"). The user context is established each time a logged-
in user connects to one of the Sequenced Template API applications.

You should be aware that, because of the specific implementation of a JEE web application
that hosts multiple Sequenced Template API sample applications, each web application user
has access to all Sequenced Template API sample applications. If multiple users are logged
in to the web application via browsers, they might affect the sample applications
simultaneously. The sample applications decide which events, signaled by the Sequenced

Libraries

Sample Web Application Guide November 2012 65

Template API, are of relevance for a the logged-in user. it is the duty of the applications to
resolve concurrency conflicts.

The "framework" parts of the web application are very similar to those included in the sample
Web application demonstrating the usage of the Foundation Toolkit API (please read F-API
Sample Applications on page 34).

The following classes and interfaces support the Sequenced Template API in different ways:

• AbstractFapiApplication

• FapiApplication

• UserFapiAppListener

• EventMulticaster

Below is a description of the basic classes from which the Sequenced Template API application
classes are derived (inheritance).

• AbstractFapiApplication: This class serves as a super-class of F-API (Sequenced
Template API) application classes. It implements a listener for either incoming or outgoing
calls (IncomingCallDirectorListener or OutgoingCallDirectorListener), which can be
registered in the Sequenced Template API's IncomingCallDirectorService's respective
OutgoingCallDirectorService for reception of call events. New call events are fired to user
context objects that have registered as UserFapiAppListener in the F-API application
object. User context objects registered as UserFapiAppListener in the F-API application
object are managed as a chain of listeners implemented by the class EventMulticaster.

• AbstractFapiApplicationUserContext: This class serves as a super-class of all F-API
application user context classes. It implements a listener (UserFapiAppListener) for
events fired by the application object (new call events or generic events). Usually, a user
context object will register as a listener in its corresponding F-API application.

After the F-API application object sequentially distributes certain events (such as new calls) to
listening user context objects, the method call contains an EventResponsibility parameter.
Each user context checks to see if it can take responsibility for the event. If it decides to handle
the event, the user context must modify the responsibility parameter (claim to be responsible).
All user contexts informed later have to respect the already set responsibility and gracefully
ignore the event.

If none of the existing user context objects decide to be responsible for the event, the default
handling is to allow the call establishment to proceed.

Sequenced applications based on the Sequenced Template API listen for either incoming or
outgoing call events and check if the call needs to be processed by the application. A criterion
might be the calling or called party SIP address delivered with the call event. Terminating
sequenced applications will typically check the called party address, while originating
applications will check the calling party address.

The Sequenced Template API sample applications make SIP address comparisons based on
addresses associated with web application users in the configuration file /WEB-INF/
sampleApps.properties.

Sample Applications using the Sequenced Template API

66 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

If a call event is targeted to the currently logged-in user, the F-API application's user context
can signal the call in the user's open browser window and handle the call in a way predefined
by the user. Each call event delivers a "call director" object (either IncomingCallDirector or
OutgoingCallDirector). The application handles calls (allows, rejects, and redirects the calls)
via methods of the call director object.

If the user opens two browser instances and logs in twice, a conflict will arise upon arrival of
a call event. The conflict is resolved by the responsibility mechanism: only one of the user
sessions can handle the call.

 Note:
Application names appearing in the following Sequenced Template API application
descriptions have to be configured in the Avaya Aura environment (via System Manager)
in order to get the applications working. The application name represents the "handle" of
sequenced applications.

Application names can be easily modified in /WEB-INF/sampleApps.properties to match
a given environment.

Application sequences to be executed for Session Manager SIP users must be configured via
System Manager's administration web interface. Each application in a sequence is associated
with the Foundation Runtime Services on an Avaya ACE™ server. Please see F-API Sample
Applications on page 34 for explanations on where to find the settings in the System Manager
menu.

"Call Blocker" Application
"Call Blocker" (package com.avaya.fapi.sampleapps.app1) is a Sequenced Application
to be called in the originating sequence of a SIP user. The internal name (handle) of this
application is callblocker.

"Call Blocker" enables a user to set a policy for the handling of calls that originate from the
user's registered SIP UA. Based on the policy which evaluates the called party address,
outgoing calls may be allowed, blocked, or redirected to another predefined target.

The restriction to the logged-in user's own calls is for demonstration only. A more realistic
application would likely enable an administrator to define how outgoing calls of a group of SIP
users has to be handled.

 Note:
Because of considerations already mentioned for the "Call Screening" application (see “Call
Screening” Application on page 38), sequenced applications should handle a call as quickly
as possible, rather than handling it in a user-interactive way. Therefore, policy based
operation has been chosen.

Sequenced Template API Sample Applications

Sample Web Application Guide November 2012 67

This F-API application is represented by an instance of Application1. If a user connects to the
application, an instance of App1UserContext is created, and it registers as a listener in the
application object.

The F-API application object registers in the OutgoingCallDirectorService as a listener
(OutgoingCallDirectorListener) for outgoing calls. If a new call is signaled (outgoingCall()
event fired by the Sequenced Template API) and no user context exists, then a default "allow
call" operation through the delivered OutgoingCallDirector is performed. Afterwards, the call
arrives at the called UA (or, if configured, at some other sequenced application implemented
elsewhere).

If user context objects exist, the new call is distributed sequentially to them (via their
processOutgoingCall() method). Each user context compares the calling party SIP
address with the address pre-configured for the logged-in user (sampleApps.properties).
If the address matches for a user context, the user context object claims responsibility to handle
the call.

The application's UI is implemented as a page (/pages/sample1/app1.jsp) and the
associated script is implemented as ../app1.js.

The UI allows users to set a policy which defines how an outgoing call must be handled based
on the called party SIP address. The partial policy settings for blocking, permission to proceed
(proxy onward to original target), or redirection (to different target) are evaluated by the
application in a top-down way (the first match counts). Policy strings may contain wildcards "*"
(any string) or "?" (any character).

Sample Applications using the Sequenced Template API

68 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Figure 29: "Call Blocker" Application Page

The following figure shows the interaction between the F-API application and the Sequenced
Template API.

Sequenced Template API Sample Applications

Sample Web Application Guide November 2012 69

Figure 30: "Call Blocker" – Sequenced Template API Interaction

"Call Director" Application
"Call Director" (package com.avaya.fapi.sampleapps.app2) is a Sequenced Application
to be called in the terminating sequence of a SIP user. The internal name (handle) of this
application is calldirector.

"Call Director" enables a user to set a policy for the handling of calls towards his registered
SIP UA. Based on the policy which evaluates the calling party address, incoming calls may be
allowed, blocked, or redirected to a predefined different target. An audible announcement can
also be played to the caller.

 Note:
Because of considerations already mentioned for the "Call Screening" application (see “Call
Screening” Application on page 38), sequenced applications should handle a call as quickly
as possible, rather than handling the call in a user-interactive way. Therefore, policy based
operation has been chosen.

This F-API application is represented by an instance of Application2. If a user connects to the
application, an instance of App2UserContext is created, and it registers as a listener in the
application object.

Sample Applications using the Sequenced Template API

70 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

The F-API application object registers in the IncomingCallDirectorService as a listener
(IncomingCallDirectorListener) for incoming calls. If a new call is signaled (incomingCall()
event fired by the Sequenced Template API) and no user context exists, then a default "allow
call" operation through the delivered IncomingCallDirector is performed. Afterwards, the call
arrives at the called UA (or, if configured, at some other sequenced application implemented
elsewhere).

If user context objects exist, the new call is distributed sequentially to them (via their
processIncomingCall() method). Each user context compares the called party SIP
address with the address pre-configured for the logged-in user (sampleApps.properties).
If the address matches for a user context, the user context object claims responsibility to handle
the call.

The application's UI is implemented as a page (/pages/sample2/app2.jsp) and the
associated script is implemented as ../app2.js.

The UI allows setting a policy which defines how an incoming call must be handled based on
the calling party SIP address. The partial policy settings for blocking, permission to proceed
(proxy onward to original target), redirection (to different target), or blocking with an
announcement playback towards the caller are evaluated by the application in a top-down way
(the first match counts). Policy strings may contain wildcards "*" (any string) or "?" (any
character).

Sequenced Template API Sample Applications

Sample Web Application Guide November 2012 71

Figure 31: "Call Director" Application Page

The following figure shows the interaction between the F-API application and the Sequenced
Template API.

Sample Applications using the Sequenced Template API

72 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Figure 32: "Call Director" – Sequenced Template API Interaction

Sequenced Template API Sample Applications

Sample Web Application Guide November 2012 73

Sample Applications using the Sequenced Template API

74 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

Chapter 7: Running Sample Applications

The sample web applications can be run inside of the Eclipse IDE. Starting and deploying sample
applications on page 20 addresses how to deploy the applications and start Tomcat from Eclipse.

You can also deploy and run the web application binaries directly on your installed Tomcat.

Running Sample Applications Outside the IDE
About this task
Two "ready to run" sample web application WAR-files (jee-f-api-samples.war and jee-
f-tpapisamples.war) are provided in the IDE-Export directory of the Foundation SDK
distribution.

The steps below explain how to run these applications.

Procedure

1. Start the installed Tomcat through the Windows service applet

2. Drop the WAR-files into the \webapps directory for the Tomcat installation
Tomcat should immediately expand the file into the following subfolders: jee-f-
api-samples and jee-f-tpapisamples. If this does not happen, restart
Tomcat.

3. Make sure that the configuration of the applications matches the referenced Avaya
Aura® test environment (see Reference Sample Application and Test Environment
Configuration on page 76). If your environment differs from the Avaya Aura® test
environment, do the following:

a. Stop the Tomcat server
b. Modify the application configurations by adjusting the

sampleApps.properties files in the /WEB-INF directory of each web
application.

c. Restart the Tomcat server

Sample Web Application Guide November 2012 75

Web Interface Access
The start URLs for the web application UIs are:

• Foundation Toolkit API samples: http://<localhost>:8080/jee-f-api-
samples

• Sequenced Template API samples: http://<localhost>:8080/jee-f-tpapi-
samples

You are redirected to a login page (see Connection to the Foundation Toolkit Services on
page 80 for login information)

Reference Sample Application and Test Environment
Configuration

Proper functioning of the sample applications requires an Avaya Aura® test environment
configured in a way that matches the configuration of the sample applications.

The sample applications are delivered with a predefined configuration in the following files: /
WEB-INF/sampleApps.properties and /WEB-INF/fServerLink.properties.

The initial configuration matches a "reference" configuration of the test environment, which is
outlined in this chapter.

If your test environment differs, either the mentioned application properties files must be
modified, or the test environment must be adapted via System Manager.

Reference Configuration of the Test Environment
Configuration of Session Manager (through System Manager):

SIP domain name: vsil.local
List of applications (System Manager menu Elements/Session Manager/Application
Configuration/ Applications):

• CM

• CallScreening (handle=callscreening)

• DeflectToIVR (handle= deflect_to_IVR)

Running Sample Applications

76 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

• MailSupport (handle= mail_support)

• CallBlocker (handle= callblocker)

• CallDirector (handle= calldirector)

• CallRecorder (handle= call_recorder)

 Note:
All applications (except CM) are executed by the Foundation Toolkit Services running on the
Avaya ACE server. CM is the Avaya Aura Communication Manager.

The "handle" appears as "application name" inside of the sample software.

List of application sequences (see System Manager menu Elements/Session Manager/
Application Configuration/Application Sequences):

• CM (contains application: CM)

• TermSequ1 (contains applications: CallScreening, CM)

• TermSequ2 (contains applications: DeflectToIVR, CM)

• TermSequ3 (contains applications: CallScreening, DeflectToIVR, CM)

• TermSequ4 (contains applications: CallDirector, CM)

• TermSequ5 (contains applications: CallRecorder, CM)

• OrigSequ1 (contains applications: CM, MailSupport)

• OrigSequ2 (contains applications: CM, CallBlocker)

In order to enable usual telephony features, all application sequences additionally contain the
application Communication Manager (CM). As a consequence, call establishments are
sequenced through the Communication Manager.

If included in the sequence definitions shown above, CM should be configured to be a "Feature
Server" (see CM documentation). As a feature server, CM can have any position in application
sequences.

In its standard configuration, CM works as "Evolution Server". As "Evolution Server", CM must
be the last application in originating sequences and the first application in terminating
sequences.

 Important:
Sequenced applications using the B2buaRoutingService (DeflectToIVR) are not allowed
with CM as "Evolution Server" in sequence.

List of user profiles (see System Manager menu Users/Manage Users. For a user profile,
you can find application sequence settings in Communication Profile/Session Manager
Profile):

Reference Sample Application and Test Environment Configuration

Sample Web Application Guide November 2012 77

SIP Address Configured Application Sequence
(Terminating, Originating) (corresponding

applications)
sip:32135@vsil.local O: CM (CM)

T: CM (CM)

sip:32136@vsil.local O: CM (CM)
T: TermSequ1 (CallScreening, CM)

sip:32137@vsil.local O: CM (CM)
T: TermSequ2 (DeflectToIVR, CM)

sip:32138@vsil.local O: CM (CM)
T: TermSequ3 (CallScreening, DeflectToIVR,
CM)

sip:32139@vsil.local O: CM (CM)
T: CM (CM)

sip:32140@vsil.local O: OrigSequ1 (CM, MailSupport)
T: CM (CM)

sip:32141@vsil.local O: CM (CM)
T: TermSequ4 (CallDirector, CM)

sip:32142@vsil.local O: OrigSequ2 (CM, CallBlocker)
T: CM (CM)

sip:32143@vsil.local O: CM (CM)
T: TermSequ5 (CallRecorder, CM)

sip:40444@vsil.local No sequencing

sip:40555@vsil.local No sequencing

 Note:
User profiles sip:40444@vsil.local and sip:40555@vsil.local enable the
Announcement's respective "Conference" sample applications (named applications) to
register as a SIP endpoint. Application sequences must not be set for these profiles.

Stations 32135 ... 32142 must be provisioned on CM as well because calls to/from these
stations are sequenced through CM.

Configuration of the Media Server ("AMS"):

The needed audio files must be stored in the /opt/avaya/ma/MAS/platdata/
filestorage/SampleAppsMedia folder on the Media Server. You will find the files in the
\Audio folder of the Foundation SDK distribution.

The audio wav file's content is linear 16-Bit PCM with a sample rate of 8 KHz.

If you intend to record your own audio files, you can find various free tools offered on the
Internet. A powerful tool is "Audacity" (http://audacity.sourceforge.net). If you want a tool that
is easy to use, try "Fox Magic Audio Recorder" (http://www.fox-magic.com).

Running Sample Applications

78 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

http://audacity.sourceforge.net
http://www.fox-magic.com
mailto:infodev@avaya.com?subject=Sample Web Application Guide

An /opt/avaya/ma/MAS/platdata/filestorage/SampleAppsMedia/recording
folder must be added to the Media Server. Files recorded by the "Call Recorder" application
will be stored there.

Alternative Configuration (without Communication Manager Sequencing)

Sequencing through Communication Manager may affect the functioning of F-API applications
because of the added delay in call establishment and the differences in SIP signaling flows
(Communication Manager represents an additional SIP proxy).

Provisions are included in the SDK sample applications so that they can be easily switched to
run against a reference test environment, which does not sequence call establishments
through CM.

Alternative Application Sequences:

Here is a list of alternative application sequences:

• TermSequ1NoCM (contains application: CallScreening)

• TermSequ2NoCM (contains application: DeflectToIVR)

• TermSequ3NoCM (contains applications: CallScreening, DeflectToIVR)

• TermSequ4NoCM (contains application: CallDirector)

• TermSequ5NoCM (contains application: CallRecorder)

• OrigSequ1NoCM (contains application: MailSupport)

• OrigSequ2NoCM (contains application: CallBlocker)

Alternative User Profiles:

SIP Address Configured Application Sequence
(Terminating, Originating) (corresponding

applications)
sip:32145@vsil.local O: ---

T: ---

sip:32146@vsil.local O: ---
T: TermSequ1NoCM (CallScreening)

sip:32147@vsil.local O: ---
T: TermSequ2NoCM (DeflectToIVR)

sip:32148@vsil.local O: ---
T: TermSequ3NoCM (CallScreening,
DeflectToIVR)

sip:32149@vsil.local O: ---
T: ---

sip:32150@vsil.local O: OrigSequ1NoCM (MailSupport)

Reference Sample Application and Test Environment Configuration

Sample Web Application Guide November 2012 79

SIP Address Configured Application Sequence
(Terminating, Originating) (corresponding

applications)
T: ---

sip:32151@vsil.local O: ---
T: TermSequ4NoCM (CallDirector)

sip:32153@vsil.local O: ---
T: TermSequ5NoCM (CallRecorder)

Configuration of the Sample Web Applications

Connection to the Foundation Toolkit Services

The details of the connection to the Foundation Runtime Services on the Avaya ACE ™ server
(URL for connection to the server) are set in /WEB-INF/fServerLink.properties.

The secure server connection (TLS) settings may require special attention (refer to keystore/
truststore files. Their passwords can be generated using utilities of Avaya Aura® System
Manager). For more information, please read the description of "application bindings" in Avaya
Agile Communication Environment™ Foundation Toolkit Developer's Guide (NN10850-059).

Sample Web Application using the Foundation Toolkit API

The web application's name is jee-f-api-samples.

The configuration resides in the file /WEB-INF/sampleApps.properties.

SIP domain name: vsil.local
SIP location service URI: sip:vsil.local
The domain name is used for registration of "named" applications in the SIP location service.
The location service, which resides in Session Manager, is accessed through its SIP URI.

Web application users and associated SIP users (on Session Manager):

User Login Name Password Associated SIP User
Address (AOR)

user1 avaya sip:32135@vsil.local

user2 avaya sip:32136@vsil.local

user3 avaya sip:32137@vsil.local

Running Sample Applications

80 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

User Login Name Password Associated SIP User
Address (AOR)

user4 avaya sip:32138@vsil.local

user5 avaya sip:32139@vsil.local

user6 avaya sip:32140@vsil.local

user7 avaya sip:32143@vsil.local

F-API sample application internal names (case sensitive "handles" for sequenced applications,
and the user part of a SIP address for named applications) are:

• callscreening: "Call Screening" sequenced application

• 40444: "Announcement" named application

• deflect_to_IVR: "Deflect to IVR" sequenced application

• make_call: "Make Calls" endpoint application

• 40555: "Conference" named application

• make_call_async: "Make Calls (Async)" endpoint application

• mail_support: "Mail Support" sequenced application

• call_recorder: "Call Recorder" sequenced application

The resulting SIP AOR of named applications is: sip:<name>@<domain>; for example, sip:
40444@vsil.local.

Audible announcement file references (see the \Audio folder in the Foundation SDK
distribution):

• named_app_message.wav: referenced by the "Announcement" application

• callback_fiveminutes.wav referenced by "Deflect to IVR"

• callback_onehour.wav: referenced by "Deflect to IVR"

• callback_onehour.wav: referenced by "Deflect to IVR"

• callback_tomorrow.wav: referenced by "Deflect to IVR"

• conference_enter.wav: referenced by "Conference"

• conference_muted.wav: referenced by "Conference"

• conference_unmuted.wav: referenced by "Conference"

• please_hold_on.wav: referenced by "Call Recorder"

• call_recording_start.wav: referenced by "Call Recorder"

Reference Sample Application and Test Environment Configuration

Sample Web Application Guide November 2012 81

Sample Web Application using the Sequenced Template API

The web application's name is jee-f-tpapi-samples.

The configuration resides in the file /WEB-INF/sampleApps.properties.

Web application users and associated SIP users (on Session Manager):

User Login Name Password Associated SIP User
Address (AOR)

user1 avaya sip:32141@vsil.local

user2 avaya sip:32142@vsil.local

F-API sample application internal names (case sensitive "handles" for sequenced applications)
are:

• callblocker: "Call Blocker" sequenced application

• calldirector: "Call Director" sequenced application

Audible announcement file references (see the \Audio folder in the Foundation SDK
distribution):

• callback_fiveminutes.wav: referenced by "Call Director"

• callback_onehour.wav: referenced by "Call Director"

• callback_tomorrow.wav: referenced by "Call Director"

Alternative Configurations (without Communication Manager Sequencing)

The sample web applications contain an alternative version of the application properties file
sampleApps.properties-no-cm, which matches the alternative set of SIP users listed in
Alternative Configuration (without Communication Manager Sequencing) on page 79.

The content of the file is almost equal to the original sampleApps.properties, except for
the association between web application users and SIP addresses.

Here is a list of web application users and associated alternative SIP users for the sample web
application using the Foundation Toolkit API (jee-f-api-samples):

User Login Name Password Associated SIP User
Address (AOR)

user1 avaya sip:32145@vsil.local

user2 avaya sip:32146@vsil.local

user3 avaya sip:32147@vsil.local

Running Sample Applications

82 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

User Login Name Password Associated SIP User
Address (AOR)

user4 avaya sip:32148@vsil.local

user5 avaya sip:32149@vsil.local

user6 avaya sip:32150@vsil.local

user7 avaya sip:32153@vsil.local

Here is a list of web application users and associated alternative SIP users for the sample Web
application using the Sequenced Template API (jee-f-tpapi-samples):

User Login Name Password Associated SIP User
Address (AOR)

user1 avaya sip:32151@vsil.local

user2 avaya sip:32152@vsil.local

Follow the steps below to enable the alternative configuration for one of the web applications:

1. Locate the files in the /WEB-INF/ folder of the Web application

2. Rename the original sampleApps.properties; for example, you can change the
name to sampleApps.properties-cm

3. Rename the alternative configuration file sampleApps.properties-no-cm to
sampleApps.properties

4. Restart the Tomcat JSP container on which the sample web application is deployed

Running "Named" Applications without Endpoint Registration
In the description of the "Named" applications "Announcement" (see “Announcement”
Application on page 40) and "Conference" (see “Conference” Application on page 48), it was
mentioned that registration of the F-API applications as SIP endpoints is not the only method
to get calls towards an application's SIP address directed to the application.

Though chosen as the default for the SDK sample F-API applications, the "registration method"
is not recommended since it requires appropriate SIP user definitions in Session Manager for
each of the named applications (that is the purpose of the predefined users sip:
40444@vsil.local and sip:40555@vsil.local in the reference configuration).

The recommended method is to set Routing Policies for Session Manager. If routing policies
point to the named F-API applications, there is no need to have corresponding user definitions
in Session Manager, and the applications do not need to register as SIP endpoints.

Reference Sample Application and Test Environment Configuration

Sample Web Application Guide November 2012 83

Session Manager routing policies can be defined through System Manager. Here is a
configuration example for the SDK sample F-API applications "Announcement" and
"Conference" (part of the web application jee-f-api-samples):

1. Select Routing/Routing Policies in System Manager and define two policies:
"Announcement-Application" and "Conference-Application"

Both policies must point to the Foundation Services (on the Avaya ACE™ server)
SIP entity and must be valid at all times.

2. Select Routing/Regular Expressions and define two regular expressions: a
pattern 40440@vsil\.local (rank order 0) must point to the policy
"Announcement- Application", and a pattern 40550@vsil\.local (rank order 1)
must point to the policy "Conference-Application"

 Note:
The policies have been selected as "40440@..." and "40550@..." because of the collision
with Session Manager users "sip:40444@..." and "sip:40555@..." already defined in the
reference configuration. If you explicitly want to use policies "40444@..." and "40555@...",
you have to delete the matching Session Manager users.

The second step towards using routing policies for the named applications is to reconfigure
the SDK sample web application jee-f-api-samples in a way that:

• "Announcement" and "Conference" F-API applications do not register as SIP endpoints

• the target SIP address of "Announcement" is changed to sip:40440@vsil.local, and
the address of "Conference" is changed to sip:40550@vsil.local

Follow the steps below to modify the configuration.

1. Locate the file sampleApps.properties in the /WEB-INF/ folder of the Web
application jee-f-api-samples deployed on the Tomcat JSP container, and edit
the file.

Modify properties sampleapp.2.application.name=40440 and
sampleapp.2.register_as_endpoint=false
Modify properties sampleapp.5.application.name=40550 and
sampleapp.5.register_as_endpoint=false

2. Restart the Tomcat JSP container. Use the modified SIP addresses to call the
"Announcement" and "Conference" F-API applications from user agents (see
Sample Application Handling on page 84)

Sample Application Handling
This chapter explains how you can see the F-API applications working.

Running Sample Applications

84 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

The prerequisite for all procedures described is that the sample application configuration meets
the configuration of the reference test environment presented in Reference Configuration of
the Test Environment on page 76.

If your Avaya Aura® environment does not meet the default configuration of the sample
applications, you may need to modify the configuration by editing the files .. /WEB-INF/
sampleapps.properties (see Running Sample Applications Outside the IDE on page 75
and Connection to the Foundation Toolkit Services on page 80 for details).

The default configuration implies sequencing through Communication Manager.

If you opt for omission of Communication Manager sequencing, you have to use the alternative
web application configuration (see Alternative Configurations (without Communication
Manager Sequencing) on page 82). In this case, translate all mentioned SIP user references
(UA call numbers) from sip:32135@vsil.local (32135) ... sip:
32143@vsil.local (32143) to sip:32145@vsil.local (32145) ... sip:
32153@vsil.local (32153) in the sample application handling descriptions.

Sample Web Application using the Foundation Toolkit API

"Call Screening" sequenced application

Procedure

1. Register three SIP UAs to the Session Manager: sip:32135@vsil.local, sip:
32136@vsil.local, and sip:32139@vsil.local.

2. Log in to the sample web application as user2 and open the "Call Screening"
application window.

3. Set suitable policies, and call UA 32136 from 32135 to see calls being accepted
or rejected.

4. Set suitable policies, and call UA 32136 from 32135 to see calls being proxied or
redirected to 32139.

"Announcement" named application

Procedure

1. Register a SIP UA to the Session Manager; for example, sip:
32135@vsil.local.

Sample Application Handling

Sample Web Application Guide November 2012 85

2. Log in to the sample web application as any user, and open the "Announcement"
application window.

3. Call 40444 (sip:40444@vsil.local), and monitor the audible announcement
playback.

"Deflect to IVR" sequenced application

Procedure

1. Register two SIP UAs to the Session Manager: sip:32135@vsil.local and
sip:32137@vsil.local.

2. Log in to the sample web application as user3, and open the "Deflect to IVR"
application window.

3. Call UA 32137 from 32135. This allows you to deflect calls to selectable audible
announcements through your browser.

Sequencing of "Call Screening" and "Deflect to IVR"

Procedure

1. Register two SIP UAs to the Session Manager: sip:32135@vsil.local and
sip:32138@vsil.local.

2. Log in to the sample web application as user4, and open the "Call Screening" and
the "Deflect to IVR" application windows.

3. Call UA 32138 from 32135.
You will see the chain of two sequenced applications in action.

"Make Calls" endpoint application

Procedure

1. Register two SIP UAs to the Session Manager: sip:32135@vsil.local and
sip:32139@vsil.local.

2. Log in to the sample web application as user5, and open the "Make Calls"
application window.

Running Sample Applications

86 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

3. Select call target sip:32135@vsil.local in your web browser, and initiate a call
through the UI.

4. UA 32139 should ring. Answer the call.

5. UA 32135 should ring. Answer the call and both UAs will be connected.

"Conference" named application

Procedure

1. Register two SIP UAs to the Session Manager: sip:32135@vsil.local and
sip:32139@vsil.local.

2. Log in to the sample web application as user1 (configured as moderator), and open
the "Conference" application window.

3. Call 40555 (sip:40555@vsil.local) from both UAs
You will be able to monitor participants of the conference

"Make Calls (Async)" named application

This application is very similar to the "Make Calls" application. The difference is the utilization
of asynchronous services in the Foundation Toolkit API. Please handle the "Make Calls
(Async)" application as described in "Make Calls" endpoint application on page 86.

"Mail Support" sequenced application

About this task
In order to send e-mail via this application, SMTP server connection parameters and user e-
mail addresses have to be adjusted in sampleApps.properties (see sampleapp.7.xxx
parameters). There is no default setting. Please ensure that virus protection software on your
workstation does not block the SMTP port (usually 25).

Procedure

1. Register two SIP UAs to the Session Manager: sip:32135@vsil.local and
sip:32140@vsil.local.

2. Log in to the sample web application as user6, and open the "Mail Support"
application window.

3. Call 32135 from UA 32140.

Sample Application Handling

Sample Web Application Guide November 2012 87

The call will be signaled in the browser UI. If mail transport server parameters and
mail addresses are properly configured, you will be able to send e-mail to the called
user.

"Call Recorder" sequenced application

Procedure

1. Register two SIP UAs to the Session Manager: sip:32135@vsil.local and
sip:32143@vsil.local.

2. Log in to the sample web application as user7, and open the "Call Recorder"
application window.

3. Call UA 32143 from 32135 , and answer the call from UA 32143.

4. Use the web application UI to play an announcement towards 32135, or record
parts of the call into a file on the media server.

Sample Web Application using the Sequenced Template API

"Call Director" sequenced application

Procedure

1. Register three SIP UAs to the Session Manager: sip:32135@vsil.local, sip:
32139@vsil.local, and sip:32141@vsil.local.

2. Log in to the sample web application as user1, and open the "Call Director"
application window.

3. Set suitable policies, and call UA 32141 from 32135 to see calls being accept or
rejected.

4. Set suitable policies and call UA 32141 from 32135 to see calls being redirected
to 32139.

5. Set suitable policies, and call UA 32141 from 32135 to see calls being blocked with
the playback of an audible announcement towards the caller.

Running Sample Applications

88 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

"Call Blocker" sequenced application

Procedure

1. Register three SIP UAs to the Session Manager: sip:32135@vsil.local, sip:
32139@vsil.local, and sip:32142@vsil.local.

2. Log in to the sample web application as user2, and open the "Call Blocker"
application window.

3. Set suitable policies and call UA 32135 from 32142 to see calls being allowed or
blocked.

4. Set suitable policies and call UA 32135 from 32142 to see calls being redirected
to 32139.

Sample Application Handling

Sample Web Application Guide November 2012 89

Running Sample Applications

90 Sample Web Application Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Sample Web Application Guide

	Contents
	Chapter 1: Introduction
	Purpose
	Prerequisites
	Terminology

	Chapter 2: Application tools
	Java runtime environment
	Installing Tomcat
	Installing Eclipse IDE

	Chapter 3: Working with the Eclipse IDE
	Basic Eclipse Settings
	Perspectives
	Setting IDE preferences
	Running Tomcat inside Eclipse IDE

	Importing a sample application
	Project references to the JRE do not match the installed JRE
	Solution

	Missing Apache Tomcat Reference

	Starting and deploying sample applications

	Chapter 4: Building sample applications
	Building applications using Eclipse IDE
	Building applications using ANT

	Chapter 5: Sample Applications using the Foundation Toolkit API
	Web Application Structure
	Foundation API Sample Application Structure
	Foundation Toolkit Client API Documentation

	Framework Details
	Connection to the Foundation Toolkit Runtime Services
	User Login Process
	Console Page

	Libraries
	F-API Sample Applications
	“Call Screening” Application
	“Announcement” Application
	"Deflect to IVR" Application
	“Make Calls” Application
	“Conference” Application
	"Make Calls (Async)" Application
	Identity Propagation

	"Mail Support" Application
	"Call Recorder" Application

	Chapter 6: Sample Applications using the Sequenced Template API
	The Sequenced Template API
	Web Application Structure
	Sequenced Template API Sample Application Structure

	Framework Details
	User Login Process

	Libraries
	Sequenced Template API Sample Applications
	"Call Blocker" Application
	"Call Director" Application

	Chapter 7: Running Sample Applications
	Running Sample Applications Outside the IDE
	Web Interface Access
	Reference Sample Application and Test Environment Configuration
	Reference Configuration of the Test Environment
	Alternative Configuration (without Communication Manager Sequencing)

	Configuration of the Sample Web Applications
	Connection to the Foundation Toolkit Services
	Sample Web Application using the Foundation Toolkit API
	Sample Web Application using the Sequenced Template API
	Alternative Configurations (without Communication Manager Sequencing)

	Running "Named" Applications without Endpoint Registration

	Sample Application Handling
	Sample Web Application using the Foundation Toolkit API
	"Call Screening" sequenced application
	"Announcement" named application
	"Deflect to IVR" sequenced application
	Sequencing of "Call Screening" and "Deflect to IVR"
	"Make Calls" endpoint application
	"Conference" named application
	"Make Calls (Async)" named application
	"Mail Support" sequenced application
	"Call Recorder" sequenced application

	Sample Web Application using the Sequenced Template API
	"Call Director" sequenced application
	"Call Blocker" sequenced application

