
Avaya Agile Communication
Environment™ Foundation Toolkit
Developer Guide

Release 6.2
NN10850-059, 04.01

November 2012

© 2012 Avaya Inc.

All Rights Reserved.

Notice

While reasonable efforts have been made to ensure that the
information in this document is complete and accurate at the time of
printing, Avaya assumes no liability for any errors. Avaya reserves the
right to make changes and corrections to the information in this
document without the obligation to notify any person or organization of
such changes.

Documentation disclaimer

“Documentation” means information published by Avaya in varying
mediums which may include product information, operating instructions
and performance specifications that Avaya generally makes available
to users of its products. Documentation does not include marketing
materials. Avaya shall not be responsible for any modifications,
additions, or deletions to the original published version of
documentation unless such modifications, additions, or deletions were
performed by Avaya. End User agrees to indemnify and hold harmless
Avaya, Avaya's agents, servants and employees against all claims,
lawsuits, demands and judgments arising out of, or in connection with,
subsequent modifications, additions or deletions to this documentation,
to the extent made by End User.

Link disclaimer

Avaya is not responsible for the contents or reliability of any linked
websites referenced within this site or documentation provided by
Avaya. Avaya is not responsible for the accuracy of any information,
statement or content provided on these sites and does not necessarily
endorse the products, services, or information described or offered
within them. Avaya does not guarantee that these links will work all the
time and has no control over the availability of the linked pages.

Warranty

Avaya provides a limited warranty on its hardware and Software
(“Product(s)”). Refer to your sales agreement to establish the terms of
the limited warranty. In addition, Avaya’s standard warranty language,
as well as information regarding support for this Product while under
warranty is available to Avaya customers and other parties through the
Avaya Support website: http://support.avaya.com. Please note that if
you acquired the Product(s) from an authorized Avaya reseller outside
of the United States and Canada, the warranty is provided to you by
said Avaya reseller and not by Avaya. “Software” means computer
programs in object code, provided by Avaya or an Avaya Channel
Partner, whether as stand-alone products or pre-installed on hardware
products, and any upgrades, updates, bug fixes, or modified versions
thereto.

Licenses

THE SOFTWARE LICENSE TERMS AVAILABLE ON THE AVAYA
WEBSITE, HTTP://SUPPORT.AVAYA.COM/LICENSEINFO/ ARE
APPLICABLE TO ANYONE WHO DOWNLOADS, USES AND/OR
INSTALLS AVAYA SOFTWARE, PURCHASED FROM AVAYA INC.,
ANY AVAYA AFFILIATE, OR AN AUTHORIZED AVAYA RESELLER
(AS APPLICABLE) UNDER A COMMERCIAL AGREEMENT WITH
AVAYA OR AN AUTHORIZED AVAYA RESELLER. UNLESS
OTHERWISE AGREED TO BY AVAYA IN WRITING, AVAYA DOES
NOT EXTEND THIS LICENSE IF THE SOFTWARE WAS OBTAINED
FROM ANYONE OTHER THAN AVAYA, AN AVAYA AFFILIATE OR AN
AVAYA AUTHORIZED RESELLER; AVAYA RESERVES THE RIGHT
TO TAKE LEGAL ACTION AGAINST YOU AND ANYONE ELSE
USING OR SELLING THE SOFTWARE WITHOUT A LICENSE. BY
INSTALLING, DOWNLOADING OR USING THE SOFTWARE, OR
AUTHORIZING OTHERS TO DO SO, YOU, ON BEHALF OF
YOURSELF AND THE ENTITY FOR WHOM YOU ARE INSTALLING,
DOWNLOADING OR USING THE SOFTWARE (HEREINAFTER
REFERRED TO INTERCHANGEABLY AS “YOU” AND “END USER”),
AGREE TO THESE TERMS AND CONDITIONS AND CREATE A
BINDING CONTRACT BETWEEN YOU AND AVAYA INC. OR THE
APPLICABLE AVAYA AFFILIATE (“AVAYA”).

Avaya grants you a license within the scope of the license types
described below, with the exception of Heritage Nortel Software, for
which the scope of the license is detailed below. Where the order
documentation does not expressly identify a license type, the
applicable license will be a Designated System License. The applicable
number of licenses and units of capacity for which the license is granted
will be one (1), unless a different number of licenses or units of capacity
is specified in the documentation or other materials available to you.
“Designated Processor” means a single stand-alone computing device.
“Server” means a Designated Processor that hosts a software
application to be accessed by multiple users.

License types

CPU License (CP). End User may install and use each copy of the
Software on a number of Servers up to the number indicated in the
order provided that the performance capacity of the Server(s) does not
exceed the performance capacity specified for the Software. End User
may not re-install or operate the Software on Server(s) with a larger
performance capacity without Avaya’s prior consent and payment of an
upgrade fee.

Named User License (NU). You may: (i) install and use the Software
on a single Designated Processor or Server per authorized Named
User (defined below); or (ii) install and use the Software on a Server so
long as only authorized Named Users access and use the Software.
“Named User”, means a user or device that has been expressly
authorized by Avaya to access and use the Software. At Avaya’s sole
discretion, a “Named User” may be, without limitation, designated by
name, corporate function (e.g., webmaster or helpdesk), an e-mail or
voice mail account in the name of a person or corporate function, or a
directory entry in the administrative database utilized by the Software
that permits one user to interface with the Software.

Heritage Nortel Software

“Heritage Nortel Software” means the software that was acquired by
Avaya as part of its purchase of the Nortel Enterprise Solutions
Business in December 2009. The Heritage Nortel Software currently
available for license from Avaya is the software contained within the list
of Heritage Nortel Products located at http://support.avaya.com/
licenseinfo under the link “Heritage Nortel Products”. For Heritage
Nortel Software, Avaya grants Customer a license to use Heritage
Nortel Software provided hereunder solely to the extent of the
authorized activation or authorized usage level, solely for the purpose
specified in the Documentation, and solely as embedded in, for
execution on, or (in the event the applicable Documentation permits
installation on non-Avaya equipment) for communication with Avaya
equipment. Charges for Heritage Nortel Software may be based on
extent of activation or use authorized as specified in an order or invoice.

Copyright

Except where expressly stated otherwise, no use should be made of
materials on this site, the Documentation, Software, or hardware
provided by Avaya. All content on this site, the documentation and the
Product provided by Avaya including the selection, arrangement and
design of the content is owned either by Avaya or its licensors and is
protected by copyright and other intellectual property laws including the
sui generis rights relating to the protection of databases. You may not
modify, copy, reproduce, republish, upload, post, transmit or distribute
in any way any content, in whole or in part, including any code and
software unless expressly authorized by Avaya. Unauthorized
reproduction, transmission, dissemination, storage, and or use without
the express written consent of Avaya can be a criminal, as well as a
civil offense under the applicable law.

Third Party Components

“Third Party Components” mean certain software programs or portions
thereof included in the Software that may contain software (including
open source software) distributed under third party agreements (“Third
Party Components”), which contain terms regarding the rights to use
certain portions of the Software (“Third Party Terms”). Information
regarding distributed Linux OS source code (for those Products that
have distributed Linux OS source code) and identifying the copyright

2 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

http://support.avaya.com
http://www.avaya.com/support/LicenseInfo
http://support.avaya.com/licenseinfo
http://support.avaya.com/licenseinfo
mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

holders of the Third Party Components and the Third Party Terms that
apply is available in the Documentation or on Avaya’s website at: http://
support.avaya.com/Copyright. You agree to the Third Party Terms for
any such Third Party Components.

Preventing Toll Fraud

“Toll Fraud” is the unauthorized use of your telecommunications system
by an unauthorized party (for example, a person who is not a corporate
employee, agent, subcontractor, or is not working on your company's
behalf). Be aware that there can be a risk of Toll Fraud associated with
your system and that, if Toll Fraud occurs, it can result in substantial
additional charges for your telecommunications services.

Avaya Toll Fraud Intervention

If you suspect that you are being victimized by Toll Fraud and you need
technical assistance or support, call Technical Service Center Toll
Fraud Intervention Hotline at +1-800-643-2353 for the United States
and Canada. For additional support telephone numbers, see the Avaya
Support website: http://support.avaya.com. Suspected security
vulnerabilities with Avaya products should be reported to Avaya by
sending mail to: securityalerts@avaya.com.

Trademarks

The trademarks, logos and service marks (“Marks”) displayed in this
site, the Documentation and Product(s) provided by Avaya are the
registered or unregistered Marks of Avaya, its affiliates, or other third
parties. Users are not permitted to use such Marks without prior written
consent from Avaya or such third party which may own the Mark.
Nothing contained in this site, the Documentation and Product(s)
should be construed as granting, by implication, estoppel, or otherwise,
any license or right in and to the Marks without the express written
permission of Avaya or the applicable third party.

Avaya is a registered trademark of Avaya Inc.

Avaya Aura is a registered trademark of Avaya Inc.

Avaya ACE is a registered trademark of Avaya Inc.

All non-Avaya trademarks are the property of their respective owners,
and “Linux” is a registered trademark of Linus Torvalds.

Downloading Documentation

For the most current versions of Documentation, see the Avaya
Support website: http://support.avaya.com.

Contact Avaya Support

See the Avaya Support website: http://support.avaya.com for product
notices and articles, or to report a problem with your Avaya product.
For a list of support telephone numbers and contact addresses, go to
the Avaya Support website: http://support.avaya.com, scroll to the
bottom of the page, and select Contact Avaya Support.

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 3

http://support.avaya.com/Copyright
http://support.avaya.com/Copyright
http://support.avaya.com
http://support.avaya.com
http://support.avaya.com
http://support.avaya.com

4 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Contents

Chapter 1: Introduction.. 7
Client application types... 7

Application types and call processing.. 8
Sequenced Applications... 9
Named Applications... 10
Delegate Applications... 10
Virtual Endpoint Applications.. 11

Monitoring server availability... 11
Chapter 2: Session Initiation Protocol (SIP) and the Avaya Aura® network................. 13

User agents... 13
SIP servers.. 14

Chapter 3: Services... 15
Foundation Toolkit services... 15

Services and application capabilities.. 16
Synchronous and asynchronous services.. 17
Sequenced Application services.. 17
Named, Delegate and Endpoint Application services.. 20
Complementary services.. 21

Chapter 4: Developing client applications.. 25
Provisioning client applications... 25

Provisioning an Endpoint Application with an Address of Record.. 25
Starting and stopping Foundation Toolkit.. 26
Creating application bindings.. 26

Obtain key stores and trust stores from System Manager... 29
Terminating an application binding... 30

Developing Sequenced Applications.. 32
Remaining in the signalling path.. 34
Using a Sequenced Application to redirect a call... 35
Configuring Avaya ACE as a SIP Entity on Session Manager ... 36

Developing Endpoint Applications.. 37
Asserting sender identity in outgoing calls... 38

Asynchronous and synchronous services... 40
Handling downstream forking.. 42

Chapter 5: Sequenced Template API... 45
Incoming Call Director... 45
Outgoing Call Director... 46
Provisioning Sequenced Template API client applications... 47
Creating a Sequenced Application using the Sequenced Template API .. 47

Chapter 6: Sample call flows... 51
Proxy Routing Service: Proxy a call.. 52
Proxy Routing Service: Application rejects a call.. 53
Proxy Routing Service: Caller cancels call.. 54
Proxy Routing Service: Callee rejects call.. 56
B2BUA Routing Service: Deflecting a call to IVR... 57

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 5

B2BUA Routing Service: Terminating a call from an application.. 60
Virtual Endpoint Service: Creating a call... 63
Registration Service: Registering a client application... 66

Chapter 7: Troubleshooting... 69
SSL client debugging.. 69
Client application encounters media server-related exceptions.. 69
No connection to Session Manager.. 70
Client applications cannot connect to Foundation Toolkit... 70
Client security certificate is invalid.. 71
Inbound dialogs not routing to a Foundation Toolkit application... 71

Appendix A: SIP request methods and headers.. 73
Index... 79

6 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012

Chapter 1: Introduction

Avaya ACE™ Foundation Toolkit allows integration of applications within the Avaya Aura® network for
midsize to large enterprises.

Leveraging the revolutionary Session Initiation Protocol (SIP) architecture of Avaya Aura®, and deployed
within Avaya Agile Communication Environment™, Foundation Toolkit enables fast and easy deployment
of communications capabilities such as voice, messaging, and presence. As a result, productivity and
business agility can be increased.

With Foundation Toolkit, corporate application developers, third-party independent software vendors, and
system integrators, who have a basic, but not extensive, knowledge of SIP, can take advantage of the
functionality of the Avaya communication solutions. Foundation Toolkit enables custom integration with a
broad range of communications, business, Call Center, Call Recording and Click-to-Dial solutions.

Foundation Toolkit has two components: the Foundation Runtime Services and the Foundation SDK.

Client application types
Client applications created using the Foundation Toolkit API can be divided into several
categories describing the capabilities and purpose of the application. The application types
are:

• Sequenced Applications: calls are routed through Sequenced Applications by Session
Manager, so that the application can react to the call or manipulate the call by, for example,
rejecting it. Calls are never addressed directly to a Sequenced Application; instead the
application is invoked on behalf of a user when they make or receive a call.

• Endpoint Applications: Endpoint Applications make and receive calls. They function as
an endpoint in a call flow. Endpoint applications have the following subtypes:

- Named Applications: make and receive calls using their own Address of Record. An
example of a Named Application is a conference bridge.

- Delegate Applications: make and receive calls using their own Address of Record
or the Address of Record of another user. An example of a Delegate Application is
a voice mail application.

- Virtual Endpoint Applications: act like a physical end user.

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 7

Application types and call processing
In the following example, an endpoint makes a call that is routed through a series of Sequenced
Applications for the calling endpoint, and through a series of Sequenced Applications for the
called endpoint. The endpoints in the call could be telephone handsets or Endpoint
Applications such as Named Applications. The Sequenced and Endpoint Applications can be
implemented as Foundation Toolkit client applications.

1 An endpoint, such as a telephone handset or an Avaya ACE™

Foundation Toolkit client application, makes a call that is routed through
Session Manager. The Foundation Toolkit client application is an
Endpoint Application such as a Named Application.

2 Session Manager routes the call through a sequence of applications.

2a Session Manager invokes the Sequenced Applications for the calling
user.

3 Each user registered with Session Manager is configured with a list of
Sequenced Applications that are invoked when the user makes a call,
otherwise known as the originating-side Sequenced Applications.

 Note:
Sequencing can also be applied implicitly to callers who are not
registered with Session Manager. In the case of implicit sequencing,
application sequences are defined for patterns of callers.

3a The first originating-side Sequenced Application invoked by Session
Manager.
In an Avaya Aura® network using Communication Manager deployed as
a feature server, this first application is typically Communication
Manager. As it is placed first in the sequence, Communication Manager
deployed as a feature server can transform the user addresses in the

Introduction

8 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

call to a canonical format. Applications later in the application sequence
can then use the unambiguous canonical addresses.

 Note:
Do not place Communication Manager deployed as an evolution
server first in the originating side application sequence.

3b A subsequent originating-side Sequenced Application invoked by
Session Manager. The Sequenced Application can be implemented as
an Avaya ACE™ Foundation Toolkit client application.

 Note:
In an Avaya Aura® network using Communication Manager deployed
as an evolution server, the last application in the originating-side
application sequence must be Communication Manager.

4 Each user registered with Session Manager is configured with a list of
Sequenced Applications that are invoked when the user receives a call,
otherwise known as the terminating-side Sequenced Applications.

4a The first terminating-side Sequenced Application invoked by Session
Manager.

 Note:
In an Avaya Aura® network using Communication Manager deployed
as an evolution server, the first application in the terminating-side
application sequence must be Communication Manager.

4b A subsequent terminating-side Sequenced Application invoked by
Session Manager. The Sequenced Application can be implemented as
an Avaya ACE™ Foundation Toolkit client application.

5 An endpoint receives the call. The endpoint could be a telephone
handset or an Endpoint Application such as a Named Application. The
Endpoint Application can be implemented as an Avaya ACE™

Foundation Toolkit client application.

Related topics:
Developing Sequenced Applications on page 32
Developing Endpoint Applications on page 37

Sequenced Applications
Sequenced Applications are invoked in a defined sequence by Session Manager during call
setup (that is, during the processing of a SIP INVITE request). The applications can provide
functionality such as call barring, screening and logging. The sequence of applications is
configured using System Manager. Separate application sequences are configured per user
for the originating-side and terminating-side of the call. A Sequenced Application is never the

Client application types

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 9

target of a SIP INVITE request as a Sequenced Application is not registered against an address
of record.

Sequenced Applications can:

• Be invoked by the infrastructure when setting up a new call.

• Become a middle link in the signaling of upstream and downstream elements.

• Reject, redirect or route a request as a proxy.

• Add media services to a call. This includes:

- Record a call. This includes recording call participants individually and recording the
whole call.

- Play mid-call announcements to one or both parties in a call.

- Collect DTMF tones from either party during a call.

- Engage in an IVR session with a caller before delivering the call to the originally
called party.

Named Applications
Named Applications act as an endpoint in a SIP call flow. Named Applications can send INVITE
requests (that is, initiate calls) and can consume INVITE requests. Examples of Named
Applications include IVR systems and conference bridges.

Named Applications can:

• Originate calls from their Address Of Record.

• Receive calls to their Address Of Record.

• Register their resources or be provisioned by the infrastructure.

• Add media services to a call. This includes:

- Play messages to individual call participants or to the whole call.

- Record individual call participants or the whole call.

- Collect DTMF tones from call participants.

- Create two-party calls by calling out to both parties.

- Create multiparty conference calls.

Delegate Applications
Delegate Applications are a type of Named Application which can initiate calls and receive
calls on behalf of other users. Voice mail is an example of a Delegate Application.

Introduction

10 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

In the inbound direction a Delegate Application depends on the SIP History-Info header
from a redirecting application to operate on behalf of upstream users who were previous targets
for the call. In the outbound direction, a Delegate Application may set P-Asserted-Identity
headers which are honored by the infrastructure.

Delegate Applications can:

• Act as a Named Application, including performing all the media operations that a Named
Application can perform.

• Receive redirected calls and act on behalf of entities that were previous targets of the
call.

• Originate calls on behalf of other Address Of Records.

• Receive calls directly to their Address Of Record.

• Originate calls from their own Address Of Record.

• Register their resources or be provisioned by the infrastructure.

Virtual Endpoint Applications
A Virtual Endpoint Application is an application that acts as a final endpoint in a SIP call flow.
It is registered against the Address Of Record of a user and acts as a termination point for calls
that are sent to that user. It is a virtual endpoint that acts in place of a user.

 Note:
Session Manager can only deliver a request to a single endpoint for a given Address of
Record, even if more than one endpoint is registered with that address. In such cases,
Session Manager selects the endpoint based on the priority declared for the endpoint when
it is registered with Session Manager.

Virtual Endpoint Applications can:

• Originate calls from a user's Address Of Record.

• Receive calls to a user's Address Of Record.

• Register against a user's Address Of Record.

Monitoring server availability
Foundation Toolkit supports the Avaya ACE™ active-idle high availability model. In this model
Foundation Toolkit is deployed on two servers which share a floating IP address. On failure of
the active Foundation Toolkit server the idle server takes ownership of the IP address. See the
Avaya ACE™ documentation for more information on the active-idle model.

Monitoring server availability

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 11

Any application bindings created by Foundation Toolkit client applications should be configured
with the active-idle floating IP address. If the active server fails then:

• The application binding uses the floating IP address to re-establish a connection with the
previously idle server.

• Session Manager directs SIP traffic to the previously idle server, again using the floating
IP address.

The application can be notified of a connection failure and any subsequent re-connections, by
registering one or more of the following:

• AppBindingStatusListener on the Application Binding Service notifies with a
bindingLost and then a bindingRecovered callback.

• RegistrationListener on the Registration Service notifies with registrationAdded
callbacks when the client application's existing registrations are renewed.

• RegEventListener on the Registration Event Service notifies with
subscriptionCreated callbacks when the client application's subscriptions are
renewed.

• SequencedDialogListener and EndPointDialogListener on the Inbound Dialog
Service continue to notify with newInboundDialog callbacks.

• DialogStateEventListener on the Dialog State Event Service notifies with
subscriptionCreated callbacks when the client application's subscriptions are
renewed.

 Note:

After a recovery all listeners on the client application are renewed. Existing calls are lost,
but new calls can continue to be made and received without intervention:

Related topics:
Synchronous and asynchronous services on page 17

Introduction

12 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Chapter 2: Session Initiation Protocol (SIP)
and the Avaya Aura® network

SIP is a general-purpose protocol for establishing, renegotiating and terminating a call between two or
more parties. The protocol does not define the format of the call, which could be voice, video, or instant
messaging. The call is established across an Avaya Aura® network composed of user agents for
processing the call and SIP servers for routing the call. In the Avaya Aura® network, Avaya Aura® Session
Manager is the SIP server, Foundation Toolkit and Communication Manager may act as SIP Servers.

User agents
User agents (UAs) are applications and devices which invoke call features. The user agent
client (UAC) and user agent server (UAS) are endpoints in the Avaya Aura® network. Avaya
Aura® Session Manager is the outbound proxy for all SIP messages sent between a UAC and
a UAS in an Avaya Aura® network. The user agent server (UAS) generates responses to the
requests received. Examples of user agents are:

• The Avaya one-X software installed on a 9620 SIP telephone.

• The Avaya Modular Messaging voice mail application.

• A PSTN Gateway.

A back-to-back user agent (B2BUA) is an application located between two UAs. The B2BUA
receives, reformulates and then resends SIP messages onwards. For the originating-side the
B2BUA acts as a user agent server . For the destination-side the B2BUA processes the request
as a user agent client. The B2BUA controls the call. Examples of uses for B2BUAs are:

• Playing IVR to the calling party before allowing the call to proceed.

• Terminating a call when credit runs out.

• Dialling two participants and putting them in a call (Click-to-Call).

• Playing music to a caller until a call center line is available.

Dialogs
Within SIP a dialog is a relationship between two UAs. A dialog is initiated by sending an
INVITE request.

A dialog can be inbound or outbound. A UAS receives inbound dialogs. A UAC sends outbound
dialogs.

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 13

Calls
A call is a collection of one or more connected dialogs. The connection could be a dialog chain
of B2BUAs starting with a UAC and ending with a UAS or a number of dialogs using the same
media session, as in a conference call. The call is the container for all media sessions and
dialogs invoked between users.

Sessions
A session is the means by which two users communicate and is outside of the control of SIP.
The session could be a media session, such as audio, or another communication channel such
as instant messaging. Once SIP has established a session the content of the communication
takes place independently. SIP becomes involved again when the call needs to be terminated,
or the call flow redirected in some way.

SIP servers
SIP servers can perform the following functions:

• The registrar server registers a user agent’s current network address so the user agent
can be located as the destination party in a call.

• The SIP proxy server forwards SIP requests and responses to the destination UA, or the
next SIP server in the route.

Session Initiation Protocol (SIP) and the Avaya Aura® network

14 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Chapter 3: Services

Foundation Toolkit services
The Foundation Toolkit API makes a set of services available through a service factory. These
services are known as the Foundation Runtime Services. The API provides interfaces to the
services, and the service factory is used to obtain instances of the services, in the context of
a binding to an Avaya ACE™ server:

• An application binding represents a connection to a specific Avaya ACE™ server. At the
network level, this connection is a persistent HTTP connection using the Bayeux
protocol.

The binding url should be:

- https://ACE_IP:9444/foundation/cometd for a secure channel

- http://ACE_IP:8280/foundation/cometd for a non-secure channel

where, ACE_IP is the IP address of the Avaya ACE™ server.

• When the service factory is invoked for a given application binding, it returns a reference
to the single instance of that service running on the Avaya ACE™ server.

For example:
AppBindingService appInstance = ServiceFactory.getAppBindingService();
//connProps are the connection .properties for the binding, and
//serverURL is the URL of the Foundation Runtime Services server.
BindId bindId = appInstance.createBinding(serverURL, connProps);

RegistrationService registrationSvc =
 ServiceFactory.getRegistrationService(bindId);

 Note:

• Client applications obtain their own instances of the Foundation Runtime Services. No
state is shared between instances of services obtained by different client applications.
When a call is handled by several different client applications, each application has its
own view of the call with separate sets of objects representing the call.

• The service factory only returns a single instance of a service for a given application
binding. For example, if the above code fragment was modified to call
ServiceFactory.getRegistrationService(bindId) a second time, the method
would return a reference to the same instance of the Registration Service.

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 15

• To connect to the foundation server on Avaya ACE release 6.2, ensure that the client
applications use 6.2 software libraries which are available in 6.2 Software Development
Kit (SDK).

• If you are migrating to Avaya ACE release 6.2, ensure that you replace the jars with
the jars available in Avaya ACE release 6.2 SDK.

For more information on the ServiceFactory, see the Foundation Toolkit API Javadoc.

Related topics:
Services and application capabilities on page 16
Synchronous and asynchronous services on page 17

Services and application capabilities
The following table shows how key actions in call flows can be invoked using the main
Foundation Runtime Services: the Proxy Routing Service, the B2BUA Routing Service and the
Virtual Endpoint Service. To interact with SIP calls, a client application must include at least
one of these services.

Capability Proxy
Routing
Service

B2BUA
Routing
Service

Virtual
Endpoint
Service

Be invoked during call setup (as a
Sequenced Application)

Make and receive calls (as an Endpoint
Application)

Manipulate a call after call setup (for
example, send BYE requests to endpoints)

Apply media services to a call

Establish conference calls

Monitor call state after call setup

Optionally no involvement in the signaling
path after handling initial request

Block, allow, or redirect a call

Services

16 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Synchronous and asynchronous services
Each Foundation Runtime Services service provides two interfaces: a synchronous and an
asynchronous interface.

Methods invoked through the synchronous interface block the client application thread until a
response is received from the Avaya ACE™ server. Given the latency involved in the
communication between the client and server, this can exhaust the available threads on more
heavily loaded clients.

To address this issue, the services are also available with asynchronous interfaces. When an
asynchronous method is invoked, the Foundation Toolkit client-side libraries invoke the
corresponding method on the server. Each of the asynchronous methods return a unique
identifier. This identifier may be used to match the responses, supplied via the listener, to the
corresponding method invocation. Any objects normally returned by the synchronous version
of the method are also passed back to the client through the callback class. Invocations of
methods on the server occur asynchronously, so the client application thread is not blocked,
making the asynchronous client application more scalable.

 Note:
The Application Binding Service does not provide an asynchronous interface.

Related topics:
Asynchronous and synchronous services on page 40

Sequenced Application services

Proxy Routing Service

The Proxy Routing Service supports the development of Sequenced Applications. This service
acts as a proxy, and allows calls to be proxied onward. Proxied calls cannot be manipulated
further. For example, the Proxy Routing Service cannot add media services to a call.

 Note:
To add media services to a call, or to retain the ability to manipulate a call (such as having
the ability to send BYE to endpoints), use the B2BUA Routing Service.

Sequenced Applications are invoked in a defined sequence by Session Manager during call
setup (that is, during the processing of a SIP INVITE request). The applications can provide
functionality such as call barring, screening and logging. The sequence of applications is
configured using System Manager. Separate application sequences are configured per user
for the originating-side and terminating-side of the call. A Sequenced Application is never the

Foundation Toolkit services

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 17

target of a SIP INVITE request as a Sequenced Application is not registered against an address
of record.

The synchronous interface for the Proxy Routing Service is:
com.avaya.service.client.call.routing.ProxyRoutingService

The asynchronous interface for the Proxy Routing Service is:
com.avaya.service.client.call.routing.
AsynchronousProxyRoutingService

 Note:
Sequenced applications must respond rapidly to incoming calls because the dialling party
will not receive a ring tone until all sequenced applications have finished processing. In
addition, Session Manager requires a response within 4 seconds from a Sequenced
Application, after which the Sequenced Application is timed out. This 4 second time limit is
reduced by the time the request spends traversing between the Session Manager, the Avaya
ACE™ server and the client application.

When a Sequenced Application receives a call, it must handle the call as quickly as possible
with a call to one of the following methods:

• Proxy Routing Service: redirect(), reject() or proxy()
For more information on this service, see the Foundation Toolkit API Javadoc.

Related topics:
Developing Sequenced Applications on page 32

B2BUA Routing Service

The B2BUA Routing Service should be used for Sequenced Applications that inject media into
a call, in order to play announcements, record media, or collect DTMF signals. The B2BUA
Routing Service inserts itself as a back-to-back user agent (B2BUA) into a call, so in addition
to enabling media services it can also be used to manipulate established calls more generally.
For example, the B2BUA Routing Service can be used to send BYE requests to endpoints,
terminating a call.

You can also use the B2BUA Routing Service to

 Note:

• The B2BUA Routing Service sends a BYE request only after the entire call has been
terminated.

• The B2BUA Routing Service keeps the call handle alive for the entire duration of the
call. Thus, even after a call is routed through the B2BUA service, the application can
terminate the call.

Sequenced Applications are invoked in a defined sequence by Session Manager during call
setup (that is, during the processing of a SIP INVITE request). The applications can provide

Services

18 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

functionality such as call barring, screening and logging. The sequence of applications is
configured using System Manager. Separate application sequences are configured per user
for the originating-side and terminating-side of the call. A Sequenced Application is never the
target of a SIP INVITE request as a Sequenced Application is not registered against an address
of record.

The synchronous interface for the B2BUA Routing Service is:
com.avaya.service.client.call.routing.B2buaRoutingService

The asynchronous interface for the B2BUA Routing Service is:
com.avaya.service.client.call.routing.
AsynchronousB2buaRoutingService

For example a B2BUA Routing Service application can insert itself in the path of an established
call and perform the following actions in conjunction with the Media Service:

• Treat the calling party to IVR before allowing the call to proceed.

• Record the call.

• Record one or both participants individually.

• Play announcements into the call.

• Play announcements to either end of the call.

• Collect DTMF from either end of the call.

The B2BUA Routing Service cannot be used to add dialogs to a call. For example, the B2BUA
Routing Service cannot create n-way conference calls. This is because Sequenced
Applications operate on the behalf of a single user and adding another user to the call would
violate this model. Downstream Sequenced Applications that apply features intended for that
single user (such as playing a message) would affect multiple users instead. The Virtual
Endpoint Service should be used when you need to add dialogs to calls.

 Note:
Sequenced applications must respond rapidly to incoming calls because the dialling party
will not receive a ring tone until all sequenced applications have finished processing. In
addition, Session Manager requires a response within 4 seconds from a Sequenced
Application, after which the Sequenced Application is timed out. This 4 second time limit is
reduced by the time the request spends traversing between the Session Manager, the Avaya
ACE™ server and the client application.

When a Sequenced Application receives a call, it must handle the call as quickly as possible
with a call to one of the following methods:

• B2BUA Routing Service: add(), create(), route(), or terminate()
For more information on this service, see the Foundation Toolkit API Javadoc.

Related topics:
Developing Sequenced Applications on page 32

Foundation Toolkit services

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 19

Named, Delegate and Endpoint Application services

Virtual Endpoint Service

The Virtual Endpoint Service allows an application to make outbound calls, process inbound
calls, add dialogs to calls and move dialogs between calls, enabling actions such as the
creation of conference calls. It provides a suitable basis for Named Applications, Delegate
Applications and Virtual Endpoint Applications.

Named Applications act as an endpoint in a SIP call flow. Named Applications can send INVITE
requests (that is, initiate calls) and can consume INVITE requests. Examples of Named
Applications include IVR systems and conference bridges.

Delegate Applications are a type of Named Application which can initiate calls and receive
calls on behalf of other users. Voice mail is an example of a Delegate Application.

A Virtual Endpoint Application is an application that acts as a final endpoint in a SIP call flow.
It is registered against the Address Of Record of a user and acts as a termination point for calls
that are sent to that user. It is a virtual endpoint that acts in place of a user.

The kinds of applications the Virtual Endpoint Service supports include:

• User Agent Client (UAC): an application that initiates a SIP call.

• User Agent Server (UAS): an application at which a SIP call terminates.

• N-Way User Agent (N-Way UA): an application that locally intermediates multiple
dialogs.

The Virtual Endpoint Service can perform the following actions in conjunction with the Media
Service:

• Record the call.

• Record participants individually.

• Play announcements into the call.

• Play announcements to call participants.

• Collect DTMF from call participants.

The synchronous interface for the Virtual Endpoint Service is:
com.avaya.service.client.call.endpoint.VirtualEndpointService

The asynchronous interface for the Virtual Endpoint Service is:
com.avaya.service.client.call.endpoint.
AsynchronousVirtualEndpointService

For more information on this service, see the Foundation Toolkit API Javadoc.

Services

20 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Related topics:
Developing Endpoint Applications on page 37

Registration Service

Allows client applications to register against an Address of Record. The service also enables
client applications to remove registrations, and to query registrations for a given Address of
Record.

When registering, an application can specify its capabilities and set the relative priority of the
registration (in cases where more than one endpoint is registered to an address of Record).

The synchronous interface for the Registration Service is:
com.avaya.service.client.registration.RegistrationService

The asynchronous interface for the Registration Service is:
com.avaya.service.client.registration.
AsynchronousRegistrationService

On failover of the Foundation Toolkit server, an application's Foundation Toolkit client-side
libraries renew all registration listeners registered by client applications, plus the client
application's registration. The client applications receive the corresponding
registrationAdded notification.

For more information on this service, see the Foundation Toolkit API Javadoc.

Complementary services

Application Binding Service

The Application Binding Service enables you to establish a binding to an Avaya ACE™ server,
and to listen to status changes affecting that binding.

The createBinding() method establishes a connection with an Avaya ACE™ server, and
returns a binding identifier. This identifier can be used to obtain services tied to that application
binding from the service factory.

Application bindings must invoke
addBindingStatusListener(AppBindingStatusListener,listener) to listen for
application binding status changes.

Foundation Toolkit services

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 21

An AppBindingStatusListener can be used to monitor the status of the application bindings
for a given Application Binding Service and to renew bindings automatically on failover:

• If the connection to the Avaya ACE™ server is lost, the bindingLost() method on the
listener is invoked.

• In the event of a connection loss, the Foundation Toolkit client-side libraries periodically
attempt to reestablish the connection without requiring any application intervention. If the
reconnection attempt is successful, the bindingRecovered() method on the listener is
invoked.

• The bindingTerminated() method on the listener is called when the binding is
successfully terminated at the request of the client application.

This method is also invoked if the server terminates the binding after an extended
application or connection outage. This is how the client application is notified that the
automatic connection attempt was not successful

The interface for the Application Binding Service is:
com.avaya.service.client.appbinding.AppBindingService

For more information on this service, see the Foundation Toolkit API Javadoc.

Related topics:
Starting and stopping Foundation Toolkit on page 26

Inbound Dialog Service

The Inbound Dialog Service enables applications to listen for inbound dialogs.

The synchronous interface for the Inbound Dialog Service is:
com.avaya.service.client.call.endpoint.InboundDialogService

The asynchronous interface for the Inbound Dialog Service is:
com.avaya.service.client.call.endpoint.
AsynchronousInboundDialogService

Virtual Endpoint Service applications (that is, Named, Delegate and Virtual Endpoint
applications) must invoke setEndpointDialogListener(EndpointDialogListener,
Pattern) to be notified of new inbound dialogs that are targeted at an AOR which identifies
that application, and for callbacks to be renewed automatically on failover.

Proxy Routing Service and B2BUA Routing Service application (that is, Sequenced
Applications) must invoke setSequencedDialogListener(SequencedDialogListener,
String) to be notified of new inbound dialogs which they are being invoked to process before
that dialog is routed downstream, and for callbacks to be renewed automatically on failover.

For more information on this service, see the Foundation Toolkit API Javadoc.

Services

22 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Media Service

The Media Service provides media server facilities to a call and its individual dialogs, for
example allowing:

• The collection of DTMF signals

• The playing of audio to a call (or only to an individual dialog in that call)

• Recording a call or a dialog

• Creating calls containing more than two dialogs

A call must explicitly enable media service functionality by invoking
MediaService.addMediaServer(Call, MediaListener) prior to invoking any of the
MediaService operations for that call, otherwise errors occur. The Media Service can be used
with calls managed by the B2BUA Routing Service or the Virtual Endpoint Service.

 Note:

The Media Service cannot be used in conjunction with calls managed by the Proxy Routing
Service.

 Note:

MediaService.addMediaServer(Call, MediaListener) throws an
IllegalArgumentException, when called with no Media Server configured.

The synchronous interface for the Media Service is:
com.avaya.service.client.call.media.MediaService

The asynchronous interface for the Media Service is:
com.avaya.service.client.call.media.AsynchronousMediaService

For more information on this service, see the Foundation Toolkit API Javadoc.

Registration Event Service

Registration events are generated when an end point is registered or deregistered with the
Avaya Aura® infrastructure. Applications can use the API to subscribe and respond to
registration events.

The synchronous interface for the Registration Event Service is:
com.avaya.service.client.events.reg.RegEventService

Foundation Toolkit services

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 23

The asynchronous interface for the Registration Event Service is:
com.avaya.service.client.events.reg.
AsynchronousRegEventService

On failover of the Foundation Toolkit server, an application's Foundation Toolkit client-side
libraries renews all registration event listeners registered by client applications, plus the client
application's subscription. The client applications receive the corresponding
subscriptionCreated notification.

For more information on this service, see the Foundation Toolkit API Javadoc.

 Note:
For more information on registration events, see RFC 3680.

Dialog State Event Service

Dialog events are generated when a dialog changes state such as when a call transitions from
the confirmed to terminated state. Applications can use the API to subscribe to dialog
events.

The synchronous interface for the Dialog State Event Service is:
com.avaya.service.client.events.dialog.DialogStateEventService

The asynchronous interface for the Dialog State Event Service is:
com.avaya.service.client.events.dialog.
AsynchronousDialogStateEventService

On failover of the Foundation Toolkit server, an application's Foundation Toolkit client-side
libraries renew all dialog state event listeners registered by client applications, plus the client
application's subscription. The client applications receive the corresponding
subscriptionCreated notification.

 Note:
For more information on dialog events, see RFC 4235.

Communication Manager tracks all subscriptions to the Dialog State Event Service, and
generates dialog events on behalf of applications. Dialog State Event subscriptions only work
for stations provisioned by Communication Manager.

For a Foundation Toolkit application to subscribe to the Dialog State Event Service, the
application has to populate the P-Asserted Identity header with the identity of the user to which
the application is subscribing. This user must be provisioned in Communication Manager.

Services

24 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Chapter 4: Developing client applications

Provisioning client applications

Provisioning an Endpoint Application with an Address of Record
About this task
SIP messages can be addressed directly to an Endpoint Application. To do this, create a user
that represents the application (or select an existing user), and register the application against
the user Address of Record. The Address of Record for the user is used to direct SIP requests
to the application.

 Note:

• If several instances of a Named or Delegate Application are running, then you cannot
provision all instances of the application with a single Address of Record, as only one
instance of the application can be registered against the address. (It is possible to
register several endpoints against an Address of Record when using Q Values of zero
in the registration. However, SIP traffic is not directed by Session Manager to endpoints
registered with Q Values of zero.)

• You can not provision a Sequenced Application with an Address of Record as a
Sequenced Application is never addressed as an endpoint in a SIP call flow.

For Virtual Endpoint Applications, the application uses the Address of Record of other users,
so ensure that the required users already exist within Session Manager.

Procedure

Configure Session Manager users for the application.

a. In System Manager, click Users > Manage Users.
b. On the User Management page, ensure that the appropriate users are configured

for the application.

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 25

Starting and stopping Foundation Toolkit
About this task
To start, stop and restart a Foundation Toolkit server, use the aaftadmin.sh script located in
the /opt/avaya/ace/bin directory

Procedure

1. To stop Foundation Toolkit on the local node run:
./aaftadmin.sh serverstop

2. To start Foundation Toolkit on the local node run
./aaftadmin.sh serverstart

 Note:
If you are starting Foundation Toolkit on the idle server you should see the
following text when Foundation Toolkit is starting up: Temporarily adding a
loopback entry with floating IP address: 99.99.999.99

3. To restart Foundation Toolkit on the local node run:
./aaftadmin.sh serverrestart

4. If an invalid parameter is given the following is printed:
Usage: aaftadmin.sh [serverstart|serverstop|serverrestart]
serverstart Start the AAFT server on the local node.
serverstop Stop the AAFT server on the local node.
serverrestart Restart the AAFT server on the local node.

Related topics:
Application Binding Service on page 21

Creating application bindings
Before you begin
Before creating secure application bindings, you must complete the following actions:

1. Configuration of Foundation Toolkit for secure application bindings is completed
during installation of Foundation Toolkit.

During installation of Foundation Toolkit, configure System Manager as the
certificate authority for Foundation Toolkit. In addition, System Manager provides

Developing client applications

26 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Foundation Toolkit with security certificates that are presented to client applications
while establishing a secure application binding.

2. Obtain key stores and trust stores from System Manager on page 29. Application
bindings use client certification, so security certificates must be downloaded from
System Manager for use by client applications before an application binding can be
established.

About this task
To create application bindings, get an instance of the Application Binding Service from the
service factory and then obtain a binding identifier from the service. You can create secure
application bindings, which connect to the Avaya ACE™ server using HTTPS.

Procedure

1. Get an instance of the Application Binding Service from the service factory.
AppBindingService appInstance = ServiceFactory.getAppBindingService();

2. Create a Properties object representing the configuration of the application
binding.
Use the following property names (these names are defined in the class
AppBindingProperties):

APPLICATION_NAME The name of the Foundation Toolkit client
application.
Mandatory.

CLEANUP_TIMEOUT The duration (in seconds) in which a disconnected
session remains inactive on the server before
being terminated. State is retained on the server
until the session is terminated, so this timeout
determines the period in which a broken
connection can be re-established.

KEY_STORE_LOCATION The location of the client application key store.
Mandatory.

KEY_STORE_PASSWORD The password of the client application key store.

 Note:
This password must also be the password to
the key manager.

Mandatory.

TRUST_STORE_LOCATION The location of the client application trust store.
Mandatory.

TRUST_STORE_PASSWORD The password of the client application trust
store.
Mandatory.

Creating application bindings

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 27

3. Create a URL representing the location of the Avaya ACE™ server. Specify the
HTTPS protocol.
final URL url = new URL("https://frsIP:portNo/foundation/cometd/");

where frsIP is the IP address of the Avaya ACE™ server and portNo is the port used
on the server (this defaults to 9444 for HTTPS).

4. Create an application binding. The createBinding() method returns a binding
identifier that can be used to obtain services scoped to that binding.
final BindId bindId =
 appBindingService.createBinding(url, connectionProperties);
//For example:
//final RegistrationService regService =
// ServiceFactory.getRegistrationService(bindId);

5. (Optional) Create multiple application bindings by repeating Step 2 to Step 4,
altering the connection properties and connection URL as required.
A client application can create more than one application binding, and could have
several bindings to several Avaya ACE™ servers, to support scalability
requirements. For example, different Avaya ACE™ servers can serve different
Session Manager user communities. Services are scoped to a binding, and care
should be taken to ensure that services created from different bindings are kept
separate.

6. (Optional) Add an AppBindingStatusListener to monitor application binding
status.
appBindingService.addBindingStatusListener(
 AppBindingStatusListener listener);

7. Use the application binding to obtain instances of the Foundation Runtime Services
through the service factory, and invoke operations as required on these services.

8. After the application session is complete, terminate the binding through the
Application Binding Service.
For more information, see Terminating an application binding on page 30.

Example
The following example shows how to create a secure (HTTPS) application binding:
final Properties connectionProperties = new Properties();

// Set the name of the client application
connectionProperties.setProperty(
 AppBindingProperties.APPLICATION_NAME, "testapp");

// Set the TLS properties to ensure that the client uses HTTPS
// (TLS over HTTP) connections to the Registration Service.
//keyStorePath is the path to the client application key store
String keyStorePath = ...
//trustStorePath is the path to the client application trust store
String trustStorePath = ...
connectionProperties.setProperty(
 AppBindingProperties.KEY_STORE_LOCATION, keyStorePath);
connectionProperties.setProperty(
 AppBindingProperties.KEY_STORE_PASSWORD, "http_pwd");

Developing client applications

28 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

connectionProperties.setProperty(
 AppBindingProperties.TRUST_STORE_LOCATION, trustStorePath);
connectionProperties.setProperty(
 AppBindingProperties.TRUST_STORE_PASSWORD, "http_pwd");

// Get the application binding service.
final AppBindingService appBindingService =
 ServiceFactory.getAppBindingService();

// Set the URL to the Foundation Runtime Services.
final URL url = new URL("https://192.1.2.3:9444/foundation/cometd/");

// Bind to the registration service.
final BindId bindId =
 appBindingService.createBinding(url, connectionProperties);
final RegistrationService regService =
 ServiceFactory.getRegistrationService(bindId);

Related topics:
Obtain key stores and trust stores from System Manager on page 29
Terminating an application binding on page 30

Obtain key stores and trust stores from System Manager
About this task
The following steps obtain key stores and trust stores from System Manager for use by a client
application. The Avaya ACE™ server is configured during installation to use System Manager
as a certificate authority, so the key stores and trust stores obtained from System Manager
can be used to establish a secure application binding between the Avaya ACE™ server and
the client application.

Procedure

1. Log on to System Manager.

2. Click Security > Certificates > Authority.

3. Click Download jks file.

4. Enter a password for the JKS file and click OK.
This downloads a trust store which can be used in a client application when
establishing secure application bindings.

 Note:
The password entered above is used as the password for the key store and the
key manager. The Foundation Toolkit API requires that the key manager and the
key store have matching passwords.

5. In System Manager, click Security > Certificates > Authority. Click Add End
Entity.
Create an end entity representing your client application so that System Manager
can generate a key store.

Creating application bindings

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 29

6. Select an End Entity Profile such as INBOUND_OUTBOUND_TLS.

7. Enter values for the following fields: Username, Password, Confirm Passsword,
and CN, Common Name.
CN, Common Name must match the value set for Host name for SSL certificate
during installation of Foundation Toolkit. For more information, see Installing Avaya
Agile Communication Environment™ Foundation Toolkit.

8. Set Token to JKS file.

9. Click Add End Entity.

10. In System Manager, click Security > Certificates > Authority. Click Public Web.

11. Click Create Keystore.

12. Enter the Username and Password created in Step 7 and click OK to generate
your key store JKS file.

13. Save the JKS file to your system.
This downloads a key store which can be used in a client application when
establishing secure application bindings.

14. Copy the trust store and key store files downloaded in Step 4 and Step 13 to a
directory accessible to the client application. The client application must reference
the location of these files (and the passwords you have created) when establishing
a secure application binding.

Terminating an application binding
Procedure

1. If service continuity is required, ensure that future SIP traffic can be handled after
the application binding is terminated. A backup instance of the client application
must be available to replace the client application instance for which the binding is
being terminated.
If an Endpoint Application such as a Named Application is not available after an
application binding is closed, then calls made to the Address of Record for that
Endpoint Application will fail, as the Address of Record is deregistered after the
application binding is terminated.
If a Sequenced Application is not available after an application binding is closed,
then new calls routed to that Sequenced Application will fail if the Sequenced
Application is a mandatory part of the application sequence.

2. Release all resources.

Developing client applications

30 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

A client application can be involved in a call in the following ways:

• A Sequenced Application using the Proxy Routing Service is a proxy in the SIP
signalling path of a call if it is listening to call state notifications.

A Sequenced Application using the B2BUA Routing Service is always in the
SIP signalling path of a call as the service inserts itself into the call as a back-
to-back user agent.

After the application binding of a Sequenced Application is terminated, any
calls handled by the application can continue, with the loss of the in-call
features provided by the Sequenced Application.

• An Endpoint Application acts as a calling or called party in a call. The Endpoint
Application should terminate all calls in which it is a participant, prior to
terminating the binding.

3. Terminate the application binding.
Execute the following code:
appBindingService.terminateBinding(bindId);

where appbindingService is the Application Binding Service and bindId is the
identifier of the application binding being terminated.
When an application binding is terminated, the Avaya ACE™ server closes the
following resources:

• Address of Record registrations

• Subscriptions for registration events

• Subscriptions for dialog state events

• Dialog listeners for inbound dialogs

• All client-side resources including threads

 Note:
An application binding can be disconnected without being terminated. For
example, a network failure can interrupt the connection. In these cases the Avaya
ACE™ server waits for the connection to be re-established, terminating the
connection if a timeout period elapses. This timeout period is specified in the
CLEANUP_TIMEOUT connection property set when the application binding is
created.

 Note:
No ongoing media service activity is terminated when an application binding is
terminated.

Creating application bindings

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 31

Developing Sequenced Applications
Procedure

1. Configure Session Manager for the client application. See Configuring Avaya ACE
as a SIP Entity on Session Manager on page 36.

2. Obtain the Application Binding Service from the Foundation Toolkit service
factory.

3. Create an application binding, supplying the IP address or host name of the Avaya
ACE™ server. Application bindings must invoke
addBindingStatusListener(AppBindingStatusListener,listener) to listen
for application binding status changes.

4. Obtain the Inbound Dialog Service from the Foundation Toolkit service factory, using
the application binding created in Step 2. Invoke
setSequencedDialogListener(), supplying the application name of the
sequenced application. The application name is an identifying string which is also
configured in Session Manager, enabling Session Manager to deliver SIP requests
to the application. If the Foundation Toolkit server fails,
setSequencedDialogListener() is renewed automatically by the application's
Foundation Toolkit client application libraries server when the server becomes
available again.

5. Obtain the Proxy Routing Service or B2BUA Routing Service from the Foundation
Toolkit service factory, using the application binding created in Step 2. The Proxy
Routing Service enables the application to respond as a proxy to inbound calls by
proxying, redirecting or rejecting the call. The B2BUA Routing Service enables the
application to respond as a B2BUA to inbound calls to, for example, add media
services to the call. The B2BUA Routing Service consumes more resources than
the Proxy Routing Service, so the Proxy Routing Service should be used
preferentially.

 Note:
Sequenced applications must respond rapidly to incoming calls because the
dialling party will not receive a ring tone until all sequenced applications have
finished processing. In addition, Session Manager requires a response within 4
seconds from a Sequenced Application, after which the Sequenced Application
is timed out. This 4 second time limit is reduced by the time the request spends
traversing between the Session Manager, the Avaya ACE™ server and the client
application.

Developing client applications

32 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

When a Sequenced Application receives a call, it must handle the call as quickly as
possible with a call to one of the following methods:

• Proxy Routing Service: redirect(), reject() or proxy()
• B2BUA Routing Service: add(), create(), route(), or terminate()

Set a listener on the routing service to monitor the state of the call, if required.

6. Configure Session Manager for the Sequenced Application.

a. In System Manager, click Elements > Session Manager > Application
Configuration > Applications.

b. Click New to create a new application. Enter the Foundation Toolkit server in
the SIP Entity field. Enter the application name used in Step 1 in the
Application Handle field.

c. In System Manager, click Elements > Session Manager > Application
Configuration > Application Sequences. Add the application to appropriate
application sequences.
When adding an application to a sequence, specify whether the application is
mandatory by setting the Mandatory field. If a mandatory application fails to
respond during application sequencing, then Session Manager returns an error
to the calling party. If a non-mandatory application fails to respond during
application sequencing, the Session Manager skips the application and
proceeds to the next application in the sequence.

d. In System Manager, click Users > Manage Users. Select a user and click
Edit.

e. On the Edit User Profile page, expand the Communication Profile area and
expand the Session Manager Profile area. Add the application sequence to
the Origination Application Sequence or the Termination Application
Sequence field.

f. To configure the timeout period in which the Sequenced Application must
respond to Session Manager, click Routing > SIP Elements. Edit the SIP
Element hosting the Sequenced Application and set the SIP Timer B/F field.
Click Commit.

Example
The following code demonstrates how to set up a Sequenced Application and forward the call
downstream without retargeting.
AppBindingService appInstance = ServiceFactory.getAppBindingService();
//connProps are the connection .properties for the binding, and
//serverURL is the URL of the Foundation Runtime Services server.
AppBindingService appInstance = ServiceFactory.getAppBindingService();
BindId bindId = appInstance.createBinding(serverURL, connProps);

ProxyRoutingService routingSvc =
 ServiceFactory.getProxyRoutingService(bindId);

InboundDialogService inboundDialogSvc =
 ServiceFactory.getInboundDialogService(bindId);
//Create an SequencedDialogListener named "sdListener".

Developing Sequenced Applications

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 33

//"applicationName" must be configured as the Application
//Handle of an application in Session Manager.
inboundDialogSvc.setSequencedDialogListener(sdListener,
 "applicationName");

//... sdListener is invoked with a dialog named "inboundDlg".

//The application must handle the inbound call or the
//application sequence is broken.
//Listen for a set of notifications such as CALL_FAILED or
//CALL_TERMINATED by creating a ProxyListener
//named "proxyListener".
routingSvc.proxy(inboundDlg, proxyListener,
 notificationSet, requestContent);

Related topics:
Application types and call processing on page 8
Proxy Routing Service on page 17
B2BUA Routing Service on page 18
Proxy Routing Service: Proxy a call on page 52
Proxy Routing Service: Application rejects a call on page 53
Proxy Routing Service: Caller cancels call on page 54
Proxy Routing Service: Callee rejects call on page 56
B2BUA Routing Service: Deflecting a call to IVR on page 57
B2BUA Routing Service: Terminating a call from an application on page 60

Remaining in the signalling path
About this task
The Proxy Routing Service can remain in the signalling path for the duration of a call, or it can
be excluded from receiving any further SIP messages after the initial message.

The ProxyNotification filter settings determine if the Proxy Routing Service remains part of
the signalling path for the duration of the call.

 Note:
At the SIP level, the Proxy Routing Service remains in the signalling path by inserting a
Record-Route header into the SIP request. The process of remaining in the signalling path
is therefore often referred to as record-routing a call.

When proxying a call using the Proxy Routing Service, define a notification filter which
determines which notifications are received by the notification listener. If the notification filter
excludes all notification types, the Proxy Routing Service is excluded from the signalling path
for the call. If the notification filter allows one or more notification types, then the Proxy Routing
Service is including in the signalling path for the remainder of the call.

For example, the following proxy() call keeps the Proxy Routing Service in the signalling path:
proxyRoutingService.proxy(dialog, proxyListener,
EnumSet.noneOf(ProxyNotification.class), requestContent);

Developing client applications

34 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

The following proxy() call excludes the Proxy Routing Service from the signalling path:
proxyRoutingService.proxy(dialog, proxyListener,
EnumSet.allOf(ProxyNotification.class), requestContent);

The options for EnumSet.allOf(ProxyNotification.class) are described in the
Foundation Toolkit Javadocs.

Using a Sequenced Application to redirect a call
A Sequenced Application implemented using the Proxy Routing Service can redirect a call.
This can be achieved by sending a 3xx SIP response directing the call to a new recipient
address, or the by altering the SIP URI of the message to specify a different recipient. The
choice of approach depends on the location of the Sequenced Application within the application
sequence, as shown in the following table.

Sequenced before
Communication Manager

Sequenced after
Communication Manager

Originating-side application
sequence

Alter SIP INVITE message
to specify different SIP URI.

 Note:
If the sequence includes
Communication Manager
configured as an evolution
server, all other
originating-side
applications must be
sequenced before
Communication Manager.

Send 3xx response.

Terminating-side application
sequence

Send 3xx response. Send 3xx response.

 Note:
If the sequence includes
Communication Manager
configured as an evolution
server, all other
terminating-side
applications must be
sequenced after
Communication Manager.

Developing Sequenced Applications

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 35

Configuring Avaya ACE as a SIP Entity on Session Manager
About this task
Provision the Avaya ACE™ server for client applications as SIP Entities with Session
Manager.

Procedure

1. In System Manager define a SIP Entity for Avaya ACE.

a. Click Routing > SIP Entities.
b. Click New.
c. On the SIP Entity Details page, create a new SIP Entity as follows:

In FQDN or IP Address, enter the Avaya ACE IP address or for an HA
deployment, the floating IP address.
Set Type to Other.

For information on the remaining fields on this page, see the System Manager
online Help system.

d. Click Commit to save the new SIP Entity.

2. In System Manager define a trusted Entity Link between Session Manager and the
Avaya ACE™ server.

a. Click Routing > Entity Links.
b. Click New.
c. On the Entity Links page, create a new Entity Link as follows:

In Name, enter a name for the link.
Set SIP Entity 1 to a suitable instance of Session Manager.
Set Protocol to TLS.

Set Port to the Session Manager TLS port (default 5061).
Set SIP Entity 2 to the Avaya ACE SIP Entity.
Set Port to the Foundation Toolkit Secure SIP port (5063).

Select Trusted.
For information on the remaining fields on this page, see the System Manager
online Help system.

 Note:
You must use the port 5061 on Session Manager and 5063 on Avaya ACE
to set up an entity link to Foundation server on Avaya ACE to enable the
Avaya Aura Foundation Toolkit provider to come In-service on Avaya ACE.

Developing client applications

36 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

d. Click Commit to save the new Entity Link.

Developing Endpoint Applications
About this task
Endpoint Applications such as Named, Delegate and Virtual Endpoint Applications are all
developed in a similar way since they use the same Foundation Toolkit API interfaces, and
they all interact in similar call flows. The differences between these kinds of applications lie in
the way they use the Address of Record.

To develop an endpoint application, configure the infrastructure for the application, and then
invoke the Foundation Runtime Services to interact with calls.

Procedure

1. Configure Session Manager for the client application.

a. Configuring Avaya ACE as a SIP Entity on Session Manager on page 36
b. (Optional) Provisioning an Endpoint Application with an Address of Record on

page 25. A client application does not need to register against an Address of
Record to receive SIP messages. This step is only necessary if the client
application must act as a virtual endpoint.

2. (Optional) If the client application has been provisioned with an Address of Record,
obtain the Registration Service from the ServiceFactory. Invoke
addRegistration(), supplying the Address of Record for the configured user. This
registers the application against the given Address of Record.

3. Obtain the Virtual Endpoint Service from the Foundation Toolkit service factory. Use
the Virtual Endpoint Service to create, terminate, and manipulate dialogs and
calls.

4. Obtain the Inbound Dialog Service from the Foundation Toolkit service factory. Set
an inbound dialog listener by invoking setEndpointDialogListener(), supplying
a set of values from an enumerated class which defines the dialogs the application
is interested in. This ensures that the Foundation Toolkit server can direct inbound
dialogs to the application. If the Foundation Toolkit server fails,
setEndpointDialogListener() is renewed automatically by the application's
Foundation Toolkit client application libraries server, when the server becomes
available again.
Applications can listen for overlapping patterns of inbound dialogs. If an inbound
dialog matches the patterns of more than one inbound dialog listeners, the most
recently registered listener is invoked.

5. Handle any incoming dialogs in the implementation of the
EndpointDialogListener.

Developing Endpoint Applications

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 37

6. Create outgoing dialogs and calls by calling the appropriate create() methods on
the Virtual Endpoint Service.

Example
The following code demonstrates how to set up a Named Application and create an outbound
call from that application.
AppBindingService appInstance = ServiceFactory.getAppBindingService();
//connProps are the connection .properties for the binding, and
//serverURL is the URL of the Foundation Runtime Services server.
AppBindingService appInstance = ServiceFactory.getAppBindingService();
BindId bindId = appInstance.createBinding(serverURL, connProps);

//OPTIONAL: The following lines are only required if the
//application registers against a user AoR.
//RegistrationService registrationSvc =
// ServiceFactory.getRegistrationService(bindId);
// //Create a registration listener named myRegistrationListener
//registrationSvc.addRegistration(
// new RegisterContent("userName@test.avaya.com",
// "test.avaya.com"), myRegistrationListener);

VirtualEndpointService endpointSvc =
 ServiceFactory.getVirtualEndpointService(bindId);

InboundDialogService inboundDialogSvc =
 ServiceFactory.getInboundDialogService(bindId);
//Create an endpoint dialog listener named edListener
inboundDialogSvc.setEndpointDialogListener(
 edListener, Pattern.compile("conf=[0-9]@avaya.com"));

//Create an EndpointListener and a Call.
Call myCall = endpointSvc.create(callProperties, endpointListener,
 notificationFilter);
...

Related topics:
Application types and call processing on page 8
Virtual Endpoint Service on page 20
Virtual Endpoint Service: Creating a call on page 63

Asserting sender identity in outgoing calls
About this task
The Virtual Endpoint Service asserts the identity of the sender by inserting a P-Asserted-
Identity header in INVITE requests that it sends. In a trusted network the P-Asserted-
Identity header can be used to pass authentication information between servers.

The following alternative methods can be used to influence the P-Asserted-Identity header
inserted by the Virtual Endpoint Service.

• Explicitly insert a P-Asserted-Identity header in the RequestContent object.

Developing client applications

38 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

The RequestContent object contains the information required to send a SIP request,
and can be used to specify additional headers to be sent with the request.
RequestContent req = new RequestContent(
 "to.me@receiver.avaya.com", "from.me@sender.avaya.com");
req.addHeader("P-Asserted-Identity",
 "sip:authenticated.user@sender.avaya.com");
final DialogProperties dialogProps = new DialogProperties(req);
final Dialog dialog = virtualEndpointService.create(dialogProps);
//Add the dialog to a call. This sends the outbound INVITE from
//the Virtual Endpoint Service to "to.me@receiver.avaya.com", with
//the sender identity asserted as "authenticated.user@sender.avaya.com".
//(The From header still gives the sender as "from.me@sender.avaya.com".)
virtualEndpointService.add(dialog, call, addDialogErrorListener);

• Assert the identity using a SipAddressPrincipal object.
Instead of inserting a P-Asserted-Identity header, the sender identity can be
asserted using a doAs() block in combination with a SipAddressPrincipal object.
The Virtual Endpoint Service adds a P-Asserted-Identity header matching the
SipAddressPrincipal. A SipAddressPrincipal is part of the Foundation Toolkit
API. The Subject.doAs() method is a standard security mechanism for associating
the current thread of execution with a subject. The subject is in turn associated with a
user.

 Note:
If a P-Asserted-Identity header is added to the RequestContent object, this
overrides the identity asserted by SipAddressPrincipal.

RequestContent req = new RequestContent(
 "to.me@receiver.avaya.com", "from.me@sender.avaya.com");
final DialogProperties dialogProps = new DialogProperties(req);
final Dialog dialog = virtualEndpointService.create(dialogProps);

// Subject to use with a SipAddressPrincipal.
final Subject sub = new Subject();
sub.getPrincipals().add(
 new SipAddressPrincipal("sip:authenticated.user@sender.avaya.com"));

//Add the dialog to a call. This sends the outbound INVITE from
//the Virtual Endpoint Service to "to.me@receiver.avaya.com", with
//the sender identity asserted as "authenticated.user@sender.avaya.com".
//(The From header still gives the sender as "from.me@sender.avaya.com".)
Subject.doAs(sub, new PrivilegedAction<String>() {
 public String run()
 {
 virtualEndpointService.add(dialog, call, addDialogErrorListener);
 return "";
 }
});

• Use the identity in the From header.
If a P-Asserted-Identity header is not added to the request, and if a
SipAddressPrincipal is not used to assert a user identity, then the Virtual Endpoint
Service creates a P-Asserted-Identity header based on the From header.
RequestContent req = new RequestContent(
 "to.me@receiver.avaya.com", "from.me@sender.avaya.com");
final DialogProperties dialogProps = new DialogProperties(req);
final Dialog dialog = virtualEndpointService.create(dialogProps);

Developing Endpoint Applications

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 39

//Add the dialog to a call. This sends the outbound INVITE from
//the Virtual Endpoint Service to "to.me@receiver.avaya.com", with
//the sender identity asserted as "from.me@sender.avaya.com",
//a copy of the From header value.
virtualEndpointService.add(dialog, call, addDialogErrorListener);

Asynchronous and synchronous services
The synchronous service interfaces target simplicity while the asynchronous service interfaces
target scalability.

Applications using the synchronous interfaces can use linear logic without having to store much
state between service invocations. Client applications using the asynchronous service
interfaces are more scalable, but they must store state between invocations of service interface
methods and then retrieve this state when the server's response is received by the callback
class.

Client applications using the asynchronous interfaces must create a state machine performing
the following actions:

1. Store some state while awaiting the asynchronous response.
2. On receiving the asynchronous response, retrieve that state, based on the identifier

passed in the asynchronous response.

The state machine must handle the possibility that asynchronous responses may
not arrive in the same order as the invocations of the service interface methods.

3. Perform an action based on the return values and the stored state.

 Note:
Client application code should take account of the possibility that service invocations may
not occur in the same order as the method invocations in the client application code. To
prevent possible race conditions, the client application code can wait for the asynchronous
response to a method invocation before invoking the next service interface method.

Example
In the following sample code, asynchronous and synchronous interfaces to the Virtual Endpoint
Service are obtained and used to place a call. Placing a call involves creating Call and Dialog
objects, and then adding the Dialog to the Call.
AppBindingService appInstance = ServiceFactory.getAppBindingService();
//connProps are the connection .properties for the binding, and
//serverURL is the URL of the Foundation Runtime Services server.
AppBindingService appInstance = ServiceFactory.getAppBindingService();
BindId bindId = appInstance.createBinding(serverURL, connProps);

//--
//Place a Call synchronously
//--
//Obtain synchronous service.
VirtualEndpointService synchVES =
 ServiceFactory.getVirtualEndpointService(bindId);

Developing client applications

40 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

//Place the call.
//Creation of callProperties, virtualEndpointCallListener
//and notificationFilter objects is not shown.
Call synchCall = synchVES.create(callProperties,
 virtualEndpointCallListener, notificationFilter);
//Creation of dialogProperties is not shown.
Dialog synchDialog = synchVES.create(dialogProperties);
//Creation of addDialogErrorListener is not shown.
synchVES.add(synchDialog, synchCall, addDialogErrorListener);

//--
//Place a Call asynchronously
//--
//Obtain asynchronous service
//MyAsynchronousVirtualEndpointCallback is an implementation of the
//AsynchronousVirtualEndpointCallback interface.
AsynchronousVirtualEndpointCallback asynchVESCallback =
 new MyAsynchronousVirtualEndpointCallback();
AsynchronousVirtualEndpointService asynchVES =
 ServiceFactory. getAsynchronousVirtualEndpointService(bindId);
asynchVES.addCallback(asynchVESCallback);

//Place the call.
String createCallMessageId = asynchVES.create(callProperties,
 virtualEndpointCallListener, notificationFilter);
String createDialogMessageId = asynchVES.create(dialogProperties);
//Store the ID strings so that the server responses can be
//matched to these method calls. myResponseHandler is a
//class that stores ID strings and maps server responses
//to actions. Implementation of myResponseHandler
//is not shown.
myResponseHandler.registerIdsToPlaceCall(
 createCallMessageId, createDialogMessageId);

//In the implementation of MyAsynchronousVirtualEndpointCallback,
//the following methods handle the results of the
//asynchronous create() calls:
public void createResponse(String createCallMessageId,
 Call asynchCall) {
 //Using the String identifier to identify the Call, pass the
 //Call object to the client application code.
 myResponseHandler.registerResponse(
 createCallMessageId, asynchCall);
}
public void createResponse(String createDialogMessageId,
 Dialog asynchDialog) {
 //Using the String identifier to identify the Dialog,
 //pass the Dialog object to the client application code.
 myResponseHandler.registerResponse(
 createDialogMessageId, asynchDialog);
}

//Once both the Call and the Dialog have been returned,
//myResponseHandler adds the dialog to the call, placing the
//call:
String addToCallIdString = asynchVES.add(asynchDialog,
 asynchCall, addDialogErrorListener);

Related topics:
Synchronous and asynchronous services on page 17

Asynchronous and synchronous services

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 41

Handling downstream forking
About this task
A SIP INVITE that is sent by an endpoint application, or which is sequenced through a
sequenced application, can be subsequently forked by a downstream proxy. That is, the SIP
INVITE can be forwarded to two or more endpoints, all of which independently send responses
such as 180 RINGING and 200 OK.

 Note:
Session Manager does not fork SIP requests, but Session Manager can forward the request
to a proxy which does fork the request.

• When routing a call with the Proxy Routing Service, do the following:

a. Handle the inbound dialog by invoking the proxy() method of the Proxy Routing
Service. At this stage it cannot be foreseen if the call with be forked downstream,
so the call is usually handled identically to a non-forking call. To be notified of forking
events, the ProxyListener argument to proxy() must accept
ProxyNotification.DIALOG_FORKED events.

b. The Proxy Routing Service detects that a dialog has been forked when a second
or subsequent endpoint sends a response. The service informs the client
application by invoking the ProxyListener.dialogForked() method for each
second and subsequent endpoint that responds to the INVITE.

• When routing a call using the B2BUA Routing Service, do the following:

a. Handle the inbound dialog by, for example, invoking the route() method of the
B2BUA Routing Service. At this stage it cannot be foreseen if the call with be forked
downstream, so the call is usually handled identically to a non-forking call.

b. The B2BUA Routing Service detects that a dialog has been forked when a second
or subsequent endpoint sends a response. The service informs the client
application by invoking the B2buaCallListener.dialogEarly() method for each
subsequent endpoint that sends a 1xx response to the INVITE.

c. When one of the endpoints forking the dialog sends a 200 OK response, further
responses from the other forking endpoints are ignored.

 Note:
The dialogForked()and callForked() methods of the B2buaCallListener
interface are not called by the B2BUA Routing Service in this release of the
Foundation Toolkit API.

• When sending an INVITE from a virtual endpoint application, do the following:

a. Create and add the outbound dialog to a call by, for example, invoking the route()
method of the Virtual Endpoint Service. At this stage it cannot be foreseen if the

Developing client applications

42 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

call with be forked downstream, so the call is usually handled identically to a non-
forking call.

b. The Virtual Endpoint Service detects that a dialog has been forked when a second
or subsequent endpoint sends a response. The service informs the client
application by invoking the VirtualEndpointCallListener.dialogEarly()
method for each subsequent endpoint that sends a 1xx response to the INVITE.

c. When one of the endpoints forking the dialog sends a 200 OK response, further
responses from the other forking endpoints are ignored.

 Note:
The dialogForked() method of the VirtualEndpointCallListener interface is
not called by the Virtual Endpoint Service in this release of the Foundation Toolkit
API.

Handling downstream forking

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 43

Developing client applications

44 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Chapter 5: Sequenced Template API

The Sequenced Template API provides a simplified interface to the Foundation Runtime Services,
enabling the rapid development of common types of Sequenced Applications. The Sequenced Template
API handles some of the details of the Foundation Toolkit API for the developer, and presents many of
the common actions of Sequenced Applications as simple method calls. The following table compares
the two APIs:

Capability Foundation Toolkit API Sequenced Template API
Full control over call flow

Access to a rich set of listeners
and fine-grained methods

Simple call blocking and
redirecting

Simple call logging (and other
actions that do not influence the
call flow)

Rapid and simplified
development process

The Sequenced Template API provides two templates which can be used as the basis for new Sequenced
Applications: the Incoming Call Director template and the Outgoing Call Director template.

Incoming Call Director
The Incoming Call Director template provides the following functions:

• allowCall: allow an incoming call to proceed.

• blockCall: block an incoming call.

A SIP 486 Busy Here response is sent to the caller.

• blockCallWithAnnouncement: prevent an incoming call from proceeding in the
application sequence and play an announcement to the caller. When the announcement
is finished, disconnect the call.

• redirectCall: redirect the call to another address.

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 45

A SIP 302 Moved Temporarily response is sent to the caller.

 Note:
Sequenced applications must respond rapidly to incoming calls because the dialling party
will not receive a ring tone until all sequenced applications have finished processing. In
addition, Session Manager requires a response within 4 seconds from a Sequenced
Application, after which the Sequenced Application is timed out. This 4 second time limit is
reduced by the time the request spends traversing between the Session Manager, the Avaya
ACE™ server and the client application.

The fully-qualified class name of the Incoming Call Director is:
com.avaya.service.template.incomingcalldirector.IncomingCallDirector

Outgoing Call Director
The Outgoing Call Director template provides the following functions:

• allowCall: allow an outgoing call to proceed.

• blockCall: block an outgoing call.

A SIP 403 Forbidden response is sent to the caller.

• redirectCall: proxies the call to another address.

 Note:
Sequenced applications must respond rapidly to incoming calls because the dialling party
will not receive a ring tone until all sequenced applications have finished processing. In
addition, Session Manager requires a response within 4 seconds from a Sequenced
Application, after which the Sequenced Application is timed out. This 4 second time limit is
reduced by the time the request spends traversing between the Session Manager, the Avaya
ACE™ server and the client application.

The fully-qualified class name of the Outgoing Call Director is:
com.avaya.service.template.outgoingcalldirector.OutgoingCallDirector

Sequenced Template API

46 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Provisioning Sequenced Template API client applications
• Follow the same procedures to provision a Sequenced Template API client application as

for any other Sequenced Application. For more information, see Configuring Avaya ACE
as a SIP Entity on Session Manager on page 36.

Creating a Sequenced Application using the Sequenced
Template API

Before you begin
Before creating secure application bindings, you must complete the following actions:

1. Configuration of Foundation Toolkit for secure application bindings is completed
during installation of Foundation Toolkit.

During installation of Foundation Toolkit, configure System Manager as the
certificate authority for Foundation Toolkit. In addition, System Manager provides
Foundation Toolkit with security certificates that are presented to client applications
while establishing a secure application binding.

2. Obtain key stores and trust stores from System Manager. Application bindings use
client certification, so security certificates must be downloaded from System
Manager for use by client applications before an application binding can be
established.

About this task
Get an instance of the Application Binding Service from the Sequenced Template API service
factory and then obtain a binding identifier from the service. You can create secure application
bindings, which connect to the Avaya ACE™ server using HTTPS. Then use the service factory
to obtain instances of the Incoming Call Director or Outgoing Call Director.

 Note:
Application binding for the Sequenced Template API is very similar to the process of
application binding for the Foundation Toolkit API. For more information, see Starting and
stopping Foundation Toolkit on page 26. These two processes have the following
differences:

• Different service factory classes are used to obtain services.
• Different service interfaces can be obtained from the service factories.

Provisioning Sequenced Template API client applications

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 47

Procedure

1. Configure Session Manager for the Sequenced Application.

a. In System Manager, click Elements > Session Manager > Application
Configuration > Applications.

b. Click New to create a new application. Enter the Foundation Toolkit server in
the SIP Entity field. Enter the application name used in Step 1 in the
Application Handle field.

c. In System Manager, click Elements > Session Manager > Application
Configuration > Application Sequences. Add the application to appropriate
application sequences.
When adding an application to a sequence, specify whether the application is
mandatory by setting the Mandatory field. If a mandatory application fails to
respond during application sequencing, then Session Manager returns an error
to the calling party. If a non-mandatory application fails to respond during
application sequencing, the Session Manager skips the application and
proceeds to the next application in the sequence.

d. In System Manager, click Users > Manage Users. Select a user and click
Edit.

e. On the Edit User Profile page, expand the Communication Profile area and
expand the Session Manager Profile area. Add the application sequence to
the Origination Application Sequence or the Termination Application
Sequence field.

f. To configure the timeout period in which the Sequenced Application must
respond to Session Manager, click Routing > SIP Elements. Edit the SIP
Element hosting the Sequenced Application and set the SIP Timer B/F field.
Click Commit.

2. Get an instance of the Application Binding Service from the Sequenced Template
API service factory.
AppBindingService appInstance =
TemplateServiceFactory.getAppBindingService();

3. Create a Properties object representing the configuration of the application
binding.
Use the following property names (these names are defined in the class
AppBindingProperties):

APPLICATION_NAME The name of the Foundation Toolkit client
application.
Mandatory.

CLEANUP_TIMEOUT The duration (in seconds) in which a disconnected
session remains inactive on the server before
being terminated. State is retained on the server
until the session is terminated, so this timeout
determines the period in which a broken
connection can be re-established.

Sequenced Template API

48 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

KEY_STORE_LOCATION The location of the client application key store.
Mandatory.

KEY_STORE_PASSWORD The password of the client application key store.

 Note:
This password must also be the password to
the key manager.

Mandatory.

TRUST_STORE_LOCATION The location of the client application trust store.
Mandatory.

TRUST_STORE_PASSWORD The password of the client application trust
store.
Mandatory.

4. Create a URL representing the location of the Avaya ACE™ server. Specify the
HTTPS protocol.
final URL url = new URL("https://frsIP:portNo/foundation/cometd/");

where frsIP is the IP address of the Avaya ACE™ server and portNo is the port used
on the server (this defaults to 9444 for HTTPS).

5. Create an application binding. The createBinding() method returns a binding
identifier that can be used to obtain services scoped to that binding.
final BindId bindId =
 appBindingService.createBinding(url, connectionProperties);

6. (Optional) Add an AppBindingStatusListener to monitor application binding
status.
appBindingService.addBindingStatusListener(
 AppBindingStatusListener listener);

7. Use the application binding to obtain instances of the Incoming Call Director or
Outgoing Call Director through the service factory, and invoke operations as
required on these directors.
// For example, obtain the Incoming Call Director:
IncomingCallDirectorService service =
 TemplateServiceFactory.getIncomingCallDirectorService(bindId);

Invoke setInCallDirectorListener() or setOutCallDirectorListener() on
the call director interface, supplying the application name of the sequenced
application. The application name is an identifying string which is also configured
in System Manager, enabling Session Manager to deliver SIP requests to the
application.

 Note:
Sequenced applications must respond rapidly to incoming calls because the
dialling party will not receive a ring tone until all sequenced applications have
finished processing. In addition, Session Manager requires a response within 4
seconds from a Sequenced Application, after which the Sequenced Application
is timed out. This 4 second time limit is reduced by the time the request spends

Creating a Sequenced Application using the Sequenced Template API

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 49

traversing between the Session Manager, the Avaya ACE™ server and the client
application.

When a Sequenced Template API client application receives a call, it must handle
the call as quickly as possible with a call to one of the following methods:

• Incoming Call Director:

allowCall(), blockCall(), blockCallWithAnnouncement() or
redirectCall()

• Outgoing Call Director:

allowCall(), blockCall() or redirectCall()
8. After the application session is complete, terminate the binding through the

Application Binding Service.
For more information, see Terminating an application binding on page 30.

Example
The following code demonstrates how to set up a Sequenced Template Application and route
an inbound call from that application.
AppBindingService appInstance
 = TemplateServiceFactory.getAppBindingService();
// connProps are the connection .properties for the binding, and
// serverURL is the URL of the Foundation Runtime Services server.
BindId bindId = appInstance.createBinding(serverURL, connProps);

IncomingCallDirectorService incomingCallDirectorSvc =
 TemplateServiceFactory.getIncomingCallDirectorService(bindId);

// Create an IncomingCallDirectorListener named "inCallListener".
// "applicationName" must be configured as the Application
// Handle of an application in Session Manager.
// An Id is returned which indicates the received Listener.
incomingCallDirectorServiceListenerId =
 incomingCallDirectorSvc.setInCallDirectorListener(inCallListener,
 "applicationName");

// inCallListener is invoked with a method named "incomingCall".
incomingCall(callingParty, calledParty, callDirector)

// The received callDirector provides the template methods
// to proceed with the incoming call, e.g
callDirector,allowCall();

Sequenced Template API

50 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Chapter 6: Sample call flows

The call flows in this section show the sequence of SIP messages and Java method calls for several
typical call scenarios. Only the method calls directly involved in the scenario are shown; calls to obtain
instances of services or to register listeners are not always shown.

In the call flow diagrams, the open-headed arrows indicate asynchronous method calls and black arrows
indicate synchronous method calls. The names of the applicable interfaces for method calls are
abbreviated as follows:

Interface
short name

Interface name

VES Virtual Endpoint Service
com.avaya.service.client.call.endpoint.VirtualEndpointService

B2B B2BUA Routing Service
com.avaya.service.client.call.routing.B2buaRoutingService

ML Media Listener
com.avaya.service.client.call.media.MediaListener

MS Media Service
com.avaya.service.client.call.media.MediaService

PL Proxy Listener
com.avaya.service.client.call.routing.ProxyListener

PRS Proxy Routing Service
com.avaya.service.client.call.routing.ProxyRoutingService

SDL Sequenced Dialog Listener
com.avaya.service.client.call.inbound.SequencedDialogListener

B2BCL B2BUA Call Listener
com.avaya.service.client.call.routing.B2buaCallListener

VECL Virtual Endpoint Call Listener
com.avaya.service.client.call.endpoint.VirtualEndpointCallList
ener

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 51

Proxy Routing Service: Proxy a call
In this scenario, an application listens for a call with an SequencedDialogListener, and
monitors the state of the call using a ProxyListener. The application routes the call using the
ProxyRoutingService.

Action Description
newInboundDialog Alice sends an INVITE request to Bob. The Inbound Dialog

Service invokes the newInboundDialog() method on the
SequencedDialogListener, notifying the client application
of a new inbound dialog.

proxy The client application responds to the inbound dialog by calling
the Proxy Routing Service method proxy(Dialog dialog,

Sample call flows

52 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Action Description
ProxyListener listener,
java.util.EnumSet<ProxyNotification>
notificationFilter, RequestContent
requestContent).

• The ProxyListener listener monitors the state of the call.
The notificationFilter determines which state
transitions the ProxyListener should report on.

• The RequestContent object can be used to set headers on
the INVITE request.

dialogEarly Bob responds with a 180 Ringing response. The client
application is notified that the Bob dialog is in “early” state
through the dialogEarly() method on the
ProxyListener.

dialogConfirmed Bob responds with a 200 OK response. The client application
is notified that the Bob dialog is in “confirmed” state through the
dialogConfirmed() method on the ProxyListener.
The session between Alice and Bob is established and proceeds
(no SIP messages are exchanged during the session).

dialogTerminated Alice ends the session by sending a BYE request to Bob. The
client application is notified that the Alice dialog is terminated
through the dialogTerminated() method on the
ProxyListener.

Related topics:
Developing Sequenced Applications on page 32

Proxy Routing Service: Application rejects a call
In this scenario, an application listens for a call with an SequencedDialogListener. The
application rejects the call using the ProxyRoutingService.

Proxy Routing Service: Application rejects a call

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 53

Action Description
newInboundDialog Alice sends an INVITE request. The Inbound Dialog Service

invokes the newInboundDialog() method on the
SequencedDialogListener, notifying the client application
of a new inbound dialog.

reject The client application rejects the inbound dialog by calling the
Proxy Routing Service method reject(Dialog dialog,
int statusCode).

Related topics:
Developing Sequenced Applications on page 32

Proxy Routing Service: Caller cancels call
In this scenario, an application listens for a call with an SequencedDialogListener, and
monitors the state of the call using a ProxyListener. The application routes the call using the
ProxyRoutingService. The caller (Alice) hangs up, resulting in a CANCEL message which
terminates the call.

Sample call flows

54 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Action Description
newInboundDialog Alice sends an INVITE request to Bob. The Inbound Dialog

Service invokes the newInboundDialog() method on the
SequencedDialogListener, notifying the client application
of a new inbound dialog.

proxy The client application responds to the inbound dialog by calling
the Proxy Routing Service method proxy(Dialog dialog,
ProxyListener listener,
java.util.EnumSet<ProxyNotification>
notificationFilter, RequestContent
requestContent).

• The ProxyListener listener monitors the state of the call.
The notificationFilter determines which state
transitions the ProxyListener should report on.

• The RequestContent object can be used to set headers on
the INVITE request.

Proxy Routing Service: Caller cancels call

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 55

Action Description
dialogEarly Bob responds with a 180 Ringing response. The client

application is notified that the Bob dialog is in “early” state
through the dialogEarly() method on the
ProxyListener.

dialogTerminated Alice sends a CANCEL request. The client application is
notified that the dialog is terminated through the
dialogTerminated() method on the ProxyListener.

Related topics:
Developing Sequenced Applications on page 32

Proxy Routing Service: Callee rejects call
In this scenario, an application listens for a call with a SequencedDialogListener, and
monitors the state of the call using ProxyListener. The application routes the call using the
ProxyRoutingService. The callee (Bob) sends a 4xx response, terminating the call.

Action Description
newInboundDialog Alice sends an INVITE request to Bob. The Inbound Dialog

Service invokes the newInboundDialog() method on the
SequencedDialogListener, notifying the client application
of a new inbound dialog.

Sample call flows

56 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Action Description
proxy The client application responds to the inbound dialog by calling

the Proxy Routing Service method proxy(Dialog dialog,
ProxyListener listener,
java.util.EnumSet<ProxyNotification>
notificationFilter, RequestContent
requestContent).

• The ProxyListener listener monitors the state of the call.
The notificationFilter determines which state
transitions the ProxyListener should report on.

• The RequestContent object can be used to set headers on
the INVITE request.

dialogTerminated Bob sends a 4xx response to Alice. The client application is
notified that the dialog is terminated through the
dialogTerminated() method on the ProxyListener.

Related topics:
Developing Sequenced Applications on page 32

B2BUA Routing Service: Deflecting a call to IVR
In this scenario, an application listens for a call using an SequencedDialogListener and
routes the call using the B2buaRoutingService. The callee, Bob, responds with a 180
Ringing but does not send a 200 OK to the INVITE (that is, the phone keeps ringing). After a
given time period, the application terminates the dialog with Bob and adds a MediaService
instead, in order to play an announcement.

B2BUA Routing Service: Deflecting a call to IVR

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 57

Sample call flows

58 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Action Description
newInboundDialog Alice sends an INVITE request to Bob. The Inbound Dialog

Service invokes the newInboundDialog() method on the
SequencedDialogListener, notifying the client application
of a new inbound dialog.

route The client application responds to the inbound dialog by calling
the B2BUA Routing Service method route().

dialogEarly Bob responds with a 180 Ringing response. The client
application is notified that the Bob dialog is in “early” state
through the dialogEarly() method on the
B2buaCallListener.

dialogEarly The B2BUA Routing Service forwards the 180 Ringing
response to Alice. The client application is notified that the
Alice dialog is in “early” state through the dialogEarly()
method on the B2buaCallListener.

terminate(dialog) The client application terminates the Bob dialog by invoking the
B2BUA Routing Service method terminate(Dialog
dialog). For example, the application can require that Bob
picks up the call within a given amount of time, and after this
time period it terminates the dialog with Bob.

dialogTerminated The B2BUA Routing Service sends a CANCEL request to Bob.
The client application is notified that the Bob dialog is terminated
through the dialogTerminated() method on the
B2buaCallListener.

addMediaServer The client application adds a media server to the call by invoking
the Media Service method addMediaServer(Call call,
MediaListener listener, MediaServerProperties
mediaServerProperties).

dialogConfirmed A 200 OK response is sent to Alice (the Media Server accepts
the call). The client application is notified that the Alice dialog
is in “confirmed” state through the dialogConfirmed()
method on the B2buaCallListener.

addedToCall The B2BUA Routing Service completes adding the dialog to the
call, as the dialog has now been confirmed. The client
application is notified through the addedToCall() method on
the B2buaCallListener.

mediaServerAdded When it is able to respond to media requests for the call, the
Media Service invokes the MediaListener method
mediaServerAdded().

B2BUA Routing Service: Deflecting a call to IVR

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 59

Action Description
playAnnouncement The client application plays an announcement to Alice by

invoking the Media Service method play(Dialog dialog,
PlayItem item, PlayOptions options). The play()
method returns a unique ID which can be used to track the
progress of the play request.

playCompleted After the Media Service reports that it has successfully played
the announcement by invoking the MediaListener method
playCompleted(java.util.UUID requestId,
PlayCompletionCause cause). The requestId argument
is the unique identifier that was returned by the Media Service
play() method.

terminate(call) As the announcement has finished playing, the client application
calls the B2BUA Routing Service method terminate(Call
call).

dialogTerminated The B2BUA Routing Service sends a BYE request to Alice.
The client application is notified that the Alice dialog is
terminated through the dialogTerminated() method on the
B2buaCallListener.

callTerminated The B2BUA Routing Service terminates the call. The client
application is notified through the callTerminated() method
on the B2buaCallListener.
No clean up of the media server is required.

Related topics:
Developing Sequenced Applications on page 32

B2BUA Routing Service: Terminating a call from an
application

In this scenario, the application listens for a call using the SequencedDialogListener, and
monitors the state of the call with a B2buaCallListener. At some point after the call is
established, the application terminates the call using the B2buaRoutingService.

Sample call flows

60 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Action Description
newInboundCall Alice sends an INVITE to Bob. The Inbound Dialog Service

invokes the newInboundDialog() method on the
SequencedDialogListener, notifying the client application
of a new inbound dialog.

route The client application responds to the inbound dialog by calling
the B2BUA Routing Service method route().

B2BUA Routing Service: Terminating a call from an application

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 61

Action Description
dialogEarly Bob responds with a 180 Ringing response. The client

application is notified that the Bob dialog is in “early” state
through the dialogEarly() method on the
B2buaCallListener.

dialogEarly The B2BUA Routing Service forwards the 180 Ringing
response to Alice. The client application is notified that the
Alice dialog is in “early” state through the dialogEarly()
method on the B2buaCallListener.

dialogConfirmed Bob responds with a 200 OK response. The client application
is notified that the Bob dialog is in “confirmed” state through the
dialogConfirmed() method on the B2buaCallListener.

dialogConfirmed The B2BUA Routing Service forwards the 200 OK response to
Alice. The client application is notified that the Alice dialog
is in “confirmed” state through the dialogConfirmed()
method on the B2buaCallListener.

addedToCall The Virtual Endpoint Service completes adding the Bob dialog
to the call, as the dialog has now been confirmed. The client
application is notified through the addedToCall() method on
the B2buaCallListener.

 Note:
The addedToCall callback is made when the Bob dialog is
established because the Alice dialog does not need to be
established before terminating the Bob dialog. The
dialogTerminated callbacks occur when both the Bob
and Alice dialogs terminate.

terminate The client application calls the B2BUA Routing Service method
terminate(Call call).

dialogTerminated The B2BUA Routing Service sends a BYE request to Alice.
The client application is notified that the Alice dialog is
terminated through the dialogTerminated() method on the
B2buaCallListener.

dialogTerminated After receiving a 200 OK response from Alice, the B2BUA
Routing Service sends a BYE request to Bob. The client
application is notified that the Bob dialog is terminated through
the dialogTerminated() method on the
B2buaCallListener.

callTerminated The B2BUA Routing Service terminates the call. The client
application is notified through the callTerminated() method
on the B2buaCallListener.

Sample call flows

62 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

 Note:
In an unattended transfer, the B2BUA Routing Service sends a BYE request only after the
entire call has been terminated.

For example, consider the following sequence of events:

1. Party A calls Party B.

2. Party B is term sequenced to AAFT, AAFT app uses B2BUA Routing Service to
route the call to Party B.

3. Call between Party A and Party B is established.

4. Party B transfers call to Party C, Party B hits Complete before Party C answers,
then hangs up.(unattended transfer)

5. Call between Party A and Party C is established.

6. Party C hangs up.

In this scenario, the application sequenced-in with Party B will receive a BYE request only
after the call between Party A and Party C is terminated.

Related topics:
Developing Sequenced Applications on page 32

Virtual Endpoint Service: Creating a call
In this call scenario, the VirtualEndpointService creates a call between two endpoints
(Alice and Bob) by creating appropriate Call and Dialog objects. An EndpointListener is
used to track the status of the call.

Virtual Endpoint Service: Creating a call

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 63

Action Description
createCall The client application creates a call by invoking the Virtual

Endpoint Service method create(CallProperties
properties, VirtualEndpointCallListener
listener,
java.util.EnumSet<VirtualEndpointCallNotificati
on> notificationFilter).

• The CallProperties object sets the automatic termination
policy of the call (for example, instructing the call to terminate
when all parties have left the call).

• The VirtualEndpointCallListener monitors the state of
the call. The notificationFilter specifies which state

Sample call flows

64 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Action Description

transitions the listener is not interested in receiving. For example
most applications would ensure that
VirtualEndpointCallNotification.REINVITE_RECEI
VED and
VirtualEndpointCallNotification.UPDATE_RECEIVE
D are specified in the notificationFilter passed on the
createCall method.

At this stage no SIP INVITE requests are sent as no dialogs have
been added to the call.

createDialog The client application creates dialogs, addressed to users Alice
and Bob, by invoking the Virtual Endpoint Service method
create(DialogProperties properties).
The DialogProperties object contains a RequestContent
object that sets INVITE request headers such as the To and From
headers.
At this stage no SIP INVITE requests are sent as the dialogs have
been added to the call.

addDialogs The client application adds the dialogs to the call by invoking the
Virtual Endpoint Service method add(Dialog[] dialogs,
Call call, AddDialogErrorListener
errorListener).
The Virtual Endpoint Service sends an INVITE request to the first
recipient (Alice).

dialogEarly Alice responds with a 180 Ringing response. The client
application is notified through the dialogEarly() method on the
VirtualEndpointCallListener.

dialogConfirmed Alice accepts the call with a 200 OK response. The client
application is notified through the dialogConfirmed() method
on the VirtualEndpointCallListener.

addedToCall The Virtual Endpoint Service completes adding the Alice dialog
to the call, as the dialog has now been confirmed. The client
application is notified through the addedToCall() method on the
VirtualEndpointCallListener.
The Virtual Endpoint Service sends an INVITE request to Bob. The
same sequence of callbacks are invoked as the Bob dialog is
confirmed (dialogEarly(), dialogConfirmed() and
addedToCall()).

Related topics:
Developing Endpoint Applications on page 37

Virtual Endpoint Service: Creating a call

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 65

Registration Service: Registering a client application
In this scenario, the RegistrationService creates a registration binding against an address
of record, and then modifies, queries and deletes the registration binding.

Action Description
addRegistration The application calls addRegistration on the Registration

Service, specifying the Request URI of the registrar, the Address
Of Records, To and From address, the expiration time and a
listener class.
The call to addRegistration results in the Foundation Toolkit
Server sending a SIP REGISTER message to the registrar.

Sample call flows

66 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Action Description
registrationAdde
d

The registrar responds to the REGISTER by sending the
Foundation Toolkit Server a SIP 200 OK message.
The registration process is deemed successful and so the
Foundation Toolkit Server invokes the registrationAdded
method on the applications registration listener.

modifyRegistrati
on

The application wishes to change the time at which the existing
registration on the registrar will expire.
The application calls modifyRegistration on the Registration
Service, specifying the registration to modify and the new
expiration time.
The call to modifyRegistration results in the Foundation
Toolkit Server sending a SIP REGISTER message to the registrar,
updating the existing registration.

registrationAdde
d

The registrar responds to the modifyRegistration by sending
the Foundation Toolkit Server a SIP 200 OK message.
The registration modification is deemed successful and so the
Foundation Toolkit Server invokes the registrationAdded
method on the applications registration listener.

queryRegistratio
ns

The application wishes to retrieve all registrations for an Address
Of Record.
The application calls queryRegistrations on the Registration
Service, specifying the Address Of Record and a
RegistrationQueryListener.
The call to queryRegistrations results in the Foundation
Toolkit Server sending a SIP REGISTER message to the
registrar.

registrationsQue
ried

The registrar responds to the modify REGISTER by sending the
Foundation Toolkit Server a SIP 200 OK message.
The registration query is deemed successful and so the
Foundation Toolkit Server invokes the registrationsQueried
method on the applications registration query listener.

removeRegistrati
on

The application wishes to remove all registrations for an Address
Of Record.
The Application calls removeRegistration on the Registration
Service, specifying the registration to remove.
The call to removeRegistration results in the Foundation
Toolkit Server sending a SIP REGISTER message to the
registrar.

registrationTerm
inated

The registrar responds to the unregister REGISTER by sending the
Foundation Toolkit Server a SIP 200 OK message.
The registration removal is deemed successful and so the
Foundation Toolkit Server invokes the
registrationTerminated method on the applications
registration listener.

Registration Service: Registering a client application

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 67

Sample call flows

68 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Chapter 7: Troubleshooting

SSL client debugging
To configure SSL client debugging, set the Java-VM parameter: —Djavax.net.debug=ssl

Client application encounters media server-related
exceptions

A client application encounters media server-related exceptions when attempting to access
Foundation Toolkit media services. This can be an application error, a Foundation Toolkit
configuration error, or the media server can be unavailable.

Perform this procedure to connect to the media server.

Procedure

1. a. Check for incorrect Foundation Toolkit configuration values in the Avaya Agile
Communication Environment™ Web GUI by clicking Configuration > Services
> Foundation Toolkit. If the media server configuration is incorrect, enter
correct values.

b. If no value is set for the Media Server SIP URI in the Foundation Toolkit
configuration, this indicates that the Foundation Toolkit installation is not
intended to support media operations. The application encountering media
server errors cannot run on this installation of Foundation Toolkit. Alternately,
install and configure a media server for Foundation Toolkit.

2. If the configuration of Foundation Toolkit is correct, check whether the media server
is running. If necessary, restart the media server.

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 69

No connection to Session Manager
There is no connection to Session Manager, so no SIP traffic is received and registrations
cannot be made through the Registration Service.

Perform this procedure to connect to Session Manager.

Procedure

1. Verify that Session Manager is running. For example, ping the Session Manager
server. For more information, see the Session Manager documentation.

 Note:
Foundation Toolkit periodically pings the Session Manager server. Failures to
respond to the pings are recorded in the Foundation Toolkit logs, found in the
directory opt/IBM/WebSphere/AppServer/profiles/AppSrv01/logs/AAFT
on the Avaya ACE™ server.

If Session Manager is not running, restart Session Manager. For more information,
see the Session Manager documentation.

2. Check for incorrect Foundation Toolkit configuration values in the Avaya Agile
Communication Environment™ GUI by clicking Configuration > Service Providers
> Foundation Toolkit.
If an incorrect address is configured for Session Manager, enter a correct value.

Client applications cannot connect to Foundation Toolkit
Client applications cannot establish a connection with the Foundation Toolkit server, with the
client application receiving exceptions related to the unavailability of the Foundation Toolkit or
to trust issues.

To verify the cause of the issue, examine the log files in following directory on the Avaya ACE™

server for log messages related to SSL or trust management issues:

opt/IBM/WebSphere/AppServer/profiles/AppSrv01/logs/AAFT

Perform the following procedure to verify the state of the server.

Troubleshooting

70 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Procedure

1. Verify that the Foundation Toolkit server is unavailable. The following methods can
be used to investigate the state of the server:

a. Ping the server.
b. Log in to the Foundation Toolkit server using SSH or PuTTY and check whether

the AAFT process is running.
c. In System Manager, check that the Entity link between Foundation Toolkit and

Session Manager is functioning. For more information, see Configuring Avaya
ACE as a SIP Entity on Session Manager on page 36.

2. Restart the Foundation Toolkit server.

a. Reboot the Foundation Toolkit server if necessary.
b. Log in to the Foundation Toolkit server using SSH or PuTTY and open the

directory:
opt/IBM/WebSphere/AppServer/profiles/AppSrv01/bin

c. Execute the following command: startServer.sh AAFT

Client security certificate is invalid
The client certificate generated and signed by System Manager has a validity start date set to
the time of creation.

If the WAS server time is behind System Manager the client certificate is invalid until the WAS
server reaches the validity start time. The error received is:
SSL HANDSHAKE FAILURE: A signer with SubjectDN "C=US, O=AVAYA, CN=f-client-app
PKIX path validation failed: java.security.cert.CertPathValidationException: the
certificate is not valid until [date and time]; internal cause is
java.security.cert.CertificateNotYetValidException: NotBefore

Align the date on the WAS server with System Manager.

Inbound dialogs not routing to a Foundation Toolkit
application

If Foundation Toolkit applications are not being notified of incoming dialogs you may have set
up originating sequences or terminating sequences incorrectly.

Client security certificate is invalid

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 71

For explicit originating sequenced applications, Session Manager sends
<app_handle>@<domain or IP of AAFT>;phase=imsorig in the route header of the first
INVITE to Foundation Toolkit.

For explicit terminating sequenced applications, Session Manager
sends<app_handle>@<domain or IP of AAFT>;phase=imsterm in the route header of the
first INVITE to Foundation Toolkit.

For implicit sequencing, the pattern matching to determine if Foundation Toolkit should be
contacted is against the Pattern field set in the Implicit Users section of Application
Configuration in System Manager. The user portion of the P_Asserted_ID header of the first
INVITE into Session Manager is P-Asserted-Identity: "display text"
<sip:user@domain> where user is an extension number. This causes an INVITE to be sent
from Session Manager to Foundation Toolkit to access applications. The subsequent INVITE
from Session Manager to Foundation Toolkit then contains the same route header information
as the explicit sequenced applications.

For named applications using routing policies for Session Manager, pattern matching on
Session Manager is against regular expressions set up in the Routing Policy and Regular
Expression sections of the Routing Element menu in System Manager. If a pattern is
matched, an INVITE is sent from Session Manager to Foundation Toolkit with a To header
containing the URI of the named application, such as an extension number . When an
application registers an EndpointDialogListener with Foundation Toolkit, the application
provides a regular expression pattern for all URIs it is interested in monitoring. When an
incoming INVITE matches the pattern provided by the application, then that application is
notified of the incoming dialog.

 Note:
The SequencedDialogListener.newInboundDialog method contains a callPhase
parameter that gives the phase of the call without the need to parse route headers.

Troubleshooting

72 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Appendix A: SIP request methods and
headers

SIP is modelled similarly to HTTP, so SIP messages are treated as requests from one end point to another.
The SIP requests have text-based headers and a message body just like HTTP requests (although some
of the headers are different). There are some important differences between HTTP and SIP:

• SIP is a peer-to-peer protocol, so all end points in a SIP network can send requests to each other.
A SIP endpoint can act as either a client or a server, depending on whether it is making or receiving
a call. This is in contrast to HTTP, where the client and server roles are distinct.

• SIP defines a wider range of request methods (see below), such as REGISTER, INVITE and
MESSAGE. For more information, see below.

SIP Specification: RFC 3261
The SIP Specification, RFC 3261, defines the protocol for exchanging SIP requests. The Foundation
Toolkit API insulates you from most of the complexities of the SIP protocol, but you still need to be familiar
with some parts of this specification. The following sections describe some of the most important aspects
of the SIP protocol that are relevant to creating an application using the Foundation Toolkit API.

SIP requests
This is an example SIP INVITE request, which invites another endpoint to join a call:
INVITE sip:barbara@avaya.com SIP/2.0
Via: SIP/2.0/UDP eg45.avaya.com;branch=branchId342323
Max-Forwards: 70
To: Barbara <sip:barbara@avaya.com>
From: Alisha <sip:alisha@avaya.com>;tag=2121233
Call-ID: callId768686868.avaya.com
CSeq: 2 INVITE
Contact: <sip:alisha@avaya.com>
P-Asserted-Identity: Alisha <sip:a.ashley@secure.avaya.com>
Content-Type: application/sdp
Content-Length: 96
...SIP body not shown...

The following table describes the parts of this SIP request

Line Description

INVITE sip:barbara@avaya.com
SIP/2.0

This line specifies the request method (INVITE), the target
of the request (specified as a SIP URI:
sip:barbara@avaya.com) and SIP specification
version governing the request (SIP 2.0, the SIP version
defined in RFC 3261).
The lines after this initial line are all SIP headers.

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 73

Line Description

Via: SIP/2.0/UDP
eg45.avaya.com;branch=...

The Via header specifies an address at which the sender
expects a response. Each proxy server that handles a
request adds itself to the request in the form of a Via
header, so that the response can return on the same
path.

Max-Forwards: 70 The Max-Forwards header specifies the number of hops
a request can make in reaching the target end point. This
header is useful to prevent situations such as infinite
looping of requests between servers.

To: Barbara
<sip:barbara@avaya.com>

The To header provides a display name (Barbara) and
SIP address to which the request is to be sent. Display
names are described in RFC 2822.

From: Alisha
<sip:alisha@avaya.com>;tag=212
1...

The From header provides a display name and SIP
address identifying the sender of the request. The header
includes a tag value which is a random number generated
by the sender's user agent. This is used with other values
within the message to identify the dialog.

Call-ID:
callId768686868.avaya.com

The Call-ID header contains a value uniquely identifying
the call.

CSeq: 2 INVITE The CSeq header is a sequence number, incremented for
each request in a dialog.

Contact:
<sip:alisha@avaya.com>

The Contact header specifies an address at which the
sender expects any future requests.

 Note:
The Contact address is used when sending requests
to the sender, while the Via addresses are used for
responses to the current request.

Back-to-back user agents such as the B2BUA Routing
Service typically modify the contact URI to point to
themselves.

P-Asserted-Identity: Alisha
<sip:a.ashley@secure.avaya.com
>

A server can add authentication information to a request
by adding the authenticated identity in a P-Asserted-
Identity header. Other servers downstream can then
use the authentication information without re-
authenticating the user. P-Asserted-Identity
headers are only used in trusted networks where an
identity asserted by a server can be relied upon by
downstream servers.
Avaya ACE™ servers are intended to operate in a trusted
network with Foundation Toolkit client applications, and the
Foundation Toolkit client-side libraries assert identities
authenticated on the client-side using P-Asserted-
Identity headers.

SIP request methods and headers

74 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Line Description

 Note:
Both the From and P-Asserted-Identity headers
assert an identity. However, only the P-Asserted-
Identity header asserts an authenticated identity.

Content-Type: application/sdp The Content-Type header describes the content of the
message body.

Content-Length: 96 The Content-Length header describes the length of the
message body in bytes.

...SIP body not shown... The message body is not shown, but it would contain
information describing the details of the session, such as
media type, codec and so on. The format of the message
body is defined by other standards, such as Session
Description Protocol (SDP, RFC 2327).

There are further headers beyond the main ones described in the above example. For example:

• The Route header lists a number of intermediate proxies through which a SIP request must be routed
on the way to its target end point.

• The Record-Route header can be added by a proxy to ensure that future requests in the same dialog
are routed through that proxy.

• When a SIP request is redirected, the History-Info header is added by a proxy to indicate the
previous targets of the SIP request.

SIP response
This is an example of a SIP response to an INVITE request:
SIP/2.0 200 OK
Via: SIP/2.0/UDP abc10.avaya.com;branch=9912345
Via: SIP/2.0/UDP abc2.avaya.com;branch=243245
Via: SIP/2.0/UDP abc1.avaya.com;branch=34456657
To: Barbara <sip:barbara@avaya.com>;tag=3453445
From: Alisha <sip:alisha@avaya.com>;tag=2121233
Call-ID: callId768686868.avaya.com
CSeq: 314008 INVITE
Contact: <sip:barbara@192.168.10.44>
Content-Type: application/sdp
Content-Length: 206

The first line indicates the SIP protocol version, the response code (200) and a textual description of the
response code (OK). For a full description of the SIP response codes, see RFC 3261.

The remaining lines specify response headers similar to the request headers already described.

The response has a response message body similar to the request message body. A tag is added to the To
header to identify the dialog.

SIP request methods
Each SIP request has a request method stating what action is being requested from the server. The
following table defines the SIP request methods defined in RFC 3261:

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 75

Request method Description

REGISTER Registers an end point against an address of record (for example,
register a handset against your E-mail address when logging in to the
network).

INVITE Initiates a SIP session.

ACK Acknowledges receipt of a 200 OK response. Completes the three-way
handshake in setting up a SIP dialog.

CANCEL Cancels a SIP INVITE request.

BYE Terminates a SIP session.

OPTIONS Requests information about server capabilities.

Additional methods are defined in other RFCs. For example, RFC 3428 defines the MESSAGE method,
used to support instant messaging scenarios.

REGISTER requests
A SIP endpoint sends a REGISTER request to join a network. The entity receiving the request is called a
registrar. in an Avaya Aura® network, Session Manager acts as the registrar.

The purpose of a REGISTER request is to map the network address of an endpoint to a more generally
available address, known as the Address of Record. For example, a SIP handset can send a REGISTER
request mappings its IP address to a telephone number (the Address of Record). More than one endpoint
can be registered against a given Address of Record, so REGISTER requests also provide parameters
to declare different priorities and capabilities for endpoints, so that calls to an Address of Record can be
routed to the most suitable endpoint.

A REGISTER request uses similar headers to an INVITE request but the purpose of the headers is slightly
modified, as can be seen in the following example REGISTER request:
REGISTER sip:registrar.avaya.com SIP/2.0
Max-Forwards: 70
To: Ashley <sip:ashley@avaya.com>
From: Ashley <sip:ashley@avaya.com>;tag=555666
Call-ID: callid666777888
CSeq: 1 REGISTER
Contact: <sip:ashley@192.1.2.3>
Expires: 3600
Content-Length: 0

The request can be read as follows:

• The first line states that this is a REGISTER request addressed to the SIP registrar at
sip:registrar.avaya.com.

• The From header states who is making the request (ashley@avaya.com).

• The To header states the target Address of Record (ashley@avaya.com). The To and From fields
are often the same; if they differ then the registration is known as a third party registration (that is, a
user is registering an endpoint against a different Address of Record).

• The Contact header states the network address of the endpoint being registered
(ashley@192.1.2.3).

SIP request methods and headers

76 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

• The Expires header states the duration of the registration in seconds (3600 seconds, an hour).

• The Content-Length header states a content length of 0; a REGISTER request does not require a
content .

•

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 77

SIP request methods and headers

78 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012
Comments? infodev@avaya.com

mailto:infodev@avaya.com?subject=Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide

Index

A

ACK ..75
active-idle model ...11
Address of Record ..25, 76
application ..13
application binding ..26, 29, 30
application binding properties26, 30

APPLICATION_NAME ...26
CLEANUP_TIMEOUT26, 30
KEY_STORE_LOCATION26
KEY_STORE_PASSWORD26
TRUST_STORE_LOCATION26
TRUST_STORE_PASSWORD26

Application Binding Service21, 26, 30
application sequencing ...8

Communication Manager deployed as a feature
server ..8

Communication Manager deployed as an evolution
server ..8

implicit ..8
application types ...7–11

call processing ...8
Delegate Applications ..10
Endpoint Applications ..7, 8
Named Applications ...10
Sequenced Applications8, 9
Virtual Endpoint Applications11

asserting identity in outgoing calls38
asynchronous services ...17, 40
Avaya ACE server ..29
Avaya ACE™ ..7
Avaya ACE™ Foundation Toolkit7
Avaya Agile Communication Environment7
Avaya Aura ...7
Avaya Aura™ Foundation Toolkit11, 13

network environment11, 13
Avaya Aura™ Session Manager13, 14

B

B2BUA Routing Service18, 30, 42, 57, 60
back-to-back user agent (B2BUA)13
BYE ..75

C

call ..13

conferencing ..13
Call-ID ..74
CANCEL ...75
certificate generation ..71
Communication Manager8, 35

deployed as a feature server8
deployed as an evolution server8

Contact ...74
Content-Length ...75
Content-Type ..75
CSeq ..74

D

debugging ...69
Delegate Applications7, 10, 36, 37

description ..7, 10
developing ..37
provisioning ..36

deployment options ..11
high availability ...11

dialog ..13
dialog forking ..42
Dialog State Event Service ...24
downstream forking ..42

E

Endpoint Applications7, 16, 25, 30, 36, 37, 42
description ...7
developing ..37
downstream forking ..42
provisioning ..25, 36

F

Foundation Runtime Services15–17, 26, 40
asynchronous interfaces17, 40
capabilities ...16
synchronous interfaces17, 40

Foundation Toolkit ..7
Foundation Toolkit services15, 16

capabilities ...16
From ...74

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 79

H

high availability ...11
History-Info ...75
HTTPS ..26

I

implicit application sequencing8
Inbound Dialog Service ..22
interactive voice response (IVR)13
INVITE ...71, 73, 75

M

Max-Forwards ..74
media ..13
Media Service ...23

N

Named Applications7, 10, 36, 37
description ..7, 10
developing ..37
provisioning ..36

network environment ..13

O

OPTIONS ...75

P

P-Asserted-Identity ...38, 74
proxy ...14
Proxy Routing Service17, 30, 34, 35, 42, 52–54, 56

R

Record-Route ...34, 75
redirecting calls ..35
redirection ...14
REGISTER ...75, 76
registration ..14
Registration Event Service ...23
Registration Service ..21, 66
remaining in the signalling path of a call34
request methods ...75

ACK ..75
BYE ..75

CANCEL ..75
INVITE ...75
OPTIONS ...75
REGISTER ...75

Route ..75
routing ..14

S

sample call flows ..51
SCEP ..29
security ...26, 38

asserting identity ..38
secure application bindings26

security certificate generation71
sending 3xx responses ...35
Sequenced Application ...42

downstream forking ..42
Sequenced Applications7, 9, 16, 30, 32, 34–36

description ..7, 9
developing ..32, 34
provisioning ..36
redirecting calls ..35
sending 3xx responses ..35
signalling path ..34

server ...14
proxy ..14
redirect ...14
registrar ..14
SIP ...14

service factory ...15, 16
session ...13
Session Initiation Protocol13, 71, 73
Session Manager ...8
signalling path ..34
SIP ...13, 14, 73, 75, 76

Address of Record ...76
request methods ..75
server ...14
user agent ..13

SIP Element ..25, 36
SIP headers ..74, 75

Call-ID ..74
Contact ...74
Content-Length ..75
Content-Type ...75
CSeq ..74
From ...74
History-Info ...75
Max-Forwards ..74
P-Asserted-Identity ..74

80 Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012

Record-Route ...75
Route ...75
To ...74
Via ..74

SIP INVITE ...71
SIP requests ...73
SIP responses ..75
SSL client ..69, 71
starting Foundation Toolkit ...26
stopping Foundation Toolkit ..26
synchronous services ...17, 40
System Manager ..29

T

TLS ...71
To ..74
trust management ..29

U

UA ..13
UAC ..13
UAS ..13
user agent ..13

V

Via ..74
Virtual Endpoint Applications7, 11, 25, 37

description ..7, 11
developing ..37
provisioning ..25

Virtual Endpoint Service20, 30, 42, 63

Avaya Agile Communication Environment™ Foundation Toolkit Developer's Guide November 2012 81

	Contents
	Chapter 1: Introduction
	Client application types
	Application types and call processing
	Sequenced Applications
	Named Applications
	Delegate Applications
	Virtual Endpoint Applications

	Monitoring server availability

	Chapter 2: Session Initiation Protocol (SIP) and the Avaya Aura® network
	User agents
	SIP servers

	Chapter 3: Services
	Foundation Toolkit services
	Services and application capabilities
	Synchronous and asynchronous services
	Sequenced Application services
	Proxy Routing Service
	B2BUA Routing Service

	Named, Delegate and Endpoint Application services
	Virtual Endpoint Service
	Registration Service

	Complementary services
	Application Binding Service
	Inbound Dialog Service
	Media Service
	Registration Event Service
	Dialog State Event Service

	Chapter 4: Developing client applications
	Provisioning client applications
	Provisioning an Endpoint Application with an Address of Record

	Starting and stopping Foundation Toolkit
	Creating application bindings
	Obtain key stores and trust stores from System Manager
	Terminating an application binding

	Developing Sequenced Applications
	Remaining in the signalling path
	Using a Sequenced Application to redirect a call
	Configuring Avaya ACE as a SIP Entity on Session Manager

	Developing Endpoint Applications
	Asserting sender identity in outgoing calls

	Asynchronous and synchronous services
	Handling downstream forking

	Chapter 5: Sequenced Template API
	Incoming Call Director
	Outgoing Call Director
	Provisioning Sequenced Template API client applications
	Creating a Sequenced Application using the Sequenced Template API

	Chapter 6: Sample call flows
	Proxy Routing Service: Proxy a call
	Proxy Routing Service: Application rejects a call
	Proxy Routing Service: Caller cancels call
	Proxy Routing Service: Callee rejects call
	B2BUA Routing Service: Deflecting a call to IVR
	B2BUA Routing Service: Terminating a call from an application
	Virtual Endpoint Service: Creating a call
	Registration Service: Registering a client application

	Chapter 7: Troubleshooting
	SSL client debugging
	Client application encounters media server-related exceptions
	No connection to Session Manager
	Client applications cannot connect to Foundation Toolkit
	Client security certificate is invalid
	Inbound dialogs not routing to a Foundation Toolkit application

	Appendix A: SIP request methods and headers
	Index

