
Avaya Context Store Snap-In Developer Guide 3.1.0.1 1

Avaya Context Store Snap-in

Developer Guide

 Release 3.1.0.1

Issue 3

January 2017

Avaya Context Store Snap-In Developer Guide 3.1.0.1 2

AVAYA SOFTWARE DEVELOPMENT KIT LICENSE
AGREEMENT

REVISED: October 12, 2015

Using this document signifies your assent to the following
SDK License Terms.

READ THIS CAREFULLY BEFORE ELECTRONICALLY
ACCESSING OR USING THIS PROPRIETARY
PRODUCT!

THIS IS A LEGAL AGREEMENT (“AGREEMENT”)
BETWEEN YOU, INDIVIDUALLY, AND/OR THE
LEGAL ENTITY FOR WHOM YOU ARE OPENING,
INSTALLING, DOWNLOADING, COPYING OR
OTHERWISE USING THE SDK (COLLECTIVELY,
AS REFERENCED HEREIN, “YOU”, “YOUR”, OR
“LICENSEE”) AND AVAYA INC. OR ANY AVAYA
AFFILIATE (COLLECTIVELY, “AVAYA”). IF YOU
ARE ACCEPTING THE TERMS AND CONDITIONS
OF THIS AGREEMENT ON BEHALF OF A LEGAL
ENTITY, YOU REPRESENT AND WARRANT THAT
YOU HAVE FULL LEGAL AUTHORITY TO ACCEPT
ON BEHALF OF AND BIND SUCH LEGAL ENTITY
TO THIS AGREEMENT. BY OPENING THE MEDIA
CONTAINER, BY INSTALLING, DOWNLOADING,
COPYING OR OTHERWISE USING THE AVAYA
SOFTWARE DEVELOPMENT KIT (“SDK”) OR
AUTHORIZING OTHERS TO DO SO, YOU SIGNIFY
THAT YOU ACCEPT AND AGREE TO BE BOUND
BY THE TERMS OF THIS AGREEMENT. IF YOU
DO NOT HAVE SUCH AUTHORITY OR DO NOT
WISH TO BE BOUND BY THE TERMS OF THIS
AGREEMENT, SELECT THE "DECLINE" BUTTON
AT THE END OF THE TERMS OF THIS
AGREEMENT OR THE EQUIVALENT OPTION.

1.0 DEFINITIONS.

1.1 “Affiliates” means any entity that is directly or indirectly
controlling, controlled by, or under common control
with Avaya Inc. For purposes of this definition,
“control” means the power to direct the management
and policies of such party, directly or indirectly,
whether through ownership of voting securities, by
contract or otherwise; and the terms “controlling” and
“controlled” have meanings correlative to the
foregoing.

1.2 “Avaya Software Development Kit” or “SDK” means
Avaya technology, which may include object code,
Client Libraries, Specification Documents, Software
libraries, application programming interfaces (“API”),
Software tools, Sample Application Code, published
specifications and Documentation.

1.3 “Client Libraries” mean any enabler code specifically
designated as such and included in a SDK. Client
Libraries may also be referred to as “DLLs”, and
represent elements of the SDK required at runtime to
communicate with Avaya products or other SDK
elements.

1.4 “Change In Control” shall be deemed to have occurred
if any person, entity or group comes to own or
control, directly or indirectly, beneficially or of record,
voting securities (or any other form of controlling
interest) which represent more than fifty percent
(50%) of the total voting power of or to Licensee.

1.5 “Derivative Work(s)” means: (a) for copyrightable or
copyrighted material, any translation (including
translation into other computer languages), port,
compiling of Source Code into object code,
combination with a pre-existing work, modification,
correction, addition, extension, upgrade,
improvement, compilation, abridgment or other form
in which an existing work may be recast, transformed
or adapted or which would otherwise constitute a
derivative work under the United States Copyright
Act; (b) for patentable or patented material, any
changes, additions, modifications or improvements
thereon; and (c) for material which is protected by
trade secret, any new material derived from such
existing trade secret material, including new material
which may be protected by copyright, patent and/or
trade secret. Permitted Modifications will be
considered Derivative Works.

1.6 “Documentation” includes, but is not limited to
programmer guides, CDs, manuals, materials, and
information appropriate or necessary for use in
connection with the SDK. Documentation may be
provided in machine-readable, electronic or hard
copy form.

1.7 “Intellectual Property” means any and all tangible and
intangible: (i) rights associated with works of
authorship throughout the world, including but not
limited to copyrights, neighboring rights, moral rights,
and mask works, (ii) trademark and trade name
rights and similar rights, (iii) trade secret rights, (iv)
patents, algorithms, designs and other industrial
property rights, (v) all other intellectual and industrial
property rights (of every kind and nature throughout
the world and however designated) whether arising
by operation of law, contract, license, or otherwise,
and (vi) all registrations, initial applications, renewals,
extensions, continuations, divisions or reissues
thereof now or hereafter in force (including any rights
in any of the foregoing).

1.8 “Open Source Software" or "OSS" is as defined by the
Open Source Initiative (“OSI”) and is software licensed under
an OSI approved license as set forth at
http://www.opensource.org/docs/osd (or such successor site as
designated by OSI).

1.9 “Permitted Modification(s)” means Licensee’s
modifications of the Source Code as needed to
create applications, interfaces, workflows or
processes for use with Avaya products.

1.10 “Specification Document” means any notes or similar
instructions in hard copy or machine readable form,
including any technical, interface and/or
interoperability specifications that define the
requirements and conditions for connection to and/or
interoperability with Avaya products, systems and
solutions.

1.11 “Source Code” means the high-level statement
version of the Sample Application Code or Software
written in the source language used by programmers
and includes one or more programs. Source Code
programs may include one or more files, but is not
limited to, user interface markup language (.mxml),
action script (.as), precompiled Flash code (.swc),
java script (.js), hypertext markup language (.html),
active server pages (.asp), C# or C# .Net source
code (.cs), java source code (.java), java server

http://www.opensource.org/docs/osd

Avaya Context Store Snap-In Developer Guide 3.1.0.1 3

pages (.jsp), java archives (.jar), graphic interchange
format (.gif), cascading style sheet (.css) and
extensible markup language (.xml) files. Source
Code files may also be provided in binary object
format, may require explicit compilation into binary
object format for execution, or may be interpreted
natively using a separate application execution
program or platform.

1.12 “Sample Application Code” means Source Code
and/or executable Software provided for the
purposes of demonstrating functionality of an Avaya
product through the Avaya Software Development
Kit.

1.13 “Software” means Avaya’s intangible information
constituting one or more computer or apparatus
programs, including, but not limited to, Avaya
software in Source Code or in machine-readable,
compiled object code form.

2.0 LICENSE GRANT.

2.1 SDK License.

 A. Provided Licensee pays to Avaya the applicable
license fee (if any), Avaya hereby grants Licensee a
limited, non-exclusive, non-transferable, license (without
the right to sublicense, except as set forth in 2.1B(iii)) to
use the SDK (including Sample Application Code) solely
for the purpose of Licensee's internal development
efforts to develop applications, interfaces, value-added
services and/or solutions, workflows or processes to
work in conjunction with Avaya products provided,
however, that Licensee shall have no right to distribute,
license (whether or not through multiple tiers) or
otherwise transfer the SDK to any third party or
incorporate the SDK in any software, product, or
technology. Avaya further grants Licensee the right, if
the Licensee so chooses, to package Client Libraries for
redistribution with Licensee’s complementary
applications that have been developed using this SDK,
subject to the terms and conditions set forth herein.
Where SDK includes Specification Document(s),
Licensee is granted a license to use such Specification
Documents solely to enable Licensee’s products,
services and application solutions to exchange
messages and signals with Avaya products, systems
and solutions to which the Specification Document(s)
apply. Avaya’s support obligations for the SDK, Sample
Application Code and any Derivative Works are set forth
in Section 4 of this Agreement.

 B. The foregoing license to use Sample Application
Code is contingent upon the following: (i) Licensee may
use and modify the Sample Application Code,
Specification Documents and Documentation solely for
internal development of applications, interfaces,
workflows or processes for use with Avaya products,
integration of such applications, interfaces, workflows
and processes with Avaya products and interoperability
testing of the foregoing with Avaya products, (ii)
Licensee must ensure that the modifications made to the
Sample Application Code as permitted in clause (i) of
this Section 2.1B are compatible and/or interoperable
with Avaya products and/or integrated therewith, (iii)
Licensee may compile or otherwise prepare for
distribution the Sample Application Code with Permitted
Modifications, into an object code or other suitable
program format for distribution, provided that such
sublicense is subject to an end user license agreement

that is consistent with the terms of this Agreement and, if
applicable, the Avaya DevConnect Program Agreement,
and is equally as protective as Licensee’s standard
software license terms, but in no event shall the
standard of care be less than a reasonable degree of
care. Under no circumstances shall Licensee enable the
use or activation of any of Avaya’s Intellectual Property
by an end user, without such end user having acquired
the additional necessary licenses to Avaya Intellectual
Property. Avaya’s support obligations for the SDK,
Sample Application Code and any Derivative Works are
set forth in Section 4 of this Agreement.

 C. Except as expressly authorized by this Agreement,
and unless otherwise permitted by the applicable law,
Licensee shall not: (i) translate, publish, or display the
SDK, Specification Documents or Documentation or any
copy or part thereof; or (ii) use, modify, or distribute the
redistributable Client Libraries in any manner that
causes any portion of the redistributable Client Libraries
that is not already subject to an OSS license to become
subject to the terms of any OSS license.

 D. Licensee agrees that it is licensed to use the SDK
only in connection with Avaya products (and if
applicable, in connection with services provided under
the Avaya DevConnect Program Agreement). In the
event of any conflict between the terms and conditions
of this Agreement and the Avaya DevConnect Program
Agreement (if applicable), the terms and conditions of
the Avaya DevConnect Program Agreement shall
prevail.

 E. With respect to Software that contains elements
provided by third party suppliers, Licensee may install
and use the Software in accordance with the terms and
conditions of the applicable license agreements, such as
“shrinkwrap” or “click-through” licenses, accompanying
or applicable to the Software.

 F. Avaya shall have the right, at its cost and expense, to
inspect and/or audit (i) by remote polling or other
reasonable electronic means at any time and (ii) in
person during normal business hours and with
reasonable notice Licensee’s books, records, and
accounts, to determine Licensee’s compliance with this
Agreement. In the event such inspection or audit
uncovers non-compliance with this Agreement, then
without prejudice to Avaya’s termination rights
hereunder, Licensee shall promptly pay Avaya any
applicable license fees. Licensee agrees to keep a
current record of the location of the SDK.

2.2 No Standalone Product. Nothing in this Agreement
authorizes or grants Licensee any rights to distribute or
otherwise make available to a third party the SDK, in
whole or in part, or any Derivative Work in source or
object code format on a standalone basis other than the
modifications permitted in Section 2.1B of this
Agreement.

2.3 Proprietary Notices. Licensee shall not remove any
copyright, trade mark or other proprietary notices
incorporated in the copies of the SDK, Sample
Application Code and redistributable files in Licensee’s
possession or control or any modifications thereto.
Redistributions in binary form or other suitable program
format for distribution, to the extent expressly permitted,
must also reproduce Avaya’s copyright, trademarks or
other proprietary notices as incorporated in the SDK in

Avaya Context Store Snap-In Developer Guide 3.1.0.1 4

any associated Documentation or “splash screens” that
display Licensee copyright notices.

2.4 Third-Party Components. You acknowledge certain
software programs or portions thereof included in the
SDK may contain software distributed under third party
agreements (“Third Party Components”), which may
contain terms that expand or limit rights to use certain
portions of the SDK (“Third Party Terms”). Information
identifying the copyright holders of the Third Party
Components and the Third Party Terms that apply is
available in the attached Schedule 1 (if any), SDK,
Documentation, or on Avaya’s web site at:
https://support.avaya.com/Copyright (or such successor
site as designated by Avaya). The open source
software license terms provided as Third Party Terms
are consistent with the license rights granted in this
Agreement, and may contain additional rights benefiting
You, such as modification and distribution of the open
source software. The Third Party Terms shall take
precedence over this Agreement, solely with respect to
the applicable Third Party Components, to the extent
that this Agreement imposes greater restrictions on You
than the applicable Third Party Terms. Licensee is
solely responsible for procuring any necessary licenses
for Third Party Components, including payment of
licensing royalties or other amounts to third parties, for
the use thereof.

2.5 Copies of SDK. Licensee may copy the SDK only as
necessary to exercise its rights hereunder; provided,
however that Licensee may also make one (1) copy for
back-up purposes and any reproduction of the SDK
(including derivatives thereof), either in whole or in part,
shall include the Avaya copyright notice that was
provided in the SDK.

2.6 No Reverse Engineering. Licensee shall have no rights
to any Source Code for any of the software in the SDK,
except for the explicit rights to use the Source Code as
provided to Licensee hereunder. Licensee agrees that it
shall not cause or permit the disassembly, decompilation
or reverse engineering of the Software. Notwithstanding
the foregoing, if the SDK is rightfully located in a
member state of the European Union and Licensee
needs information about the Software in the SDK in
order to achieve interoperability of an independently
created software program with the Software in the SDK,
Licensee will first request such information from Avaya.
Avaya may charge Licensee a reasonable fee for the
provision of such information. If Avaya refuses to make
such information available, then Licensee may take
steps, such as reverse assembly or reverse compilation,
to the extent necessary solely in order to achieve
interoperability of the Software in the SDK with an
independently created software program. To the extent
that the Licensee is expressly permitted by applicable
mandatory law to undertake any of the activities listed in
this section, Licensee will not exercise those rights until
Licensee has given Avaya twenty (20) days written
notice of its intent to exercise any such rights.

2.7 Responsibility for Development Tools. Licensee
acknowledges that effective utilization of the SDK may
require the use of a development tool, compiler and
other software and technology of third parties, which
may be incorporated in the SDK pursuant to Section 2.4.
Licensee is solely responsible for procuring such third
party software and technology and the necessary

licenses, including payment of licensing royalties or
other amounts to third parties, for the use thereof.

2.8 U.S. Government End Users. The SDK shall be
classified as "commercial computer software" and the
Documentation is classified as "commercial computer
software documentation" or "commercial items,"
pursuant to FAR 12.212 or DFAR 227.7202, as
applicable. Any use, modification, reproduction, release,
performance, display or disclosure of the SDK or
Documentation by the Government of the United States
shall be governed solely by the terms of the Agreement
and shall be prohibited except to the extent expressly
permitted by the terms of the Agreement.

2.9 Limitation of Rights. No right is granted to Licensee to
sublicense its rights hereunder. All rights not expressly
granted are reserved by Avaya and, except as expressly
set forth herein, no license is granted by Avaya under
this Agreement directly, by implication, estoppel or
otherwise, under any patent, copyright, trade secret or
trademark or other Intellectual Property right of Avaya.
Nothing herein shall be deemed to authorize Licensee to
use Avaya's trademarks or trade names in Licensee's
advertising, marketing, promotional, sales or related
materials.

2.10 Nonassertion by Licensee. Licensee agrees not to
assert any patent rights related to the SDK or
applications developed using the SDK against Avaya,
Avaya's distributors, Avaya customers, or other
licensees of the SDK for making, using, selling, offering
for sale, or importing any products or technology
developed using the SDK.

2.11 Avaya Independent Development. Licensee
understands and agrees that Avaya or its Affiliates may
acquire, license, develop for itself or have others
develop for it, and market and/or distribute similar
software to that which Licensee may develop. In
absence of a separate written agreement to the
contrary, Avaya or its Affiliates will be free to use any
information Licensee provides, including problem reports
or enhancement requests, to Avaya for any purpose,
subject to any applicable patents or copyrights.

2.12 Feedback and Support. Licensee agrees to provide any
comments and suggestions regarding the performance
of the SDK (a) if applicable, on the developer forum of
the DevConnect Program on www.avaya.com/devconnect;
or (b) via the process otherwise indicated by Avaya with
respect to the SDK. Avaya agrees to monitor the
applicable forum but is under no obligation to implement
any of the suggestions and/or proposals, or be required
to respond to any questions asked in the forum. Self-
support tools are available via the Avaya DevConnect
program’s portal and requires self registration. Licensee
hereby assigns to Avaya all right, title, and interest in
and to Feedback provided to Avaya.

2.13 Fees and Taxes. To the extent that fees are associated
with the license of the SDK, Licensee agrees to pay to
Avaya or pay directly to the applicable government or
taxing authority, if requested by Avaya, all taxes and
charges, including without limitation, penalties and
interest, which may be imposed by any federal, state or
local governmental or taxing authority arising hereunder
excluding, however, all taxes computed upon Avaya’s
net income. If You move any Software, including the
SDK, and as a result of such move, a jurisdiction
imposes a duty, tax, levy or fee (including withholding

https://support.avaya.com/Copyright
http://www.avaya.com/devconnect

Avaya Context Store Snap-In Developer Guide 3.1.0.1 5

taxes, fees, customs or other duties for the import and
export of any such Software), then You are solely liable
for, and agree to pay, any such duty, taxes, levy or other
fees.

2.14 No Endorsement. Neither the name Avaya, its Affiliates
nor the names of contributors may be used to endorse
or promote products derived from the Avaya SDK
without specific prior written permission from Avaya.

2.15 High Risk Activities. The Avaya SDK is not fault-
tolerant, and is not designed, manufactured or intended
for use or resale as on-line control equipment or in
hazardous environments requiring failsafe performance,
such as in the operation of nuclear facilities, aircraft
navigation or aircraft communications systems, mass
transit, air traffic control, medical or direct life support
machines, dedicated emergency call handling systems
or weapons systems, in which the failure of the Avaya
SDK could lead directly to death, personal injury, or
severe physical or environmental damage ("high risk
activities"). If Licensee uses the Avaya SDK for high risk
activities, Licensee does so at Licensee’s own risk and
Licensee assumes all responsibility and liability for such
use to the maximum extent such limitation or exclusion
is permitted by applicable law. Licensee agrees that
Avaya and its suppliers will not be liable for any claims
or damages arising from or related to use of the Avaya
SDK for high risk activities to the maximum extent such
limitation or exclusion is permitted by law.

2.16 No Virus. Licensee warrants that (i) the applications,
interfaces, value-added services and/or solutions,
workflows or processes Licensee develops using this
SDK will not contain any computer program file that
includes time code limitations, disabling devices, or any
other mechanism which will prevent the Supplier
Software from being functional at all times (collectively
“Time Bombs”); and (ii) the applications, interfaces,
value-added services and/or solutions, workflows or
processes Licensee develops using this SDK will be free
of computer viruses, black boxes, malware, trapdoors,
and other mechanisms to allow remote/hidden attacks or
access through unauthorized computerized command
and control, and will not contain any other computer
software routines designed to spy, monitor traffic
(network sniffers, keyloggers), damage or erase such
applications, interfaces, value-added services and/or
solutions, workflows or processes developed using this
SDK or data, or any computer files or systems of Avaya,
its Affiliates, and/or end users (collectively “Virus”). In
addition to any other remedies permitted in the
Agreement, if Licensee breaches its warranties under
this Section, Licensee will, at its expense, take remedial
action to eliminate any Time Bombs and/or Viruses and
prevent re-occurrence (including implementing
appropriate processes to prevent further occurrences)
as well as provide prompt, reasonable assistance to
Avaya to materially reduce the effects of the Time Bomb
and/or Virus.

2.17 Disclaimer. Any software security feature is not a
guaranty against malicious code, deleterious routines,
and other techniques and tools employed by computer
“hackers” and other third parties to create security
exposures. Compromised passwords represent a major
security risk. Avaya encourages You to create strong
passwords using three different character types, change
Your password regularly and refrain from using the
same password regularly. You must treat such

information as confidential. You agree to notify Avaya
immediately upon becoming aware of any unauthorized
use or breach of Your user name, password, account, or
subscription. You are responsible for ensuring that Your
networks and systems are adequately secured against
unauthorized intrusion or attack and regularly back up of
Your data and files in accordance with good computing
practices.

3. OWNERSHIP.

3.1 As between Avaya and Licensee, Avaya or its licensors
shall own and retain all proprietary rights, including all
patent, copyright, trade secret, trademark and other
Intellectual Property rights, in and to the SDK and any
corrections, bug fixes, enhancements, updates,
improvements, or modifications thereto and Licensee
hereby irrevocably transfers, conveys and assigns to
Avaya all of its right, title, and interest therein. Avaya
shall have the exclusive right to apply for or register any
patents, mask work rights, copyrights, and such other
proprietary protections with respect thereto. Licensee
acknowledges that the license granted under this
Agreement does not provide Licensee with title or
ownership to the SDK, but only a right of limited use
under the terms and conditions of this Agreement.

3.2 Grant Back License to Avaya. Licensee hereby grants
to Avaya an irrevocable, perpetual, non-exclusive, sub-
licensable, royalty-free, worldwide license under any and
all of Licensee's Intellectual Property rights related to
any Permitted Modifications, to use, employ, practice,
make, have made, sell, and/or otherwise exploit any and
all Permitted Modifications.

4.0 SUPPORT.

 Avaya will not provide any support for the SDK provided
under this Agreement or for any Derivative Works, including,
without limitation, modifications to the Source Code or
applications built by Licensee using the SDK. Notwithstanding
the above limitations, Avaya shall have no obligation to
provide support for the use of the SDK, or Licensee's
derivative application, services or solutions which may or may
not include redistributable Client Libraries or Sample
Application Code, to any third party to whom Licensee
delivers such derivative applications, services or solutions.
Avaya further will not provide fixes, patches or repairs for any
defects that might exist in the SDK or the Sample Application
Code provided under this Agreement. In the event that
Licensee desires support services for the SDK, and, provided
that Avaya offers such support services (in its sole
discretion), Licensee will be required to enter into a Avaya
DevConnect Program Agreement or any support agreement
with Avaya. Nothing herein shall be construed to require
Avaya to provide support services or updates, upgrades, bug
fixes or modifications to the SDK.

5.0 CONFIDENTIALITY.

 5.1 Protection of Confidential Information. Licensee shall take
all reasonable measures to maintain the confidentiality of the
SDK, Specification Documents and other Avaya technical
information obtained by it (collectively, the “Confidential
Information”), and will not disclose the Confidential
Information to any third party. Licensee agrees at all times to
protect and preserve the SDK in strict confidence and
perpetually, and shall not use such Confidential Information
other than as expressly authorized by Avaya under this
Agreement, nor shall Licensee disclose any such Confidential
Information to third parties without Avaya's written consent.

Avaya Context Store Snap-In Developer Guide 3.1.0.1 6

Licensee further agrees to immediately return to Avaya all
Confidential Information (including copies thereof) in
Licensee's possession, custody, or control upon termination
of this Agreement at any time and for any reason. The
obligations of confidentiality shall not apply to information
which (a) has entered the public domain except where such
entry is the result of Licensee's breach of this Agreement; (b)
prior to disclosure hereunder was already rightfully in
Licensee's possession; (c) subsequent to disclosure
hereunder is obtained by Licensee on a non-confidential
basis from a third party who has the right to disclose such
information to the Licensee; (d) is required to be disclosed
pursuant to a court order, so long as Avaya is given adequate
notice and the ability to challenge such required disclosure.

 5.2 Press Releases. Any press release or publication
regarding this Agreement is subject to prior review and
written approval of Avaya.

6.0 NO WARRANTY.

 The SDK and Documentation are provided “AS-IS” without
any warranty whatsoever. AVAYA SPECIFICALLY AND
EXPRESSLY DISCLAIMS ANY WARRANTIES OR
CONDITIONS, STATUTORY OR OTHERWISE, INCLUDING
THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE,
NONINFRINGEMENT AND SATISFACTORY QUALITY.
AVAYA DOES NOT WARRANT THAT THE SDK AND
DOCUMENTATION ARE SUITABLE FOR LICENSEE'S USE,
THAT THE SDK OR DOCUMENTATION ARE WITHOUT
DEFECT OR ERROR, THAT OPERATION WILL BE
UNINTERRUPTED, OR THAT DEFECTS WILL BE
CORRECTED. FURTHER, AVAYA MAKES NO WARRANTY
REGARDING THE RESULTS OF THE USE OF THE SDK
AND DOCUMENTATION. NEITHER AVAYA NOR ITS
SUPPLIERS MAKE ANY WARRANTY, EXPRESS OR
IMPLIED, THAT SECURITY THREATS AND
VULNERABILITIES WILL BE DETECTED OR SOFTWARE
WILL RENDER AN END USER’S OR LICENSEE’S
NETWORK OR PARTICULAR NETWORK ELEMENTS
SAFE FROM INTRUSIONS AND OTHER SECURITY
BREACHES.

7.0 CONSEQUENTIAL DAMAGES WAIVER.

 EXCEPT FOR PERSONAL INJURY CLAIMS AND WILLFUL
MISCONDUCT, AVAYA SHALL NOT BE LIABLE FOR ANY
INCIDENTAL, INDIRECT, SPECIAL OR CONSEQUENTIAL
DAMAGES IN CONNECTION WITH, ARISING OUT OF OR
RELATING TO THIS AGREEMENT OR USE OF THE SDK,
OR FOR THE LOSS OR CORRUPTION OF DATA,
INFORMATION OF ANY KIND, BUSINESS, PROFITS, OR
OTHER COMMERCIAL LOSS, HOWEVER CAUSED, AND
WHETHER OR NOT AVAYA HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

8.0 LIMITATION OF LIABILITY.

 EXCEPT FOR PERSONAL INJURY CLAIMS AND WILLFUL
MISCONDUCT, IN NO EVENT SHALL AVAYA'S TOTAL
LIABILITY TO LICENSEE IN CONNECTION WITH, ARISING
OUT OF OR RELATING TO THIS AGREEMENT EXCEED
FIVE HUNDRED DOLLARS ($500). THE PARTIES AGREE
THAT THE LIMITATIONS SPECIFIED IN THIS SECTION
WILL APPLY EVEN IF ANY LIMITED REMEDY PROVIDED
IN THIS AGREEMENT IS FOUND TO HAVE FAILED OF ITS
ESSENTIAL PURPOSE.

9.0 INDEMNIFICATION.

 Licensee shall indemnify and hold harmless Avaya, its
Affiliates and their respective officers, directors, agents,
suppliers, customers and employees from and against all
claims, damages, losses, liabilities, costs, expenses, and fees
(including fees of attorneys and other professionals) arising
from or relating to Licensee’s use of the SDK with other
software, such as operating systems and codecs, and the,
direct or indirect, distribution or sale of software, Derivative
Works or other products (including but not limited to
applications, interfaces, and application programming
interfaces) developed utilizing the SDK, including, but not
limited to, products liability claims and claims of infringement
of third party Intellectual Property rights.

10.0 TERM AND TERMINATION.

10.1 This Agreement will continue through December 31
st
 of

the current calendar year. The Agreement will
automatically renew for one (1) year terms and run
concurrently with Licensee’s membership in the Avaya
DevConnect Program, if applicable, unless terminated
as specified in Section 10.2 or 10.3 below, and, if
applicable, provided Licensee is a member of the Avaya
DevConnect Program in a good-standing as determined
by Avaya at its sole discretion.

10.2 Either party shall have the right to terminate the
Agreement, upon thirty (30) days written notice to the
other party.

10.3 Notwithstanding language to the contrary, Avaya may
terminate this Agreement immediately, upon written
notice to Licensee for breach of Section 2 (License
Grant), Section 5 (Confidentiality) or Section 12
(Compliance with Laws). Avaya may also terminate this
license by giving written notice if a Change In Control
should occur or if Licensee becomes insolvent, or
voluntary or involuntary proceedings by or against
Licensee are instituted in bankruptcy or under any
insolvency law, or a receiver or custodian is appointed
for Licensee, or proceedings are instituted by or against
Licensee for corporate reorganization or the dissolution
of Licensee, which proceedings, if involuntary, have not
been dismissed within thirty (30) days after the date of
filing, or Licensee makes an assignment for the benefit
of its creditors, or substantially all of the assets of
Licensee are seized or attached and not released within
sixty (60) days thereafter, or if Licensee has ceased or
threatened to cease to do business in the regular
course.

10.4 Upon termination of this Agreement, Licensee will
immediately cease using the SDK Development Kit, and
Licensee agrees to destroy all adaptations or copies of
the SDK and Documentation, or return them to Avaya
upon termination of this License.

10.5 The rights and obligations of the parties contained in
Sections 2.3, 2.6, 2.7, 2.10, 2.11, 3, and 5 through 18
shall survive any expiration or termination of this
Agreement.

11.0 ASSIGNMENT.

 Avaya may assign all or any part of its rights and obligations
hereunder. Licensee may not assign this Agreement or any
interest or rights granted hereunder to any third party without
the prior written consent of Avaya. The term "assign"
includes, but is not limited to, any transaction in which there is
a Change In Control or reorganization of Licensee pursuant

Avaya Context Store Snap-In Developer Guide 3.1.0.1 7

to a merger, sale of assets or stock. This Agreement shall
terminate immediately upon occurrence of any prohibited
assignment.

12.0 COMPLIANCE WITH LAWS.

 Licensee shall comply with all applicable laws and
regulations, including without limitation those applicable to
data privacy, intellectual property, trade secret, fraud, music
performance rights and the export or re-export of technology
and will not export or re-export the SDK or any other technical
information provided under this Agreement in any form in
violation of the export control laws of the United States of
America and of any other applicable country. For more
information on such export laws and regulations, Licensee
may refer to the resources provided in the websites
maintained by the U.S. Commerce Department, the U.S.
State Department and the U.S. Office of Foreign Assets
Control.

13.0 WAIVER.

 The failure to assert any rights under this Agreement,
including, but not limited to, the right to terminate in the event
of breach or default, will not be deemed to constitute a waiver
of the right to enforce each and every provision of this
Agreement in accordance with their terms.

14.0 SEVERABILITY.

 If any provision of this Agreement is determined to be
unenforceable or invalid, this Agreement will not be rendered
unenforceable or invalid as a whole, and the provision will be
changed and interpreted so as to best accomplish the
objectives of the original provision within the limits of
applicable law.

15.0 GOVERNING LAW AND DISPUTE RESOLUTION.

 This Agreement and any dispute, claim or controversy arising
out of or relating to this Agreement ("Dispute"), including
without limitation those relating to the formation,
interpretation, breach or termination of this Agreement, or any
issue regarding whether a Dispute is subject to arbitration
under this Agreement, will be governed by New York State
laws, excluding conflict of law principles, and the United
Nations Convention on Contracts for the International Sale of
Goods.

 Any Dispute shall be resolved in accordance with the
following provisions. The disputing party shall give the other
party written notice of the Dispute. The parties will attempt in
good faith to resolve each Dispute within thirty (30) days, or
such other longer period as the parties may mutually agree,
following the delivery of such notice, by negotiations between
designated representatives of the parties who have dispute
resolution authority. If a Dispute that arose anywhere other
than in the United States or is based upon an alleged breach
committed anywhere other than in the United States cannot
be settled under these procedures and within these
timeframes, it will be conclusively determined upon request of
either party by a final and binding arbitration proceeding to be
held in accordance with the Rules of Arbitration of the
International Chamber of Commerce by a single arbitrator
appointed by the parties or (failing agreement) by an
arbitrator appointed by the President of the International
Chamber of Commerce (from time to time), except that if the
aggregate claims, cross claims and counterclaims by any one
party against any or all other parties exceed One Million US
Dollars at the time all claims, including cross claims and
counterclaims are filed, the proceeding will be held in
accordance with the Rules of Arbitration of the International

Chamber of Commerce by a panel of three arbitrator(s)
appointed in accordance with the Rules of Arbitration of the
International Chamber of Commerce. The arbitration will be
conducted in the English language, at a location agreed by
the parties or (failing agreement) ordered by the arbitrator(s).
The arbitrator(s) will have authority only to award
compensatory damages within the scope of the limitations of
this Agreement and will not award punitive or exemplary
damages. The arbitrator(s) will not have the authority to limit,
expand or otherwise modify the terms of this Agreement. The
ruling by the arbitrator(s) will be final and binding on the
parties and may be entered in any court having jurisdiction
over the parties or any of their assets. The parties will evenly
split the cost of the arbitrator(s)' fees, but each party will bear
its own attorneys' fees and other costs associated with the
arbitration. The parties, their representatives, other
participants and the arbitrator(s) will hold the existence,
content and results of the arbitration in strict confidence to the
fullest extent permitted by law. Any disclosure of the
existence, content and results of the arbitration shall be as
limited and narrowed as required to comply with the
applicable law. By way of illustration, if the applicable law
mandates the disclosure of the monetary amount of an
arbitration award only, the underlying opinion or rationale for
that award may not be disclosed.

 If a Dispute by one party against the other that arose in the
United States or is based upon an alleged breach committed
in the United States cannot be settled under the procedures
and within the timeframe set forth above, then either party
may bring an action or proceeding solely in either the
Supreme Court of the State of New York, New York County,
or the United States District Court for the Southern District of
New York. Except as otherwise stated above with regard to
arbitration of Disputes that arise anywhere other than in the
United States or are based upon an alleged breach
committed anywhere other than in the United States, each
party to this Agreement consents to the exclusive jurisdiction
of those courts, including their appellate courts, for the
purpose of all actions and proceedings.

 The parties agree that the arbitration provision in this section
may be enforced by injunction or other equitable order, and
no bond or security of any kind will be required with respect to
any such injunction or order. Nothing in this section will be
construed to preclude either party from seeking provisional
remedies, including but not limited to temporary restraining
orders and preliminary injunctions from any court of
competent jurisdiction in order to protect its rights, including
its rights pending arbitration, at any time. In addition and
notwithstanding the foregoing, Avaya shall be entitled to take
any necessary legal action at any time, including without
limitation seeking immediate injunctive relief from a court of
competent jurisdiction, in order to protect Avaya's intellectual
property and its confidential or proprietary information
(including but not limited to trade secrets).

16.0 IMPORT/EXPORT CONTROL.

 Licensee is advised that the SDK is of U.S. origin and subject
to the U.S. Export Administration Regulations (“EAR”). The
SDK also may be subject to applicable local country
import/export laws and regulations. Diversion contrary to U.S.
and/or applicable local country law and/or regulation is
prohibited. Licensee agrees not to directly or indirectly export,
re-export, import, download, or transmit the SDK to any
country, end user or for any use that is contrary to applicable
U.S. and/or local country regulation or statute (including but
not limited to those countries embargoed by the U.S.
government). Licensee represents that any governmental

Avaya Context Store Snap-In Developer Guide 3.1.0.1 8

agency has not issued sanctions against Licensee or
otherwise suspended, revoked or denied Licensee's
import/export privileges. Licensee agrees not to use or
transfer the SDK for any use relating to nuclear, chemical or
biological weapons, or missile technology, unless authorized
by the U.S. and/or any applicable local government by
regulation or specific written license. Additionally, Licensee is
advised that the SDK may contain encryption algorithm or
source code that may not be exported to government or
military end users without a license issued by the U.S.
Bureau of Industry and Security and any other country’s
governmental agencies, where applicable.

17.0 AGREEMENT IN ENGLISH.

 The parties confirm that it is their wish that the Agreement, as
well as all other documents relating hereto, including all
notices, have been and shall be drawn up in the English
language only. Les parties aux présentes confirment leur
volonté que cette convention, de même que tous les
documents, y compris tout avis, qui s'y rattachent, soient
rédigés en langue anglaise.

18.0 ENTIRE AGREEMENT.

 This Agreement, its exhibits and other agreements or
documents referenced herein, constitute the full and complete
understanding and agreement between the parties and
supersede all contemporaneous and prior understandings,
agreements (excluding the Avaya DevConnect Program
Agreement) and representations relating to the subject matter
hereof. No modifications, alterations or amendments shall be
effective unless in writing signed by both parties to this
Agreement.

19. REDISTRIBUTABLE CLIENT FILES.

Any file under the "examples" directory can be redistributed
with or without modification.

Schedule 1 to Avaya SDK License Agreement
Third Party Notices

Apache Log4j : 1.2.14. Copyright © 2001-2011 The Apache
Software Foundation, Licensed under the Apache License,
Version 2.0.

Joda - Time - joda-time : 2.1. Copyright © 2001-2011 Stephen
Colebourne, Licensed under the Apache License, Version 2.0.

Jackson : 1.9.0. Copyright © 2001-2011 The Apache Software
Foundation (originally written by Tatu Saloranta), Licensed
under the Apache License, Version 2.0.

Jackson - org.codehaus.jackson:jackson-core-asl : 1.9.12.
Copyright © 2001-2011 The Apache Software Foundation
(originally written by Tatu Saloranta), Licensed under the
Apache License, Version 2.0.

Data Mapper for Jackson : 1.9.0. Copyright © 2001-2011 The
Apache Software Foundation (originally written by Tatu
Saloranta), Licensed under the Apache License, Version 2.0.

Commons Logging - commons-logging:commons-logging :
1.0.4. Copyright © 2001-2004 The Apache Software
Foundation, Licensed under the Apache License, Version 2.0.

Apache Commons Codec (for Apache Directory Studio) : 1.8.
Copyright © 2001-2015 The Apache Software Foundation. All
Rights Reserved. Licensed under the Apache License, Version
2.0.

Apache Commons IO (for Apache Directory Studio) : 2.4.
Copyright © 2001-2011 The Apache Software Foundation.

Licensed under the Apache License, Version 2.0.

Apache ServiceMix :: Bundles :: commons-configuration :
1.9_2. Copyright © 2001-2011 The Apache Software
Foundation. Licensed under the Apache License, Version 2.0.

Lang : 2.3, Apache Jakarta Commons Lang. Copyright © 2001-
2007 The Apache Software Foundation. Licensed under the
Apache License, Version 2.0.

Lang3 : 3.1, Copyright © 2001-20011. The Apache Software
Foundation, All Rights Reserved. Licensed under the Apache
License, Version 2.0.

httpcore : 4.*. Copyright © 1999- 2013 The Apache Software
Foundation, Licensed under the Apache License, Version 2.0.

httpclient : 4.*. Copyright © 1999- 2013 The Apache Software
Foundation, Licensed under the Apache License, Version 2.0.

Compiler assisted localization library (CAL10N) - API : 0.7.4.
The MIT License (MIT), Copyright © 2009 QOS.ch All rights
reserved.

SLF4J API Module : 1.7.2. Copyright © 2004-2011 QOS.ch.
The MIT License (MIT) [OSI Approved License] The MIT
License (MIT) Copyright © Permission is hereby granted, free
of charge, to any person obtaining a copy of this software and
associated documentation files (the 'Software'), to deal in the
Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to
the following conditions: The above copyright notice and this
permission notice shall be included in all copies or substantial
portions of the Software. THE SOFTWARE IS PROVIDED 'AS
IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

SLF4J Extensions Module : 1.7.2. Copyright © 2004-2011
QOS.ch. The MIT License (MIT) [OSI Approved License] The
MIT License (MIT) Copyright © Permission is hereby granted,
free of charge, to any person obtaining a copy of this software
and associated documentation files (the 'Software'), to deal in
the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to
the following conditions: The above copyright notice and this
permission notice shall be included in all copies or substantial
portions of the Software. THE SOFTWARE IS PROVIDED 'AS
IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Avaya Context Store Snap-In Developer Guide 3.1.0.1 9

Contents
1. Intended audience 15

 Related Documentation .. 15 1.1.

 DevConnect Resources ... 15 1.2.

2. Introduction 16

 Platform .. 16 2.1.

2.1.1. Platform Sizing .. 16

3. RESTful Interface 17

 Overview .. 17 3.1.

 API Documentation ... 17 3.1.1.

 Case Sensitive .. 17 3.1.2.

 REST Clients ... 18 3.1.3.

 Sample API Requests ... 18 3.1.4.

 Audit Trail Feature (since CS 3.1) .. 20 3.2.

 Overview ... 20 3.2.1.

 Audit Entry ... 20 3.2.2.

 Enabling and setting the size of Audit Trail ... 21 3.2.3.

 Considerations for Capacity Planning ... 22 3.2.4.

 Upsert Feature (since CS 3.1) ... 23 3.3.

 Overview ... 23 3.3.1.

 Upsert Parameters .. 23 3.3.2.

 CSRest API .. 25 3.4.

 Context Object Information ... 25 3.4.1.

 Query Parameters ... 33 3.4.2.

 POST – Adding a Context ... 36 3.4.3.

 UPSERT – Upserting a Context .. 37 3.4.4.

 UPSERT – Upserting a Context which has optional identifier fields 37 3.4.5.

 UPSERT – Upserting a Context by aliasId ... 38 3.4.6.

 UPSERT – Upserting a Context with aliasIds ... 38 3.4.7.

 UPSERT – Upserting a Context with aliasIds by aliasId ... 39 3.4.8.

 GET – Getting a Context ... 39 3.4.9.

 GET – Getting a Context value ... 40 3.4.10.

 GET – Getting a Context by aliasId ... 40 3.4.11.

 GET – Getting a Context value by aliasId ... 41 3.4.12.

 GET – Getting a Context’s Audit Data .. 41 3.4.13.

 GET – Getting a Context’s Audit Data by aliasId .. 42 3.4.14.

Avaya Context Store Snap-In Developer Guide 3.1.0.1 10

 GET – Getting Contexts’ Metadata by groupId ... 42 3.4.15.

 UPDATE – Updating a Context ... 43 3.4.16.

 UPDATE – Updating a Context value ... 43 3.4.17.

 UPDATE – Updating a Context by aliasId .. 44 3.4.18.

 UPDATE – Updating a Context value by aliasId ... 44 3.4.19.

 UPDATE – Adding an aliasId by contextId ... 45 3.4.20.

 UPDATE – Adding an aliasId by aliasId .. 45 3.4.21.

 DELETE – Deleting a Context ... 46 3.4.22.

 DELETE – Deleting a Context value ... 46 3.4.23.

 DELETE – Deleting a Context by aliasId .. 46 3.4.24.

 DELETE – Deleting a Context value by aliasId ... 47 3.4.25.

 DELETE – Deleting an aliasId ... 47 3.4.26.

4. Context Store SDK Tutorial 49

 Java Client .. 49 4.1.

 Overview ... 49 4.1.1.

 SDK operations ... 50 4.1.2.

 Configuration ... 55 4.1.3.

 Usage .. 56 4.1.4.

 C# Client ... 57 4.2.

 GUI layout ... 57 4.2.1.

 Application Layout: .. 58 4.2.2.

 Security .. 60 4.3.

5. Screen Pop 61

 Overview .. 61 5.1.

 Screen Pop Operations on the Context Store .. 61 5.2.

 Output Format .. 61 5.3.

 Rules Engine .. 62 5.4.

 Rest Service ... 62 5.5.

 Data-grid ... 62 5.6.

 URLs & Operations .. 62 5.7.

 Create & View a Context ... 63 5.7.1.

 Update & View a Context .. 64 5.7.2.

 View a Context .. 65 5.7.3.

 View a Context by Selecting contextId from Parameter (UCID) ... 66 5.7.4.

 View contextIds by groupId ... 67 5.7.5.

 Upsert & View a Context ... 67 5.7.6.

 View a Context by Selecting contextId from Parameter (UCID) ... 69 5.7.7.

Avaya Context Store Snap-In Developer Guide 3.1.0.1 11

 View contextIds by groupId ... 70 5.7.8.

 Older Browser Compatibility .. 70 5.7.9.

 JSON Content Type .. 71 5.7.10.

 Response Formats ... 71 5.8.

 Format Selection ... 71 5.8.1.

 Format Types .. 72 5.8.2.

 Pre-Configured Rules ... 78 5.9.

 Rules Engine Overview ... 78 5.9.1.

 Default Rules Provided ... 78 5.9.2.

 Editable Rules .. 81 5.10.

 Configurable Properties .. 85 5.10.1.

 Base for URL ... 86 5.10.2.

 Context Store Rest Version ... 87 5.10.3.

 CSS for HTML ... 87 5.10.4.

 Identifier Delimit Character .. 87 5.10.5.

 Identifier Delimit Position ... 87 5.10.6.

 Identifier Parsing Position ... 87 5.10.7.

 User Rules 01-20 .. 88 5.10.8.

 Example URLs & Their Functions ... 88 5.10.9.

 Sample Usages .. 98 5.11.

 Create and View .. 98 5.11.1.

 Create, Update and View .. 98 5.11.2.

 Create, Update Multiple Times, View then Redirect ... 99 5.11.3.

 Create Context in CSRest, Update and Redirect .. 101 5.11.4.

 Example Configuration for Communication Manager .. 102 5.12.

 Configure CM to support Screen Pop ... 102 5.12.1.

 Example Configuration for One-X Screen Pop .. 105 5.13.

 Configuring Security Certificates for Agent Desktops ... 105 5.13.1.

 Configuration of the Screen Pop feature in the One-X Agent Desktop client 105 5.13.2.

6. CRM Integration 107

 Overview .. 107 6.1.

 Features .. 107 6.1.1.

 Caveats ... 107 6.1.2.

 High Level Design .. 107 6.2.

 Basic Flow ... 108 6.2.1.

 Example CRM & CS Integration .. 108 6.2.2.

 Configuration .. 108 6.3.

Avaya Context Store Snap-In Developer Guide 3.1.0.1 12

 Create EDP Event ... 109 6.3.1.

 Create Workflow .. 110 6.3.2.

 Configure Rule .. 111 6.3.3.

 Firing a Rule .. 112 6.3.4.

7. Context Store PDC 115

 Overview .. 115 7.1.

 Installation Prerequisites of the Context Store PDC in Eclipse/Orchestration Designer 115 7.2.

 Software requirements .. 115 7.2.1.

 Prerequisites ... 115 7.2.2.

 Installing/Upgrading the Context Store PDC plugin ... 116 7.3.

 Tomcat configuration in Orchestration Designer .. 118 7.4.

 Configuring certificates in Orchestration Designer ... 119 7.5.

 Using the Context Store Connector ... 120 7.6.

 Configure the Context Store plugin ... 120 7.6.1.

 Add the Context Store Connector in the workflow .. 121 7.6.2.

 Context Store PDC input/output variables .. 123 7.6.3.

 Retrieving output variable values .. 130 7.6.4.

 Context Store PDC – Running Sample Projects .. 132 7.7.

 Configuring the project to use the Context Store PDC ... 133 7.7.1.

 Testing Context Store PDC Sample Applications ... 135 7.7.2.

 Sample Audit Trail Application .. 136 7.7.3.

 PDC - Experience Portal Test Setup.. 137 7.8.

 Overview ... 137 7.8.1.

 What’s needed .. 137 7.8.2.

 Sample Call Flow One. ... 137 7.8.3.

 Tomcat configuration in Orchestration Designer Error! Bookmark not defined. 7.9.

 Configuring certificates in Orchestration Designer Error! Bookmark not defined. 7.10.

 Using the Context Store Connector .. Error! Bookmark not defined. 7.11.

 Configure the Context Store plugin Error! Bookmark not defined. 7.11.1.

 Add the Context Store Connector in the workflow Error! Bookmark not defined. 7.11.2.

 Context Store PDC input/output variables Error! Bookmark not defined. 7.11.3.

 Retrieving output variable values .. Error! Bookmark not defined. 7.11.4.

 Sample Call Flow Two... 154 7.11.5.

 Installing the sample application plus runtimeconfig on an Experience Portal system ... 154 7.11.6.

8. Context Store Task Type for Engagement Designer 156

 Overview .. 156 8.1.

 Usage ... 156 8.2.

Avaya Context Store Snap-In Developer Guide 3.1.0.1 13

 Input and Output.. 156 8.2.1.

 CS Task Type Operations ... 159 8.2.2.

 Creating a workflow in ED ... 163 8.2.3.

 Importing the Sample Workflow into the Designer .. 167 8.2.4.

 Validation ... 168 8.2.5.

 Re-use of Collaboration Designer 3.0 Workflows ... 168 8.2.6.

9. Notifications 170

 Overview .. 170 9.1.

 Security Configuration .. 170 9.2.

 Usage ... 171 9.3.

 Performance/Capacity .. 173 9.4.

 High Availability and Fault Tolerance ... 173 9.5.

Event Tracker (Agent Notifications) 174

 Overview .. 174 9.6.

 Configuration .. 174 9.7.

 Configure EDP and Context Store .. 174 9.7.1.

 Install Security Certificates .. 175 9.7.2.

 Usage ... 176 9.8.

 Setup the JavaScript Test Client ... 176 9.8.1.

 Register and Verify an Event Stream .. 176 9.8.2.

 Advanced Event Stream Configuration ... 177 9.8.3.

10. Performance and Scalability Considerations 178

 Overview .. 178 10.1.

 Capacity Planning .. 178 10.2.

 Enabling Optional Features ... 179 10.2.1.

 Hardware and Network .. 180 10.3.

 CPU ... 180 10.3.1.

 Network ... 180 10.3.2.

 VMware ... 180 10.3.3.

 High Availability .. 181 10.4.

 Geo Redundancy ... 181 10.5.

 External DataMart .. 182 10.6.

 Provisioning from External DataMart .. 182 10.6.1.

 Throttling .. 182 10.7.

 Sequenced Apps .. 183 10.8.

11. Appendix 184

 Context Store API Documentation ... 184 11.1.

Avaya Context Store Snap-In Developer Guide 3.1.0.1 14

 Overview ... 184 11.1.1.

 Data Types .. 184 11.1.2.

 Context Operations ... 186 11.1.3.

 Interface Error Codes .. 201 11.1.4.

 Certificate Based Authentication .. 204 11.2.

 Configuring Client Certificate Challenge ... 204 11.2.1.

 Create Client Keystore .. 204 11.2.2.

 Download Avaya Aura® Engagement Development Platform Trusted Certificate from 11.2.3.
System Manager .. 206

 Import Trusted Certificate into Keystore.. 208 11.2.4.

 Verifying Successful Authentication .. 208 11.2.5.

 General Information Regarding Java SSL .. 208 11.2.6.

 Thin Client Access ... 209 11.2.7.

 Troubleshooting SSL Connections .. 209 11.2.8.

 A10 Load Balancer Configuration .. 211 11.3.

 A10 Installation .. 211 11.3.1.

 HTTP Traffic Configuration ... 211 11.3.2.

 HTTPS Traffic Configuration ... 216 11.3.3.

Intended audience

Avaya Context Store Snap-In Developer Guide 3.1.0.1 15

1. Intended audience

This document is intended as a guide for developers who want to utilize the Context Store services and
SDK’s. It assumes that developers have a working knowledge of the technologies and products referenced
in the document.

 Related Documentation 1.1.

The following table lists the related documentation that might be a useful source of information.

Table 1 Additional Reading

Document

Avaya Aura® Avaya Aura® Engagement Development Platform Overview and
Specification

Deploying Avaya Aura® Avaya Aura® Engagement Development Platform

Upgrading Avaya Aura® Avaya Aura® Engagement Development Platform

Administering Avaya Aura® Avaya Aura® Engagement Development Platform

Maintaining and Troubleshooting Avaya Aura® Avaya Aura® Engagement
Development Platform

Quick Start to Deploying Avaya Aura® Avaya Aura® Engagement Development
Platform Snap-ins

Avaya WebRTC Snap-in Reference

Engagement Designer Snap-in Reference

Getting Started with the Avaya Engagement Designer Snap-in

Avaya Engagement Designer Snap-in Developer’s Guide

Avaya Context Store Snap-in Reference

 DevConnect Resources 1.2.

Useful materials for the various Context Store services and features, such as sample clients and workflows,
are provided through the Avaya Context Store DevConnect site:

http://www.devconnectprogram.com/site/global/products_resources/engagement_development_platform/ava
ya_snap_ins/context_store/overview/index.gsp

http://www.devconnectprogram.com/site/global/products_resources/engagement_development_platform/avaya_snap_ins/context_store/overview/index.gsp
http://www.devconnectprogram.com/site/global/products_resources/engagement_development_platform/avaya_snap_ins/context_store/overview/index.gsp

Introduction

Avaya Context Store Snap-In Developer Guide 3.1.0.1 16

2. Introduction

Context Store is designed to provide a centralized data cache to the various applications in a Contact Center
or Unified Communications environment. Using a distributed cache, the solution provides a scalable, reliable
and fault-tolerant system to store context information and provide a set of services for Context information
changes.

Through standard open interfaces, Context Store provides a framework for customers to collect and share
real time contextual information across the enterprise to be consumed by their various contact center
components.

Context Store runs as a snap-in on the Avaya Aura® Engagement Development Platform (Engagement
Development Platform) 3.1 Platform. The Engagement Development Platform is designed to host
applications that require features like High Availability and the ability to scale.

Context Store integrates with the Engagement Designer 3.1 snap-in and this facilitates the creation of
business or work flows that require interaction with CS3.1

Context Store is a centralized data cache that provides a scalable, reliable, and fault-tolerant system to store
context information.

 Platform 2.1.

Context Store runs on Engagement Development Platform 3.1 and hence requires that the Avaya Aura®
System Manager (System Manager) is upgraded to the supported lineup

*
. As Context Store is not directly

involved in the media signaling, it has no explicit dependency on any other Avaya application software
versions that might exist in the customer Environment.

If a customer is currently using SIP users on System Manager, they might be required to upgrade their Aura
infrastructure as per Engagement Development Platform 3.1 requirements. Refer to Engagement
Development Platform 3.1 documentation for further details on when to upgrade the Aura infrastructure.

2.1.1. Platform Sizing

Context Store 3.1 introduces a new scaling feature which allows the product to be deployed on a single
Engagement Development Platform node or in a cluster of up to five nodes. The resources (i.e. CPU and
RAM) allocated to the nodes on which Context Store is deployed can also be varied to suit business needs.

For detailed sizing configuration and capacity planning information see the Avaya Aura® Context Store 3.1
Reference Guide.

*
 For EDP 3.1 this is SMGR 7 but please refer to EDP documentation.

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 17

3. RESTful Interface

 Overview 3.1.

Context Server implements a RESTful Web Services interface to provide the required services to its clients.
The use of REST allows many applications written in different technologies, running on different platforms, a
mechanism to communicate and exchange data. This REST architecture implements a stateless
communication between client and server. This means each request from any client contains all the
information necessary to service the request, and any session state is held in the client.

Individual URL’s are identified in requests and conceptually separate from the representations that are
returned to the client. In the case of the Context Store web-based REST implementation, resources are
identified using HTTP URIs and returned to clients using JavaScript Object Notation (JSON) representation.

Following the RESTful Web Service principles, Context Store exposes all the operations using HTTP
Methods (e.g., GET, PUT, POST, or DELETE).

Figure 1: REST Commands

Context Store requests use HTTP so when waiting on a create or update to return any timeout value must
be set to a minimum of 50ms to ensure enough time is given for the HTTP request to be processed

 API Documentation 3.1.1.

The ReST API documentation can be accessed by browsing to an instance of the Context Store Rest snap-

in: http://<IP_ADDRESS>/services/CSRest/. This online documentation is only available through

HTTP on either Firefox or Chrome browsers; IE is not supported. A copy of the full API documentation is
provided in the appendix section of this document.

 Case Sensitive 3.1.2.

REST is case sensitive, so due care should be taken in creating the JSON queries. ‘contextId’ is not the
same as ‘ContextId’ or ‘contextID’. The following table contains the correct camel case for each of the
parameters in the Context Store commands.

Parameters Case Sensitive

 lease

 contextId

REST Based Service

DELETEGET POSTPUT

Java C# C++

H T T P R e q u e s t s

http://en.wikipedia.org/wiki/Stateless_server
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 18

 groupId

 tenantId

 alias

 data

 persistToEDM

 persistTo

 rid

 touchpoint

 REST Clients 3.1.3.

There are many third party clients available for working with REST APIs. RESTClient for Firefox and
Postman for Chrome, are two such options. The Context Store SDK distribution also bundles sample REST
clients that can be used for testing purposes.

 Sample API Requests 3.1.4.

The following are example requests to get started (please refer to appendix for full API documentation).
These requests are accessed through HTTP or, when security is enabled, HTTPS.

<IP_ADDRESS> - in a single-node Context Store deployment, the IP used in requests should be the

security module IP address of the node itself, in a clustered deployment, the cluster’s configured IP address
must be used.

To create a context entry, use the following format:

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/

HTTP: POST

Header: Content-Type application/json

JSON Body: {“contextId”:“mycontextId”,“data”: {“mykey”:“myvalue”}}

Expected Response: 200 OK

To retrieve this context:

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/mycontextId

HTTP: GET

Header: Content-Type application/json

Expected Response: 200 OK

JSON: {“data”: {“mykey”:“myvalue”}}

To update this contexts data:

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/mycontextId

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 19

HTTP: PUT

Header: Content-Type application/json

JSON Body: {“data”: {“mynewkey”:“mynewvalue”}}

Expected Response: 200 OK

To delete this contexts data:

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/mycontextId

HTTP: DELETE

Header: Content-Type application/json

Expected Response: 200 OK

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 20

 Audit Trail Feature (since CS 3.1) 3.2.

 Overview 3.2.1.

The Audit Trail will allow a customer to do analysis of any given Context and the Context Store operations
which have been executed on this object during its life cycle. The Audit Trail shows a history of when, and by
which touchpoint, the Context was created, modified or retrieved. The operationIds which are logged provide
detailed information about the action; for example it is possible to identify whether the object was addressed
by contextId or aliasId, or if was created using a standard create request or an upsert request. For a full list
of applicable operationIds and the operation they represent see the table of Operation Ids in section 3.2.2.

Context Store will work as usual however the existing APIs will accept a new parameter touchpoint to
describe the touchpoint. This parameter will be an alpha/numeric ID.

For example touchpoint=Desktop1 or touchpoint=Phone5 or touchpoint=Email or touchpoint=IM or
touchpoint=Twitter. The new parameter should be a well formed valid string.

An example of the modified Get Context Request will be as follows:

https:///<IP_ADDRESS>//services/CSRest/cs/contexts/{contextId}/?touchpoint={touchpoint}

N.B: The existing functionality of the Context Store will stay intact.

If a well formed string is not provided as the touchpoint parameter then a 400 status will be returned. If no
touchpoint parameter is provided, then a default value of "undefined" will be used for touchpoint identifier
when the interaction is recorded in service logs and added to the audit trail of the Context.

For usage information, see the CSRest API in section 3.4.

 Audit Entry 3.2.2.

Each request will append the following information to the audit trail of the context.

Timestamp A long value in milliseconds

Touchpoint A string value defining the touchpoint

OperationId A string value defining the operation performed

Version An integer value representing the version of the Context

Timestamp

This value is the Unix Time Stamp at which the context was interacted with.

Touchpoint

This is a string value defining the application which interacted with the Context. If no value or a blank value
was provided as a touchpoint parameter, then the default value of “undefined” will be used.

Version Id

In CS 3.1, the version of the Context will increase with each interaction with Context – create, read, update
and delete portion of Context. Note, the version Id will not be incremented with the invocation of ‘Get Audit
Data’ or ‘Get Group’ operations.

Operation Ids

The following table lists the codes for operation ids and what each code represents. These operation Id
codes are predefined and cannot be modified by users.

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 21

Operation Id

Create Context without contextId CR_C_N

Create Context with contextId CR_C_C

Create Context with aliasId CR_C_A

Create Context without contextId and with aliasId CR_C_N_A

Read Context by contextId RD_C_C

Read Context by aliasId RD_C_A

Read Context data key/value by contextId RD_K_C

Read Context data key/value by aliasId RD_K_A

Deleted aliasId using aliasId DT_A_A

Deleted key/value pair from data using contextId DT_K_C

Deleted key/value pair from data using aliasId DT_K_A

Updated value of key using contextId UD_K_C

Updated value of key using aliasId UD_K_A

Updated all data using contextId UD_C_C

Updated all data using aliasId UD_C_A

Updated alias list using contextId UD_A_C

Updated alias list using aliasId UD_A_A

Upsert Create Context with contextId UP_C_C_CR

Upsert Create Context with aliasId UP_C_A_CR

Upsert Updated Context using contextId UP_C_C_UD

Upsert Updated Context using aliasId UP_C_A_UD

 Enabling and setting the size of Audit Trail 3.2.3.

This limit on stored entries is configurable through the CS Audit: Event limit attribute in EDP Element
Manager. By default, this is set to 0 i.e. it is disabled - CS will not store any events/interactions for Context
objects.

To enable the retention of an audit-trail for Contexts, the administrator must set this attribute to an integer in
the range 1-50; Context Store will then record the most recent interactions as audit-trail entries in the
Context object.

This feature is enabled/disabled for all Contexts in the cluster; it is not possible to apply different audit-trail
settings to individual Contexts.

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 22

The CS administrator can reduce or increase the limit at any time or can turn off the Audit data recording all
together by setting the limit back to 0. Changes made to this limit attribute will not take effect until the next
interaction with the Context. If for example the limit was reduced from 10 to 5, the 5 oldest audit entries will
be removed when the next audit entry is written to that Context.

 Considerations for Capacity Planning 3.2.4.

The Audit Trail records successful interactions with a Context and stores this information inside the Context
object as an extra field. Storing a large number of audit entries will significantly increase the size of the
Context object stored in the data-grid; therefore the number of entries configured for the system is an
important factor for capacity planning and must be taken into consideration when sizing the data-grid.

Note: Enabling audit trail requires a substantial amount of space in the data-grid, particularly for longer audit
trails. All benchmarking and performance testing for Context Store is executed using 2KB Context objects.
To achieve the certified performance rate, the size of the base Context must be reduced when Audit Trails
are being stored. If, for example, an audit trail of 10 entries is enabled and this is estimated to be 500 Bytes,
then using 1.5 KB Contexts while have the same memory requirements at the standard, supported traffic
rate stated for a cluster.

CS Audit: Event Limit

(length of Audit Trail)

Reduction in Context size Notes

21+ 1 KB NB: Additionally the throughput and/or lease must be

reduced when storing very long audit trails

11 - 20 1 KB Throughput and lease can remain at certified levels if

Context object size is reduced by 1KB.

If 2KB Context data (or larger) is required, throughput

and/or lease must be reduced

1 - 10 0.5 KB Throughput and lease remain at certified levels if

Context object size is reduced by 0.5KB.

If 2KB Context data (or larger) is required, throughput

and/or lease must be reduced

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 23

 Upsert Feature (since CS 3.1) 3.3.

 Overview 3.3.1.

The new upsert (update or insert) method on the context store API call will invoke either a create or an
update operation on a Context. Using the previous CS 3.0 ReST interface implementation, updating existing
context objects requires two separate operations, the first a GET operation to check if the context already
exists in the space followed by either a PUT operation to update it if it does exist or a POST operation to
create the context if it does not exist. If the GET check is not executed, the PUT or POST operation may fail
based on the existence or absence of that context object. This mechanism of checking before update or
creation doubles the number of requests which must be processed by the ReST interface.

This new 'upsert' functionality would reduce the amount of ReST operations by handling the required
functionality internally. The user executes a single operation (an Upsert request) without knowing the
existence of the context object; Context Store will either update an existing context with new data or create a
new context if it does not already exist. The combination of the two operations into a single request reduces

the amount of total API calls and increases efficiency. Note the new method path /upsert/ used for

handling requests for the upsert functionality.

 http://<IP_ADDRESS>/services/CSRest/cs/contexts/upsert/DemoContextId

 http://<IP_ADDRESS>/services/CSRest/cs/contexts/upsert/?alias=DemoAliasId

For usage information, see the CSRest API in section 3.4.

 Upsert Parameters 3.3.2.

Context metadata can be provided to upsert via parameters. Some of the properties are immutable. This
means that they cannot be altered after the contexts creation.

 In Upsert create scenarios the provided properties are set with the newly created context.

 In Upsert update scenarios the properties in the request are compared against those in the existing
context. If immutable properties do not match the existing context the upsert request is rejected.
Mutable properties provided in the request are updated to the provided values.

Property Parameter Key Type Modifiability Description

Context ID n/a Path

parameter

Immutable Can be set for creates

but cannot be modified

by updates.

Routing ID rid Query

parameter

Immutable Can be set for creates

but cannot be modified

by updates.

Lease lease Query

parameter

Mutable Can be set to new

contexts or updated on

existing contexts.

Alias alias Query

parameter

Immutable aliasIds are mutable but

this parameter is used

only for querying

against the space,

aliasIds cannot be

altered from the URL.

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 24

Alias alias Provided in

Request Body

Mutable aliasIds can be provided

through the "alias"

field in the body. These

(if not already

existing) will be added

to the context up to the

maximum allowed.

Group ID groupId Provided in

Request Body

Immutable Can be set for creates

but cannot be modified

by updates.

Tenant ID tenantId Provided in

Request Body

Immutable Can be set for creates

but cannot be modified

by updates.

Data data Provided in

Request Body

Mutable Cannot be blank. Data

provided here will be

applied to new contexts

and updated onto

existing contexts.

Persist to

EDM

persistToEDM Provided in

Request Body

Immutable EDM persistence can be

set for creates but

cannot be modified by

updates.

Provisioned

Context

persistTo Provided in

Request Body

Immutable EDM provisioning can be

set for creates but

cannot be modified by

updates.

Touchpoint Parameter

As with any requests to CSRest, a touchpoint may be specified as query parameter if the Audit feature is in
use. The touchpoint provided will be logged in the Audit Trail and the Upsert operation is recorded.

Touchpoint touchpoint Query

parameter

Not

Applicable

Can be provided with

query parameter to be

used for audit purposes

if Audit feature is

enabled.

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 25

 CSRest API 3.4.

 Context Object Information 3.4.1.

Field Description

contextId

Mandatory

“contextId”:”xxxxx”

contextId is a unique case sensitive immutable identifier that can be supplied by the
Customer or can be generated by the context Store. It can have a max length of 255
characters and can only support a sub set of the ASCII character set.

Please refer to section

contextId field for more details.

data

Mandatory

“data”:{“key1”,”value1”}

Key & Value pair(s) that contain the context information to store

Please refer to the data field section for more details.

groupId

Optional

“groupId”:”xxxxx”

The group identification to which this context belongs.

Please refer to section

groupId field section for more details.

tenantId

Optional

“tenantId”:“xxxxx”

The tenant identification to which the context belongs.

Please refer to the

tenantId field section for more details.

aliasId

Optional

“aliasIds”:[“aliasId1”,”aliasId2”]

An aliasId is an alternative identifier which can be used to retrieve a Context. Multiple
aliasIds may be associated with a single context

Please refer to the

aliasId field section for more details.

routingId

Optional

“routingId”:“xxxxx”

The routing identifier is used in a Geo-redundant deployment to identify in which cluster
the Context was created and thereby ensure uniqueness of contextIds and/or aliasIds in
Context data replicated between the two clusters.

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 26

Please refer to the routingId field section for more details.

persistToEDM

Optional

“persistToEDM”:”true”

Boolean flag that overrides the Cluster Wide setting an operation level.

Default value = False.

Please refer to section persistToEDM field for more details.

persistTo

Optional

“persistTo”:”CS_PROVISION”

Boolean flag that overrides the Cluster Wide setting an operation level.

Default value = False.

Please refer to section persistTo field for more details.

versionId

Automatic

Every Context object contains an automated versionId field which represents the
number of times the Context has been read or updated since its creation. This
versionId will increase with each interaction with Context – create, read, update
and delete portion of Context. Note: The version Id will not be incremented with the
invocation of ‘Get Audit’ or ‘Get Group’ requests.

contextId field

Field Name contextId

Case Sensitive Yes

The contextId is a unique identifier that can be supplied by the customer or can be generated by Context
Store. The choice of contextId by the customer is important as it must be supported and identifiable and
accessible by all clients and applications that interact with Context Store and are part of the customer
solution. Examples of identifiers that can be used are UCID or Web Session ID.

Properties Description

Unique The contextId must be unique with respect to the Context Store Cluster. A
customer cannot use the same contextId to represent two separate Contexts at the
same time. If the lease on a Context expires, the contextId can be reused.

Context Store will generate a unique identifier if no contextId is specified as part of
the post.

Case Sensitive contextId is case sensitive and case is always preserved. For example, contextId1
and CONTEXTID1 are not equivalent and are considered to be two distinct ids.

Immutable The contextId cannot be changed once the context has been created.

Max Length The contextId supports a max length of 255 characters.

Supported Characters Context Store does not accept blank or null keys as Context data.

 The contextId cannot contain any spaces (includes leading and trailing

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 27

spaces).

 Any attempt to POST or PUT a contextId containing spaces will receive a
'400 Bad Request' error and the status message will be "contextId has
invalid characters".

SCII characters listed here are permitted and the associated rules
must be followed.

 Uppercase and lowercase English letters (A–Z, a–z) (ASCII: 65–90, 97–
122)

 Digits 0 to 9 (ASCII: 48–57)

 Characters - _ ~ (ASCII: 45, 95, 126).

o RULE: Provided that they are not the first or last character.

 Character. (dot, period, full stop) (ASCII: 46)

o RULE: Provided that it is not the first or last character, and
provided also that it does not appear two or more times
consecutively.

 null object may not be passed into the context store, i.e., "name":null

where it indicates a sensitive data field which should not be logged.

 E.g.{"*key1*":"sensitiveField","key2":"regularField"}

Special Considerations

UUI

UUI can be used to associate a contextId with a call to allow other applications retrieve relevant information
from Context Store. Customers must ensure that their choice of contextId length does not exceed the
maximum available length that UUI supports or the ID will be truncated. This length is typically 32
characters, but may change depending on customer’s usage of UUI.

For full details on UUI please refer to Avaya Aura Elite documentation

OneX

The supported character set enforced by contextId is chosen to support the largest number of customer
interactions, but some potential clients of Context Store might have additional restrictions outside that of
Context Store. OneX does not support the use of ~ and is not a suitable character for the contextId or for the
groupId, or Key if OneX is part of your Solution that integrates with Context Store.

data field

Field Name data

Case Sensitive Yes

The data variable is a comma separated list of Key & Value pair(s) that contains the client specified context.
The client cannot add a context without specifying at least one Key & Value pair.

The Context should not contain contextual data greater than 500K. The size of data stored in Context Store
can have performance implications please refer to Capacity Planning section for details on how to configure
your system.

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 28

Key

The Key is a unique identifier that is supplied by the Client and is used to retrieve a value within a context.
The choice of key by the client is important as in conjunction with the contextId; it can be used to retrieve the
value using the GET command. Therefore, if it is required to be retrieved this way, it must be supported and
accessible by all clients and applications that interact with Context Store and are part of the customer
solution.

Properties Description

Unique The Key is unique to a context. If a client adds a context with multiple
duplicate keys the value associated with the last key will be stored.

Case Sensitive Key is case sensitive and case is always preserved i.e. KEY1 and key1 are
not equivalent and are considered to be two distinct keys

Immutable The Key is not changeable but the value associated with a key can be copied
to a new Key name

Max Length The Key cannot be blank or null and supports a max length 255 characters.

Supported Characters The Key supports the same character sets as the contextId.

Special Considerations

As the key is an index that can be used by clients, in conjunction with the contextId, to retrieve Context, it
must follow the same considerations used when deciding on the contextId

Value

A value cannot exist without the equivalent key.

Properties Description

Unique Values can be duplicated as long as the associated Key is unique.

Max Length There is no MAX length to a value, but it is recommended that the overall
Context size does not exceed 500K for performance reasons.

Supported Characters Supports UTF-8

persistToEDM field

Field Name persistToEDM

Case Sensitive Yes

Context Store supports the ability to persist add and update operations to an external data base. If the EDM
feature is configured and enabled at a cluster level, Customers have the ability to specify that a context will
be persisted to the External Database. A context can only be marked for persistence when it is created so
the value can only be specified on a create, i.e. POST, operation. All updates on this marked context will be
persisted.

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 29

Upsert: Persistence can be specified when creating Contexts using Upsert operations but note that if the
Context already exists, the persistence status of existing Context will not be modified. For more information
about Upsert operations see section 3.3 Upsert Feature (since CS 3.1).

Persisting data to an external database has performance implications, please refer to section 10.6 External
DataMart for more information.

Properties Description

Value “persistToEDM”:”true”

 “persistToEDM”:”false”

Immutable This value can only be set when the Context is created and cannot be
changed through the lifecycle of the Context.

persistTo field

Field Name persistTo

Case Sensitive Yes

Context Store supports the ability to persist Contexts to an external data base to be provisioned
automatically in the data-grid if the data-grid is restarted. If the EDM feature is configured and enabled at a
cluster level, Customers have the ability to specify that a context will be persisted to the provisioning table in
the External Database. A context can only be marked for persistence when it is created so the value can the
value can only be specified on a create, i.e. POST, operation. All updates on this marked context will be
persisted.

Upsert: Persistence can be specified when creating Contexts using Upsert operations but note that if the
Context already exists, the persistence status of existing Context will not be modified. For more information
about Upsert operations see section 3.3 Upsert Feature (since CS 3.1).

Persisting data to an external database has performance implications, please refer to section 10.6 External
DataMart for more information.

Properties Description

Value “persistTo”:”CS_PROVISION”

Immutable This value can only be set when the Context is created and cannot be
changed through the lifecycle of the Context.

groupId field

Field Name groupId

Case Sensitive Yes

A client has the option to associate several contexts together using the groupId. This groupId can be used
with a GET command to return the metadata for all contexts that have a matching groupId. There is no limit

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 30

to the number of contexts that can be associated with a GroupId, but for performance reasons the GET will
only return a maximum of 1000 associated contextIds.

Properties

A context can only be assigned a groupId when it is created so the value can only be specified on a POST.

The choice of groupId by the client is important as in conjunction with the contextId or an aliasId, it can be
used to retrieve the value using the GET command (GET group request followed by GET context request)
and hence must be supported and accessible to all clients and applications that interact with Context Store
and are part of the customer solution.

Properties Description

Case Sensitive groupId is case sensitive and case is always preserved i.e. groupId1 and
GROUPID1 are not equivalent and are considered to be two distinct ids

Immutable The groupId cannot be changed using a PUT command

Max Length The groupId cannot be blank or null and supports a max length of 255
characters.

Supported Characters The groupId supports the same character sets as the contextId.

Special Considerations

As the groupId is an index that can be used by clients, in conjunction with the contextId, to retrieve Context it
should abide by the same considerations used when deciding on the contextId

tenantId field

Field Name tenantId

Case Sensitive Yes

This parameter provides additional filtering for Context Store Notifications. A client can subscribe for
notifications only for contexts which are created with a specific tenantId. This allows for application
developers to create a one to one relationship between a producer application feeding into the Context Store
and a consumer application feeding off the Context Store.

The tenantId has the same considerations as the groupId.

Properties Description

Case Sensitive tenantId is case sensitive and case is always preserved i.e. tenantId1 and
TENANTID1 are not equivalent and are considered to be two distinct ids

Immutable The tenantId cannot be changed using a PUT command

Max Length The tenantId cannot be blank or null and supports a max length of 255
characters.

Supported Characters The tenantId supports the same character sets as the contextId.

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 31

aliasId field

Field Name aliasId

Case Sensitive Yes

The Context object may contain a list of aliasIds, each of these alternative identifiers can be used to retrieve
the same Context object from the data cache.

A new query parameter, alias, is added to the CSRest API to support this new feature functionality. See
section Query parameter: alias for usage information.

The aliasId has the same considerations as the contextId.

Properties Description

Case Sensitive aliasId is case sensitive and case is always preserved i.e. aliasId1 and
ALIASID1 are not equivalent and are considered to be two distinct ids

The aliasId query parameter, alias, is also case sensitive.

Mutable The list of aliasIds associated with a Context object can be modified replaced
using DELETE and PUT commands

Max Length The aliasId cannot be blank or null and supports a max length of 255
characters.

Supported Characters The aliasId supports the same character sets as the contextId.

routingId field

Field Name routingId

Case Sensitive Yes

The rid parameter is used in a Geo-redundant deployment to route requests by the Load Balancer. A
corresponding field routingId has been added to the Context Store POJO. The routingId is immutable and is
only set when a context is created. The routingId is assigned the value of the rid parameter if supplied or the
default value "0" otherwise. See the section Query parameter: rid for rid usage information.

The routingId has the same considerations as the contextId.

Properties Description

Case Sensitive routingId is case sensitive and case is always preserved i.e. routingId1 and
ROUTINGID1 are not equivalent and are considered to be two distinct ids

The routingId query parameter, rid, is also case sensitive

Immutable The routingId cannot be changed using a PUT command

Max Length The routingId cannot be blank or null and supports a max length of 255 characters.

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 32

Supported Characters The routingId supports the same character sets as the contextId.

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 33

 Query Parameters 3.4.2.

Query parameter: lease

This parameter specifies the maximum time (in milliseconds) that data is to be stored in the data cache. The
lease parameter is common to POST and PUT and specifies the duration the client wishes the context to
exist in Context Store. The duration a Context is stored in Context Store has performance implications. For
more information, see the Capacity Planning section.

This optional variable allows Context Store clients to override the Cluster wide setting at an operation level,
that is, this Context can exist for longer or shorter than the system default setting. If the client does not
specify the setting in POST operation, the Cluster wide setting will be used. If no lease is specified on PUT
operation, the context maintains its existing lease time.

Properties Description

Optional If no lease is provided on POST the default setting for the cluster will be used.

If no lease is provided on PUT the existing lease time will continue to count down.

The lease query parameter for a request can be provided but left blank. This sets
the request to use the default configured lease

Mutable The lease of a Context can be changed using a PUT operation

Max Length The valid lease must be in the range 1 to 2147483647. If client wants the context
to exist indefinitely in Context Store then the lease can be set to either -1, 0, or
infinite

†
(Case Insensitive).

Supported Characters Numeric or max (Case Insensitive)

Query parameter: touchpoint

With the introduction of the new Audit Trail feature, All requests on the CSRest interface now accepts an
additional new parameter “touchpoint” to describe the touchpoint used to invoke the ReST url. This
parameter will be an alpha/numeric ID. For example touchpoint=Desktop1 or touchpoint=Phone5 or
touchpoint=Email or touchpoint=IM or touchpoint=Twitter.

Properties Description

Optional If no touchpoint parameter is provided, then a default value of "undefined" will be
used for touch-point identifier when the interaction is recorded in service logs and
added to the audit trail of the Context.

†
 Infinite here indicates that maximum allowable time a context can exist in context store without the Context

Store being restarted.

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 34

Immutable The touchpoint provided is written in the Audit trail, once written it cannot be
changed. Any valid touchpoint string can be submitted as a query parameter with
each request submitted via the CSRest interface.

Max Length The touchpoint can be blank. If provided and not blank then it must be in the
range of 1 to 255 characters.

Supported Characters The touchpoint supports the same character sets as the contextId.

Query parameter: rid

Due to the new Geo service preservation feature for CS 3.1 which utilizes two active/active Context Store
clusters the sole unique identifier contextId previously employed for contexts can no longer guarantee that
two simultaneous create context requests to each CS cluster in a geo system with the same contextId would
not conflict when replication between each cluster occurs. Therefore an optional rid parameter has been
added to the request and a routingId field has been added to the context POJO. In a Geo-redundant
environment, the Load Balancer must route the traffic based on this rid parameter, after an object is created
on one cluster it will then be replicated to the other one but the routingId field remains the same.

In all other operations, the rid parameter is used to identify the routingId to be used, in conjunction with
contextId or aliasId, to identify the correct context object to retrieve, modify or delete in a geo redundant
deployment.

Properties Description

Optional If no rid is provided, the request will be routed to the default cluster

Immutable The routingId field of a context object cannot be changed using PUT

Max Length The rid cannot be blank or null and supports a max length 255 characters.

Supported Characters The rid supports the same character sets as the contextId.

Query parameter: alias

The Context object may contain a list of aliasIds; each of these alternative identifiers can be used to retrieve
the same Context object from the data cache. The alias query parameter has been added to the CSRest
API to support the aliasId feature functionality.

NB: In earlier release of Context Store, all requests to the CSRest interface required that the contextId be
specified in the URL path for all RUD operations

E.g. https://<IP_ADDRESS>/services/CSRest/cs/contexts/{contextId}

The base URL for aliasId based requests must not include the contextId in the path and should instead use
this alias query parameter

E.g. https://<IP_ADDRESS>/services/CSRest/cs/contexts/?alias={aliasId}

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 35

The POST request (i.e. create Context) accepts multiple alias parameters; up to a mamsximum of three.
Each of these aliasIds will be associated with the Context object that is created.

All other requests by aliasId (i.e. read, update, delete, upsert) accept a single alias parameter only. Only the
first alias parameter is acted upon, all subsequent alias parameters will be ignored.

E.g.1 POST request:
https://<IP_ADDRESS>/services/CSRest/cs/contexts/?alias=aliasId1&alias=aliasId2&

alias=aliasId3

E.g.2 GET request: https://<IP_ADDRESS>/services/CSRest/cs/contexts/?alias=aliasId

Some additional CSRest requests have been created for managing the mutable set of aliasIds associated
with a Context. These requests will use new /aliases/ path in the CSRest API for aliasId management.

E.g. https://<IP_ADDRESS>/services/CSRest/cs/contexts/aliases/

This aliasing capability will impact the performance of Context Store, in particular latency, due the increased
number of lookups and data comparison required to find the correct object in the data cache.

 To lessen the performance impact of this feature, a limit of three aliasIds per Context is enforced.

 If an attempt is made to add a 4
th
 aliasId, the request will fail.

Properties Description

Optional Used in CRUD operations as an alternative to contextId

Mutable The list of aliasIds associated with a Context object can be modified replaced
using DELETE and PUT commands

Max Length The aliasId field cannot be blank or null and supports a max length 255
characters.

Supported Characters The aliasId field supports the same character sets as the contextId.

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 36

 POST – Adding a Context 3.4.3.

The interface allows clients to store context information using multiple key/value pairs. Moreover, clients will
be able to define the unique ID to be used to retrieve that context information later

POST Context Information

HTTP Method POST

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/{id}

Variables {lease}: see section Query parameter: lease

{rid}: see section Query parameter: rid

{alias}: see section Query parameter: alias

{touchpoint}: see section Query parameter: touchpoint

JSON Structure Examples

Example 1: POST request with no optional parameters

==

POST / HTTP/1.1

Host: <IP_ADDRESS>services/CSRest/cs/contexts/

Content Type: application/json

Content:

{"contextId":"ABC”,"data":{"key1_name":"value1_data","key2_name":"value2_data"}}

--

Response Code: 200 OK

Example 2: POST request with all optional parameters

==

POST / HTTP/1.1

Host: <IP_ADDRESS>services/CSRest/cs/contexts/?alias=X&lease=360&rid=X&touchpoint=Z

Content Type: application/json

Content:

{"contextId":"XXYYZZ",“groupId”:“AABB”,“persistToEDM”:“true”,“tenantId”:“DDEE”,

"data":{"key1_name":" value1_data","key2_name":"value2_data"}}

--

Response Code: 200 OK

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 37

 UPSERT – Upserting a Context 3.4.4.

The interface allows clients to create or update a whole context record associated with a specified contextId.

PUT Context Information

HTTP Method PUT

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/upsert/{id}

Variables {lease}: see section Query parameter: lease

{rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure Example

PUT / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/upsert/{id}/

Content Type: application/json; charset=UTF-8

Content: {"data":{"key1_name":" value1_data","key2_name":"value2_data"}}

--

Response Code: 200 OK

 UPSERT – Upserting a Context which has optional identifier fields 3.4.5.

The interface allows clients to create or update a whole context record associated with a specified contextId
when has associated groupId and/or tenantId.

PUT Context Information

HTTP Method PUT

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/upsert/{id}

Variables {lease}: see section Query parameter: lease

{rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure Example

PUT / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/upsert/{id}/

Content Type: application/json; charset=UTF-8

Content: {"groupId":"exampleGroupId","tenantId":"exampleTenantId","data":{"key1_name":"

value1_data","key2_name":"value2_data"}}

--

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 38

Response Code: 200 OK

 UPSERT – Upserting a Context by aliasId 3.4.6.

The interface allows clients to create or update a whole context record associated with a specified aliasId.

PUT Context Information

HTTP Method PUT

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/upsert/?alias={aliasId}

Variables {lease}: see section Query parameter: lease

{rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure Example

PUT / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/upsert/?alias={aliasId}

Content Type: application/json; charset=UTF-8

Content: {"data":{"key1_name":" value1_data","key2_name":"value2_data"}}

--

Response Code: 200 OK

 UPSERT – Upserting a Context with aliasIds 3.4.7.

The interface allows clients to create or update a whole context record, including aliasIds, associated with a
specified contextId.

PUT Context Information

HTTP Method PUT

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/upsert/{id}

Variables {lease}: see section Query parameter: lease

{rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure Example

PUT / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/upsert/{id}/

Content Type: application/json; charset=UTF-8

Content: {"alias":["aliasId1","aliasId2"],"data":{"key1_name":" value1_data"}}

--

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 39

Response Code: 200 OK

 UPSERT – Upserting a Context with aliasIds by aliasId 3.4.8.

The interface allows clients to create or update a whole context record, including aliasIds, associated with a
specified aliasId.

PUT Context Information

HTTP Method PUT

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/upsert/?alias={aliasId}

Variables {lease}: see section Query parameter: lease

{rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure Example

PUT / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/upsert/{id}/

Content Type: application/json; charset=UTF-8

Content: {"alias":["aliasId1","aliasId2"],"data":{"key1_name":" value1_data"}}

--

Response Code: 200 OK

 GET – Getting a Context 3.4.9.

The interface allows clients to retrieve all data associated with a specified contextId.

GET Context Information

HTTP Method GET

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/{id}

Variables {rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure

Example

GET / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/{id}/?rid={r1}&touchpoint={abc}

--

Response Code: 200 OK

HTTP Response: {"data":{"key1_name":"value1_data","key2_name":"value2_data"}}

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 40

 GET – Getting a Context value 3.4.10.

The interface allows clients to retrieve a single value from a context record.

GET Context Information

HTTP Method GET

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/{id}/keys/{key}

Variables {rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure

Example

GET / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/{id}/keys/{key}

--

Response Code: 200 OK

HTTP Response: value1_data

 GET – Getting a Context by aliasId 3.4.11.

The interface allows clients to retrieve all data associated with a specified aliasId.

GET Context Information

HTTP Method GET

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/?alias={aliasId}

Variables {alias}: see section Query parameter: alias

{rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure

Example

GET / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/?alias={aliasId}&rid={r1}

--

Response Code: 200 OK

HTTP Response: {"data":{"key1_name":"value1_data","key2_name":"value2_data"}}

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 41

 GET – Getting a Context value by aliasId 3.4.12.

The interface allows clients to retrieve a single value from a context record associated with a specified
aliasId.

GET Context Information

HTTP Method GET

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/keys/{key}/?alias={aliasId}

Variables {alias}: see section Query parameter: alias

{rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure

Example

GET / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/keys/{key}/?alias={aliasId}

--

Response Code: 200 OK

HTTP Response: value1_data

 GET – Getting a Context’s Audit Data 3.4.13.

The interface allows clients to retrieve the Audit Data from a context record associated with a specified
contextId.

GET Context Information

HTTP Method GET

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/audit/{id}

Variables {rid}: see section Query parameter: rid

JSON Structure

Example

GET / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/audit/{id}

--

Response Code: 200 OK

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 42

HTTP Response:

{"audit":[{"timeStamp":"1433320548693","touchPoint":"Postman","version":"1","operationId"

:"CR_C_C"}]}

 GET – Getting a Context’s Audit Data by aliasId 3.4.14.

The interface allows clients to retrieve the Audit Data from a context record associated with a specified
aliasId.

GET Context Information

HTTP Method GET

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/audit/?alias={aliasId}

Variables {alias}: see section Query parameter: alias

{rid}: see section Query parameter: rid

JSON Structure

Example

GET / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/audit/?alias={aliasId}

--

Response Code: 200 OK

HTTP Response:

{"audit":[{"timeStamp":"1433320548693","touchPoint":"Postman","version":"1","operationId"

:"CR_C_C"}]}

 GET – Getting Contexts’ Metadata by groupId 3.4.15.

The interface allows clients to retrieve the meta-data of Contexts associated with a specified groupId.

GET Context Information

HTTP Method GET

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/groups/{id}/

Variables {rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure

Example

GET / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/group/{id}/

--

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 43

Response Code: 200 OK

HTTP Response: {"data":{"key1_name":"value1_data","key2_name":"value2_data"}}

 UPDATE – Updating a Context 3.4.16.

The interface allows clients to update a whole context record associated with a specified contextId.

PUT Context Information

HTTP Method PUT

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/{id}

Variables {lease}: see section Query parameter: lease

{rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure Example

PUT / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/{id}/?lease={9999}&rid={r1}

Content Type: application/json; charset=UTF-8

Content: {"data":{"key1_name":" value1_data","key2_name":"value2_data"}}

--

Response Code: 200 OK

 UPDATE – Updating a Context value 3.4.17.

The interface allows clients to update a single value in a context record associated with a specified
contextId.

PUT Context Information

HTTP Method PUT

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/{id}/keys/{key}

Variables {lease}: see section Query parameter: lease

{rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure Example

PUT / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/{id}/keys/{key}

Content Type: application/json; charset=UTF-8

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 44

Content: value1_data

--

Response Code: 200 OK

 UPDATE – Updating a Context by aliasId 3.4.18.

The interface allows clients to update a whole context record associated with a specified aliasId.

PUT Context Information

HTTP Method PUT

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/?alias={aliasId}

Variables {alias}: see section Query parameter: alias

{lease}: see section Query parameter: lease

{rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure Example

PUT / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/?alias={aliasId}&lease={1}&rid={1}

Content Type: application/json; charset=UTF-8

Content: {"data":{"key1_name":" value1_data","key2_name":"value2_data"}}

--

Response Code: 200 OK

 UPDATE – Updating a Context value by aliasId 3.4.19.

The interface allows clients to update a single value in a context record associated with a specified aliasId.

PUT Context Information

HTTP Method PUT

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/keys/{key}/?alias={aliasId}

Variables {alias}: see section Query parameter: alias

{lease}: see section Query parameter: lease

{rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure Example

PUT / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/keys/{key}/?alias={aliasId}

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 45

Content Type: application/json; charset=UTF-8

Content: value1_data

--

Response Code: 200 OK

 UPDATE – Adding an aliasId by contextId 3.4.20.

The interface allows clients to add to the list of aliasIds associated with a context record using the contextId.

PUT Context Information

HTTP Method PUT

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/{id}/aliases

Variables {lease}: see section Query parameter: lease

{rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure Example

PUT / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/{id}/aliases

Content Type: application/json; charset=UTF-8

Content: [“aliasId1”,“aliasId2”,“aliasId3”]

--

Response Code: 200 OK

 UPDATE – Adding an aliasId by aliasId 3.4.21.

The interface allows clients to add to the list of aliasIds associated with a context record using existing
aliasId.

PUT Context Information

HTTP Method PUT

Context Information HTTP Response Body – JSON Structure

URI <IP_ADDRESS>/services/CSRest/cs/contexts/aliases?alias={aliasId}

Variables {alias}: see section Query parameter: alias

{lease}: see section Query parameter: lease

{rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure Example

PUT / HTTP/1.1

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 46

http://<IP_ADDRESS>/services/CSRest/cs/contexts/aliases?alias={aliasId1}

Content Type: application/json; charset=UTF-8

Content: [aliasId2”,“aliasId3”]

--

Response Code: 200 OK

 DELETE – Deleting a Context 3.4.22.

The interface allows clients to delete a whole context record.

DELETE Context Information

Http Method DELETE

URI <IP_ADDRESS>/services/CSRest/cs/contexts/{id}

Variables {rid}: see section Query parameter: rid

JSON Structure Example

DELETE / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/{id}/?rid={r1}

--

Response Code: 200 OK

 DELETE – Deleting a Context value 3.4.23.

The interface allows clients to delete a single value from a context record.

DELETE Context Information

Http Method DELETE

URI <IP_ADDRESS>/services/CSRest/cs/contexts/{id}/keys/{key}

Variables {rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure

Example

DELETE / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/{id}/keys/{key}

--

Response Code: 200 OK

 DELETE – Deleting a Context by aliasId 3.4.24.

The interface allows clients to delete a whole context record.

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 47

DELETE Context Information

Http Method DELETE

URI <IP_ADDRESS>/services/CSRest/cs/contexts/?alias={aliasId}

Variables {alias}: see section Query parameter: alias

{rid}: see section Query parameter: rid

JSON Structure Example

DELETE / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/?alias={aliasId1}&rid={r1}

--

Response Code: 200 OK

 DELETE – Deleting a Context value by aliasId 3.4.25.

The interface allows clients to delete a single value from a context record.

DELETE Context Information

Http Method DELETE

URI <IP_ADDRESS>/services/CSRest/cs/contexts/keys/{key}/?alias={aliasId}

Variables {alias}: see section Query parameter: alias

{rid}: see section Query parameter: rid

{touchpoint}: see section Query parameter: touchpoint

JSON Structure Example

DELETE / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/contexts/keys/{key}/?alias={aliasId}

--

Response Code: 200 OK

 DELETE – Deleting an aliasId 3.4.26.

The interface allows clients to delete an existing aliasId from a context record.

DELETE aliasId from Context

Http Method DELETE

URI <IP_ADDRESS>/services/CSRest/cs/aliases/?alias={aliasId}

Variables {rid}: see section Query parameter: rid

RESTful Interface

Avaya Context Store Snap-In Developer Guide 3.1.0.1 48

{touchpoint}: see section Query parameter: touchpoint

JSON Structure Example

DELETE / HTTP/1.1

http://<IP_ADDRESS>/services/CSRest/cs/aliases/?alias={aliasId}&rid={r1}

--

Response Code: 200 OK

Context Store SDK Tutorial

Avaya Context Store Snap-In Developer Guide 3.1.0.1 49

4. Context Store SDK Tutorial

Context Store SDK provides two tutorials that developers can use as a template for creating their own
applications and integrations. These example applications are provided solely as a guide to developing and
do not contain the necessary hardening and fault tolerance to be considered as production applications.

 Java Client 4.1.

The Context Store SDK Java Swing GUI Client allows a user to verify that a Context Store instance has
been set up correctly. All the operations that the Context Store supports can be run with the client provided
here. The client is a standalone jar which can be opened by double clicking it.

 Overview 4.1.1.

If building with maven add the SDK dependency to the Java apps Maven POM file.

 <dependency>

 <groupId>com.avaya.ingensg.cs</groupId>

 <artifactId>cs-sdk-api</artifactId>

 <version>version</version>

 </dependency>

The following system properties need to be set before instantiating the Context Store Connection.

File keyStoreFile = new File("location of jks file");

System.setProperty("javax.net.ssl.keyStore", keyStoreFile.toString());

System.setProperty("javax.net.ssl.keyStorePassword", "keystorepassword");

System.setProperty("javax.net.ssl.trustStore",

System.getProperty("javax.net.ssl.keyStore"));

For example, to save a context to the Context Store, instantiate the Context Store Connection with following
code:

 ContextStore contextStore;

 try {

contextStore = ContextStoreServiceFactory.getContextStoreWebService(HOST);

 } catch (Exception e) {

 System.out.println("Error creating the context store instance "

+ e.toString());

 System.out.println("Exiting the program");

 System.exit(1);

 }

 List<String> aliasIds = new ArrayList<String>(Arrays.asList("alias1"));

 String routingId = “0”;

 String touchpoint = “SDKClient”;

 ContextPojo context = new ContextPojo();

 context.setcontextId(“samplecontextId”);

Context Store SDK Tutorial

Avaya Context Store Snap-In Developer Guide 3.1.0.1 50

 private Map<String, Object> data = new HashMap<String, Object>();

 data.put(“key1”, “value1”);

 context.setData(data);

 ServiceResponse response = contextStore.postContext(context, new

Long(12000), null, aliasIds, routingId, touchpoint);

 if (response.getStatus().equals(ContextStoreStatus.OK)) {

 System.out.println(String.format("postContext() - Added context data,

 ID %s, data: %s", context.getcontextId(), context.getData().toString()));

 } else {

 System.out.println("postContext() - Invalid request");

 }

 SDK operations 4.1.2.

The available operations and responses are as follows.

ServiceResponse response = contextStore.postContext(context, lease, sessionId);

(Post a Context object to Context Store. The Context object will expire according to the value supplied in the
lease. A Response object is returned)

ServiceResponse response = contextStore.postContext(context, lease, sessionId,

aliasId(s), rid);

(Post a Context object to Context Store. The Context object will expire according to the value supplied in the
lease. AliasId(s) will be given to the Context as well as a routingId. A Response object is returned.)

ServiceResponse response = contextStore.postContext(context, lease, sessionId,

aliasId(s), rid);

(Post a Context object to Context Store. The Context object will expire according to the value supplied in the
lease. AliasId(s) will be given to the Context as well as a routingId. A Response object is returned. The
touchpoint will be added to the Context's audit trail.)

PostWithNoContextIdResponse response = (PostWithNoContextIdResponse)

contextStore.postContextWithoutContextId(context, lease, sessionId);

(Posts Context object which does not have a contextId to the Context Store. The Context will expire after the
lease period. The response contains the assigned contextId.)

PostWithNoContextIdResponse response = (PostWithNoContextIdResponse)

contextStore.postContextWithoutContextId(context, lease, sessionId, aliasId(s), rid)

(Posts Context object with no contextId to the Context Store. Accepts up to three aliasIds. The Context will
expire after the lease period. The response contains the assigned contextId.)

Context Store SDK Tutorial

Avaya Context Store Snap-In Developer Guide 3.1.0.1 51

PostWithNoContextIdResponse response = (PostWithNoContextIdResponse)

contextStore.postContextWithoutContextId(context, lease, sessionId, aliasId(s), rid,

touchpoint)

(Posts Context object with no contextId to the Context Store. Accepts up to three aliasIds. The Context will
expire after the lease period. The Context will add the passed touchpoint string to its audit trail. The
response contains the assigned contextId.)

GetContextDataResponse response = (GetContextDataResponse) contextStore.getData(id,

sessionId);

(Get data of a Context using contextId. The response contains the data returned.)

GetContextDataResponse response = (GetContextDataResponse) contextStore.getData(id,

sessionId, rid);

(Get data of a Context using contextId and its routingId. The response contains the data returned.)

GetContextDataResponse response = (GetContextDataResponse) contextStore.getData(id,

sessionId, rid, touchpoint);

(Get data of a Context using contextId and its routingId. The touchpoint will be added to the Context's audit
entry. The response contains the data returned.)

ServiceResponse response = contexStore.getDataByAliasId(aliasId, sessionId, rid):

(Get data of a Context using its aliasId and its routingId. The response contains the data returned.)

ServiceResponse response = contexStore.getDataByAliasId(aliasId, sessionId, rid,

touchpoint):

(Get data of a Context using its aliasId and its routingId. The touchpoint will be added to the Contexts audit
entry. The response contains the data returned.)

GetContextValueResponse response = (GetContextValueResponse) contextStore.getValue(id,

key, sessionId);

(Get value of Context with its contextId and the data key. The response contains the value returned.)

GetContextValueResponse response = (GetContextValueResponse) contextStore.getValue(id,

key, sessionId, rid);

(Get value of Context with its contextId and its routingId and the data key. The response contains the value
returned.)

GetContextValueResponse response = (GetContextValueResponse) contextStore.getValue(id,

key, sessionId, rid, touchpoint);

(Get value of Context with its contextId and its routingId and the data key. The touchpoint will be added to
the Context's audit entry. The response contains the value returned.)

ServiceResponse response = contextStore.getValueByAliasId(aliasId, key, sessionId, rid)

(Get value of Context with its aliasId and its routingId and the data key. The response contains the value
returned.)

Context Store SDK Tutorial

Avaya Context Store Snap-In Developer Guide 3.1.0.1 52

ServiceResponse response = contextStore.getValueByAliasid(aliasId, key, sessionId, rid,

touchpoint)

(Get value of Context with its aliasId and its routingId and the data key. The touchpoint will be added to the
Context's audit entry. The response contains the value returned.)

ContextStoreResponse response = (ContextStoreResponse) contextStore.putData(id, lease,

data, sessionId);

(Update a Context's data entry and lease using contextId.)

ContextStoreResponse response = (ContextStoreResponse) contextStore.putData(id, lease,

data, sessionId, rid);

(Update a Context's data entry and lease using contextId and its routingId.)

ContextStoreResponse response = (ContextStoreResponse) contextStore.putData(id, lease,

data, sessionId, rid, touchpoint);

(Update a Context's data entry and lease using contextId and its routingId. The touchpoint is added to the
Contexts audit entry.)

ContextStoreResponse response = (ContextStoreResponse)

contextStore.putDataByAliasId(aliasId, lease, data, sessionId, rid);

(Update a Context's data entry and lease using aliasId and its routingId.)

ContextStoreResponse response = (ContextStoreResponse)

contextStore.putDataByAliasId(aliasId, lease, data, sessionId, rid, touchpoint);

(Update a Context's data entry and lease using aliasId and its routingId. The touchpoint is added to the
Context's audit entry.)

ContextStoreResponse response = (ContextStoreResponse) contextStore.putValue(id, key,

value, lease, sessionId);

(Update a Context's data value as identified by contextId, data key. Lease can also be modified in his
action.)

ContextStoreResponse response = (ContextStoreResponse) contextStore.putValue(id, key,

value, lease, sessionId, rid);

(Update a Context's data value as identified by contextId , data key and routingId. Lease can also be
modified in his action.)

ContextStoreResponse response = (ContextStoreResponse) contextStore.putValue(id, key,

value, lease, sessionId, rid, touchpoint);

(Update a Context's data value as identified by contextId , data key and routingId. Lease can also be
modified in his action. The touchpoint is added to the Context's audit entry.)

ServiceResponse response = contextStore.putValueByAliasId(aliasId, key, value, lease,

sessionId, rid);

Context Store SDK Tutorial

Avaya Context Store Snap-In Developer Guide 3.1.0.1 53

(Update a Context's data value as identified by aliasId, data key and routingId. Lease can also be modified in
his action.)

ServiceResponse response = contextStore.putValueByAliasId(aliasId, key, value, lease,

sessionId, rid, touchpoint);

(Update a Context's data value as identified by aliasId, data key and routingId. Lease can also be modified in
his action. The touchpoint is added to the Context's audit entry.)

ContextStoreResponse response = (ContextStoreResponse) contextStore.deleteValue(id, key,

sessionId);

(Delete Context data value for given contextId and target key.)

ContextStoreResponse response = (ContextStoreResponse) contextStore.deleteValue(id, key,

sessionId, rid);)

(Delete Context data value for given ID, target key and routingId.)

ContextStoreResponse response = (ContextStoreResponse) contextStore.deleteValue(id, key,

sessionId, rid, touchpoint);

(Delete Context value for given contextId, target key and routingId. The touchpoint is added to the Context's
audit entry.)

ContextStoreResponse response = (ContextStoreResponse) contextStore.deleteValueByAliasID(aliasId,
key, sessionId, rid);

(Delete Context value for given aliasId, target key and routingId.)

ContextStoreResponse response = (ContextStoreResponse)

contextStore.deleteValueByAliasId(aliasId, key, sessionId, rid, touchpoint);

(Delete Context value for given aliasId, target key and routingId. The touchpoint is added to the Context's
audit entry.)

ServiceResponse response = contextStore.deleteAliasId(aliasId, sessionId, rid);

(Deletes an alias object from the space associated with the passed aliasId and routingId.)

ServiceResponse response = contextStore.deleteAliasId(aliasId, sessionId, rid,

touchpoint);

(Deletes an alias object from the space associated with the passed aliasId and routingId. The touchpoint is
added to the Context's audit trail.)

ServiceResponse response = contextStore.putAliasIdByAliasId(aliasId, lease, sessionId,

rid, newAliasId);

(Add a new aliasId to a Context based on its original aliasId and routingId.)

ServiceResponse response = contextStore.putAliasIdByAliasId(aliasId, lease, sessionId,

rid, newAliasId, touchpoint);

Context Store SDK Tutorial

Avaya Context Store Snap-In Developer Guide 3.1.0.1 54

(Add a new aliasId to a Context based on its original aliasId and routingId. The touchpoint is added to the
Context's audit trail.)

ServiceResponse response = contextStore.putAliasIdByContextId(id, lease, sessionId, rid,

newAliasId, touchpoint);

(Add a new aliasId to a Context based on its contextId and routingId. The touchpoint is added to the
Context's audit trail.)

ServiceResponse response = contextStore.putAliasIdByContextId(id, lease, sessionId, rid,

newAliasId);

(Add a new aliasId to a Context based on its contextId and routingId.)

GetContextAuditResponse response = (GetContextAuditResponse)

contextStore.getAuditDataByContextId(id, sessionId, rid);

(Returns the audit trail of the Context associated with the ContextId.)

GetContextAuditResponse response = (GetContextAuditResponse)

contextStore.getAuditDataByAliastId(aliasId, sessionId, rid);

(Returns the audit trail of the Context associated with the aliasId.)

ContextStoreResponse response = (ContextStoreResponse) contextStore.deleteContext(id,

sessionId);

(Delete Context associated with contextId.)

ContextStoreResponse response = (ContextStoreResponse) contextStore.deleteContext(id,

sessionId, rid);

(Delete Context associated with contextId and routingId.)

ContextStoreResponse response = (ContextStoreResponse)

contextStore.deleteContextByAliasId(aliasId, sessionId, rid);

(Delete Context associated with aliasId and routingId.)

GetContextIdsByGroupIdResponse response = (GetContextIdsByGroupIdResponse)

contextStore.getContextIdsForGroupId(groupId, sessionId);

(Get Contexts by groupId, returns a list of contextIds.)

GetContextIdsByGroupIdResponse response = (GetContextIdsByGroupIdResponse)

contextStore.getContextIdsForGroupId(groupId, sessionId, rid);

(Get Contexts by groupId and routingId, returns a list of contextIds.)

ServiceResponse response = contextStore.upsertContextWithContextID(contextID, lease,

upsertPojo, sessionId, rid, touchpoint);

(Create a new context or update the context if it already exists via ContextID.)

Context Store SDK Tutorial

Avaya Context Store Snap-In Developer Guide 3.1.0.1 55

ServiceResponse response = contextStore.upsertContextWithAliasID(aliasID, lease,

upsertPojo, sessionId, rid, touchpoint);

(Create a new context or update the context if it already exists via AliasID.)

 Configuration 4.1.3.

The IP address of the Context Store interface is entered on the Connection Settings tab of the Sample
Client.

Context Store requires clients to identify themselves with a certificate before an operation can be run. For
more information on configuration, see the Certificate Based Authentication section. Once the configuration
has been completed on System Manager, the certs need to be loaded in to the client. This is configured in
the Key Store section of the Connection Settings tab.

1. Click Set beside the Key Store Location to enter the Key Store File location.

2. Enter the password for this Key Store in the Key Store Password text box.

3. If the Trust Store is located in a different file to the Key Store, select the No radio button in the Is the
Trust Store file the same as the Key Store option.

The system displays the Trust Store Settings section.

4. Enter the file location and password.

Once these configuration items are entered, users can proceed to the Context Operations tab to
perform operations against the Context Store.

Context Store SDK Tutorial

Avaya Context Store Snap-In Developer Guide 3.1.0.1 56

‡

 Usage 4.1.4.

When running operations in the Context Operations tab only the relevant fields are used when populating
the request. For example when adding a context, the only fields that need to be populated are the contextId,
RoutingId, Touchpoint and Context Data the other fields are ignored for this operation.

The exception to this rule is the alias query parameter (aliasIds field); if this field is populated when any ‘Add

Context…’ operation is submitted, the aliasIds in this field will be added to the context (if valid).

The format for the context data is {"key1":"value1","key2":"value2"}

The client does not support nested key value pairs such as
{"key1":"value1","key2":"key1":{"key3":"value3","key4":"value4"}}

The format for the new alias data is [“newAlias1”,”newAlias2”]

A sample from the program is below. An error is displayed if the configuration data is not available.

‡
 This is a sample screen and might differ from final implementation

Figure 2 Sample Java Client Configuration

Context Store SDK Tutorial

Avaya Context Store Snap-In Developer Guide 3.1.0.1 57

Figure 3 Java Sample Client

 C# Client 4.2.

This topic provides details for the C# GUI Sample Client. This Client is developed using Visual Studio
Express 2012 on .Net 4.5, and uses the latest recommended REST API exposed by the ASP.NET Web API.
This Web API has to be imported into Express using NuGet.

 GUI layout 4.2.1.

The provided sample application is written in C# and it displays all the information required to create the
request. The sample application also has a textbox which displays the server responses as well as the
actual JSON which was transmitted.

Each section has a descriptive group box around it. The user and server details are configured in the
Connection Details section.

The Operations menu contains all available operations for a context: Add, Update, Get and Delete. These
operations take the information that is set in the Context Details section. Therefore, you must enter a value

in either the Context Id textbox or aliasId textbox for the operations to succeed (the exception is Add

http://www.microsoft.com/visualstudio/eng/downloads
http://www.microsoft.com/visualstudio/eng/downloads

Context Store SDK Tutorial

Avaya Context Store Snap-In Developer Guide 3.1.0.1 58

Context without contextId operation). Note, the new aliasId textbox is used for ‘Update

aliasIds…’ operations only, this cannot be used for alias query parameter i.e. requests based on aliasId

rather than contextId

The last section, Display, is used to display the request and response messages to and from the server.
The response is highlighted in green if successful or red if not successful. All requests are in black.

Figure 4 C# Sample Client

 Application Layout: 4.2.2.

This application is created as an example of how to consume a REST interface from a C# GUI Application.
All code is contained in the default Form1.cs class. Each operation has a button and associated method.
These operation methods (Add, Get, Update, Delete) are asynchronous. This is to prevent the main UI
thread from blocking on any Rest API call. Used throughout the code is the

"appendToTextDisplayWithColour()" method to write to the RichTextBox on the GUI. In a code, a simple

log statement or sysout if a console application will suffice. A JSON datatype could have been used, but for
simplicity, Strings were used throughout for the sending and receiving.

The following code can be changed to make the calling thread block by calling the "Result" property on the
returned Task from the Rest method.

For example,

"HttpResponseMessage httpResponse = httpClient.PostAsync(url, httpContent).Result;"

Context Store SDK Tutorial

Avaya Context Store Snap-In Developer Guide 3.1.0.1 59

in place of

"HttpResponseMessage httpResponse = await httpClient.PostAsync(url, httpContent);"

Code Snippet: addContext

The below snippet from the Form.cs files shows how to set the URL to be used and the content of the
request to successfully add/POST a context to the Context Store.

private async void addContext(String id, String data , String lease, bool persistToEDM,

List< String > aliasIds, String rid)

{

 HttpClient httpClient = new HttpClient();

 String strResponse = String.Empty;

 String url = this.buildURL(FULL_CONTEXT_PATH);

 url = this.addUriQueryParam(url, ALIAS, aliasIds);

 url = this.addUriQueryParam(url, LEASE, lease);

 url = this.addUriQueryParam(url, RID, rid);

 //Content of request will be the User name and password

 String content = "{\"contextId\":\"" + id + "\",\"persistToEDM\":\""

 + persistToEDM.ToString().ToLower() + "\",\"data\":{" + data + "}}";

 try

 {

 appendToTextDisplayWithColour("\n" + DateTime.Now + " Add Context "

 + ((id.Length > 0) ? "with" : "without") + " contextId - Uri="

 + url, Color.Black);

 appendToTextDisplayWithColour("Content=" + content, Color.Black);

 HttpContent httpContent = new StringContent(content, Encoding.UTF8, "application/json");

 HttpResponseMessage httpResponse = await httpClient.PostAsync(url, httpContent);

 if (httpResponse.IsSuccessStatusCode)

 {

 if (String.Empty.Equals(id))

 {

 strResponse = await httpResponse.Content.ReadAsStringAsync();

appendToTextDisplayWithColour("Success, Context was created, contextId=" +

strResponse + ", aliasId=" + aliasIds.ToString() + ", rid=" + rid + ",

lease=" + lease, Color.Green);

 }

 else

 {

appendToTextDisplayWithColour("Success, Context was created, contextId=" + id

+ ", aliasId=" + aliasIds.ToString() + ", rid=" + rid + ", lease=" + lease,

Color.Green);

Context Store SDK Tutorial

Avaya Context Store Snap-In Developer Guide 3.1.0.1 60

 }

 }

 else

 {

 appendToTextDisplayWithColour("Failed to create Context:Status Code="

 + httpResponse.StatusCode, Color.Red);

 }

 }

 catch (Exception e)

 {

 appendToTextDisplayWithColour("Failed to post context to server e:" + e.Message, Color.Red);

 }

 finally

 {

 httpClient.Dispose();

 }

}

 Security 4.3.

Context Store can be configured to use Certificate Based Authentication. This means, all clients must
present a valid client certificate with their request. Not all REST client applications support the use of client
certificates. If in doubt, use the clients provided in the Context Store SDK distribution as these clients
support client certificates. When configuring applications to work with certificates, you have to provide a
location to a keystore, containing a valid client certificate, and a password to access the keystore. For helpful
information on configuring Certificate Based Authentication see the appendix of this document.

When using Certificate Based Authentication, it should be noted that it is not possible to make pure
JavaScript (Ajax) calls to Context Store. This is due to disconnect between the browser and its JavaScript
engine, meaning the client certificate is never sent. For this reason it is recommended to use a server side
technology, e.g. servlets, to establish SSL connections with the Context Store cluster. The Context Store
SDK has in built support for certificates.

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 61

5. Screen Pop

 Overview 5.1.

CSScreenPop is a service that users can use to view the data stored in Context Store. It uses a rules engine
to determine the format and context of the data returned. It can use both the predefined rules that come with

the engine or user defined rules to process the available data.

CSScreenPop supports the following formats for returning data: HTML, XML, JSON, URL, REDIRECT,
MAILTO, WA and JSONARRAY. You can configure these output formats to view the context data either in a
web browser or in other supported clients.

Configuring the rules in the engine, is just a matter of adding the rule in System Manager and the rules
engine will update the rule set. The rules can change the output format and provides the ability to filter the
results based on the keys in the context. For full details on how to create a user configurable rule or make
use of the existing pre-defined rules, see the relevant sections below.

The URLs are designed to be easily integrated in to other applications, for example Avaya One-X Agent. For
instructions on how to configure CSScreenPop and One-X agent, see the following sections.

 Screen Pop Operations on the Context Store 5.2.

 Operations

o Create - Create a new context

o Update - Update an existing context

o View - View a context

o Ucid - View a context by selecting the contextId from a UCID (or any other string)

o Group - View a list of contexts stored in the same group

 Screen Pop operations are accessed via HTTP GET

o Sample URL -
 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/<OPERATION>/?id=<CONTEXT_ID>

 Full details on the Operations and their URLs can be found in section 5.7 URLs & Operations.

 Output Format 5.3.

 Screen Pop can return context data in several formats, available formats are

o HTML

o XML

o JSON

o URL

o REDIRECT

o MAILTO

o WA

o JSONARRAY

 The format can be selected in two ways

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 62

o By entering pre-defined data in the context and letting the pre-defined or user configurable
rules fire and then manipulate the context

o By adding a URL parameter 'format' to the Screen Pop URL and overriding the above pre-
defined data set in the context

 Full details on what to configure and how to select the formats can be found in section 5.8 Response
Formats.

 Rules Engine 5.4.

 A rules engine is provided to transform the context data stored in the Context Store into the selected
format

 CSScreenPop uses a rule engine to take the rules stored in the space and apply them to the
context data to create the response

 CSScreenPop comes with pre-defined rules that allow the customization of the context data based
on certain key and value pairs being added to the context data

o See the 5.9 Pre-Configured Rules section for details of the pre-defined rules

 CSScreenPop also allows user configurable rules

See the section 5.10 Editable Rules page for more details

 Rest Service 5.5.

 Screen Pop contains a REST service that is used to perform allowed operations on the Context
Store

 Data-grid 5.6.

 Default rules are pre-configured in the Avaya Aura® Engagement Development Platform system
through CSScreenPop service attributes.

 Screen Pop then loads the rules into the Context Store data-grid and these are accessed via the
data-grid API.

 URLs & Operations 5.7.

This section explains the different URLs that are available and their functions as part of Context Store
Screen Pop

 The CSScreenPop REST interface is found on this URL

o http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/<OPERATION>/?id=<CONTEXT_ID>

o Where <IP_ADDRESS> is the external IP address of the Avaya Aura® Engagement Development

Platform machine/cluster the CSScreenPop service is running on, <OPERATION> is the action

being requested and where <CONTEXT_ID> is the id of the context that the CSScreenPop is

using

 Each of the operations has its own URL (as described above) where the <OPERATION> defines the

different operation

The URL operations are create and view a context, update and view a context, view a context, read
contextId from UCID and view the context and finally view group's contextIds.

When creating a context with an aliasId, a contextId must be provided.

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 63

 Create & View a Context 5.7.1.

 This operation creates a context in the context store

 A minimum of one key/value pair must be added to the URL to add to the context

 Creates a new context if context with the requested id does not already exist

 Max length of URL can vary depending on the browser being used

 Default format returned is JSON

 NOTE: Counts as 2 requests on the Context Store system

URL

CREATE /services/CSScreenPop/cs/pop/create/

URL Parameters

Key Value Notes

id Any valid contextId that
does not already exist

Mandatory

Cannot be added as a key/value pair to the context

rid Any valid rid Optional

Cannot be added as a key/value pair to the context

alias Any valid aliasId Optional

Cannot be added as a key/value pair to the context

groupId Any valid context groupId Optional

Cannot be added as a key/value pair to the context

groupId Any valid context tenantId Optional

Cannot be added as a key/value pair to the context

format Any valid Context Store
Screen Pop Format

Optional

Cannot be added as a key/value pair to the context

lease Any valid lease time Optional

Cannot be added as a key/value pair to the context

persistToEDM true or false Optional

Cannot be added as a key/value pair to the context

persistTo CS_PROVISION Optional

Cannot be added as a key/value pair to the context

<any other key> <any valid value> At least one is mandatory

Name and value will be added to the context as the

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 64

key/value pair

All context data formatting and rules applied to the
context data apply here also

Can be any valid key/value pair

Limited by length of URL

touchpoint Any valid touchpoint string Optional

Cannot be added as a key/value pair to the context

Example URLs

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/create/?id=12345format=html&foo=bar

o Creates a context with id of 12345 and a single key of foo with a value bar

o Returns in html format

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/create/?id=1&foo=bar&touchpoint=abc

o Creates a context with id of 1 and a single key of foo with a value bar

o If audit trail is enabled, an entry will be created with touchpoint abc and operationId CR_C_C

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/create/?id=1234567&format=html&foo=bar

&alias=54321&groupId=6789&rid=routingId1&tenantId=abcd

o Creates a context with id of 1234567, an aliasId of 54321, a groupId of 6789, a routingId of

routingId1, a tenantId of abcd and a single key of foo with a value bar

o Returns in html format

 Update & View a Context 5.7.2.

 Updates a context in the context store

 Context must already exist to be updated

 Updates the context with the parameters on the URL (excluding id, alias, rid and format)

 Max length of URL is limited by the system and browser in use

 Default format to return in is JSON

 NOTE: Counts as 3 requests on the Context Store System

URL

Update /services/CSScreenPop/cs/pop/update/

URL Parameters

Key Value Notes

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 65

id Any valid contextId that already
exists in the context store

Mandatory

Cannot be added as a key/value pair to the context

rid Any valid rid Optional

Cannot be added as a key/value pair to the context

alias Any valid aliasId Optional

Cannot be added as a key/value pair to the context

format Any valid Context Store Screen Pop
Format

Optional

Cannot be added as a key/value pair to the context

<any other
key>

<any valid value> Optional

Name and value will be added to the context store
as the key/value pair, should the key already exist
then it is updated

All context data formatting and rules applied to the
context data apply here also

Can be any valid key/value pair

Limited by length of URL

touchpoint Any valid touchpoint string Optional

Cannot be added as a key/value pair to the context

Example URLs

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/update/?id=12345&format=html&foo=b

ar

o Updates the context which has contextId 12345, with a single key of foo with a value bar

o Returns in html format

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/update/?alias=12345&format=html&fo

o=bar&rid=routingId2

o Updates the context which has aliasId 12345 and routingId of routingId2 with a single key

of foo with a value bar

o Returns in html format

 View a Context 5.7.3.

 Views a context

 Default format returned is JSON

 NOTE: Counts as 2 requests on the Context Store System

URL

View /services/CSScreenPop/cs/pop/context/

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 66

URL Parameters

Key Value Notes

id Any valid contextId that already exists in the context store Mandatory

rid Any valid rid Optional

alias Any valid aliasId Optional

format Any valid Context Store Screen Pop Format Optional

touchpoint Any valid touchpoint string Optional

Cannot be added as a
key/value pair to the context

Example URLs

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/context/?id=12345&format=html

o Returns the context 12345 in html format

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/context/?id=12345&alias=678&format

=html

o Returns the context with aliasId 678 in html format

 View a Context by Selecting contextId from Parameter (UCID) 5.7.4.

 This operation takes any string and reads a contextId based on a start and stop position

 See the section 5.10.1 Configurable Properties for instructions on how to set the range to select the
contextId from

 Counts as a single request on the Context Store

 Not limited to UCID, can be any string where that contains a contextId that can be read from fixed
locations within that string

 Default format returned is JSON

 NOTE: Counts as 2 requests on the Context Store System

URL

View /services/CSScreenPop/cs/pop/ucid/

URL Parameters

Key Value Notes

ucid Any valid UCID that contains a contextId that does
already exists in the context store

Mandatory (if delimit is not set)

delimit Any valid UCID that contains a contextId that does Mandatory (if ucid is not set)

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 67

already exists in the context store

format Any valid Context Store Screen Pop Format Optional

touchpoint Any valid touchpoint string Optional

Cannot be added as a key/value
pair to the context

Example URLs

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/ucid/?ucid=000001234500000&format=

html

o Assume configurable properties in snap-in properties page is set to '5,10'

o Returns the context with id 12345 in html format

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/ucid/?delimit=00000.12345.00000&fo

rmat=html

o Assume configurable properties in snap-in properties page is set to '\.' and 2

o Returns the context with id 12345 in html format

 View contextIds by groupId 5.7.5.

 NOTE: Counts as 2 requests on the Context Store System

 Default format returned is JSON

URL

Group /services/CSScreenPop/cs/pop/group/

URL Parameters

Key Value Notes

id Any valid context groupId that already exists in the context
store

Mandatory

format Any valid Context Store Screen Pop Format Optional

Example URLs

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/group/?id=6789&format=html

o Returns the all the contextId with groupId of 6789 in html format

 Upsert & View a Context 5.7.6.

 This operation creates or updates a context in the context store depending on its existence

 A minimum of one key/value pair must be added to the URL to add to the context

 Creates a new context if context with the requested id does not already exist otherwise the existing
context will be updated

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 68

 Default format returned is JSON

 NOTE: Counts as 2 requests on the Context Store System

URL

Upsert by Context ID /services/CSScreenPop/cs/pop/upsert/

Upsert by Alias ID /services/CSScreenPop/cs/pop/upsert/alias/

URL Parameters

Key Value Notes

id Any valid context Id. For the
alias URL this will serve as
the query alias for the
request.

Mandatory

Cannot be added as a key/value pair to the context

rid Any valid rid Optional

Cannot be added as a key/value pair to the context

alias Any valid aliasId Optional

Cannot be added as a key/value pair to the context

groupId Any valid context groupId Optional

Cannot be added as a key/value pair to the context

tenantId Any valid context tenantId Optional

Cannot be added as a key/value pair to the context

format Any valid Context Store
Screen Pop Format

Optional

Cannot be added as a key/value pair to the context

lease Any valid lease time Optional

Cannot be added as a key/value pair to the context

persistToEDM true or false Optional

Cannot be added as a key/value pair to the context

persistTo CS_PROVISION Optional

Cannot be added as a key/value pair to the context

<any other key> <any valid value> At least one is mandatory

Name and value will be added to the context as the
key/value pair

All context data formatting and rules applied to the
context data apply here also

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 69

Can be any valid key/value pair

Limited by length of URL

touchpoint Any valid touchpoint string Optional

Cannot be added as a key/value pair to the context

Example URLs

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/upsert/?id=12345&alias=678&format=

html&foo=bar&rid=23

o Upserts a context with id of 12345, alias Id of 678, routing id of 23 and a single key of foo
with a value bar

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/upsert/alias/?id=12345&alias=678&g

roupId=6789&format=html&foo=bar&rid=23&tenantId=2468

o Uses alias of 12345 for the upsert query, alias Id of 678, routing id of 23, a group Id of 6789,
a tenant id of 2468 and a single key of foo with a value bar

 View a Context by Selecting contextId from Parameter (UCID) 5.7.7.

 This operation takes any string and reads a contextId based on a start and stop position

 See the section 5.10.1 Configurable Properties for instructions on how to set the range to select the
contextId from

 Counts as a single request on the Context Store

 Not limited to UCID, can be any string where that contains a contextId that can be read from fixed
locations within that string

 Default format returned is JSON

 NOTE: Counts as 2 requests on the Context Store System

URL

View /services/CSScreenPop/cs/pop/ucid/

URL Parameters

Key Value Notes

ucid Any valid UCID that contains a contextId that does
already exists in the context store

Mandatory (if delimit is not set)

delimit Any valid UCID that contains a contextId that does
already exists in the context store

Mandatory (if ucid is not set)

format Any valid Context Store Screen Pop Format Optional

touchpoint Any valid touchpoint string Optional

Cannot be added as a key/value
pair to the context

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 70

Example URLs

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/ucid/?ucid=000001234500000&format=

html

o Assume configurable properties in snap-in properties page is set to '5,10'

o Returns the context with id 12345 in html format

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/ucid/?delimit=00000.12345.00000&fo

rmat=html

o Assume configurable properties in snap-in properties page is set to '\.' and 2

o Returns the context with id 12345 in html format

 View contextIds by groupId 5.7.8.

 NOTE: Counts as 2 requests on the Context Store System

 Default format returned is JSON

URL

Group /services/CSScreenPop/cs/pop/group/

URL Parameters

Key Value Notes

id Any valid context groupId that already exists in the context
store

Mandatory

format Any valid Context Store Screen Pop Format Optional

Example URLs

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/group/?id=6789&format=html

o Returns the all the contextId with groupId of 6789 in html format

 Older Browser Compatibility 5.7.9.

Older versions of browsers are not supported by the HTML format of Context Store Screen Pop. There is a
workaround in place to allow the html to render in older browsers, in particular IE8. To use this workaround,
add 'pop.html' to the end of each of the supported URL's. This will work for all 5 Screen Pop URLs that are
listed in URLs and Operations.

For example, the following URLs:

http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/create/?id=123&key1=value1 and

http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/context/?id=123 will become:

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/create/pop.html?id=123&key1=value1

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/context/pop.html?id=123

There is no change in functionality in how these URLs work. This alternative URL will change the content
type returned to allow older browsers to render the HTML. This should only be used where the fully

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 71

supported version of the URL's do not render as expected. This is known to affect IE 8 where the browser
will not render the html and Firefox where the html renders but Firefox makes a second call to the webpage.

 JSON Content Type 5.7.10.

Certain consumers of JSON data need the content header in the response returned from the GET request to

be set to application/json. If a consumer of the Screen Pop JSON data required this header to be set
then append ‘/json/’ to the end of each of the supported URLs. This will work for all 5 Screen Pop URLs that
are listed in URLs and Operations. If integrating with Engagement Designer then this URL should be used.

For example, the following URLs:

http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/create/?id=12345&key1=value1 and

http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/context/?id=12345 will become:

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/create/json/?id=12345&key1=value1

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/context/json/?id=12345

There is no change in functionality in how these URLs work. This alternative URL will change the content
type returned to allow consumers that require it to be set to consume it.

 Response Formats 5.8.

There are 8 different formats and 3 different ways that the output format of the Screen Pop can be selected.

The 8 formats are

 JSON (default)

 HTML

 XML

 A URL

 A html page that redirects to a different URL

 A mailto link

 A Work Assignment format

 A JSON Array

The 3 different ways to select the format are as follows, all of which use the Screen Pop Rules Engine to
generate the response

 By setting pre-defined data in the context

 By using the user configurable rules to detect specific keys

 By using the format override URL parameter

o The format override function will override any of the above settings

 Format Selection 5.8.1.

These are the 3 ways the format can be set

1) Default Rules Format

 If the Context data contains a key named 'cs_screenpop_format' then the format entered in the key
will be selected provided it is one of the allowed values

 Additional context keys and values will need to be added to get certain formats to work or to expand
the functionality, for example 'cs_screenpop_url' and 'cs_screenpop_css'

 These are explained further below and defined fully in section 5.9.2 Default Rules Provided.

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 72

2) User Configurable Rules

 Users can also create their own rules which can select the format based on the engine matching
contexts set in the rule

o Further detail of how to configure the rules can be found here section 5.10 Editable Rules.

3) Format Override

 To avoid setting values in the Context the format override parameter can be used

 This will override the 'cs_screenpop_xxx'

 When setting the format to html a default css page is picked up using the updateable properties

 When setting the format to URL a default URL link is picked up using the updateable properties

 Format Types 5.8.2.

 The 8 formats that can be applied by the rules engine are listed below.

o HTML; XML; JSON; URL; REDIRECT; MAILTO; WA; JSONARRAY

o The only values that will be accepted are these 6 strings, all other values will be rejected

 For full details on how the pre-defined rules are set up see in section 5.9 Pre-Configured Rules

1) HTML

 This return the Context data requested in the HTML format shown below

 When requesting html format then a link to a css file can be added to the html returned to allow the
html to be formatted

o When not using the override in the URL then 'cs_screenpop_css' must be set to a valid,
resolvable css file.

 CSS file provided is a demo css file, users should create and host their own css files

 As HTML is a viewable format the format will not return values of keys that start and end with a '*'
character as they are considered non-viewable values.

Sample HTML response with optional CSS link included

<html>

 <head>

 <meta http-equiv="content-type" content="text/html; charset=UTF-8"/>

 <link rel="stylesheet" type="text/css" href="<cs_screenpop_css>"/>

 </head>

 <body>

 <div class="header">

 <div class="context-id">12345</div>

 </div>

 <div class="context" id="context">

 <div class="entry" id="key2">

 <div class="key">key2</div>

 <div class="value">value2</div>

 </div>

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 73

 <div class="entry" id="key1">

 <div class="key">key1</div>

 <div class="value">value1</div>

 </div>

 </div>

 </body>

</html>

Pre-defined

 Set value of key 'cs_screenpop_format' to 'html' in context

 To add a css link to the html then 'cs_screenpop_css' must be set correctly

 Set value of key 'cs_screenpop_include' to a pipe ('|') separated list of key/value pairs to be added
as parameters to the URL

 Set value of key 'cs_screenpop_exclude' to a pipe ('|') separated list of key/value pairs that will not
be added as parameters to the URL. All other contexts will be added.

User Configurable

 Create rule to set the format to html

 Example

o _if_contains_ key1 _then_format_ html _priority_ 1 _include_ key1

Override Format

 To use set the URL parameter format to html (&format=html)

o Setting this allows the css to be read from the snap-in properties without the need to set
'cs_screenpop_css'

 Example

o http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/<OPERATION>/?id=<CONTEXT_ID>&format=
html

2) XML

 This return the Context data requested in XML format.

 As xml is not considered to be a user viewable format keys that start and end with a '*' will be
returned so clients consuming the xml data returned will need to filter this data

Sample XML response

<?xml version="1.0" encoding="UTF-8"?>

<context id="12345">

 <entry name="key2" value="value2"/>

 <entry name="key1" value="value1"/>

</context>

Pre-defined

 Set value of key 'cs_screenpop_format' to 'xml' in context

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 74

 Set value of key 'cs_screenpop_include' to a pipe ('|') separated list of key/value pairs to be added
as parameters to the URL

 Set value of key 'cs_screenpop_exclude' to a pipe ('|') separated list of key/value pairs that will not
be added as parameters to the URL. All other contexts will be added.

User Configurable

 Create rule to set the format to xml

 Example

o _if_contains_ key1 _then_format_ xml _priority_ 1 _include_ key1

Override Format

 To use set the URL parameter format to xml (&format=xml)

 Example

o http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/<OPERATION>/?id=<CONTEXT_ID>
&format=xml

3) JSON

 This return the Context data requested in JSON format.

 As json is not considered to be a user viewable format keys that start and end with a '*' will be
returned so clients consuming the xml data returned will need to filter this data

{

 "key2": "value2",

 "key1": "value1"

}

Pre-defined

 Set key 'cs_screenpop_format' to 'json' in context

User Configurable

 Create rule to set the format to json

 Example

o _if_contains_ key1 _then_format_ json _priority_ 1 _include_ key1

Override Format

 To use set the URL parameter format to json (&format=json)

 Example

o http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/<OPERATION>/?id=<CONTEXT_ID>
&format=json

4) URL

 This return the Context data requested in URL format.

 All parameters in the context will be appended to the URL, unless include/exclude functionality is
used

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 75

 If 'cs_screenpop_url' is not set in the context then the default url will be read from the Snap-in
properties will be used.

<cs_screenpop_url?>key2=value2&key1=value1

Pre-defined

 Set value of key 'cs_screenpop_format' to 'url' in context

 Set value of key 'cs_screenpop_url' to be the start of the URL being redirected to

o This is required and if not set the url output will not be generated

 Set value of key 'cs_screenpop_include' to a pipe ('|') separated list of key/value pairs to be added
as parameters to the URL

 Set value of key 'cs_screenpop_exclude' to a pipe ('|') separated list of key/value pairs that will not
be added as parameters to the URL. All other contexts will be added.

User Configurable

 Create rule to set the format to url

 Example

o _if_contains_ key1 _then_format_ url _priority_ 1 _include_ key1

Override Format

 To use set the URL parameter format to url (&format=url)

o Setting this allows the URL start to be read from the snap-in properties without the need to
set 'cs_screenpop_url'

 Example

o http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/<OPERATION>/?id=<CONTEXT_ID>
&format=url

5) REDIRECT

 Redirects the browser to a configurable URL. Uses meta-refresh to redirect browser, see html
returned below.

 All parameters in the context will be appended to the URL, unless include/exclude functionality is
used

 If 'cs_screenpop_url' is not set in the context then the default url will be read from the Snap-in
properties will be used.

<html>

 <head>

 <meta http-equiv="refresh" content="1;

url=<cs_screenpop_url>key2=value2&key1=value1" />

 </head>

</html>

Pre-defined

 Set value of key 'cs_screenpop_format' to 'redirect' in context

 Set value of key 'cs_screenpop_url' to be the start of the URL being redirected to

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 76

o This is required and if not set the url output will not be generated

 Set value of key 'cs_screenpop_include' to a pipe ('|') separated list of key/value pairs to be added
as parameters to the URL

 Set value of key 'cs_screenpop_exclude' to a pipe ('|') separated list of key/value pairs that will not
be added as parameters to the URL. All other contexts will be added.

User Configurable

 Create rule to set the format to xml

 Example

o _if_contains_ key1 _then_format_ redirect _priority_ 1 _include_

key1

Override Format

 To use set the URL parameter format to redirect (&format=redirect)

o Setting this allows the URL start to be read from the snap-in properties without the need to
set 'cs_screenpop_url'

 Example

o http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/<OPERATION>/?id=<CONTEXT_ID>
&format=redirect

6) MAILTO

 Return a 'mailto' link

mailto:<cs_screenpop_email>

Pre-defined

 Set value of key 'cs_screenpop_format' to 'mailto' in context

 Set value of key 'cs_screenpop_email' to be the email address of the URL

User Configurable

 Create rule to set the format to mailto

 Example

o _if_contains_ key1 _then_format_ mailto _priority_ 1 _include_ key1

Override Format

 To use set the URL parameter format to mailto (&format=mailto) and ensure the context key
'cs_screenpop_email' has a valid email stored

o The user must ensure this is a valid email address, no validation is performed

 Example

o http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/<OPERATION>/?id=<CONTEXT_ID>
&format=mailto

7) WA

 Return json data in a format that can be directly input as attributes into the Work Assignment snap-in

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 77

 Format will combine both the key and the value into a list of attributes

{"attributes":["key1.value1","key2=value2","keyN=valueN"]}

Pre-defined

 Set value of key 'cs_screenpop_format' to 'wa' in contextUser Configurable

 Create rule to set the format to wa

 Example

o _if_contains_ key1 _then_format_ wa _priority_ 1 _include_ key1 key2

KeyN

Override Format

 To use set the URL parameter format to mailto (&format=wa)

 Example

o http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/<OPERATION>/?id=<CONTEXT_ID>
&format=wa

8) JSONARRAY

 Return context data in a json array

 Format will ignore the key and only use the value when converting into a list of attributes

 ["Value1","Value2","ValueN"]

Pre-defined

 Set value of key 'cs_screenpop_format' to 'jsonarray' in contextUser Configurable

 Create rule to set the format to jsonarray

 Example

o _if_contains_ key1 _then_format_ jsonarray _priority_ 1 _include_

key1 key2 keyN

Override Format

 To use set the URL parameter format to jsonarray (&format=jsonarray)

 Example

o http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/<OPERATION>/?id=<CONTEXT_ID>
&format=jsonarray

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 78

 Pre-Configured Rules 5.9.

Screen Pop comes with pre-configured rules that can be used to allow Context Store users to configure the
output of the Screen Pop feature based on the pre-loaded rules.

This allows the rules engine to be used without the need for individual rules to be written, as the rules are
accessed by adding certain key words to the context.

 Rules Engine Overview 5.9.1.

Rules Group

 There are three groups of rules, 'Format', 'Filter' and 'User'. Format and Filter are predefined and
explained here, User rules are set by the user and are detailed on this page Editable Rules

 One rule from each group can be executed by the engine

 The 'Filter' rules filter the context data to either include or exclude certain selected keys

o There are two rules in this group and they will be fired before

o The rule is selected by adding a key 'cs_screenpop_format' to the context and setting its
value to one of the six options below

 The 'Format' rules convert the context data into the requested format (see below)

o There are 6 rules in this group and they are the lowest allowed priority so will be fired last

o The rule is selected by adding either 'cs_screenpop_include' or 'cs_screenpop_exclude' to
the context and setting its value to a list

 Note that unlike the filter group there are two different keys in this rule so both can
be added to the context. Users should take care to not add both
'cs_screenpop_include' and 'cs_screenpop_exclude' as the engine will not be able
to determine which to select and may fire either

Rule Priority

 The 'Format 'rules all have a priority of -2. This means they are always the last rules to be fired

 The 'Filter' rules all have a priority of -1. This means that they will always be fired second from last
with the 'Format' rules being fired after.

 User rules will always have a priority greater than these two rules and are in a different rule group to
all default rules.

 Default Rules Provided 5.9.2.

Format - JSON

Returns the context data in JSON format.

Key Value Notes

cs_screenpop_format json Required.

Format - HTML

Returns the context data in an HTML format.

If set, a link to a css page can be a part of the HTML returned. This is set using the parameter below or by
using the value set in the Screen Pop properties.

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 79

Key Value Notes

cs_screenpop_format html Required.

cs_screenpop_css Optional.

Sample CSS file is included, to use set the value to
'/services/CSScreenPop/demo/css/demo.css'

Should html format be requested and no css page is set then the
default page set in the snap-in attributes will be returned

Format - URL

Key Value Notes

cs_screenpop_format url Required.

cs_screenpop_url Optional. Initial part of URL that context data is to be added to

Should url format be requested and this value is not set then the
default url set in the snap-in attributes will be returned

Format - REDIRECT

Key Value Notes

cs_screenpop_format redirect Required.

cs_screenpop_url Optional. Initial part of URL that context data is to be added to

Should url format be requested and this value is not set then the
default url set in the snap-in attributes will be returned

Format - XML

Key Value Notes

cs_screenpop_format xml Required.

Format - WA

Key Value Notes

cs_screenpop_format wa Required.

Format - JSONARAY

Key Value Notes

cs_screenpop_format jsonarray Required.

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 80

Format - MAILTO

Key Value Notes

cs_screenpop_format mailto Required.

cs_screenpop_email Required. Email address to be returned as part of mailto

Filter - Include

Key Value Notes

cs_screenpop_include Pipe separated list of keys to include, for example 'key1|key2|key3'

Filter - Exclude

Key Value Notes

cs_screenpop_exclude Pipe separated list of keys to exclude, for example 'key1|key2|key3'

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 81

 Editable Rules 5.10.

Context Store Screen Pop includes the ability to create user configurable rules to allow Context Store users
to customize the output of the Screen Pop feature based on the rules.

The user rules allow users to create a list of context keys so that if the keys exist in the context, the rules will
be applied. All user configurable rules are considered to be in the same group so only one user configurable
rule will fire. The default pre-defined rules can and will fire if they also match.

Where two sets of keys both match different rules, the higher priority will fire and all rules should have
different priorities

Rules contain 5 pre-defined keywords that all start and end with '_'. Note that context keys that start or end
with '_' are not allowed in the context store.

All of the user rules can be updated at run-time but must be edited one at a time.

Configurable Rule Keywords

1. _if_contains_

2. _then_format_

3. _priority_

4. _include_

5. _exclude_

6. _update_

7. _delete_

Configurable Rule Format

Rules are configured in the following format; the order of the keywords must not change

_if_contains_ <key(=value)> _then_format_ <html> <optional setting> _priority_

<1> _include_/_exclude_ <key> _update <key=value> _delete_ <key>

Breakdown of Rule Format and Keywords

_if_contains_

 All rules must contain this value, the rule is considered to start where this text begins

 All text before this value is ignored

 Following this key and before the '_then_format_' key must be a space separated list of keys to
match on. A logical AND operation is performed on all keys in this list and the rule will fire if all the
keys exist provided no rule of higher priority has fired first.

 For a rule to be valid there must be a space separated list of keys between '_if_contains_' and
'_then_include_'. A single key is also acceptable.

 The number of keys allowed in a user rule is limited to 10, if more than 10 keys are entered then the
rule will not be added and a message will be added to the audit log

 Example:

o _if_contains_ key1 key2 key3 _then_contains_

The rule will fire if a context contains keys named 'key1', 'key2' and 'key3'

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 82

_then_format_

 All rules must contain this value and it must appear after '_if_contains_'

 There are 6 valid values that can be after _then_format_ that the rules engine will accept. They are
as listed below and follow the formats defined section 5.8.2 Format Types.

Allowed Formats

 html

o A user rule that sets its format to 'html' can have an override that will allow each individual
rule to have its own css page to link to

o This is done by adding a 'css=' after the _then_format_ keyword

o Example

o _if_contains_ key1 key2 _then_format_ html

css=http://www.avaya.com/demo.css _priority_ 5 _include_ key1

 xml

o No extensions to this format

 json

o No extensions to this format

 url

o A user rule that sets it' format to 'url' can have an override that will allow each individual rule
to have its own url to prepend to

o This is done by adding a 'url=' after the _then_format_ keyword

o Example

o _if_contains_ key1 key2 _then_format_ url

url=http://www.avaya.com/demo.html? _priority_ 5 _include_ key1

 redirect

o A user rule that sets its format to 'redirect' can have an override that will allow each
individual rule to have its own url to prepend to

o This is done by adding a 'url=' after the _then_format_ keyword

o Example

o _if_contains_ key1 key2 _then_format_ redirect

url=http://www.avaya.com/demo.html? _priority_ 5 _include_ key1

 mailto

o No extensions to this format

 wa

o No extensions to this format

 jsonarray

o No extensions to this format

o

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 83

priority

 Optional

 If not included a default value of 3 is selected automatically

 Must be a valid integer to be considered

 The higher the value the higher the priority

include or _exclude_

 Optional. Only one of _include_ or _exclude_ can be selected

o If both are added '_include_' is selected over '_exclude_'

 Space separated list of keys to include or exclude in the Screen Pop response

 update

 Optional

 Will update the space separated list of keys with the values set

 Space separated list of keys set to values to update the context in Context Store

 This counts as an operation against Context Store every time the rule is fired

 When using the _update_ keyword in combination with the _include_ keyword the data returned will
be a combination of the keys listed in both lists. All keys listed in the _update_ list will be returned
whether or not they are in the _include_ list.

delete

 Optional

 Will delete a single key. This is not a list and only a single key can be deleted

 This counts as an operation against Context Store every time the rule is fired

Examples

 All examples assume that no rule of higher priority matches unless otherwise stated.

Match on a Single Key - Only Return Key Matched

Rule

 _if_contains_ key1 _then_format_ html _priority_ 1 _include_ key1

 If a context contains a key named 'key1' then the rules engine will fire this rule and return it in HTML
format where the rule priority is 1 and the response will only return 'key1'

Match on 2 Keys - Only Return 2 Set Keys

Rule

 _if_contains_ key1 key2 _then_format_ html _priority_ 2 _include_ key1 key2

 If a context contains a key named 'key1' and 'key2' then the rules engine will fire this rule and return
it in HTML format where the rule priority is 2 and the response will only return 'key1' and 'key2'

 If combined with the rule above both would match but this rule would fire due to the higher priority

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 84

Match on 3 Keys - Return all Context Data except 2 Keys excluded

Rule

 _if_contains_ key1 key2 key3 _then_format_ html _priority_ 3 _exclude_ key1

key2

 If a context contains a key named 'key1' and 'key2' and 'key3' then the rules engine will fire this
rule and return it in HTML format where the rule priority is 3 and the response will return every key
value pair except 'key1' and 'key2'

 If combined with the rule above both would match but this rule would fire due to the higher priority

Match on 4 Keys - Return all Context Data except 2 Keys excluded

Rule

 _if_contains_ key1 key2 key3 key4 _then_format_ html _priority_ 4 _exclude_

key1 key2

 If a context contains a key named 'key1' and 'key2' and 'key3' and 'key4' then the rules engine will
fire this rule and return it in HTML format where the rule priority is 4 and the response will return
every key value pair except 'key1' and 'key2'

 If combined with the rule above both would match but this rule would fire due to the higher priority

Match on 5 Keys - Only Return 4 Set Keys

Rule

 _if_contains_ key1 key2 key3 key4 key5 _then_format_ json _priority_ 5

include key1 key4 key5 name

 If a context contains a key named 'key1' and 'key2' and 'key3' and 'key4' and 'key5' then the rules
engine will fire this rule and return it in HTML format where the rule priority is 5 and the response will
only return 'key1', 'key4', 'key5' and 'name'

o Note that name is not matched on but is included in the response returned

 If combined with the rule above both would match but this rule would fire due to the higher priority

Format set to HTML with css page set in rule

Rule

 _if_contains_ key1 key2 _then_format_ html css=http://www.ayaya.com/fake.css

priority 2 _include_ key1 key2

 If a context contains a key named 'key1' and 'key2' then the rules engine will fire this rule and return
it in HTML format where the rule priority is 2 and the response will only return 'key1' and 'key2'

 The _then_format is set to html and appended by 'css=<link to css page>' so the css used in the
html returned by this rule will be 'http://www.ayaya.com/fake.css'

Format set to URL with url set in rule

Rule

 _if_contains_ key1 key2 _then_format_ url css=http://www.ayaya.com/fake.html?

priority 2 _include_ key1 key2

 If a context contains a key named 'key1' and 'key2' then the rules engine will fire this rule and return
it in HTML format where the rule priority is 2 and the response will only return 'key1' and 'key2'

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 85

 The _then_ format is set to url and appended by 'url=<start of url>' so the url returned will start with
'http://www.ayaya.com/fake.html?'

Format set to REDIRECT with url set in rule

Rule

 _if_contains_ key1 key2 _then_format_ redirect

css=http://www.ayaya.com/fake.html? _priority_ 2 _include_ key1 key2

 If a context contains a key named 'key1' and 'key2' then the rules engine will fire this rule and return
it in HTML format where the rule priority is 2 and the response will only return 'key1' and 'key2'

 The _then_format is set to redirect and appended by 'url=<start of url>' so the redirected to will start
with 'http://www.ayaya.com/fake.html?'

Format set to REDIRECT with url set in rule, update keys and delete keys

Rule

 _if_contains_ key1 key2 _then_format_ redirect

css=http://www.ayaya.com/fake.html? _priority_ 2 _include_ key1 key2 key3

_update key3=value3 _delete_ key4

 If a context contains a key named 'key1' and 'key2' then the rules engine will fire this rule and return
it in HTML format where the rule priority is 2 and the response will only return 'key1' and 'key2'. In
addition ‘key3’ will be updated (or created) with ‘value3’ and ‘key4’ will be deleted.

 The _then_format is set to redirect and appended by 'url=<start of url>' so the redirected to will start
with 'http://www.ayaya.com/fake.html?'

 Configurable Properties 5.10.1.

 Screen Pop contains a number of user configurable properties in total, these include 20 user
configurable rules that are numbered individually from 1-20 but all work in the exact same fashion

 Certain attributes can be updated at runtime and others must be set before the service is installed.

 To configure these properties in System Manager go to

o Home -> Elements -> Avaya Aura® Engagement Development Platform -> Configuration ->
Attributes

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 86

Figure 5 SMGR Attributes Configuration

 Base for URL 5.10.2.

 This is the path added when selecting the override format of URL.

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 87

 It must be set to a valid url path that parameters can be passed to (if passing parameters).

 The default value shows a demonstration css file provided by Context Store, any users using this
css file must create their own css file and use this property to point to its URL.

 Only used when format override is set to URL.

 Can be updated at run-time.

 Context Store Rest Version 5.10.3.

Set this to be the version of CSRest installed and selected on the cluster for example 3.0.0.0.xxx.

This is a mandatory setting. CSScreenPop will fail to connect to CSRest if this parameter is not set.

 CSS for HTML 5.10.4.

 This is the path added when selecting the override format of HTML.

 It must point to a valid css path.

 The default value shows a demonstration css file provided by Context Store, any users using this
css file must create their own css file and use this property to point to its URL.

 Only used when format override is set to HTML

 Can be updated at run-time

 Identifier Delimit Character 5.10.5.

 This is a regex value used to delimit a string to select a contextId

 Used in conjunction with 'Default setting for ucid delimit position'

 Example is if 'Default setting for ucid delimit character' is set to '\.' then set to 'Default setting for ucid
delimit position' 3 to retrieve a contextId of 333333 from 111111.222222.333333.444444

 Identifier Delimit Position 5.10.6.

 This is the position in decided on by the character above

 Used in conjunction with 'Default setting for ucid delimit character'

 Example is if 'Default setting for ucid delimit character' is set to '\.' then set to 'Default

setting for ucid delimit position' 3 to retrieve a contextId of 333333 from

111111.222222.333333.444444

 Identifier Parsing Position 5.10.7.

 Value must be a comma separated list of 2 positive integers where the first number is the start
location and the second is the end location.

 Used in conjunction with the Ucid Operation.

 Example:

o Set value of property to '5,10'

o Use URL to request the following '?ucid=000001234500000'

o Will return the context data for the context with the id '12345'

 Can be updated at run-time

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 88

JavaScript for HTML

 This is the path added when selecting the override format of HTML.

 It must point to a valid .js file hosted externally to the Context Store cluster.

 Only used when format override is set to HTML. File is added as a link to the script in the HTML
page.

 Can be updated at run-time

 User Rules 01-20 5.10.8.

 This appears 20 times from 01 to 20 and stores the 20 user configurable rules

 The format of these rules is covered in more detail section 5.10 Editable Rules

 All of these rules can be updated at run-time

 Example URLs & Their Functions 5.10.9.

This section provides some sample usages of Context Store Screen Pop and explains how to use the URL's
to do so. It is provided as an example of possibilities and is by no means an exhaustive list.

<IP_ADDRESS>

Refers to the IP address of the Avaya Aura® Engagement Development Platform cluster
(or security module IP of a single-node deployment) that Context Store (including
Screen Pop) is running on. See Avaya Aura® Engagement Development Platform
documentation for further information on the IP address.

Create a Context with a Single Entry and Return Context

This URL will create a context with an id of '12345' and return the context with the single entry in the default
JSON format

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/create/?id=12345&key1=value1

Figure 6 ScreenPop Create Context Flow

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 89

Create a Context with Multiple Entries and Return the Context

This URL will create a context with an id of '12345' and return the context with the entries in the default
JSON format

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/create/?id=12345&key1=value1&key2=value2
&keyN=valueN

Figure 7 ScreenPop Create Context with Multiple Entries Flow

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 90

Update a Single Entry in an Existing Context

This URL will update an existing context with contextId ‘12345’. It will either add a new key or update an
existing key named ‘updateKey’ with the value of ‘updateValue’

http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/update/?id=12345&updateKey=updateV

alue

The same operation can be requested using an aliasId for the context

http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/update/?alias=12345&updateKey=updat

eValue

Figure 8 ScreenPop Update Single Value Flow

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 91

Update Multiple Entries in an Existing Context

This URL will update an existing context ‘12345’. It will update the keys ‘updateKey1’ and ‘updateKeyN’ with
the values ‘updateValue1’ and ‘updateValueN’. Should either of the keys exist they will be updated, should
either not exist they will be created.

http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/update/?id=12345&updateKey1=upd

ateValue1&updateKeyN=updateValueN

Figure 9 ScreenPop Update Multiple Values Flow

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 92

Create a Context with Multiple Entries and Update Multiple Times Changing the Response
Format

This URL will create a context with an id of '12345' and return the context with the entries in the formats
highlighted in bold below

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/create/?id=12345&key1=value1&key2=value2
&format=html

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/update/?id=12345&key3=value3&keyN=valu
eN&format=xml

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/update/?id=12345&key4=value4&format=jso
n

Figure 10 ScreenPop Create Context and Update for Multiple EntriesFlow

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 93

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 94

View an Existing Context

This URL will return a view of a Context with contextId '12345'

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/context/?id=12345

This URL will return a view of a Context with an aliasId '12345'

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/context/?alias=12345

Figure 11 ScreenPop View Existing Context Flow

View an Existing Context in HTML/XML/JSON

This URL will return a view of a Context of contextId '12345' in the format highlighted in bold

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/context/?id=12345&format=html

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/context/?id=12345&format=xml

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/context/?id=12345&format=json

Figure 12 ScreenPop View Existing Context different Formats Flow

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 95

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 96

View an Existing Context by Parsing a UCID in HTML

This URL will return a view of a Context of Id '12345' based on parsing a UCID. This assumes the range is
set to '5,10'. This is configured by setting the ‘Identifier Parsing Position’ property; see the section 5.10.7
Identifier Parsing Position for more information.

 http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/ucid/?ucid=000001234500000&format=html

Figure 13 Parsing UCID Flow

Update a Context and Redirect to an External Web Page Passing Parameters

This URL will update a context '12345' and then redirect to an external web page as configured in the
section 5.10.2 Base for URL. Only certain parameters (keyToInclude1 and keyToInclude2) from the context
will be passed onto the redirecting URL, ‘keyToInclude1’ and ‘keyToInclude2’.

http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/update/?id=12345&keyToIn

clude1=valueToInclude1&keyToInclude2=valueToInclude2&updateKey1=updateVa

lue1&format=redirect&cs_screenpop_include=keyToInclude1|keyToInclude2

Figure 14 ScreenPop Redirect Flow

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 97

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 98

 Sample Usages 5.11.

This page gives some sample usages for Context Store Screen Pop.

Examples of the URLs referred to are available in the section 5.10.9 Example URLs & Their Functions.

 Create and View 5.11.1.

Figure 15 ScreenPop Create & View Flow

 Create, Update and View 5.11.2.

Figure 16 ScreenPop Create, Update & View Flow

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 99

 Create, Update Multiple Times, View then Redirect 5.11.3.

Figure 17 ScreenPop Create, Update & View Flow

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 100

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 101

 Create Context in CSRest, Update and Redirect 5.11.4.

Create Context Outside of Screen Pop then Update and Redirect in one step

Figure 18 ScreenPop Create, Update & Redirect Flow

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 102

 Example Configuration for Communication Manager 5.12.

 Configure CM to support Screen Pop 5.12.1.

For the Screen Pop to function on an agent desktop, the call data sent to the agent's station by CM must
include the UserToUser (UUI) field.

This configuration must be done on the station of every agent that needs to use the Screen Pop feature.

(1) Update Class Of Restriction (COR) configuration to enable 'Station-Button Display of UUI IE

Data' as shown below (set to 'y')

Figure 19 Screen Pop CM Config

(1.1) If not known, The COR id number can be found in station information as shown in the

screenshot below.

 Figure 20 ScreenPop CM Config Station

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 103

(2) Update the station configuration to include uui-info in BUTTON ASSIGNMENTS as shown

below

Figure 21 ScreenPop CM Config Station UUI

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 104

(3) Disconnect the station (if agent is already logged into agent desktop) and then reconnect the

station and login the agent.

(4) Place a test call to the agent and click on the information button ('i' icon) to show call

details. The User to User Info field should now be populated.

 Figure 22 ScreenPop Desktop UUI

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 105

 Example Configuration for One-X Screen Pop 5.13.

 Configuring Security Certificates for Agent Desktops 5.13.1.

Context Store uses certs to authenticate users of the context store. Before an agent's client can call the
screen pop, it must first be configured with the relevant security certs for Context Store.

The section 11.2 Certificate Based Authentication contains details on how to configure certs.

 Configuration of the Screen Pop feature in the One-X Agent Desktop client 5.13.2.

1. Open the System Settings from System Options menu in OneX desktop client.

1. Select Screen Pop in the menu bar on the left

2. Click the + symbol button to create a new screen pop and give it a suitable name.

3. For ‘Address or URL of program’ field, enter the applicable screen pop URL.

 E.g. http://<IP_ADDRESS>/services/CSScreenPop/cs/pop/context/ or
https://<IP_ADDRESS>/services/CSScreenPop/cs/pop/context/

2. For Command Line Parameters of this screen pop, the call’s UUI field is used. The applicable
identifier must be populated in the UUI filed by the call flow application.

 Example using contextId: id=%u

 Example using aliasId: alias=%u

3. For Trigger when an inbound is: configuration, select the Answered radio button.

Figure 23 ScreenPop Desktop Screen Pop

Screen Pop

Avaya Context Store Snap-In Developer Guide 3.1.0.1 106

CRM Integration

Avaya Context Store Snap-In Developer Guide 3.1.0.1 107

6. CRM Integration

 Overview 6.1.

This new feature available as a Context Store snap-in provides the ability to trigger an Engagement
Designer Workflow thus giving the ability to integrate with CRM systems through the ED Workflow.

A rules engine is provided to determine whether or not the workflow should be triggered

 Features 6.1.1.

 Provided as a Context Store Snap-in and loaded using standard SMGR SVAR loading mechanism

 User defined business rules provide the ability to determine if a rule should be triggered and which
EDP event it should raise

 Rules can be triggered using 2 Context Sore REST API Method calls provided the parameter
'rules=true' is added to the URL

 Create Context (POST)

 Update Context (PUT)

 5 independent workflows can be triggered based on the user defined rules

 Caveats 6.1.2.

 Requires Context Store and Engagement Designer to be installed on the same SMGR

 This functionality is not dependent on any OSGi task type nor any Context Store blocks as it is
designed to raise an EDP event which will in turn cause any flow to start

 Once the workflow has started and passed in the Context Id then this piece of functionality is
complete, the completion of the workflow is dependent on the ED itself.

 High Level Design 6.2.

Below is a sequence diagram of how the Context Store Rules integrates between Context Store and ans
EDP workflow

CRM Integration

Avaya Context Store Snap-In Developer Guide 3.1.0.1 108

 Basic Flow 6.2.1.

 Example CRM & CS Integration 6.2.2.

 Configuration 6.3.

There are 4 steps required to use this feature

1. Create an EDP event unique to the workflow being created

2. Create an ED Workflow that listens for the event

3. Configure the rules in the SMGR attributes for CSRules

CRM Integration

Avaya Context Store Snap-In Developer Guide 3.1.0.1 109

4. Create or Update the context with the rules=true parameter set.

 Create EDP Event 6.3.1.

This is designed as a quick start guide, for full details consult the ED and EDP documentation.

In ED/EDP 3.1 you must use the admin console in ED; in older versions this step was done in the Element
Manager

Create an event as follows

 Family

o This is to identify the family of the event being created, convention is that this is in camel case.

o This example uses 'Rules'

 Type

o This is to identify the type of the event being created, convention is that his is all upper case and is

identical to the Schema Name.

o This example uses 'RULES_TEST_TYPE'

 Version

o This is to identify the version of the event being created.

o This example uses '1.0'

 Schema Name

o This is to identify the schema name of the event being created, convention is that his is all upper

case and is identical to the Type.

o This example uses 'Rules'

 Schema Type

o Must be set to 'JSON'

 Schema

CRM Integration

Avaya Context Store Snap-In Developer Guide 3.1.0.1 110

o Must be exactly as below, changing 'Family Name' to match Type and Schema Name.

o Creating the schema in ED is best done via the 'JSON Schema Editor'

o Set the title to 'Rules'

o Add a String and set the name to 'contextStore' (please note the case)

Schema

{

 "title": "Rules",

 "type": "object",

 "properties": {

 "contextId": {

 "type": "string"

 }

 }

}

 Create Workflow 6.3.2.

This step requires existing knowledge of how to create an Engagement Designer workflow and is intended
as a quick start guide to get the minimum possible workflow that can be used to highlight this feature
configured.

For full details consult the ED and EDP documentation.

It is not intended as a working solution but is provided as a starting point for full integrated solutions.

 In ED the minimum valid workflow is looks as follows

 The start block is configured as follows

CRM Integration

Avaya Context Store Snap-In Developer Guide 3.1.0.1 111

 The output mapping of the start block is as follows

 The example workflow can be imported by downloading the sample workflow,

MinimumWorkflow.xml, from the Avaya Context Store DevConnect site and importing it into

Engagement Designer

 Configure Rule 6.3.3.

 There are 9 items that need to be configured for each rule to work, 4 relate to the Eventing Connector
where the workflow is installed and 5 relate to the configuration of the rule itself

 Eventing Connector Attributes

 Eventing Connector Family

 This should match the Family value entered when creating the event

 Eventing Connector Type

 This should match the Type value entered when creating the event

 Eventing Connector URL

 This is the HTTP location of the Eventing Connector where the ED Workflow is installed

https://confluence.forge.avaya.com/download/attachments/106209877/MinimumWorkflow.xml?version=1&modificationDate=1435672618157&api=v2
http://www.devconnectprogram.com/site/global/products_resources/engagement_development_platform/avaya_snap_ins/context_store/overview/index.gsp

CRM Integration

Avaya Context Store Snap-In Developer Guide 3.1.0.1 112

 HTTP only

 Eventing Connector Version

 This should match the Family value entered when creating the event

 Rule Attributes

 Eventing Rule Priority

 Number between 1 and 5

 Only one rule can fire and the priority will determine which rule will fire when the context
matches multiple rules

 Name

 Alphanumeric string indicating the unique name a user wishes to assign to a rule

 Equation

 String value representing the key in the context the rules engine will match against

 Can only be set to '=='

 Example:

 KeyToMatchAgainst == “ValueToMatchAgainst”

 Compares value to the string “ValueToMatchAgainst”

 Double quotation marks are required for string comparison

 KeyToMatchAgainst == 2

 Compares value to the numeric 2

 No quotation marks for numeric comparison

 KeyToMatchAgainst == “2”

 Compares value to the string “2”

 Double quotation marks are required for string comparison

 Firing a Rule 6.3.4.

 2 Context Store Rest operations will trigger a rule

 Create Context

 Update Context

CRM Integration

Avaya Context Store Snap-In Developer Guide 3.1.0.1 113

 The attribute 'rules=true' must be added to the URL to send the data to the rules engine, after this the
engine will assess which (if any) rule will be fired and event raised

 This attribute can ONLY be set if the CSRules snap-in is installed

 Example Request

 Create context (POST)

http://<IP_ADDRESS>/services/CSRest/cs/contexts/?rules=true

{

 "contextId": "<CONTEXT_ID>",

 "data": {

 "KeyToMatchAgainst": "ValueOfKeyToMatchAgainst"

 }

}

Context Store Rest Response

The following additional entry will appear in the CSRest log files to indicate that the create or update request
will send to the rules engine

2015-06-30 15:00:31,317 [WebContainer : 1] util.ServiceHelper INFO -

[M:processPostContext][T:null]. Sending context with id <CONTEXT_ID> to rules engine

Eventing Connector Response

This is the expected response seem in the Eventing connector's logs. Note that full logging must be enabled
to see these log statements

Thing to note

 doPost body : {"contextId":"<CONTEXT_ID>"}

 This shows the context id sent in the event

 PublicationImpl [family=Rules, type=RULES_TEST_TYPE,

eventVersion=1.0

 This shows the family, the type and the version of the event raised

Sample log output

2015-06-30 14:18:29,308 [WebContainer : 2] EventingConnector FINEST - EventingConnector-

3.1.0.0.43009 - doPost ENTER

2015-06-30 14:18:29,309 [WebContainer : 2] EventingConnector FINEST - EventingConnector-

3.1.0.0.43009 - populateEventMetadata metadata: EventMetaDataImpl [user=null, userAsMatched=null,

serviceProfile=null, correlationId=null, producerName=null, producerVersion=null, valueMap={},

isImmutable=false]

CRM Integration

Avaya Context Store Snap-In Developer Guide 3.1.0.1 114

2015-06-30 14:18:29,309 [WebContainer : 2] EventingConnector FINER - EventingConnector-

3.1.0.0.43009 - getCall: interactionId: null

2015-06-30 14:18:29,309 [WebContainer : 2] EventingConnector FINEST - EventingConnector-

3.1.0.0.43009 - doPost: It is not NOT_HOST_INTERACTION

2015-06-30 14:18:29,309 [WebContainer : 2] EventingConnector FINEST - EventingConnector-

3.1.0.0.43009 - doPost body : {"contextId":"DemoContextRules06"}

2015-06-30 14:18:29,309 [WebContainer : 2] EventingConnector FINER - EventingConnector-

3.1.0.0.43009 - createEventProducer ENTER eventBody.length=34

2015-06-30 14:18:29,309 [WebContainer : 2] EventingConnector FINEST - EventingConnector-

3.1.0.0.43009 - populateUserHandleAndDomain user=null

2015-06-30 14:18:29,309 [WebContainer : 2] EventingConnector FINER - EventingConnector-

3.1.0.0.43009 - publish ENTER publication=PublicationImpl [family=Rules, type=RULES_TEST_TYPE,

eventMetaData=EventMetaDataImpl [user=null, userAsMatched=null, serviceProfile=null,

correlationId=null, producerName=null, producerVersion=null, valueMap={}, isImmutable=true],

effectiveUser=null, userMinusDefaultDomain=null, userHandle=null, userDomain=null, eventBody=<not

shown>, eventVersion=1.0, actualProducerName=EventingConnector, actualProducerVersion=3.1.0.0.43009,

publicationId=c3-EventingConnect-3.1.0.0.43009-23aa5b68-da5d-48bf-b2c6-ed9df368b6be,

publicationTimestamp=1435670309309, metaDataBitSet=CeBitSet [val=0x2], valueCount=0]

2015-06-30 14:18:29,310 [WebContainer : 2] EventingConnector FINER - EventingConnector-

3.1.0.0.43009 - setInteractionResponseBody Response status is set to 200

Engagement Designer Response

The following log message indicates the workflow has intercepted the event raised by the rules engine

 Enabling full logging will show the payload delivered

Sample log output

2015-06-30 14:18:29,312 [pool-121-thread-1] EngagementDesigner INFO - EngagementDesigner-
3.1.0.0.05004 - Received event: Rules:RULES_TEST_TYPE Payload: EventImpl [family=Rules,
type=RULES_TEST_TYPE, payload=<not shown>, version=1.0, publicationId=c3-EventingConnect-

3.1.0.0.43009-23aa5b68-da5d-48bf-b2c6-ed9df368b6be, subscriptionId=EngagementDesig-3.1.0.0.05004-

2731cd87a8db3953d88f5d1621aa8bfb29d3d34a3624829cb5f274450c049a08, consumerName=JMGTest01,

consumerVersion=3, metadata=EventMetaDataImpl [user=null, userAsMatched=null, serviceProfile=null,

correlationId=null, producerName=null, producerVersion=null, valueMap={}, isImmutable=true],

consumerPrivateData=null, style=ASYNC, publicationTimestamp=1435670309309]

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 115

7. Context Store PDC

 Overview 7.1.

The Context Store PDC is a plugin for Eclipse/Orchestration Designer that facilities the CRUD operations
that can be run against Context Store from a flow that runs in the Avaya Aura® Experience Portal
environment. In this way it acts as an interface to the Context Store.

 Installation Prerequisites of the Context Store PDC in 7.2.
Eclipse/Orchestration Designer

This section explains how to install the Context Store PDC plugin in to Avaya Orchestration Designer
(Orchestration Designer) and how to run the sample call flow projects (which are provided through
DevConnect) that uses the Context Store PDC to interact with Context Store. The sample applications
demonstrate basic flows which show how to add, retrieve and mutate information context information. A
number of applications need to be installed and configured before this is possible.

 Software requirements 7.2.1.

 Orchestration Designer 6.0, 7.0 or 7.0.1

 Apache Tomcat 6.0 or 7.0

 Latest Context Store PDC.

 A sample application that uses the Context Store PDC in its call flow.

 Prerequisites 7.2.2.

 Download a supported GA build of Orchestration Designer e.g. OD 7.0.

 The link to the OD 7.0 ISO is here. Note this file is 1.9 GB.

 For reference, the General Orchestration Designer DevConnect site is located here.

 Note a 32 bit JRE is needed to run the Eclipse version supplied with Orchestration Designer.

 Extract the ISO to a directory.

 Follow the instructions in the "Installing Orchestration Designer using pre-packaged installation"
section (Chapter Two) from the AAOD_GettingStarted.pdf guide. This file will be located in the
directory AAOD_7_0\AAOD7.0\eclipse which was created when the ISO was extracted. The steps to
configure tomcat in Eclipse do not need to be run at this point.

 Download the appropriate version of Apache Tomcat for the system that you will be running
Orchestration Designer on. Unzip in to a directory and take note of same.

 Also download the latest Context Store PDC jar to the machine that will be running Orchestration
Designer. This can be downloaded from the Avaya Context Store DevConnect site.

 If DNS is not set up on the machine running Orchestration Designer, an entry should be inserted in
the hosts file for the Rest Interface. This is the same IP as used in the Context Store PDC
configuration screen.

 Note only one Context Store cluster can be configured per application. This means that each
Context Store node in a flow has to use the same Context Store cluster. Each application can have
a different Context Store cluster configured for it.

http://www.devconnectprogram.com/site/global/products_resources/engagement_development_platform/avaya_snap_ins/context_store/overview/index.gsp
http://www.devconnectprogram.com/fileMedia/download/42dc5a87-6ef6-400d-9187-0b360edce960
http://www.devconnectprogram.com/site/global/products_resources/avaya_aura_orchestration_designer/releases/7_0/index.gsp
http://tomcat.apache.org/download-70.cgi
http://www.devconnectprogram.com/site/global/products_resources/engagement_development_platform/avaya_snap_ins/context_store/overview/index.gsp

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 116

 Installing/Upgrading the Context Store PDC plugin 7.3.

The instructions below should be followed exactly and especially with regards the starting and stopping of
Orchestration Designer.

1. The speech perspective needs to be open in order to configure the Context Store PDC.

Select Window > Open Perspective > Speech in Orchestration Designer.

Figure 24 OD: Speech Projects

2. Open the properties for each current project open in Orchestration Designer by right clicking the project
inside Orchestration Designer and select Properties.

Figure 25 OD: Speech Project Properties

3. In the next screen, choose the Orchestration Designer item in the list on the left hand side

4. In the Orchestration Designer dialog select the Pluggable Connectors tab;

 If there is a Context Store PDC already deployed, un-deploy the old plugin by un-checking the
Context Store Connector check box and selecting OK. See Figure 26 below.

 If there is no Context Store Connector in the list, proceed to the step of copying the Context
Store PDC in to the plugin folder below.

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 117

Figure 26 OD: Un-deploy Existing Context Store Connector

7. Close Orchestration Designer.

8. Delete the old plugin jar from the …\AAOD<version>\eclipse\plugins folder.

 NB: if there was a Context Store PDC in the list of Pluggable Connectors but not deployed, the
existing plugin must still to be deleted from the plugins folder.

9. Start Orchestration Designer.

10. Copy the Context Store PDC plugin jar into the plugin folder.

11. Restart Orchestration Designer.

12. Deploy the plugin by checking the Context Store Connector check box and clicking OK.

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 118

 Tomcat configuration in Orchestration Designer 7.4.

1. Open the Avaya Aura Orchestration Designer version installed above.

2. In Eclipse, select the menu Window and choose the Preferences option.

Figure 27 OD: Preferences

3. In the next screen, choose Tomcat item in the list on the left hand side.

4. Mark Version 6.X in the Tomcat version section and configure the Tomcat home directory.

Figure 28 OD: Tomcat Version Preference

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 119

 Configuring certificates in Orchestration Designer 7.5.

 The Context Store PDC uses certificates to authenticate itself with Context Store.

 The application runtimeconfig, which is packaged with Orchestration Designer, is used to configure
these certs.

 Context Store requires clients to identify themselves with a cert before an operation is run. Please
follow the instructions in the 11.2 Certificate based authentication section. Once the configuration
has been completed on System Manager, the certs need to be made available for the PDC to use.

 In Eclipse start Tomcat, see screen capture below.

1. Log in to <IP running the Orchestration Designer>:8080/runtimeconfig/ using the username and
password ddadmin:ddadmin

2. Click Certificates from the left column.

3. Select the Use other radio button if is not already and click the Change button.

4. The Keystore Path may need to be entered manually. E.g. "C:\canBeDeleted\test3.jks" the file
needs to be located on the system that is running Tomcat.

5. Enter the password that you configured in System Manager for the cert in the Password: and
Confirm: text boxes.

6. Click Validate to confirm the password entered is correct for the cert.

The system displays the message Keystore location and password validate OK. Click

Save to apply changes.

7. Click Save (on Home > Certificates > Change Keystore).

The system displays the Home > Certificates page.

8. Click Save (on Home > Certificates) and confirm that the system displays the message
Certificate changes have been successfully applied.

Figure 29 OD Start Tomcat

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 120

 Using the Context Store Connector 7.6.

 Configure the Context Store plugin 7.6.1.

Before using the Context Store PDC in a project, you must configure the global parameters for the project.
These can be accessed from the Project -> Properties menu as shown in the screen capture below.

Figure 30 OD: Project Properties Figure 31 Configuring the CS Connector

After following the instructions in the Installing/Upgrading the Context Store PDC plugin section, navigate to
Context Store Connector in the Available Connector dialog box, and enter the following properties.

 Rest Service IP: The IP of the Context Store Cluster. This is the only configuration item that will
need to be changed.

 Rest Service Path: This will only need to be changed if the path changes. You will be notified if this
is necessary.

 Client Side Timeout: The timeout, in milliseconds before the Context Store PDC will timeout and
retry.

 Context Lease Time: The time, in seconds, the information will be stored in the Context Store.
Enabling the corresponding tick box will select the Context Store default least time for the context.

 Number of Retries: The number of retries that will occur after a client side timeout is detected.

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 121

 Add the Context Store Connector in the workflow 7.6.2.

1. To add the connector to the workflow, locate Palette in the Data object that is in the Application Items.

2. Drag the Data object and drop it in the workflow.

Figure 32 OD: Context Store 'Data' node

3. Double click on the Data node to view its properties. A new Data node has two empty properties by
default – Local Variables and a Next node pointer as shown below.

4. In the Palette, find the Get/Set Context in Context Store item in the Context Store Connector section.

5. Drag the Get/Set Context in Context Store object and drop inside the Data object as shown below.

Figure 33 OD: Context Store Connector

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 122

6. Click the Context Store Connector that you have added to the Data object. The system displays the
Property window where you can configure the Connector.

The screenshot below shows the variable configuration of the sample Context Store project

Figure 34 OD: Setting CS Connector Input and Output variables

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 123

 Context Store PDC input/output variables 7.6.3.

You must create the input/output variables to be used by the Context Store Connector.

1. To create the variables, go to the Speech Navigator and open the folder flow inside the project.

2. Double click the project.variables and create two Complex Variables as shown below - one for input
and other for output:

input must have the variables to represent:

 data: the JSON data that needs to be passed as parameter to the Context Store request.

 id: the identifier that needs to be passed as parameter to the Context Store request .

 key: the key of the context that needs to be passed as parameter to the Context Store request.

In a geo-redundant CS deployment, input variable must have a variable to represent the routingId

 rid: a routingId for the context needs to be passed as parameter to the Context Store request. If a
routingId not supplied, Context Store will apply the default when processing the request.

When using the Audit Trail feature, an additional input variable is required for the touchpoint parameter

 touchpoint: the touchpoint identifier that can be passed as a parameter to most requests to the

Context Store rest interface (doesn't apply for 'Get Audit Data', 'Get Audit Data', 'Get

Context Ids' or 'Delete Context' requests)

An optional IP address variable can also be used to override that configured in the OD settings

 ip: Allows for the default context store IP configured in the service settings to be overridden with a
new IP for individual requests. While the field is left blank the default IP configured in the setting will
be used for all requests.

output must have the variables to represent:

 data: the data or error message description that is returned as response to the Context Store
request.

 message: the message (OK or message error) that is returned as response to the Context Store
request.

 status: the status code (200 is OK or other code that represents the error) that is returned as
response to the Context Store request.

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 124

Figure 35 OD: Context Store Project Variables

3. In the Property window, enter the value to be passed to the Context Store Connector. In a real
application, these values must be passed in a dynamic way by the workflow.

Figure 36 OD: Configure Properties

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 125

4. Return to the Context Store Connector Property window, as shown in Figure 34, and enter the
properties with the variables created in the step above.

5. In the Operation property, enter the operation with one of the values:

1) Get Data: Get context information. Input Parameters:

 id, example testcontextId

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

2) Get Data by aliasId: Get context information using aliasId. Input Parameters:

 id, example testaliasId

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

3) Get Value: Get context key’s value. Input Parameters:

 id, example testcontextId

 key, example key1_name

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

4) Get Value by aliasId: Get context key’s value using aliasId. Input Parameters:

 id, example testaliasId

 key, example key1_name

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

5) Get Context Ids: Get metadata for a group of contexts. Input Parameters:

 id, example XYZ

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

6) Get Audit Data: Get audit data for a context. Input Parameters:

 id, example testcontextId

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

7) Get Audit Data by Alias Id: Get audit data for a context using aliasId. Input Parameters:

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 126

 id, example testaliasId

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

8) Put Data: Update context information. Input Parameters:

 id, example testcontextId

 data in JSON format, example
{"data":{"key1_name":"value1_updated","key3_name":"value3_new_value"

}}

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

9) Put Data by aliasId: Update context information using aliasId. Input Parameters:

 id, example testaliasId

 data in JSON format, example
{"data":{"key1_name":"value1_updated","key3_name":"value3_new_value"

}}

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

10) Put Value: Update context data. Input Parameters::

 id, example testcontextId

 key, example key1_name

 data in JSON, example value1_updated

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

11) Put Value by aliasId: Update context data using aliasId. Input Parameters:

 id, example testaliasId

 key, example key1_name

 data in JSON, example value1_updated

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

12) Put aliasId by contextId: Update aliasId list using aliasId. Input Parameters:

 id, example testcontextId

 data in JSON, example ["aliasId2","aliasdId3”]

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 127

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

13) Put aliasId by aliasId: Update aliasId list using aliasId. Input Parameters:

 id, example testaliasId

 data in JSON, example ["aliasId2","aliasdId3”]

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

14) Upsert Context: Create a new context object with provided contextId or update an existing context if
there is a matching contextId already existing in the space. Input Parameters:

 id, example testcontextId

 data in JSON, example
{"groupId":"XYZ","data":{"key1_name":"value1_data","key2_name":"valu

e2_data"}}

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

15) Upsert Context by aliasId: Create a new context object with provided alias Id (and return auto
generated contextId) or update an existing context if there is a matching contextId already existing in
the space (will return contextId of associated context). Input Parameters:

 id, example testaliasId

 data in JSON, example
{"groupId":"XYZ","data":{"key1_name":"value1_data","key2_name":"valu

e2_data"}}

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

16) Post Context: Post context Information. Input Parameters:

 data in JSON format, example
{"contextId":"optional_contextId","groupId":"XYZ","data":{"key1_name

":"value1_data","key2_name":"value2_data"}}

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

17) Post Context with aliasId: Post context Information. Input Parameters:

 id, example testaliasId (or to create multiple aliasIds, aliasId1,aliasId2)

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 128

 data in JSON format, example
{"contextId":"optional_contextId","groupId":"XYZ","data":{"key1_name

":"value1_data","key2_name":"value2_data"}}

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

18) Delete Context: Delete context information. Input Parameters:

 id, example testcontextId

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

19) Delete Context by aliasId: Delete context using aliasId. Input Parameters:

 id, example testaliasId

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

20) Delete Value: Delete context data. Input Parameters:

 id, example testcontextId

 key, example key1_name

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

21) Delete Value by aliasId: Delete context data using aliasId. Input Parameters:

 id, example testaliasId

 key, example key1_name

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

22) Delete aliasId: Delete aliasId associated with a context. Input Parameters:

 id, example testaliasId

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 129

Figure 37 OD: Context Store PDC Operations

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 130

 Retrieving output variable values 7.6.4.

1. To get the output values, you can plug a Servlet component after the Data component in the workflow.

2. Write a code that seems to the code below in the Servlet class associated with the Servlet component
plugged in the previous step.

Figure 38 OD: Output Variables

All GET operations (as well as POST operation for auto-generated contextId) send back
data in the request response under normal circumstances: below are some examples

Operation Object
Returned

Example code to retrieve data

Get Value

Get Audit Data

Post Context

String String outputValue =

outvariable.getComplexVariable().getField(IProjectVariables.

OUTPUT_FIELD_DATA).getStringValue();

Get Data Map <String,

Object>

Map<String, Object> dataMap =

(Map<String, Object>)

outvariable.getComplexVariable().getField(IProjectVariables.

OUTPUT_FIELD_DATA).getObjectValue();

Get Context Ids List

<Map<String,

Object>>

List<Map<String, Object>> listOfContextData =

List<Map<String,Object>>)

outvariable.getComplexVariable().getField(IProjectVariables.

OUTPUT_FIELD_DATA).getObjectValue();

Figure 39 OD: Working with Output Variables

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 131

Figure 40 OD: OutputVariables.java

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 132

 Context Store PDC – Running Sample Projects 7.7.

1. Create a new directory on the machine that is running Orchestration Designer.

2. Download the Context Store sample applications from the Avaya Context Store DevConnect site;
this resource is listed as Context Store PDC Sample Applications on the Downloads page.

3. Unzip the sample projects from the downloaded resource into the directory created in step 1.

4. Open Eclipse and switch the Eclipse workspace to the directory created above. If the select
workspace dialog is not shown when Eclipse is opened, select File > Switch > Workspace > Other,
and Browse to the newly created directory’s location and select OK.

5. In the Eclipse, select the File menu and choose Import.

6. In the next screen, choose Existing Project into Workspace option in the General folder and click
Next.

Figure 41 OD: Import Sample Project

7. In Select root directory, Browse to the workspace directory where you unzipped the sample
Context Store PDC applications and press OK.

8. Check the box beside ContextStore_simpleSampleApp in the Project list and click Finish.

Note: there are a number of sample applications provided in the archive available from DevConnect.
This document gives instructions for setting up and running the most basic application only

(ContextStore_simpleSampleApp); all of the other sample applications can be imported, setup

and tested in the OD simulator by following the exact same steps.

http://www.devconnectprogram.com/site/global/products_resources/engagement_development_platform/avaya_snap_ins/context_store/overview/index.gsp
http://www.devconnectprogram.com/site/global/products_resources/engagement_development_platform/avaya_snap_ins/context_store/overview/index.gsp

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 133

 Configuring the project to use the Context Store PDC 7.7.1.

1. Select the Window menu, choose Open Perspective option and choose Speech.

2. In the Avaya Orchestration Designer Navigator view, select ContextStore_simpleSampleApp.

3. Select the Project menu and choose Properties option;

4. In the next screen, choose Orchestration Designer item in the list and in the right side go to the
Pluggable Connector tab;

5. Check the Context Store Connector box and configure the settings for your Context Store cluster
i.e. enters the IP address of your Context Store interface, see the diagram below.

Figure 43 OD: Project Properties

Figure 42 OD: Import Project Dialog

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 134

6. The Client side timeout unit is milliseconds, this is the time the Context Store PDC will wait for a
response from the interface.

7. The Context Lease Time unit is seconds, this is the time the context will be stored in the Context
Store.

Figure 44 OD: Configure Context Store PDC

8. Click OK to set the configuration

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 135

 Testing Context Store PDC Sample Applications 7.7.2.

With all the above configured and with the Context Store server up and running, you can run the test project.

 In Orchestration Designer, open the Application Simulator view, select the sample application to run in

the Available Projects list (ContextStore_simpleSampleApp) and press the Run Application button.

Figure 45 OD: Application Simulator

The result should look like the screenshot below if the test context is successfully created.

Figure 46 OD: Test Context Successfully Created

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 136

If the context cannot be created, the applicable reason/error will be displayed.

 Sample Audit Trail Application 7.7.3.

In the Context Store 3.1.0.1 release, audit trail functionality was integrated with the Context Store Pluggable
Data Connector. For more information about this audit feature see section 3.2 Audit Trail Feature (since CS
3.1).

A sample application which demonstrates the use of the touchpoint parameter, as well as retrieval of a
context’s audit trail information. is provided in the Context Store PDC Sample Applications resource -

ContextStore3101_AuditTrailExample.

This sample application can be imported and tested in the Orchestration Designer simulator following the
same instructions above.

For this feature to function correctly, there are two configuration requirements:

1. Enable audit trail feature on Context Store through the CSManager attribute CS Audit: Event Limit
2. One must create/populate the touchpoint field in the input variable and the assign this field as the

value for Input Variable Touchpoint Field for the Context Store data node as show below.

Figure 47 OD: Create Context Request Failed - ContextId Is Not Unique

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 137

Figure 48 OD: Assign Touchpoint Parameter Value

 PDC - Experience Portal Test Setup 7.8.

 Overview 7.8.1.

Context Store supports call flow applications that are developed in Orchestration Designer 6.0 and 7.0 and
deployed in Experience Portal 6.0 and 7.0 using the Context Store PDC.

Orchestration Designer, which is based on Eclipse, is used to create call applications, and Experience Portal
facilitates the deployment and running of these applications.

NB: Experience Portal only supports Tomcat 6.0 and this is why even though Orchestration Designer
supports both Tomcat 6.0 and 7.0, the applications must be tested with Tomcat 6.0.

Note, only one Context Store Cluster can be configured per application. This means that each Context Store
node in a flow has to use the same Context Store. Each application can have a different Context Store
configured for it.

 What’s needed 7.8.2.

 Orchestration Designer

 One of the Sample flows

 Runtimeconfig application, which is supplied with the Orchestration Designer

 Context Store system deployed and running

 Experience Portal Tomcat configured on the system

Download the sample call flows archive from the Context Store DevConnect site; this resource is listed as
Context Store PDC Sample Applications on the Downloads page. Unzip this resource; it contains multiple
sample Context Store call flow projects for Orchestration Designer and Avaya Aura Experience Portal. The

project discussed below; ContextStore_basicTrafficApp and ContextStore_advancedTrafficApp.

 Sample Call Flow One. 7.8.3.

ContextStore_basicTrafficApp: A Sample Call Flow with the Context Store PDC included is provided

the Context Store PDC Sample Applications resource as an example of how to use the PDC in a flow. This
saves a context with a contextId of the UCID from the incoming call and prints the response from the Context
Store.

This project can be opened using the same instructions as in section 7.3 Installing/Upgrading the Context

Store PDC plugin

The instructions below should be followed exactly and especially with regards the starting and stopping of
Orchestration Designer.

1. The speech perspective needs to be open in order to configure the Context Store PDC.

Select Window > Open Perspective > Speech in Orchestration Designer.

http://www.devconnectprogram.com/site/global/products_resources/avaya_aura_collaboration_environment/avaya_snap_ins/context_store/releases/index.gsp

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 138

Figure 24 OD: Speech Projects

2. Open the properties for each current project open in Orchestration Designer by right clicking the project
inside Orchestration Designer and select Properties.

Figure 25 OD: Speech Project Properties

3. In the next screen, choose the Orchestration Designer item in the list on the left hand side

4. In the Orchestration Designer dialog select the Pluggable Connectors tab;

 If there is a Context Store PDC already deployed, un-deploy the old plugin by un-checking the
Context Store Connector check box and selecting OK. See Figure 26 below.

 If there is no Context Store Connector in the list, proceed to the step of copying the Context
Store PDC in to the plugin folder below.

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 139

Figure 26 OD: Un-deploy Existing Context Store Connector

7. Close Orchestration Designer.

8. Delete the old plugin jar from the …\AAOD<version>\eclipse\plugins folder.

 NB: if there was a Context Store PDC in the list of Pluggable Connectors but not deployed, the
existing plugin must still to be deleted from the plugins folder.

9. Start Orchestration Designer.

10. Copy the Context Store PDC plugin jar into the plugin folder.

11. Restart Orchestration Designer.

12. Deploy the plugin by checking the Context Store Connector check box and clicking OK.

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 140

 Tomcat configuration in Orchestration Designer 7.9.

5. Open the Avaya Aura Orchestration Designer version installed above.

6. In Eclipse, select the menu Window and choose the Preferences option.

Figure 27 OD: Preferences

7. In the next screen, choose Tomcat item in the list on the left hand side.

8. Mark Version 6.X in the Tomcat version section and configure the Tomcat home directory.

Figure 28 OD: Tomcat Version Preference

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 141

 Configuring certificates in Orchestration Designer 7.10.

 The Context Store PDC uses certificates to authenticate itself with Context Store.

 The application runtimeconfig, which is packaged with Orchestration Designer, is used to configure
these certs.

 Context Store requires clients to identify themselves with a cert before an operation is run. Please
follow the instructions in the 11.2 Certificate based authentication section. Once the configuration
has been completed on System Manager, the certs need to be made available for the PDC to use.

 In Eclipse start Tomcat, see screen capture below.

9. Log in to <IP running the Orchestration Designer>:8080/runtimeconfig/ using the username and
password ddadmin:ddadmin

10. Click Certificates from the left column.

11. Select the Use other radio button if is not already and click the Change button.

12. The Keystore Path may need to be entered manually. E.g. "C:\canBeDeleted\test3.jks" the file
needs to be located on the system that is running Tomcat.

13. Enter the password that you configured in System Manager for the cert in the Password: and
Confirm: text boxes.

14. Click Validate to confirm the password entered is correct for the cert.

The system displays the message Keystore location and password validate OK. Click

Save to apply changes.

15. Click Save (on Home > Certificates > Change Keystore).

The system displays the Home > Certificates page.

16. Click Save (on Home > Certificates) and confirm that the system displays the message
Certificate changes have been successfully applied.

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 142

 Using the Context Store Connector 7.11.

 Configure the Context Store plugin 7.11.1.

Before using the Context Store PDC in a project, you must configure the global parameters for the project.
These can be accessed from the Project -> Properties menu as shown in the screen capture below.

Figure 30 OD: Project Properties Figure 31 Configuring the CS Connector

After following the instructions in the Installing/Upgrading the Context Store PDC plugin section, navigate to
Context Store Connector in the Available Connector dialog box, and enter the following properties.

 Rest Service IP: The IP of the Context Store Cluster. This is the only configuration item that will
need to be changed.

 Rest Service Path: This will only need to be changed if the path changes. You will be notified if this
is necessary.

 Client Side Timeout: The timeout, in milliseconds before the Context Store PDC will timeout and
retry.

 Context Lease Time: The time, in seconds, the information will be stored in the Context Store.
Enabling the corresponding tick box will select the Context Store default least time for the context.

 Number of Retries: The number of retries that will occur after a client side timeout is detected.

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 143

 Add the Context Store Connector in the workflow 7.11.2.

1. To add the connector to the workflow, locate Palette in the Data object that is in the Application Items.

2. Drag the Data object and drop it in the workflow.

Figure 32 OD: Context Store 'Data' node

3. Double click on the Data node to view its properties. A new Data node has two empty properties by
default – Local Variables and a Next node pointer as shown below.

4. In the Palette, find the Get/Set Context in Context Store item in the Context Store Connector section.

5. Drag the Get/Set Context in Context Store object and drop inside the Data object as shown below.

Figure 33 OD: Context Store Connector

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 144

6. Click the Context Store Connector that you have added to the Data object. The system displays the
Property window where you can configure the Connector.

The screenshot below shows the variable configuration of the sample Context Store project

Figure 34 OD: Setting CS Connector Input and Output variables

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 145

 Context Store PDC input/output variables 7.11.3.

You must create the input/output variables to be used by the Context Store Connector.

3. To create the variables, go to the Speech Navigator and open the folder flow inside the project.

4. Double click the project.variables and create two Complex Variables as shown below - one for input
and other for output:

input must have the variables to represent:

 data: the JSON data that needs to be passed as parameter to the Context Store request.

 id: the identifier that needs to be passed as parameter to the Context Store request .

 key: the key of the context that needs to be passed as parameter to the Context Store request.

In a geo-redundant CS deployment, input variable must have a variable to represent the routingId

 rid: a routingId for the context needs to be passed as parameter to the Context Store request. If a
routingId not supplied, Context Store will apply the default when processing the request.

When using the Audit Trail feature, an additional input variable is required for the touchpoint parameter

 touchpoint: the touchpoint identifier that can be passed as a parameter to most requests to the

Context Store rest interface (doesn't apply for 'Get Audit Data', 'Get Audit Data', 'Get

Context Ids' or 'Delete Context' requests)

An optional IP address variable can also be used to override that configured in the OD settings

 ip: Allows for the default context store IP configured in the service settings to be overridden with a
new IP for individual requests. While the field is left blank the default IP configured in the setting will
be used for all requests.

output must have the variables to represent:

 data: the data or error message description that is returned as response to the Context Store
request.

 message: the message (OK or message error) that is returned as response to the Context Store
request.

 status: the status code (200 is OK or other code that represents the error) that is returned as
response to the Context Store request.

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 146

Figure 35 OD: Context Store Project Variables

3. In the Property window, enter the value to be passed to the Context Store Connector. In a real
application, these values must be passed in a dynamic way by the workflow.

Figure 36 OD: Configure Properties

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 147

6. Return to the Context Store Connector Property window, as shown in Figure 34, and enter the
properties with the variables created in the step above.

7. In the Operation property, enter the operation with one of the values:

23) Get Data: Get context information. Input Parameters:

 id, example testcontextId

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

24) Get Data by aliasId: Get context information using aliasId. Input Parameters:

 id, example testaliasId

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

25) Get Value: Get context key’s value. Input Parameters:

 id, example testcontextId

 key, example key1_name

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

26) Get Value by aliasId: Get context key’s value using aliasId. Input Parameters:

 id, example testaliasId

 key, example key1_name

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

27) Get Context Ids: Get metadata for a group of contexts. Input Parameters:

 id, example XYZ

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

28) Get Audit Data: Get audit data for a context. Input Parameters:

 id, example testcontextId

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

29) Get Audit Data by Alias Id: Get audit data for a context using aliasId. Input Parameters:

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 148

 id, example testaliasId

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

30) Put Data: Update context information. Input Parameters:

 id, example testcontextId

 data in JSON format, example
{"data":{"key1_name":"value1_updated","key3_name":"value3_new_value"

}}

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

31) Put Data by aliasId: Update context information using aliasId. Input Parameters:

 id, example testaliasId

 data in JSON format, example
{"data":{"key1_name":"value1_updated","key3_name":"value3_new_value"

}}

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

32) Put Value: Update context data. Input Parameters::

 id, example testcontextId

 key, example key1_name

 data in JSON, example value1_updated

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

33) Put Value by aliasId: Update context data using aliasId. Input Parameters:

 id, example testaliasId

 key, example key1_name

 data in JSON, example value1_updated

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

34) Put aliasId by contextId: Update aliasId list using aliasId. Input Parameters:

 id, example testcontextId

 data in JSON, example ["aliasId2","aliasdId3”]

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 149

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

35) Put aliasId by aliasId: Update aliasId list using aliasId. Input Parameters:

 id, example testaliasId

 data in JSON, example ["aliasId2","aliasdId3”]

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

36) Upsert Context: Create a new context object with provided contextId or update an existing context if
there is a matching contextId already existing in the space. Input Parameters:

 id, example testcontextId

 data in JSON, example
{"groupId":"XYZ","data":{"key1_name":"value1_data","key2_name":"valu

e2_data"}}

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

37) Upsert Context by aliasId: Create a new context object with provided alias Id (and return auto
generated contextId) or update an existing context if there is a matching contextId already existing in
the space (will return contextId of associated context). Input Parameters:

 id, example testaliasId

 data in JSON, example
{"groupId":"XYZ","data":{"key1_name":"value1_data","key2_name":"valu

e2_data"}}

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

38) Post Context: Post context Information. Input Parameters:

 data in JSON format, example
{"contextId":"optional_contextId","groupId":"XYZ","data":{"key1_name

":"value1_data","key2_name":"value2_data"}}

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

39) Post Context with aliasId: Post context Information. Input Parameters:

 id, example testaliasId (or to create multiple aliasIds, aliasId1,aliasId2)

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 150

 data in JSON format, example
{"contextId":"optional_contextId","groupId":"XYZ","data":{"key1_name

":"value1_data","key2_name":"value2_data"}}

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

40) Delete Context: Delete context information. Input Parameters:

 id, example testcontextId

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

41) Delete Context by aliasId: Delete context using aliasId. Input Parameters:

 id, example testaliasId

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

42) Delete Value: Delete context data. Input Parameters:

 id, example testcontextId

 key, example key1_name

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

43) Delete Value by aliasId: Delete context data using aliasId. Input Parameters:

 id, example testaliasId

 key, example key1_name

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

44) Delete aliasId: Delete aliasId associated with a context. Input Parameters:

 id, example testaliasId

 rid, (optional) example 12

 ip, (optional) example 127.0.0.1

 touchpoint, (optional) example pdcTouchpoint

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 151

Figure 37 OD: Context Store PDC Operations

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 152

 Retrieving output variable values 7.11.4.

1. To get the output values, you can plug a Servlet component after the Data component in the workflow.

2. Write a code that seems to the code below in the Servlet class associated with the Servlet component
plugged in the previous step.

Figure 38 OD: Output Variables

All GET operations (as well as POST operation for auto-generated contextId) send back
data in the request response under normal circumstances: below are some examples

Operation Object
Returned

Example code to retrieve data

Get Value

Get Audit Data

Post Context

String String outputValue =

outvariable.getComplexVariable().getField(IProjectVariables.

OUTPUT_FIELD_DATA).getStringValue();

Get Data Map <String,

Object>

Map<String, Object> dataMap =

(Map<String, Object>)

outvariable.getComplexVariable().getField(IProjectVariables.

OUTPUT_FIELD_DATA).getObjectValue();

Get Context Ids List

<Map<String,

Object>>

List<Map<String, Object>> listOfContextData =

List<Map<String,Object>>)

outvariable.getComplexVariable().getField(IProjectVariables.

OUTPUT_FIELD_DATA).getObjectValue();

Figure 39 OD: Working with Output Variables

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 153

Figure 40 OD: OutputVariables.java

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 154

Context Store PDC – Running Sample Project. The only difference is that this project is not wrapped in a zip
archive and therefore can be copied directly to your workspace directory.

After the project has been configured and tested in Orchestration Designer, it needs to be exported as a war
to run in the Experience Portal environment.

The Orchestration Designer software bundle has documentation packaged with it. The base eclipse folder
contains the Avaya Aura Orchestration Designer Developer's Guide pdf. You must read Chapter 25
Application Deployment before attempting to export an application from Orchestration Designer and
deploying it on an application server.

Instructions on how to Export the sample application are covered in the section Exporting an Orchestration
Designer project in the Avaya Aura Orchestration Designer Developer's Guide. For step three, choose
Export Orchestration Designer Speech Project. For step six (Specify Platform Details) choose Experience
Portal for Platform. The defaults can be chosen for all other steps.

 Sample Call Flow Two. 7.11.5.

ContextStore_advancedTrafficApp: A second sample flow is provided in the Context Store PDC

Sample Applications resource. This saves a context without a contextId, retrieves the contextId sent back by
the Context Store and saves this to the UCID field of the call. The context is then updated, retrieved, and
finally deleted from the Context Store. This project should be imported, configured and tested as above.

Runtimeconfig application

The Orchestration Designer 7.0 pdf Avaya Aura Orchestration Designer Developer's Guide, chapter 25
Application Deployment outlines how to export the files required for the specific application server that will be
running your application. The section that deals with this is "Run-time support file export"

Run the steps in the section "Exporting the run-time support files". For step four "On the Export Runtime
Support page" select the "Export Orchestration Designer runtime configuration application" tick box

This will output two file runtimeSupportTomcat6.zip and runtimeconfig.war.

 Installing the sample application plus runtimeconfig on an Experience 7.11.6.
Portal system

The section Deploying the run-time support files needs to be followed to deploy the
runtimeSupportTomcat6 files. These steps can be summarized as:

1. Stop the tomcat service, make a backup of the tomcat lib folder on the tomcat application server. Extract
the runtimeSupportTomcat6.zip to the tomcat/lib folder and delete the older versions of any jars in that
folder. Copy the runtimeconfig.war into the tomcat/webapps folder.

2. Follow the procedures in the Certificate management in a run-time environment section to configure the
certs on the application server. The Certificate Based Authentication section in this document outlines
how to configure certs for a Context Store deployment. The jks file should be copied into the tomcat/lib/
folder on the tomcat server.

3. One additional step needs to be run for the certs in addition to what is in the doc. On the tomcat server,
edit the file tomcat/lib/trustedcert.properties and change the following two lines to the correct entries for
the jks file that was generated:

 WebLM.trustStore=/<cert file name>.jks.

 WebLM.trustStorePassword=<cert password>

4. Copy the <sample application>.war that was exported from Orchestration Designer into the
tomcat/webapps folder.

5. Start the tomcat service.

Context Store PDC

Avaya Context Store Snap-In Developer Guide 3.1.0.1 155

Context Store Task Type for Engagement Designer

Avaya Context Store Snap-In Developer Guide 3.1.0.1 156

8. Context Store Task Type for Engagement
Designer

 Overview 8.1.

The Context Store Task Type is the node in the Engagement Designer (ED) that interfaces with Context
Store. The CS Task Type enables Context Store operations to be run from within a workflow in ED.

Using the CS Task Type node; users can perform Add, Update, Retrieve, Upsert and Delete operations for
both contexts and values within an ED flow.

The CSTasks service requires the Engagement Designer platform hence the CSTasks SVAR can only be
installed on an Engagement Designer Cluster.

For installation instructions see the Avaya Context Store Snap-In 3.1 Reference Guide.

 Usage 8.2.

 Input and Output 8.2.1.

Engagement Designer nodes pass data into the CS Task node via six input parameters csIdInput,
csRoutingIdInput, csAliasIdInput, csTouchpointInput, csKeyInput and csDataInput.csIdInput will only ever
contain a Context Id or Group Id.

 csRoutingIdInput will only ever contain the routing Id of the for the context. This parameter is used
for the Context Store Geo-Redundancy feature

 csAliasIdInput will only ever contain the aliasIds for a context. The data should be a
comma separated string. e.g. alias1,alias2.

 csTouchpointInput will only ever contain a string to define a touchpoint. This parameter is used for
the Context Store Audit Feature.

 csKeyInput will only ever contain a key name.

 csDataInput can contain slightly different data depending on the operation required.

Not every operation requires all of the six input values to contain data.

Required Input Mapping/Parameters

Operation csIdInput csRoutingIdInputer csAliasIdInput csTouchpointInput csKeyInput csDataInput

Add Context No Optional Optional Optional No Yes

Add Context

without

Context Id

 No Optional Optional Optional No Yes

Delete Alias

Id

No Optional Yes Optional No No

Delete

Context

Yes Optional No No No No

Delete

Context by

No Optional Yes No No No

Context Store Task Type for Engagement Designer

Avaya Context Store Snap-In Developer Guide 3.1.0.1 157

Alias Id

Delete Key Yes Optional No Optional Yes No

Delete Key by

Alias Id

No Optional Yes Optional Yes No

Get Context Yes Optional No Optional No No

Get Context

Audit Data

Yes Optional No No No No

Get Context

Audit Data by

Alias Id

No Optional Yes No No No

Get Context

by Alias Id

No Optional Yes Optional No No

Get Context

Ids for Group

Id

Yes Optional No No No No

Get Key Yes Optional No Optional Yes No

Get Key by

Alias Id

No Optional Yes Optional Yes No

Update Alias

Ids by Alias

Id

No Optional Yes Optional No Yes

Update Alias

Ids by

Context Id

Yes Optional No Optional No Yes

Update

Context

Yes Optional No Optional No Yes

Update

Context by

Alias Id

No Optional Yes Optional No Yes

Update Key Yes Optional No Optional Yes Yes

Update Key by

Alias Id

No Optional Yes Optional Yes Yes

Upsert

Context

Yes Optional No Optional No Yes

Upsert

Context by

Alias Id

No Optional Yes Optional No Yes

Context Store Task Type for Engagement Designer

Avaya Context Store Snap-In Developer Guide 3.1.0.1 158

Output Parameters

When an operation returns successfully, the items in the table below are populated. When an error occurs,

the csStatusOutput and csMessageOutput parameters will be populated. The csObjectOutput can

be populated with an object, the format which is specified by the user via an output schema.

Operation csStatusOutput csMessageOutput csDataOutput csObjectOutput

Add Context Yes No No

Add Context without

Context Id

Yes No Yes

Get Context Yes No Yes Yes

Get Context by Alias Id Yes No Yes Yes

Get Context Ids for Group

Id

Yes No Yes

Get Context Audit Data Yes No Yes

Get Context Audit Data by

Alias Id

Yes No Yes

Get Key Yes No Yes Yes

Get Key by Alias Id Yes No Yes Yes

Update Context Yes No No

Update Context by Alias

Id

Yes No No

Update Key Yes No No

Update Key by Alias Id Yes No No

Update Alias Ids by

Context Id

Yes No No

Update Alias Ids by Alias

Id

Yes No No

Upsert Context Yes No No

Upsert Context by Alias

Id

Yes No Yes

Delete Context Yes No No

Delete Context by Alias

Id

Yes No No

Delete Alias Yes No No

Context Store Task Type for Engagement Designer

Avaya Context Store Snap-In Developer Guide 3.1.0.1 159

Delete Key Yes No No

Delete Key by Alias Id Yes No No

 CS Task Type Operations 8.2.2.

All operations which can be executed using the CS Task Type in ED 3.1 are listed below with required
inputs, optional inputs and sample JSON for the specific request. Example workflows for each of these
operations can be downloaded from the Avaya Context Store DevConnect site

Add Context

Using the Add Context operation, a new Context can be added to the Context Store.

 The required input: is csDataInput

 The optional inputs: lease, csRoutingIdInput, csAliasIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csIdInput":"","csRoutingIdInp

ut":"1","csTouchpointInput":"EDFlowTest","csAliasIdInput":"DemoAlias1,DemoAlias2

","csKeyInput":"","csDataInput":"{\"contextId\":\"DemoContext1\",\"persistToEDM\

":\"true\",\"persistTo\":\"CS_PROVISION\",\"tenantId\":\"demo\",\"groupId\":\"de

mo\",\"data\":{\"key1_name\":\"value1_data\",\"key2_name\":\"value2_data\"}}"},"

iprocess":"AddContext","customer":"customer"}

Add Context without Context Id

Using the Add Context without Context Id operation, a new Context with an auto generated id can be added
to the Context Store.

 The required input: csDataInput

 The optional inputs: lease, csRoutingIdInput, csAliasIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csIdInput":"","csRoutingIdInput":"1","

csTouchpointInput":"EDFlowTest","csAliasIdInput":"DemoAlias3,DemoAlias4","csKeyInput":"",

"csDataInput":"{\"contextId\":\"\",\"persistToEDM\":\"true\",\"tenantId\":\"demo\",\"grou

pId\":\"demo\",\"data\":{\"key1_name\":\"value1_data\",\"key2_name\":\"value2_data\"}}"},

"iprocess":"AddContextWithouContextId","customer":"customer"}

Get Context

Using the Get Context operation, a previously stored Context can be retrieved from the Context Store using
Context Id associated to that Context.

 The required input: csIdInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csIdInput":"DemoContext1","csRoutingId

Input":"1","csTouchpointInput":"EDFlowTest"},"iprocess":"GetContext","customer":"customer

"}

Get Context Ids with Alias Id

Using the Get Context with Alias Id operation, a previously stored Context can be retrieved from the Context
Store using Alias Id associated to that Context.

 The required input: csAliasIdInput

http://www.devconnectprogram.com/site/global/products_resources/engagement_development_platform/avaya_snap_ins/context_store/overview/index.gsp

Context Store Task Type for Engagement Designer

Avaya Context Store Snap-In Developer Guide 3.1.0.1 160

 The optional inputs: csRoutingIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csRoutingIdInput":"1","csTouchpointInp

ut":"EDFlowTest","csAliasIdInput":"DemoAlias1"},"iprocess":"GetContextByAliasId","custome

r":"customer"}

Get Context Ids for Group Id

Using the Get Context Ids for Group Id operation, the contextIds of all Contexts belonging to a group can be
retrieved from a Context Store.

 The required input: csIdInput

 The optional inputs: csRoutingIdInput

{"workflowversion":"1","alias":"null","imessage":{"csIdInput":"demo","csRoutingIdInput":"

1"},"iprocess":"GetContextIdsForGroupId","customer":"customer"}

Get Context Audit Data

Using the Get Context Audit Data operation, the audit data of a Context in a Context Store can be retrieved
using Context Id associated to that Context.

 The required input: csIdInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csIdInput":"DemoContext1","csRoutingId

Input":"1"},"iprocess":"GetContextAuditData","customer":"customer"}

Get Context Audit Data by Alias Id

Using the Get Context Audit Data by Alias Id operation, the audit data of a Context in a Context Store can be
retrieved using Alias Id associated to that Context.

 The required input: csAliasIdInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csRoutingIdInput":"1","csAliasIdInput"

:"DemoAlias1"},"iprocess":"GetContextAuditDataByAliasId","customer":"customer"}

Get Key

Using the Get Key operation, the data associated to a key in the Context can be retrieved using context id
from a Context Store.

 The required input: csIdInput, csKeyInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csIdInput":"DemoContext1","csRoutingId

Input":"1","csTouchpointInput":"EDFlow","csKeyInput":"key1_name"},"iprocess":"GetKey","cu

stomer":"customer"}

Get Key by Alias Id

Using the Get Key by Alias Id operation, the data associated to a key in the Context can be retrieved using
alias Id associated to that context from a Context Store.

 The required input: csAliasIdInput, csKeyInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

Context Store Task Type for Engagement Designer

Avaya Context Store Snap-In Developer Guide 3.1.0.1 161

{"workflowversion":"1","alias":"null","imessage":{"csAliasIdInput":"DemoAlias1","csRoutin

gIdInput":"1","csTouchpointInput":"EDFlow","csKeyInput":"key1_name"},"iprocess":"GetKeyBy

AliasId","customer":"customer"}

Update Context

Using the Update Context operation, a Context in Context Store can be updated using Context Id associated
to that Context.

 The required input: csIdInput, csDataInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csIdInput":"DemoContext1","csRoutingId

Input":"1","csTouchpointInput":"EDFlow","csDataInput":"{\"data\":{\"key3_name\":\"value3_

data\",\"key4_name\":\"value4_data\"}}"},"iprocess":"UpdateContext","customer":"customer"

}

Update Context by Alias Id

Using the Update Context operation, a Context in Context Store can be updated using Alias Id associated to
that Context.

 The required input: csAliasIdInput, csDataInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csAliasIdInput":"DemoAlias1","csRoutin

gIdInput":"1","csTouchpointInput":"EDFlow","csDataInput":"{\"data\":{\"key5_name\":\"valu

e5_data\",\"key6_name\":\"value6_data\"}}"},"iprocess":"UpdateContextByAliasId","customer

":"customer"}

Update Key

Using the Update Key operation, the value of a key associated to a Context in Context Store can be updated
using Context Id associated to that Context.

 The required input: csIdInput, csKeyInput, csDataInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csIdInput":"DemoContext1","csRoutingId

Input":"1","csKeyInput":"key1_name","csTouchpointInput":"EDFlow","csDataInput":"updated_v

alue1"},"iprocess":"UpdateKey","customer":"customer"}

Update Key by Alias Id

Using the Update Key by Alias Id operation, the value of a key associated to a Context in Context Store can
be updated using Alias Id associated to that Context.

 The required input: csAliasIdInput, csKeyInput, csDataInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csAliasIdInput":"DemoAlias1","csRoutin

gIdInput":"1","csKeyInput":"key2_name","csTouchpointInput":"EDFlow","csDataInput":"update

d_value2"},"iprocess":"UpdateKeyByAliasId","customer":"customer"}

Update Alias Ids by Context Id

Using the Update Alias Ids by Context Id operation, the Aliases associated to a Context in Context Store can
be updated using Context Id associated to that Context.

 The required input: csIdInput, csDataInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

Context Store Task Type for Engagement Designer

Avaya Context Store Snap-In Developer Guide 3.1.0.1 162

{"workflowversion":"1","alias":"null","imessage":{"csIdInput":"DemoContext1","csRoutingId

Input":"1","csTouchpointInput":"EDFlow","csDataInput":"[\"DemoAlias6\"]"},"iprocess":"Upd

atAliasIdsByContextId","customer":"customer"}

Update Alias Ids by Alias Id

Using the Update Alias Ids by Alias Id operation, the Aliases associated to a Context in Context Store can be
updated using Alias Id associated to that Context.

 The required input: csAliasIdInput, csDataInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csAliasIdInput":"DemoAlias1","csRoutin

gIdInput":"1","csTouchpointInput":"EDFlow","csDataInput":"[\"DemoAlias7\"]"},"iprocess":"

UpdateAliasIdsByAliasId","customer":"customer"}

Upsert Context

Using the Upsert Context operation, a Context in Context Store can be created or updated using Context Id
associated to that Context.

 The required input: csIdInput, csDataInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csIdInput":"DemoContext1","csRoutingId

Input":"1","csTouchpointInput":"EDFlow","csDataInput":"{\"data\":{\"key1_name\":\"value1_

data\",\"key2_name\":\"value2_data\"}}"},"iprocess":"UpsertContextByContextId","customer"

:"customer"}

Upsert Context by Alias Id

Using the Upsert Context operation, a Context in Context Store can be created or updated using Alias Id
associated to that Context.

 The required input: csAliasIdInput, csDataInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csAliasIdInput":"DemoAlias1","csRoutingIdInput":"1","c
sTouchpointInput":"EDFlow","csDataInput":"{\"data\":{\"key1_name\":\"value1_data\",\"key2_name\":\"va
lue2_data\"}}"},"iprocess":"UpsertContextByAliasId","customer":"customer"}

Delete Context

Using the Delete Context operation, the Context in Context Store can be deleted using Context Id associated
to that Context.

 The required input: csIdInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csIdInput":"DemoContext1","csRoutingId

Input":"1","csTouchpointInput":"EDFlow"},"iprocess":"DeleteContext","customer":"customer"

}

Delete Context by Alias Id

Using the Delete Context by Alias Id operation, the Context in Context Store can be deleted using Alias Id
associated to that Context.

 The required input: csAliasIdInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

Context Store Task Type for Engagement Designer

Avaya Context Store Snap-In Developer Guide 3.1.0.1 163

{"workflowversion":"1","alias":"null","imessage":{"csAliasIdInput":"DemoAlias1","csRoutin

gIdInput":"1","csTouchpointInput":"EDFlow"},"iprocess":"DeleteContextByAliasId","customer

":"customer"}

Delete Alias Id

Using the Delete Alias Id operation, the Alias Id of a Context in Context Store can be deleted.

 The required input: csAliasIdInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csAliasIdInput":"DemoAlias1","csRoutin

gIdInput":"1","csTouchpointInput":"EDFlow"},"iprocess":"DeleteAlias","customer":"customer

"}

Delete Key

Using the Delete Key operation, the Key in a Context in Context Store can be deleted using Context Id
associated to that Context

 The required input: csIdInput, csKeyInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csIdInput":"DemoContext1","csRoutingId

Input":"1","csTouchpointInput":"EDFlow","csKeyInput":"key1_name"},"iprocess":"DeleteKey",

"customer":"customer"}

Delete Key by Alias Id

Using the Delete Key by Alias Id operation, the Key in a Context in Context Store can be deleted using Alias
Id associated to that Context

 The required input: csAliasIdInput, csKeyInput

 The optional inputs: csRoutingIdInput, csTouchpointInput

{"workflowversion":"1","alias":"null","imessage":{"csAliasIdInput":"DemoAlias1","csRoutin

gIdInput":"1","csTouchpointInput":"EDFlow","csKeyInput":"key1_name"},"iprocess":"DeleteKe

yByAliasId","customer":"customer"}

 Creating a workflow in ED 8.2.3.

This section serves as a quick start guide on how to create a workflow in ED to test the Context Store
Engagement Designer task type. For more detailed information about this product, please refer to Avaya
Engagement Designer documentation.

The following is an example to create a flow of "Add Context" operation of CS Task Type. This flow will save
a Context with a Context Id to the context store. Note the Variable does not need to be connected to the
other nodes in the flow, it can be thought of as a global variable that the nodes can read and write data from.

Context Store Task Type for Engagement Designer

Avaya Context Store Snap-In Developer Guide 3.1.0.1 164

Location of the nodes that make up this flow

Drag the nodes into the flow and connect up as in the first image above. Please note the Variables node,
which should already exist on the workflow, does not need to be connected to other node.

Configuring the Variables Node

Right click on the Variables node and select properties, enter myVar in the name text box and enter the
following json in the schema box. See diagram below.

{title: ContextStoreSchema,type: object, properties: {csIdInput: {type: string},

csRoutingIdInput: {type: string}, csAliasIdInput: {type: string},

csTouchpointInput: {type: string}, csKeyInput: {type: string}, csDataInput:

Context Store Task Type for Engagement Designer

Avaya Context Store Snap-In Developer Guide 3.1.0.1 165

{type: string},csStatusOutput: {type: string},csMessageOutput: {type:

string},csDataOutput: {type: string}}}

Configuring the Start Node

Right click on the Start node and select properties, enter the following json in the OutputSchema box. See
diagram below.

{title: ContextStoreInputSchema,type: object, properties: { csIdInput: {type:

string}, csRoutingIdInput: {type: string}, csAliasIdInput: {type: string},

csTouchpointInput: {type: string}, csKeyInput: {type: string}, csDataInput:

{type: string} } }

In addition to adding the output schema for the start node the output mapping also needs to be
configured. Right click on the Start node and select properties click the output mapping button. On the
diagram that is displayed link the properties as follows. See the diagram below.

Context Store Task Type for Engagement Designer

Avaya Context Store Snap-In Developer Guide 3.1.0.1 166

To set the output mappings right click on the Context Store Node and select properties click the Output
mapping button. On the diagram that is displayed link the properties as follows. See the diagram below.

Configuring the End Node

You can configure the End node the same way as the start node and provide a schema and mapping to
intercept the incoming data.

Deploying and testing the Workflow

In order for an individual workflow to be available it needs to be deployed.

To deploy the flow created using above steps, first validate the workflow and then save it using a meaningful
name. After saving click on the "Deploy Workflow" button on the menu toolbar.

Enter in a Name and version number for the flow and click OK. Verify that workflow was deployed without
any errors.

Context Store Task Type for Engagement Designer

Avaya Context Store Snap-In Developer Guide 3.1.0.1 167

Please take note of the Name and the Version number as you would need it to use the flow. A confirmation
similar to below will appear.

Check the Service Management tab in the Engagement Development Platform Page of SMGR to confirm
if deployment has completed before using the flow.

Verifying The Output From A Workflow.

For a simple workflow like the example above the only current way to verify the output from the CS node
apart from checking a context via some other client is to view the log files for the output.

The log files for Context Store are located in the folder /var/log/Avaya/services/CSRest/ on the

EDP server.

Using PostMan (a Google Chrome Extension), send in the request to the ED Cluster.

After the request has been completed, check Context Store logs or retrieve the Context with
"contextId=DemoContext1" and "rid=1" using some other client to confirm the success of the request.

 Importing the Sample Workflow into the Designer 8.2.4.

A sample workflow similar to described above can be downloaded from http://www.avaya.com/devconnect.

The downloaded workflow can be imported into the Engagement Designer with the following steps.

Open the download file in workflow.

Click on the "Import Workflow from file" icon.

https://chrome.google.com/webstore/detail/postman-rest-client/fdmmgilgnpjigdojojpjoooidkmcomcm?hl=en
http://www.avaya.com/devconnect

Context Store Task Type for Engagement Designer

Avaya Context Store Snap-In Developer Guide 3.1.0.1 168

 Validation 8.2.5.

Each workflow should be validated before deployment. A workflow can be validated using the Validation icon
in menu bar.

If the parameters in CS task have been filled, then the preference is given to these values during the
execution of the Tasks. The provided value must conform to the existing validations rules. If a parameter is
not provided in the properties then a mapping has to be provided for the specific input. e.g. if the parameter
value for "Key Name" in properties is left blank and it is needed for the requested operation then the
validation will fail. In such events the required fields, which are missing to complete the operation will be
listed.

 Re-use of Collaboration Designer 3.0 Workflows 8.2.6.

Flows which were created with Collaboration Designer 3.0 require re-mapping if imported into Engagement
Designer 3.1 which can be time consuming. Therefore, if possible, it is recommended that flows are
recreated in ED 3.1 instead.

If flow created with Collaboration Designer 3.0 must be re-used, please follow the steps below.

1. First create a script called portFlowToED31.sh on the ED 3.1 node containing the following code:

if [$# -eq 0]

 then

 echo "Usage: portFlowToOSGi.sh <path to ED flow xml file>"

Context Store Task Type for Engagement Designer

Avaya Context Store Snap-In Developer Guide 3.1.0.1 169

 exit

fi

inputFile="$1"

if [! -e $inputFile]

 then

 echo "Can't find file" $inputFile

 exit

fi

newFileName=`echo "$inputFile" | sed s/.xml/-OSGi.xml/`

cat "$inputFile" | sed s/com.avaya.designer.task.cs/com.avaya.ingensg.tasks.cs/g >

$newFileName

echo "New flow file is " $newFileName

2. Copy the old flow (<flow-name>.xml) to the ED 3.1 node on which the script was created_

3. Change to the directory which contains the old flow

4. Run the script using the following command: portFlowToED31.sh <flow-name>.xml

5. This will produce a new xml file which is compatible with ED 3.1. This new flow would have to be re-
mapped before it can be used

6. Import the flow into the ED and open each individual CS Task Type node and remap the missing
mapping links.

Notifications

Avaya Context Store Snap-In Developer Guide 3.1.0.1 170

9. Notifications

 Overview 9.1.

The Context Store Notifications feature allows users to configure up to five subscriptions. Each subscription
must have a valid endpoint to consume the notification stream. The consumer endpoint must be capable of
supporting the generated notification traffic. For every read, create, update and delete operation on a
Context, a notification will be sent to registered clients.

The notification sent to clients will contain a complete copy of the Context state so the payload could be KB’s
in size. Care must be taken when developing applications against this feature to account for throughput both
rate and capacity. At the maximum supported traffic rate of 1240 requests/second with 2KB of data this will
generate ~600 notifications/second with 2KB for each subscription. The system as a whole will be
generating over 3000 notifications/second if all five subscriptions are registered.

Note the supported traffic rate varies with the Context Store deployment size; configuration and supported
rates are documented in the Context Store Reference Guide.

 Security Configuration 9.2.

Clients of CSNotifications must be configured to use the keystore generated and downloaded from the
SMGR managing the Context Store cluster. There are several options available when configuring certificates
using SMGR. To help getting started, one particular approach is documented in the Appendix of this
document - see section 11.2.2 Create Client Keystore.

1. Configure the CSNotifications client(s) with the required security certificate.

E.g. For client running in Jetty container; the keystore, <CERT-NAME>.jks must be copied to the

/etc/ folder in the Jetty instance. Configure the Jetty instance for SSL as follows.

1. In start.ini file, After line
jetty.dump.stop=false

add the following lines:
etc/jetty-ssl.xml

etc/jetty-https.xml

2. In Jetty /etc/jetty-ssl.xml add or re-configure KeyStorePath and KeyStorePassword
<Set name="KeyStorePath"><Property name="jetty.base" default="." />/<Property

name="jetty.keystore" default="etc/<CERT-NAME>.jks"/></Set>

<Set name="KeyStorePassword"><Property name="jetty.keystore.password"

default="<PASSWORD>"/></Set>

Note: TrustStore and KeyManagerPassword configuration are not required

2. After installing the CSNotifications snap-in, all subscriptions are configured via the services attributes.

E.g.{"endpointURI":"https://<IP_ADDRESS>:<PORT>/NotificationsConsumer/notifications
/consumer/", "tenantId":"customer123", "groupId":"productABC", "enabled":"false"}

Note: All configurations must be done at runtime; any attribute changes made before the service is installed
will not be processed. The service can’t be deployed with subscriptions already enabled; the subscription
can be created and simply enabled once the service has been installed in the cluster (all nodes reporting
service installed).

Notifications

Avaya Context Store Snap-In Developer Guide 3.1.0.1 171

 Usage 9.3.

This feature provides a notification stream for client to consume all operations on the Context Store Rest
interface will result in a notification being sent. Client must write a consumer Rest application which will
accept a Post operation with the JSON structure outlined below.

{“subscriptionId”:“cs.subscription.1”,“contextId”:“testId”,“aliasIds”:“abc,123”,“tenantId

”:“someId”,“groupId”:“testGroupId”,“operation”:“WRITE”,“versionId”:“1”,“createTimestamp”:

“1406793988683”,“updatedTimestamp”:“1406793991234”,“data”:{“key1”:”value1”,“key2”:”value2

”,“key3”:”value3”}}

 “subscriptionId” The subscription Id which this notification was generate for, mandatory.

 “contextId” The Id of the context which triggered this notification, mandatory.

 “aliasIds” The aliasIds associated with the context, optional*.

 “groupId” The groupId specified when the context was created, optional*.

 “tenantId” The tenantId specified when the context was created, optional*.

 “operation” The operation which triggered this notification, values are WRITE,UPDATE and
DELETE.

 “versionId” The version of the context which triggered this notification. This value is an integer which
is incremented on every interaction with the context, value on create context is 1 so subsequent
update would be 2 etc. This field can be used to distinguish between multiple interactions. The
versionId will not be incremented by the following requests – get audit data using contextId, get audit
data using aliasId and get contexts using groupId.

 “createTimestamp” The time the context was created, it is a long, milliseconds since Epoch.

 “updatedTimestamp” The time the context was updated, it is a long, milliseconds since Epoch.

 “data” The complete data which is associated with the context. Note this could be a large amount of
data.

*optional fields may not be populated.

The following are code snippets of a sample application which consumes the notification stream. Sample
client code is available on the Avaya Context Store DevConnect site.

StateEvent class will take in JSON and create a java object which can be passed around in the application.

@XmlRootElement(name = "StateEvent")

public class StateEvent {

 @XmlElement(name = "contextId")

 private String contextId;

 @XmlElement(name = "aliasIds")

 private String aliasIds;

 @XmlElement(name = "groupId")

 private String groupId;

 @XmlElement(name = "tenantId")

 private String tenantId;

 @XmlElement(name = "versionId")

 private String versionId;

 @XmlElement(name = "data")

http://www.devconnectprogram.com/site/global/products_resources/engagement_development_platform/avaya_snap_ins/context_store/overview/index.gsp

Notifications

Avaya Context Store Snap-In Developer Guide 3.1.0.1 172

 private Map<String, Object> data = new HashMap< >();

 @XmlElement(name = "createTimestamp")

 private String createTimestamp;

 @XmlElement(name = "updatedTimestamp")

 private String updatedTimestamp;

 @XmlElement(name = "operation")

 private String operation;

 @XmlElement(name = "subscriptionId")

 private String subscriptionId;

 public StateEvent() {

 }

public StateEvent(String contextId, String aliasIds, String groupId, String tenantId,

String versionId, Map<String, Object> data, String createTimestamp, String

updatedTimestamp) {

 this.contextId = contextId;

 this.aliasIds = aliasIds;

 this.groupId = groupId……. Continue for all fields

 }

Getters and setters would be here

}//end of class

The application itself, JAX-RS

@Path("/consumer/")

@ApplicationPath("notifications")

public class NotificationsConsumerApp extends Application {

 public NotificationsConsumerApp() {

 }

 @POST

 @Consumes(MediaType.APPLICATION_JSON)

 public Response postStateEvent(StateEvent stateEvent) {

// Printing out the contents of the of the Notification

//200 Ok response must be sent back to the server otherwise it will resend the

notification,

//delays in sending the response could impact performance on the server.

return Response.ok().entity("StateEvent Received, contextId:"

 + stateEvent.getcontextId()).build();

 }

Notifications

Avaya Context Store Snap-In Developer Guide 3.1.0.1 173

 Performance/Capacity 9.4.

When running on the supported hardware configuration, please see the CPU section. CSNotifications was
designed to service up to five subscriptions at the rate of 620 notifications per second per subscription. This
is based on a maximum incoming traffic rate of 1240 requests/second (broken down into 50% Post/Put
requests and 50% Get requests) supported by Context Store’s ReST interface. Note that this throughput is
not possible using smaller Context Store deployments (less than 3 EDP nodes with 64GB of memory each).
The above was engineered for a Context data size of 2KB’s.

Note that every notification has a complete copy of the Context state so on an update the complete data is
sent not just what has changed. The final state is always sent not the delta and in this release there is no
way to mark the deltas.

If the External DataMart feature is enabled the supported throughput for notifications is reduced by half. For
example, in a Context Store deployment which supports maximum throughput (i.e. 1,240 requests per
second) with these features disabled, half this rate (i.e. 620 requests per second) is supported with up to five
subscriptions plus EDM enabled. As stated above, this traffic breaks down to 50% Post/Put and 50% Get
requests.

The consumer endpoint associated with each subscription must be engineered to support the required
throughput. For max traffic this is just over 600 notifications per second with a payload matching the Context
which triggered it. Care must be taken in how the notifications are handled so as to send a response back to
Context Store as soon as possible on receipt of the notification. If the notification is not acknowledged within
a certain time duplicate notifications may be received and also the liveliness of the system will be impacted
as the notifications for that subscription back up. It is advised that the Rest application hosting the endpoint
should off load the notification to another thread/threadpool for processing to limit the build-up of notification
requests on the web container hosting the client Rest application.

 High Availability and Fault Tolerance 9.5.

The Context Store Notifications feature utilizes the underlying HA support of Context Store and so supports
the same failure cases, i.e. critical component failure, complete server failure.

To handle problems on the notifications receiver/consumer end, if a notification attempt fails it will retry to
send this notification to that subscriber endpoint twice more in the next 40 second period. If after retrying we
are still unable to send the notification the subscription will be disabled. The disabling of the subscription is to
protect the Context Store. As mentioned in the previous sections each Subscription is pushed a notification
stream which matches the inputs into the context store.

For a full traffic system this equate to just over 600 notifications a second. If an endpoint was not available
for a long period of time, 30/60 seconds, then this would create a large buffer of notifications. These
notifications would impact the memory off the Context Store and also possible affect its liveliness. The retry
mechanism does allow for temporary outages due to network issues/ client side issues. If a subscription has
to be disabled a corresponding Alarm is generated and is raised to the System Manager. The log viewer will
show the actual details of the alarm including which Subscription has been disabled.

The alarm can only be cleared by a user updating the subscription in question from Element Manager ->
Attributes -> Service Clusters -> CSNotifications. It is the user who must verify the status of the consumer
endpoint before re-enabling the subscription. To re-enable a subscription after it has been disabled
automatically, the user must toggle the subscription. This is achieved by first disabling the subscription,

“enable”:”false” in the attribute, clicking Commit, and waiting a few moments for the Element manager to

update, the enabling again, “enable”:”true” and clicking Commit. It may take a short while for the system

to propagate the change to all machines before the subscription becomes active.

Event Tracker (Agent Notifications)

Avaya Context Store Snap-In Developer Guide 3.1.0.1 174

Event Tracker (Agent Notifications)

 Overview 9.6.

This feature services a need for flexible, customizable, fine-grained event notifications. Individual users, such
as an agent or agent supervisor, can register for personalized event notification streams. A sample
JavaScript web interface is provided to demonstrate the usage of this feature. Event streams are registered
using this web interface and the applicable event notifications are delivered directly to the registered user
through that same interface

 Configuration 9.7.

 Configure EDP and Context Store 9.7.1.

1. Enable Context event streaming, which facilitates this feature, through CSManager attribute Event

Stream: Enable Event Streaming as described in the Context Store Snap-In Reference Guide.

2. Install the Streams SVAR which processes the Context events in relation to all currently registered
user event streams.

3. Configure EDP to allow cross-origin resource sharing (CORS). The client registration relies on an

AJAX call to the ReST service at <server>/endpoint/cometd and CORS must be allowed for

this call to be successful.

a. Browse to Configuration->HTTP Security in the EDP Element Manager section of SMGR

b. Select the HTTP CORS tab.

c. Check the Allow Cross-origin Resource Sharing for all checkbox as shown below:

Streams Service Endpoint

If you wish to use an unsecured cometD connection to the streams service, skip the Install Security

Certificates section that follows and use URL http://<IP_ADDRESS>/services/Streams-

<version>/endpoint/cometd in the your client.

Event Tracker (Agent Notifications)

Avaya Context Store Snap-In Developer Guide 3.1.0.1 175

 Install Security Certificates 9.7.2.

If you wish to use a secure connection to the streams service you must install all the required, EDP-

generated SSL certificates in your browser, as described in this step, before proceeding.

1. Browse to the Streams service’s secured cometd endpoint URL in your browser and accept the

certificate - https://<IP_ADDRESS>/services/Streams-<version>/endpoint/cometd

2. You should now see a short-form of the cometd endpoint displayed on the page - e.g.

https://IP_ADDRESS:<PORT>/cometd. By refreshing this page multiple times you will be able

to see each of the unique cometD endpoints created by the service. Take note of each of these
unique, secure endpoints as you must authenticate for each one separately.

3. Browse to each unique secure endpoint and accept all certificates offered (as shown in step a)

4. After accepting the certificate for each endpoint you will see a page like the one shown below

5. NB: You must accept the security certificates for all the unique endpoints returned by the
service's cometD endpoint in step 1.

Event Tracker (Agent Notifications)

Avaya Context Store Snap-In Developer Guide 3.1.0.1 176

 Usage 9.8.

A sample JavaScript client is provided (through the Avaya Context Store DevConnect site) for testing this
feature. To trial the Event Tracker feature - use the test client as documented below.

 Setup the JavaScript Test Client 9.8.1.

1. Download the JavaScript test client archive (EventTrackerTestClient.zip) which is distributed through

the Avaya Context Store DevConnect site.

2. Unzip the file to directory on the test machine and launch the index.html page in the root directory of the
extracted folder

3. In the Server: textbox, enter either the secure or non-secure cometd endpoint URL for the service

 http://<IP_ADDRESS>/services/Streams-<VERSION>/endpoint/cometd

 https://<IP_ADDRESS>/services/Streams-<VERSION>/endpoint/cometd

4. Click the Connect button

5. If the steps above have been followed correctly and the connection is successful, a green connected

status indicator () will appear at bottom of page.

Figure 49: Streams endpoint connection

 Register and Verify an Event Stream 9.8.2.

 NB: all input is case-sensitive.

1. Click on Settings icon on top right to open stream configuration panel. This panel will only be enabled if
the client has connected successfully.

2. Choose the Context Store profile option in drop down.

3. Enter a stream name which will help the user identify the stream.

4. Set the Instances to specify a value for any of the Dimensions above e.g. [{"GroupId:"test"}]

5. Click the Register button.

http://www.devconnectprogram.com/site/global/products_resources/engagement_development_platform/avaya_snap_ins/context_store/overview/index.gsp
http://www.devconnectprogram.com/site/global/products_resources/engagement_development_platform/avaya_snap_ins/context_store/overview/index.gsp

Event Tracker (Agent Notifications)

Avaya Context Store Snap-In Developer Guide 3.1.0.1 177

Figure 50: Event stream configuration

6. Verify the Stream got registered successfully by creating (or updating) a Context with the groupId value
'test'.

7. Expand sub grid of created stream, a notification should appear in the expanded sub grid under columns
“Instances” and “Fields”.

Figure 51: Event stream notification received

 Advanced Event Stream Configuration 9.8.3.

Instances must be specified in a JSON Object Array. More than one instance of a Dimension may be
specified. Additionally, instances of multiple Dimensions may also be specified

e.g. [{"ContextId":"A"},{"ContextId":"B"}

e.g. [{"ContextId ":"A","GroupId":"A"},{"ContextId":"B","GroupId":"B"}]

Measures (key/value) must be specified in a JSON Map

e.g. {"Key1":"Value1","Key2":"Value2"}

Performance and Scalability Considerations

Avaya Context Store Snap-In Developer Guide 3.1.0.1 178

10. Performance and Scalability Considerations

 Overview 10.1.

Context Store is an in memory data-grid that stores the contexts in the machines physical memory as
opposed to the physical disk. Storing context in memory allows Context Store to deliver its service in the
most efficient method possible without the overhead of disk operations. As a consequence Context Store
pre-allocates a dedicated block of memory to store contexts to ensure the grid is not competing with other
system resources at run time for memory to meet its advertised capacity.

In addition to the original context being stored, a live in-memory replica of the context store is also stored as
a backup. In the event of a failure this backup is promoted to be the active memory block and the system
can continue without interruption. This active backup setup means that the memory footprint of a context is
effectively doubled with a copy of the context present on two nodes.

The Context Store cluster is engineered to sustain one complete node failure without any service
interruption. To facilitate this robustness an extra node exists that can sustain the capacity of the other
nodes in the cluster. During runtime each of these nodes work in an active\active manner partitioning
Contexts across all the nodes, in the event of a single node failure the active and backups are restored to
the remaining nodes with no effect to performance or HA. The exception to this behaviour being a single-
node deployment – if that single node fails, data cannot be recovered.

 Capacity Planning 10.2.

When planning a system the engineer will need to estimate the amount and type of operations that will be
made on Context Store in their enterprise. Context Store has a maximum capacity of 1240 requests per
second (not supported on all deployment sizes), in a very simplistic system where we assume every piece of
Context that is added to Context store is read by at least one client we can expect these requests to be
broken into a ratio of 1:1. A more realistic system will probably have a ratio of 1:4 creates to reads where
several applications will want to read the Contexts as the contact flows through the system.

Once the engineer has determined the number of operations they will need to know the type of data and the
duration that this data is required. The creates, updates, data size and duration all have an interdependent
relationship where raising the value on one of these three will lower the value of the other two i.e. increasing
the lease time will mean more memory is consumed for longer in the in memory cache and hence we can’t
support as many creates per second.

A capacity planning tool that demonstrates the relationship between these parameters is available on the
Avaya Context Store DevConnect site.

The following tables show the relationship between size, lease and memory for different setups. This data is
based on standard Context Store traffic with no optional features deployed. For information on the capacity
and performance implications of enabled additional features, see 10.2 Capacity Planning subsections.

Table 2- Cluster containing 3 nodes with 64GB of memory each, Contexts stored with a 2 hour lease

Context Size in KB Max new Contexts per Second Number of Contexts Memory Consumption

2 1240 (max supported) 8928000 17GB

8 630 4536000 35GB

16 316 2275200 35GB

http://www.devconnectprogram.com/site/global/products_resources/engagement_development_platform/avaya_snap_ins/context_store/overview/index.gsp

Performance and Scalability Considerations

Avaya Context Store Snap-In Developer Guide 3.1.0.1 179

32 159 1144800 35GB

64 79 568800 35GB

 Table 3 - Cluster containing 3 nodes with 64GB of memory each, 2KB Contexts stored

Lease in Hour(s) Max new Contexts per Second Number of Contexts Memory Consumption

12 415 17928000 34GB

24 207 17884800 34GB

48 102 17625600 34GB

168 (1 Week) 29 17539200 33GB

744 (1 Month) 6 16092000 31GB

 Enabling Optional Features 10.2.1.

2KB is the standard context object size used for all performance testing and certification. The supported
‘requests per second’ rate and lease time vary depending on the Context Store cluster size and the
resources allocated to the EDP nodes within that cluster. If additional optional features are enabled, the
following adjustments must be taken into consideration.

Audit Feature

Enabling audit trail requires a substantial amount of space in the data-grid, particularly for longer audit trails
(> 10 entries). This increased memory requirement will impact the performance which is based on 2KB of
Context data. If enabling the audit feature, the size of the Context data must be reduced in order to achieve
the performance levels certified for a cluster.

CS Audit: Event Limit

(length of Audit Trail)

Reduction in Context size Notes

21+ 1 KB NB: Additionally the throughput and/or lease must be

reduced when storing very long audit trails

11 - 20 1 KB Throughput and lease can remain at certified levels if

Context object size is reduced by 1KB.

If 2KB Context data (or larger) is required, throughput

and/or lease must be reduced

1 - 10 0.5 KB Throughput and lease remain at certified levels if

Context object size is reduced by 0.5KB.

If 2KB Context data (or larger) is required, throughput

and/or lease must be reduced

Performance and Scalability Considerations

Avaya Context Store Snap-In Developer Guide 3.1.0.1 180

Alias Feature

Associating additional aliasIds with Context objects requires a substantial amount of space in the data-grid;
each aliasId is written to the data-grid as a separate object which is linked to the main Context object. This
increased memory requirement will impact the performance which is based on 2KB of Context data. If
enabling the alias feature, the standard 2KB Context object must be reduced to 1.5KB in order to achieve
the performance levels certified for a cluster.

Geo Redundancy

The traffic rate supported in a geo-redundant deployment is the same as that supported by single cluster of
the given size; this is because data created in each cluster is replicated to the other.

CSNotifications

If both the CSNotifications and External DataMart features are enabled on a Context Store cluster, the
supported throughput for CSNotifications is reduced by half. For example, in a Context Store deployment
which supports maximum throughput (i.e. 1,240 requests per second) with these features disabled, half this
rate (i.e. 620 requests per second) is supported with up to five subscriptions plus EDM enabled.

Event Tracker

A significant amount of power is required to process all the Context Store data events with respect to the
streams which are currently registered. As the number of registered streams, the complexity of those
streams’ filters and the differences between the streams increases – the processing required increases
greatly therefore the throughput or size of data must be reduced in this scenario.

 Hardware and Network 10.3.

 CPU 10.3.1.

Context Store defines a CPU as is being part of a single or multi-core processor that has a speed equivalent
to a 2.9GHz Intel Xeon processor. Context Store has been engineered and certified to support Capacity and
High Availability based on nodes which have dedicated non Hyper Threaded CPU’s. Context Store does not
support VM features that sub divide the processing power of the core as it does not expect to have to
compete with external processes during max capacity or failover where Context Store requires additional
processing overhead to ensure no service interruption. The memory and CPU requirements for the various
certified Context Store deployments are available in the Reference Guide.

 Network 10.3.2.

All Nodes in the Context Store Cluster must be located within the same LAN with high speed connectivity
and high capacity bandwidth to allow communication between the Nodes to work as efficiently as possible. A
slow LAN will adversely impact the latency of the REST requests.

 VMware 10.3.3.

Context Store is a Snap-In that is running on the Avaya Aura® Engagement Development Platform which in
turn is running on VMware infrastructure. For definitive questions on support VWware versions please refer
to the Avaya Aura® Engagement Development Platform documentation.

VMware has many power and resource management features that can be used to optimize machine usage
in a shared environment. Context Store is engineered to support all features running at max capacity and
tolerate a node failure with minimal service impact. To accomplish this, it assumes it has 100% access to all
resources that are allocated to it. If it has to compete with VMware optimization features, it may impact its
ability to support the advertised capacity and high availability. Hence it is recommended that these features
be disabled on the environment that Context Store is running on.

Performance and Scalability Considerations

Avaya Context Store Snap-In Developer Guide 3.1.0.1 181

VMware uses the vMotion technology to migrate a running virtual machine from one ESX host to another
without incurring downtime. Context Store has not certified this feature and hence it is recommended that
this feature not be used during the running of Context Store.

 High Availability 10.4.

Context Store is a cluster consisting of 1-5 nodes with each of the nodes having the identical resources.
Context Store is engineered to be highly available and to survive the failure of a single node while
maintaining the ability to continue service and maintain throughput and quoted capacities without loss of
data. If through a planned or unplanned action a node is no longer available to a cluster the cluster will
compress onto the remaining nodes until the node becomes available again.

Single-node deployments are the exception; if the only node is lost, the data is not recoverable.

Context Store HA guarantees data is preserved after a single node failure only. If a subsequent node fails,
the service may continue but the integrity of the data will be compromised as there may no longer be
sufficient resources (CPU, memory, disk) remaining to store existing contexts or maintain engineered service
level. Context Store does not support two concurrent node failures. In the event of multiple nodes failing it is
highly recommended the customer should stop Context Store and restart the cluster clear out any unused
contexts and have an established baseline of the data in the Contexts in the enterprise solution.

To minimize the risk of two concurrent node failures, Context Store requires that each of the Nodes be
installed on individual VM hosts so that in the event of a VM host failing or being in accessible form the
network the two remaining nodes are still available. Each of these VM hosts will need to be on the same high
quality LAN so no latencies are incurred in the solution.

As a lot of data can be transmitted from and between the nodes in the Context Store cluster it is
recommended that the Avaya Aura® Engagement Development Platform Management IP and Asset IP are
assigned their own network port.

 Geo Redundancy 10.5.

Context Store geo redundancy is an architecture that can be utilized to enhance the high availability of
Context Store. Using geo redundancy, two Context Store clusters can be paired to operate in an
active/active mode. The traffic rate supported in a geo-redundant deployment is the same as that supported
by single cluster of the given size; this is because data created in each cluster is replicated to the other.

Service preservation across the two clusters is achieved through the use of a highly available load balancer.
The load balancer provides a common address through which both clusters can be reached. For routing
requests and distributing the traffic load between the clusters, Context Store uses an optional field, rid query
parameter, in each REST request. If the rid query parameter is not specified, the load balancer routes to a
default Context Store cluster.

Session preservation between two clusters is achieved by deploying Context Store with data-grid replication
channel configured between the two clusters. The state of the ContextStoreSpace in both clusters in the geo
setup is replicated across this link. The network should have a dedicated 1 GB channel with a minimum of
300 MB bandwidth being available for Session Replication between clusters.

If the EDM feature is configured on a cluster; Contexts added/updated via the replication channel with a
persistToEDM or persistTo flag preset will be replicated to the database.

Geo redundancy supports a failover of all Context Store operations to a single cluster in the event that a
cluster, in the geo setup, is compromised. Because the state of a compromised cluster’s data-grid cannot be
guaranteed during this period, GEO and EDM replication may still be maintained. In Context Store, after a
failover only the operations of the surviving cluster are supported from this point, as data integrity between
the clusters cannot be guaranteed.

If the data-grid replication link is disconnected, a replication redo-log is used to contain the backlog of data to
replicate to the other cluster should this link is re-established. In a prolonged outage if the redo-log exceeds
its capacity it drops the oldest data and collects the newest. After failover, when the compromised cluster is

Performance and Scalability Considerations

Avaya Context Store Snap-In Developer Guide 3.1.0.1 182

restored and reintroduced to the geo setup, the redo-log will replicate its contents to the other cluster.
Because the contents of this redo-log are not guaranteed, Context Store does not support the integrity of this
replicated data.

The status of the replication channel is logged by the CSManager service.

 External DataMart 10.6.

The External Data Mart (EDM) allows persistence of contexts from the Context Store into an external
database via a JDBC connection. It is the responsibility of the customer to consume this output.

The following should be used as a guide to the specification required for the external database;

The table below indicates the disk size of contexts persisted per hour. The database must be able to
consume this amount of data throughput. Exact details may vary from vendor to vendor but the following
table is a rough guide to the amount of disk space consumed by the EDM attached to a system running at
high capacity with a large percentage of create and update operations.

Context Size (KB) Create&Updates/Sec GB/Hour

2 1240 8.25

16 1000 55

32 800 88

64 500 110

Management of the EDM tables is very important. Size and throughput must be carefully considered to
ensure the tables are available to the EDM feature.

Note: in a geo-redundant Context Store deployment, each configured External DataMart will be populated
with Context data from both Context Store clusters in the active/active deployment

All database testing performed against an 8 core 2.9GHz, 32GB memory server located on the same LAN as
the Context Store cluster.

 Provisioning from External DataMart 10.6.1.

In addition to persisting flagged context data to the CS_OPERATION table in the DataMart; contexts can
also be written to the CS_PROVISION table in the DataMart – this table is reserved for provisioned context
data which is required when a system starts up and should therefore be limited to essential data only.

When a Context Store cluster is restarted, all contexts which exist in the CS_PROVISION table will be
written back into the data-grid with infinite leases. Context Store will not accept any new CSRest requests
until the data-grid is fully established and system provisioning is complete. If the EDM Persistence feature is
enabled on the cluster, provisioned Context data will be written into the CS_OPERATION table every time
the cluster is restarted because it is written into the data-grid after each restart.

 Throttling 10.7.

Context Store employs a throttling feature to prevent all new operations when the system is in risk of
becoming overloaded as a result of overly aggressive or eventually unsustainable traffic rates.

The system is considered to be in this compromised state when the traffic rate exceeds a high traffic rate
threshold configurable in System Manager.

Performance and Scalability Considerations

Avaya Context Store Snap-In Developer Guide 3.1.0.1 183

The throttling feature also utilises a low traffic rate threshold to avoid oscillation between the overload states
and to provide a customisable buffer (between the high traffic rate thresholds) below which normal operation
returns. This buffer safeguards the integrity of the data and customer flows against frequent throttle state
toggling.

All throttling thresholds are configurable as CSManager attributes.

 Sequenced Apps 10.8.

Context Store is optimized to be a highly performant system that exists in a sequenced application
environment. To avoid latencies typically associated with transactional locking Context Store avoids locking
across all new creates and hence does not guarantee that the same customer specified contextId cannot be
used in the same millisecond interval, to avoid this scenario use the Context Store generated contextId.

Context Store guarantees that all updates are written securely and transactionally to the data-grid, but it is
possible in a highly concurrent environment that the data in the Context can be quickly updated and hence
developers should implement the necessary handling in their client applications to ensure that this situation
is handled correctly.

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 184

11. Appendix

 Context Store API Documentation 11.1.

 Overview 11.1.1.

Context Store uses Unicode, UTF-8 encoding exclusively

contextId may be defined using any of the following ASCII characters:

 Uppercase and lowercase English letters (a to z, A to Z) (ASCII: 65 to 90, 97 to 122)

 Digits 0 to 9 (ASCII: 48 to 57)

 Characters - ~ (ASCII: 45, 95, 126). Provided that they are not the first or last character.

 Character. (dot, period, full stop) (ASCII: 46) Provided that it is not the first or last character, and
provided also that it does not appear two or more times consecutively.

Context data keys may be defined using any of the following ASCII characters:

 Uppercase and lowercase English letters (a to z, A to Z) (ASCII: 65 to 90, 97 to 122)

 Digits 0 to 9 (ASCII: 48 to 57)

 Characters * - ~ (ASCII: 42, 45, 95, 126). Provided that they are not the first or last character.

 Character . (dot, period, full stop) (ASCII: 46) Provided that it is not the first or last character, and
provided also that it does not appear two or more times consecutively.

 An asterisk character * - is allowed at the start and end of a keyname, this identifies the value as
sensitive and means this value will not appear in any logs.

Note 1: Characters with special meaning in URLs i.e. ; # % cannot be detected by the Context Store
interface and should not be used in the contextId.

Note 2: Extra care must be taken when submitting very long strings as identifiers (contextId, aliasId, groupId,
tenantId or key) as the engine used for validation is not well optimized for long strings. If an invalid character
is found deep into a long string it can cause the thread to hang, EDP will automatically return a ‘504
Gateway timeout’ error after 10 seconds.

Long, invalid input strings cause significant spikes in CPU usage. If several of these are submitted, the EDP
server trying to process them may automatically change to ‘Denying’ state due to CPU overload. If this
occurs the affected EDP server must be restarted and then manually changed back to ‘Accepting’ state.

BasePath:

http://<IP_ADDRESS>/services/CSRest/cs/contexts/

 Data Types 11.1.2.

There are two Data Types - Context and Data. The Data is contained within the Context.

Example Context data type

{

"contextId": "samplecontextId",

"routingId": "0",

 "data": {"mykey1":"myvalue1","mykey2":"myvalue2"}

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 185

"metaData": {

 "groupId": " sampleGroupId ",

 "versionId": "1",

 "aliasIds": “samplealiasId1,samplealiasId2”,

 "createdTime": "1438795335742",

 "lastUpdatedTime": "",

 "persistToEDM": "true",

 "persistTo": "CS_PROVISION",

 "tenantId": " sampleTenantId "

}

}

Example Data data type

{

 {"mykey1":"myvalue1","mykey2":"myvalue2"}

}

Context

field type required

groupId string optional

tenantId string optional

aliasIds list optional

routingId string optional

persistToEDM boolean optional

persistTo string optional

data Map[string,Object] required

contextId string required

Data

field type required

data Map[string,Object] required

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 186

 Context Operations 11.1.3.

postContext

Creates a new context enty. A context entry contains key/value pairs.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/

Operation: POST

Parameters:

 body

Parameter Required Description Data Type

body true The Context to Add Context

persistToEDM false Persistence flag string

persistTo false Provisioning flag string

 query

Parameter Required Description Data Type

lease false Context will be stored for period specified in lease string

alias false Alternative identifier for the context. Multiple permitted string

touchpoint false User/application identifier for Audit Trail string

rid false Routing identifier in geo-redundant deployment string

Response Errors:

Status Code Reason

400 Context with data key blank or null

404 No Data Found

upsertContext by contextId

Adds new context entry or updates an existing one using contextId as identifier. A context entry contains key
value pairs.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/upsert/

Operation: PUT

Parameters:

http://10.134.34.139:8080/ingensg-cs-rest-war-1.41-SNAPSHOT/#Context

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 187

 body

Parameter Required Description Data Type

body true The Context to Add Context

persistToEDM false Persistence flag string

persistTo false Provisioning flag string

alias false aliasIds to be created/updated string

groupId false If this doesn’t match groupId for existing Context to be
updated, the request will fail

string

tenantId false If this doesn’t match the tenantId for existing Context to
be updated, the request will fail

string

 path

Parameter Required Description Data Type

id true The contextId string

 query

Parameter Required Description Data Type

lease false Context will be stored for period specified in lease string

touchpoint false User/application identifier for Audit Trail string

rid false Routing identifier in geo-redundant deployment string

upsertContext by aliasId

Adds new context entry or updates an existing one using aliasId as identifier. A context entry contains key
value pairs.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/upsert/

Operation: PUT

Parameters:

 body

Parameter Required Description Data
Type

body true The Context to Add Context

http://10.134.34.139:8080/ingensg-cs-rest-war-1.41-SNAPSHOT/#Context
http://10.134.34.139:8080/ingensg-cs-rest-war-1.41-SNAPSHOT/#Context

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 188

alias true aliasId required to identify the context string

persistToEDM false Persistence flag string

persistTo false Provisioning flag string

groupId false If this doesn’t match groupId for existing Context to be
updated, the request will fail

string

tenantId false If this doesn’t match the tenantId for existing Context to
be updated, the request will fail

string

 query

Parameter Required Description Data Type

lease false Context will be stored for period specified in lease string

alias false Alternative identifier for the context. Multiple permitted string

touchpoint false User/application identifier for Audit Trail string

rid false Routing identifier in geo-redundant deployment string

getData by contextId

Returns the data associated with the specified contextId.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/{id}/

Operation: GET

Parameters:

 path

Parameter Required Description Data Type

id true The contextId string

 query

Parameter Required Description Data Type

touchpoint false User/application identifier for Audit Trail string

rid false Routing identifier in geo-redundant deployment string

Response Errors:

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 189

Status Code Reason

404 No Data Found

400 contextId or aliasId is blank or null

getData by aliasId

Returns the data associated with the specified.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/

Operation: GET

Parameters

 query

Parameter Required Description Data Type

alias true The aliasId string

touchpoint false User/application identifier for Audit Trail string

rid false Routing identifier in geo-redundant deployment string

Response Errors

Status Code Reason

404 No Data Found

400 contextId or aliasId is blank or null

getValue by contextId

Get the value of a key using contextId as identifier.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/{id}/keys/{key}/

Operation: GET

Parameters

 path

Parameter Required Description Data Type

id true The contextId string

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 190

key true The Key Name string

 query

Parameter Required Description Data Type

touchpoint false User/application identifier for Audit Trail string

rid false Routing identifier in geo-redundant deployment string

Response Errors

Status Code Reason

404 No data found

400 contextId or aliasId is blank or null

getValue by aliasId

Get the value of a key using aliasId as identifier.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/keys/{key}/

Operation: GET

Parameters:

 path

Parameter Required Description Data Type

key true The Key Name string

 query

Parameter Required Description Data Type

alias true The aliasId string

touchpoint false User/application identifier for Audit Trail string

rid false Routing identifier in geo-redundant deployment string

Response Errors:

Status Code Reason

404 No data found

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 191

400 contextId or aliasId is blank or null

getContexts by groupId

Get metadata for all contexts associated with the specified groupId

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/groups/{id}/

Operation: GET

Parameters:

 path

Parameter Required Description Data Type

id true The groupId string

 query

Parameter Required Description Data Type

touchpoint false User/application identifier for Audit Trail string

rid false Routing identifier in geo-redundant deployment string

Response Errors:

Status Code Reason

404 No Data Found

getAuditData by contextId

Get Audit Trail data for the context entry using contextId as the identifier.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/audit/{id}/

Operation: GET

Parameters

 path

Parameter Required Description Data Type

id true The contextId string

 query

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 192

Parameter Required Description Data Type

rid false Routing identifier in geo-redundant deployment string

Response Errors:

Status Code Reason

404 No Data Found

400 contextId or aliasId is blank or null

getAuditData by aliasId

Get Audit Trail data for the context entry using aliasId as the identifier.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/audit/

Operation: GET

Parameters

 query

Parameter Required Description Data Type

alias true The aliasId string

 query

Parameter Required Description Data Type

rid false Routing identifier in geo-redundant deployment string

Response Errors

Status Code Reason

404 No Data Found

400 contextId or aliasId is blank or null

putData by contextId

Update the data associated with the specified contextId.

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 193

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/{id}/

Operation: PUT

Parameters

 path

Parameter Required Description Data Type

id true The contextId string

 body

Parameter Required Description Data Type

body true The data to add Data

 query

Parameter Required Description Data
Type

lease true Context will be stored for period specified in lease. Updates
restart the lease period.

string

touchpoint false User/application identifier for Audit Trail string

rid false Routing identifier in geo-redundant deployment string

Response Errors

Status Code Reason

404 No Data Found

putData by aliasId

Update the data associated with the specified aliasId.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/

Operation: PUT

Parameters

 body

Parameter Required Description Data Type

body true The data to add Data

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 194

 query

Parameter Required Description Data
Type

lease true Context will be stored for period specified in lease. Updates
restart the lease period.

string

alias true The aliasId string

touchpoint false User/application identifier for Audit Trail string

rid false Routing identifier in geo-redundant deployment string

Response Errors

Status Code Reason

404 No Data Found

putValue by contextId

Update value of a key associated with the specified contextId.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/{id}/

Operation: PUT

Parameters

 body

Parameter Required Description Data Type

body true The value to add string

 query

Parameter Required Description Data Type

lease false Context will be stored for period specified in lease. Updates
restart the lease period.

string

touchpoint false User/application identifier for Audit Trail string

rid false Routing identifier in geo-redundant deployment string

Response Errors

Status Code Reason

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 195

400 Context has a null or empty data key

putValue by aliasId

Update value of a key associated with the specified aliasId.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/

Operation: PUT

Parameters

 body

Parameter Required Description Data Type

body true The value to add string

 query

Parameter Required Description Data Type

lease false Context will be stored for period specified in lease. Updates
restart the lease period.

string

alias true The aliasId string

touchpoint false User/application identifier for Audit Trail string

rid false Routing identifier in geo-redundant deployment string

Response Errors

Status Code Reason

400 Context has a null or empty data key

put aliasId by contextId

Update the list of aliasIds associated with this context entry. Identify the context using the contextId.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/{id}/aliases/

Operation: PUT

Parameters

 path

Parameter Required Description Data Type

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 196

id true The contextId string

 body

Parameter Required Description Data Type

body true The list of aliasIds to be added e.g. [“aliasId1”,”aliasId2”] JSON

 query

Parameter Required Description Data Type

lease true Context will be stored for period specified in lease.
Updates restart the lease period.

string

alias true The aliasId string

touchpoint false User/application identifier for Audit Trail string

rid false Routing identifier in geo-redundant deployment string

Response Errors

Status Code Reason

404 No Data Found

put aliasId by aliasId

Update the list of aliasIds associated with this context entry. Identify the context using an existing aliasId.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/aliases/

Operation: PUT

Parameters

 body

Parameter Required Description Data Type

body true The list of aliasIds to be added e.g. [“aliasId1”,”aliasId2”] JSON

 query

Parameter Required Description Data Type

lease true Context will be stored for period specified in lease.
Updates restart the lease period.

string

alias true The aliasId string

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 197

touchpoint false User/application identifier for Audit Trail string

rid false Routing identifier in geo-redundant deployment string

Response Errors

Status Code Reason

404 No Data Found

deleteContext by contextId

Deletes the context entry identified by the given contextId.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/{id}/

Operation: DELETE

Parameters

 path

Parameter Required Description Data Type

id true The contextId string

 query

Parameter Required Description Data Type

rid false Routing identifier in geo-redundant deployment string

Response Errors

Status Code Reason

404 No Data Found

deleteContext by aliasId

Deletes the context entry identified by the given aliasId.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/

Operation: DELETE

Parameters

 query

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 198

Parameter Required Description Data Type

alias true The aliasId string

 query

Parameter Required Description Data Type

rid false Routing identifier in geo-redundant deployment string

Response Errors

Status Code Reason

404 No Data Found

deleteValue by contextId

Delete Value : delete value of a key, if no keys exist context will still be present with empty data.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/{id}/keys/{key}/

Operation: DELETE

Parameters

 path

Parameter Required Description Data Type

id true The contextId string

key true The Key Name string

 query

Parameter Required Description Data Type

touchpoint false User/application identifier for Audit Trail string

rid false Routing identifier in geo-redundant deployment string

Response Errors

Status Code Reason

404 No Value was associated with specified Key

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 199

deleteValue by aliasId

Delete Value : delete value of a key, if no keys exist context will still be present with empty data.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/keys/{key}/

Operation: DELETE

Parameters

 path

Parameter Required Description Data Type

key true The Key Name string

 query

Parameter Required Description Data Type

alias true The aliasId string

touchpoint false User/application identifier for Audit Trail string

rid false Routing identifier in geo-redundant deployment string

Response Errors

Status Code Reason

404 No Value was associated with specified Key

delete aliasId

Delete the specified aliasId and remove any association from the context entry it belonged to.

URL: http://<IP_ADDRESS>/services/CSRest/cs/contexts/aliases/

Operation: DELETE

Parameters

 query

Parameter Required Description Data Type

alias true The aliasId string

touchpoint false User/application identifier for Audit Trail string

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 200

rid false Routing identifier in geo-redundant deployment string

Response Errors

Status Code Reason

404 No Data Found

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 201

 Interface Error Codes 11.1.4.

The following section contains the Error codes that are generated by each of the interfaces.

REST Status Codes

 Code Description Scenario Message Note

OK OK Any operation successfully
executed

n/a

BAD_REQUE
ST

Any HTTP
400+ response

Post Context: context
contains an empty
groupId | tenantId
parameter

"Context groupId | tenantId is
empty."

Post Context: context
contains an empty or
invalid persistTo
parameter

“Context persistTo flag contains
invalid value.”

Post Context:
missing/blank key

"Context data contains a null or
empty data key."

Post Context:
Duplicate identifier

“contextId | aliasId | routingId
combination already exists in the
repository.”

“Context aliasIds are not
unique.”

Post/Put/Get/Delete
identifier containing
invalid characters

"contextId | groupId | tenantId |
aliasId | rid | touchpoint contains
invalid characters."

Post/Put/Get/Delete
key containing invalid
characters

"Key contains invalid
characters."

Post/Put/Get/Delete:
Identifier contains
more characters than
permitted count of 255.

“contextId | aliasId | groupId |
tenantId | key | aliasId |
touchpoint | rid cannot be longer
than 255 characters.”

Post/Put Alias:
maximum number of
aliasIds reachedno-
one mentioned this

“Cannot create more than 3
aliasIds per Context.”

Put Data:
missing/blank key

"Data key blank or null."

Put/Get/Delete:
contextId/aliasId/group

"No data found."

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 202

Id does not exist

Put/Get/Delete: key
does not exist

"No Value was associated with
specified Key [keyname]"

FORBIDDEN 403 Requests per second
threshold has been
breached. Interface is
throttled.

"Request Throttled:Response
sent"

ERROR Any HTTP
500+ response

Put/Get/Delete
value/data:
missing/blank
contextId or groupId
parameter

Put/Get/Delete value:
missing/blank key
parameter

n/a JSON

Parse

Exception
occurs
internally.

 An SDKException is
thrown for any
certificate related
issues.

Error creating the context store
instance :

(Any of below messages follow)

The required security system
property (one of keyStore,
keyStorePassword, trustStore or
trustStorePassword) is empty –
cannot create connection as a
result.

IOException loading the cert file
into the key store.

NoSuchAlgorithmException
loading the cert file into the key
store.

CertificateException loading the
cert file into the key store.

PDC Status Codes

Code Description Scenario Message Note

200 OK Any operation
successfully executed

n/a

400 Bad Request Post Context (with
groupId parameter)

Post Context:
missing/blank key

Put Data: missing/blank
key

"Context groupId is empty."

"Context data contains a null
or empty data key."

"Data key blank or null."

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 203

Post/Put/Get/Delete with
identifier containing invalid
characters

Post/Put/Get/Delete key
containing invalid
characters

"contextId/groupId/aliasId
contains invalid characters."

"Key contains invalid
characters."

403 Forbidden Requests per second
threshold has been
breached. Interface is
throttled.

"Request
Throttled:Response sent"

404 Not Found Put/Get/Delete:
contextId/groupId does
not exist

Put/Get/Delete: key does
not exist

"No data found."

"No Value was associated
with specified Key
[keyname]"

408 Client side
timeout

Timeout if the operation
takes longer than the
configured timeout period

500 Validation
Error

Put/Get/Delete value/data:
missing/blank contextId or
groupId parameter

Put/Get/Delete value:
missing/blank key
parameter

"The id parameter must not
be empty"

"The key parameter must not
be empty"

500 SSL context
may not be
null

Client is not authenticated
or is using an invalid or
expired certificate.

503 Service
Temporarily
Unavailable

Service unavailable at the
configured IP address

500 Internal Server
Error

Invalid JSON data
submitted to context store

 Submitting invalid
JSON causes
major issues for
JAX-RS and
WAS.

This can even
cripple the system
eventually.

Screen Pop Error Codes

Code Description Scenario Message Note

404 Not found Context not found or
response throttled

Context '<CONTEXT_ID>'
not found or response
throttled

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 204

 Certificate Based Authentication 11.2.

For comprehensive documentation on configuring HTTP Security and Certificates please refer to the
Avaya Aura® Engagement Development Platform and System Manager documentation.

This section is intended to assist developers in getting started quickly with configuring Certificate Based
Authentication for use with Context Store. There are several options available for configuring certificates;
the steps below represent one particular approach which has been verified during development.

 Configuring Client Certificate Challenge 11.2.1.

1. Login in to System Manager as Administrator.

2. Navigate to Elements -> Engagement Development Platform.

3. Click Configuration and select HTTP Security.

4. Check the Client Certificate Challenge Enabled checkbox and click Commit.

With this configuration any client trying to access Context Store must provide a trusted certificate with
requests.

Figure 52 System Manager HTTP Security

 Create Client Keystore 11.2.2.

1. Login in to System Manager as Administrator.

2. Navigate to Security > Certificates > Authority.

3. Select Add End Entity from the side menu.

4. Select profile INBOUND_OUTBOUND_TLS in the End Entity Profile drop down. Enter values for
Username, Password, CN, OU, O and C fields. (see below image). Note the password needs to
be at least six characters long.

5. For the Token field, select P12 file, JKS file or PEM file depending on the requirements of the
Context Store client.

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 205

6. Click Add button and wait for successful completion.

7. Next, select Public Web from the side menu.

8. Click Create Keystore.

9. Enter the username and password used on the Add End Entity form and click OK.

10. On subsequent page (Token Certificate Enrollment), accept default options and click Enroll.

11. Download keystore on to client machine.

Figure 53 System Manager Certificate Authority

Figure 54 EJBCA

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 206

Figure 55 EJBCA Token Certificate Enrollment

 Download Avaya Aura® Engagement Development Platform Trusted 11.2.3.
Certificate from System Manager

1. Login to System Manager Console as a System Administrator.

2. Navigate to Inventory -> Manage Elements

3. Select checkbox for a single Avaya Aura® Engagement Development Platform server

4. From the More Actions drop down, select Configure Trusted Certificate.

5. Find and select checkbox for: Store Type = SECURITY_MODULE_HTTP with Subject Name =
O=Avaya, OU=MGMT, CN=System Manager CA

6. Click Export and save file.

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 207

Figure 56 System Manager Manage Elements - Configure Trusted Certificates

Figure 57 System Manager Trusted Certificates

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 208

 Import Trusted Certificate into Keystore 11.2.4.

In command line, navigate to target jre bin directory (if keytool is not in system path)

You must supply the location of the downloaded keystore and the location of the trusted certificate to import
into the keystore to command line.

e.g.: "keytool -import -file C:\trustcert.pem -keystore C:\keystore.jks"

You will be prompted for keystore password and will receive status of import on command line.

Once the keystore is created it can be shared with other clients.

 Verifying Successful Authentication 11.2.5.

Verification will vary for each client. If using Java swing UI you can browse to the location of your
keystore. Once the keystore is loaded requests to Context Store will be allowed.

 General Information Regarding Java SSL 11.2.6.

The above process is not the only way to achieve Mutual TLS (Client Certificate Challenge), but is the
simplest to explain as both keystore and truststore are in one .jks file. The truststore and keystore can be
separate entities (and in practice should be), the truststore will contain the trusted certificates and public
keys and the keystore will contain the client certificate and private keys.

KeyStore - used to provide client credential to server

TrustStore - used by client to verify credential received from server

It is up to the clients to decide how they wish to store their certificates.

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 209

 Thin Client Access 11.2.7.

Some customers may want to access Context Store via a Thin Web Client. This section covers the current
findings on what can be supported in this release.

Access from client browser directly to Context Store can be achieved, where Mutual TLS is configured, by
following the below steps:

 create a pk12 certificate via System Manager (this is the same process as above but choosing pk12
instead of jks file type)

 Install downloaded pk12 certificate into browser.

 make requests directly via https://{CLUSTER_IP}/services/CSRest/cs/contexts/someid in browser

At time of writing, Mutual TLS can't be supported via AJAX. As the Client certificate authentication is
only performed upon request by the server and done transparently by the browser, as far as HTTP
and javascript layers are concerned.

Thin Client Options:

 HTTPS requiring trust certificates.

 HTTPS requiring trust certificates and whitelist enabled for known/trusted clients.

 HTTP only, assuming customer is satisfied with data center security.

 Troubleshooting SSL Connections 11.2.8.

OpenSSL

The s_client command implements a generic SSL/TLS client which connects to a remote host using
SSL/TLS. It is a very useful diagnostic tool for SSL servers.

https://www.openssl.org/docs/apps/s_client.html

example: openssl s_client -connect <ip>:<port>

Portecle

Portecle is a user friendly GUI application for creating, managing and examining keystores, keys,
certificates, certificate requests, certificate revocation lists and more.

http://portecle.sourceforge.net/

On Avaya Aura® Engagement Development Platform Instance

Enable debug logging on nginx to see what is being received on server side:

/var/log/nginx/error.log

Set nginx logging to debug

vi /etc/nginx/nginx.conf

change

 error_log /var/log/nginx/error.log debug

to

 error_log /var/log/nginx/error.log error

If Nginx debug shows error:

https://www.openssl.org/docs/apps/s_client.html
http://portecle.sourceforge.net/

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 210

"Self signed certificate in certificate chain"

It indicates that the certificate being used is not linked with the Avaya Aura® Engagement Development
Platform. Ensure the correct System Manager is used to create the certificate and that the trusted certificate
is taken from the linked CEs.

Client Side

If Java, run client with java property -Djavax.net.debug="ssl”. This will show useful debug information about
the SSL connection.

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 211

 A10 Load Balancer Configuration 11.3.

Context Store, by default, will try to fulfil requests if only one operational node remains in a cluster. In order

for Context Store to fail over to the backup cluster it is recommended that the CSManager attribute “Cluster

Deny Service on two node outage” is set to true for each of the Context Store clusters in a geo

environment. This will ensure that if two nodes in a cluster are down requests will be sent to the other
cluster. In a single-node deployment, this attribute is not applicable.

 A10 Installation 11.3.1.

These configuration steps assume that a working A10 system is installed and that the person configuring the
system has prior knowledge of it. The install steps for the A10 ova provided here are only for reference and
should not be taken as a definitive guide to installing an A10 load balancer. The A10 documentation should
be referred to before attempting an install of the A10 load balancer.

The steps outlined here first configure HTTP routing in the A10 load balancer then when this is successfully
routing traffic, the configuration for HTTPS is then attempted. It is suggested that this is the order in which
the steps are configured although both HTTP and HTTPS configuration can take place at the same time.

The following steps outline a software only install of the A10 product.

Prerequisites

 Two Context Store Clusters that have replication enabled between them.

 A10 VMware image.

 IP address as specified in the A10 install doc.

 Register on the A10 website to get receive the software license, this can only be retrieved after the
OVA image has been installed as a unique vThunder Host ID (UID) from the installed A10 image is
needed to receive the license.

 The full instructions for installing the license are in the installation guide for the A10 product itself.

Installation

1. Download the VMware image.

2. Read the vThunder Install Guide pdf.

3. Install the OVA as per the instructions in the Installation Using vSphere Client chapter of the
vThunder Install Guide pdf.

4. Follow the steps in the "Initial vThunder Configuration" chapter.

5. Install the License as per the steps in the "License Installation" chapter.

 HTTP Traffic Configuration 11.3.2.

1. Login to the A10 webui by entering the maintenance IP into a browser.

There are two modes when viewing the A10 website. Monitor and Config. All the configuration
steps below should be run in Config mode.

2. In the following steps entities are required to be added or configured. Each of the steps will be
described in detail below. The terms Health Monitor, Servers, Service Group, Template, Virtual
Server and Virtual Service in this document are A10 specific and refer to concepts within the A10
product. The following is required to enable A10 to route HTTP traffic through two Context Store
Clusters.

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 212

a. Add a Health Monitor.
b. Add two Servers, one for each CS cluster.
c. Create Two Service Groups. Each Service Group will contain the two CS servers one as the

main and the other as the backup.
d. Configure a Template. A template is what the traffic gets routed by in A10.
e. Add a Virtual Server.
f. Configure a Virtual Service.
g. Configure the IP Source NAT if required.

Health Monitor

In A10 a health monitor profile is used to periodically check if a server is available. The default health
monitor profile uses pings to evaluate if a server is available. This will not work when only one of the
active/standby machines is available and the other EDP is down as well. As a result a new health monitor
will need to be configured based on the Context Stores rest interface availability rather than pings to verify if
a CS deployment is operational.

1. Click SLB -> Health Monitor -> Health Monitor -> Add.

2. Enter a name for the health monitor, suggested "restCheckHTTP", Choose "HTTP" for the Type, choose
"GET" for the URL type and enter

"/services/CSRest/cs/contexts/HttpHealthCheckFromTheLoadBalancerShouldNormallyReturnA404" as
the actual URL.

3. Enter "404" in the Expect text area. The Screen should look as below. Note the text area for the URL is

truncating the full URL.

4. Press OK at the end of the Health Check screen.

Figure 58: A10 Health Monitor configuration

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 213

Server

Two Servers need to be added in this section, one for each CS Cluster. Click SLB -> Service ->

Server -> Add. Enter a name (should identify the Cluster) and the IP of the first CS deployment. In the

Port section enter 80 in the first port text field, change the Health Monitor drop down menu to the blank

option and click Add then Click OK. Repeat for the second Cluster by clicking SLB -> Service ->

Server -> Add. After these steps have been run when you click SLB -> Service -> Server, there

should be two servers in the list.

Service Group

Two Service Groups need to be added. Each service group will contain two server entries, one which will be

the default for the service group and another which is the backup. Click SLB -> Service -> Service

Group -> Add. Enter a name (Should specify the CS cluster it will be the default Service Group for), for the

Health Monitor drop down choose the HTTP health monitor created above. In the Server section select a
server (Which will be the default for this service group) from the Server drop down menu, enter 80 as the
port, select 16 in the Priority drop down and Press Add. In the Server section select a server (Which will be
the backup for this service group) from the Server drop down menu, enter 80 as the port, select 1 in the
Priority drop down and Press Add Finally click OK at the bottom of the screen. Note the priorities entered
for the servers in the service group are important for the correct routing of traffic.

Add the Service Group for the second server by clicking SLB -> Service -> Service Group -> Add.

The two servers are entered again but the priorities are switched.

Below, Figure 59, is an example service group, the default server for this service group is 4685 and the
backup is 4664. When the Service Group configuration is finished there will be two Service Groups, with the
default and backup servers switched over.

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 214

Figure 59: A10 Service Group configuration

Template

A template is what the traffic gets routed by in A10. This section will configure traffic with the rid parameter =

1 to go to the non-default cluster. Choose, SLB -> Template -> Application -> HTTP > Add.

Enter a name and click on the App Switching. Enter "rid=1" in the URL field, Choose the non-default

Cluster from the Service Group drop down menu, choose "Ends With" from the Match Type drop down menu

and click Add in the App Switching section. Enter "rid=1&" in the URL field, Choose the non-default Cluster

from the Service Group drop down menu, choose "Contains" from the Match Type drop down menu and
click Add in the App Switching section. Finally click OK at the end of the screen to save the Template. After
the above is finished the App Switching screen should look as in the screen capture below.

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 215

Figure 60: A10 Template configuration

Virtual Server

Click on the Config Mode tab. Click SLB -> Service -> Virtual Server -> Add. Enter a name and

the IP of the LB. In the port section press the Add button. Select the type as HTTP and enter 80 in the first
port text box. Press Okay on the Virtual Server Port screen and Okay again on the Virtual Server page.

Virtual Service

Click SLB -> Service -> Virtual Service -> Click on the HTTP_80 service. In the drop down list

for the "Service Group" option choose the service group that will be the default CS cluster. In the drop down
list for the HTTP template choose the template created earlier. Press Okay on the Virtual Service page.

IP Source NAT

An, IP Source NAT -> IPv4 Pool, may be required if the LB IP and the CS clusters are on a different

network. To add click, IP Source NAT -> IPv4 Pool -> Add, and enter the details appropriate to the

network.

If a IP Source NAT is required, it needs to be added to each Virtual Service, Click SLB -> Service ->

Virtual Server -> <Virtual Service Name>, in the Source NAT Pool select the IP Source NAT

created earlier.

After all the above is configured switch to Monitor Mode and navigate to SLB -> Service -> Virtual

Server -> Virtual Server. Expand out each of the servers. There should be a green up arrow beside

each server. This signifies that each server is contactable via the health check.

Verify the A10 LB is able to route HTTP traffic through each cluster when both clusters are operational
based on the rid parameter. Failover tests should be run as well for when a cluster is completely down (Both
Active and Standby nodes in a cluster are offline) and when the cluster IP is still active due to only one EDP
from the CS cluster been active. In single-node deployment where there is only one IP address available
(the security module IP of the node), it is considered down once this single node is offline.

https://10.134.34.55/US/b1c32b9ca7a3e7f453172a1aa6f85c/srv_nat_pool_list.html
https://10.134.34.55/US/b1c32b9ca7a3e7f453172a1aa6f85c/srv_nat_pool_list.html

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 216

 HTTPS Traffic Configuration 11.3.3.

Make sure the configuration checked in the section 11.2.1 Configuring Client Certificate Challenge is
enabled.

Retrieve the keystore Certificate from SMGR by following the instructions in the Create Client Keystore
section and download the keystore to your local machine. Note the keystore cert needs to be downloaded
from SMGR in the PEM file format; this differs from the format stated in the 11.2.2 Create Client Keystore
section. The other sections from the 11.2 Certificate Based Authentication chapter do not need to be run.

Login to the A10 webui by entering the maintenance IP into a browser.

There are two modes when viewing the A10 website. Monitor and Config. All the configuration steps
below should be run in Config mode.

In the following steps entities are required to be added or configured. Each of the steps will be described in
detail below. The terms Health Monitor, Servers, Service Group, Template, Virtual Server and Virtual Service
in this document are A10 specific and refer to concepts within the A10 product. The following is required to
enable A10 to route traffic to two Context Store Clusters.

 Upload SMGR Certificate.

 Add two SSL Templates, Client and Server.

 Add a HTTPS Health Monitor.

 Modify the two Servers by adding the 443 port to each.

 Create two HTTPS Service Groups. Each Service Group will contain the two CS servers one as the
default and the other as the backup.

 Modify the Virtual Server, add the 443 port.

 Add a Template to route the traffic through the HTTPS Service Group.

 Modify the HTTPS Virtual Service.

Upload Certificate

Click SLB -> SLL Management -> Certificate and click Import. Enter a name then click the

Browse button beside the Certificate Source and select the keystore pem file that was downloaded from
SMGR previously. Click Browse beside the Private Key Source and select the same keystore pem file
downloaded from SMGR previously. Click OK to save the import of the certs.

Create Client SSL Template

Choose, SLB -> Template ->SSL -> Client SSl and click Add. Enter a name with client and an

identifier for the SMGR it originated from in it. Choose the cert created in the upload cert step for the drop
downs beside "Certificate Name", "Chain Cert Name" and "Key Name" enter the certs password in the "Pass
Phrase" and "Confirm Pass Phrase" fields and click OK.

Create Server SSL Template

Choose, SLB -> Template ->SSL -> Server SSL and click Add. Enter a name with server and an

identifier for the SMGR it originated from in it. Choose the cert created in the upload cert step for the drop
downs beside "Certificate Name" and "Key Name" enter the certs password in the "Pass Phrase" and
"Confirm Pass Phrase" fields and click OK.

Health Monitor
In A10 a health monitor profile is used to check if a server is available. The default health monitor profile
uses pings to evaluate if a server is available. This will not work when only one of the active/standby

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 217

machines is available and the other EDP is down as well. As a result a new health monitor will need to be
configured based on the rest interfaces availability rather than pings to verify if a CS cluster is operational.

Click SLB -> Health Monitor -> Health Monitor -> Add. Enter a name for the health monitor,

suggested "restCheckHTTPS", Choose "HTTPS" for the Type, choose "GET" for the URL type and enter

"/services/CSRest/cs/contexts/HttpsHealthCheckFromTheLoadBalancerShouldNormallyReturnA404"

as the actual URL. Enter "404" in the Expect text area. Choose the cert created in the upload cert step for

the drop down list beside "Certificate Name" and "Key Name", enter the cert password in the "Pass Phrase"
and "Confirm Pass Phrase" fields and click OK at the end of the Health Check screen.

Server

The Two Servers added in the HTTP section need to be updated with the 443 port. Click SLB -> Service

-> Server. Click on one of the servers. In the Port section enter 443 in the first port text field, select the

Server SSL Template created above for the Server-SSL Template(SST) drop down and click Add, then

Click OK. Repeat for the second Cluster by clicking SLB -> Service -> Server and click on the other

server. After these steps have been run when you click SLB -> Service -> Server, there should be

two servers in the list, both which have the ports 80 and 443 configured.

Service Group

Two Service Groups need to be added that are HTTPS specific. Each service group will contain two server

entries, one which will be the default for the service group and another which is the backup. Click SLB ->

Service -> Service Group -> Add. Enter a name (Should specify the CS cluster it will be the default

Service Group for and have HTTPS also in the name), for the Health Monitor drop down choose the HTTPS
health monitor created above. In the Server section select a server (Which will be the default for this service
group) from the Server drop down menu, enter 443 as the port, select 16 in the Priority drop down and Press
Add. In the Server section select a server (Which will be the backup for this service group) from the Server
drop down menu, enter 443 as the port, select 1 in the Priority drop down and Press Add Finally click OK at

the bottom of the screen. Add the Service Group for the second server by clicking SLB -> Service ->

Service Group -> Add.

Virtual Server

Click SLB -> Service -> Virtual Server. Select the preexisting virtual server. In the port section

press the Add button. Select the type as HTTPS and enter 443 in the first port text box. In the Service Group
drop down choose the default HTTPS service group created previously. For the "Client-SSL Template"
choose the Client SSL template created previously and for the "Server-SSL Template" drop down choose
the Server-SSL Template created previously. Press Okay on the Virtual Server Port screen and Okay again
on the Virtual Server page.

Template

This section will configure traffic with the rid parameter = 1 to go to the non-default cluster. Choose, SLB ->

Template -> Application -> HTTP > Add. Enter a name (It should contain HTTPS somewhere in

the name) and click on the App Switching. Enter "rid=1" in the URL field, Choose the non-default HTTPS

Cluster from the Service Group drop down menu, choose "Ends With" from the Match Type drop down menu

and click Add in the App Switching section. Enter "rid=1&" in the URL field, Choose the non-default HTTPS

Cluster from the Service Group drop down menu, choose "Contains" from the Match Type drop down menu
and click Add in the App Switching section. Finally click OK at the end of the screen to save the Template.

Virtual Service

Click SLB -> Service -> Virtual Service. Click on the HTTP_443 service. In the drop down list for

the "Service Group" option select (If it is not selected already) the HTTPS service group that will be the
default CS cluster. In the drop down list for the HTTP template choose the HTTPS template created earlier in

Appendix

Avaya Context Store Snap-In Developer Guide 3.1.0.1 218

the HTTPS configuration. Verify the "Client-SSL Template" and "Server-SSL Template" options have the
correct template selected. Press Okay on the Virtual Service page.

After all the above is configured switch to Monitor Mode and navigate to SLB -> Service -> Virtual

Server -> Virtual Server. Expand out each of the servers. There should be a green up arrow beside

each server. This signifies that each server is contactable via the health check.

Verify the A10 LB is able to route HTTPS traffic through each cluster when both clusters are operational
based on the rid parameter. Failover tests should be run as well for when the cluster IP is completely down
(Both Active and Standby nodes are offline) and when the cluster IP is still active due to only one EDP from
the CS cluster been active. In single-node deployment where there is only one IP address available (the
security module IP of the node), it is considered down once this single node is offline.

	Contents
	1. Intended audience
	1.1. Related Documentation
	1.2. DevConnect Resources

	2. Introduction
	2.1. Platform
	2.1.1. Platform Sizing

	3. RESTful Interface
	3.1. Overview
	3.1.1. API Documentation
	3.1.2. Case Sensitive
	3.1.3. REST Clients
	3.1.4. Sample API Requests

	3.2. Audit Trail Feature (since CS 3.1)
	3.2.1. Overview
	3.2.2. Audit Entry
	Timestamp
	Touchpoint
	Version Id
	Operation Ids

	3.2.3. Enabling and setting the size of Audit Trail
	3.2.4. Considerations for Capacity Planning

	3.3. Upsert Feature (since CS 3.1)
	3.3.1. Overview
	3.3.2. Upsert Parameters

	3.4. CSRest API
	3.4.1. Context Object Information
	contextId field
	Special Considerations

	data field
	Special Considerations

	persistToEDM field
	persistTo field
	groupId field
	Special Considerations

	tenantId field
	aliasId field
	routingId field

	3.4.2. Query Parameters
	Query parameter: lease
	Query parameter: touchpoint
	Query parameter: rid
	Query parameter: alias

	3.4.3. POST – Adding a Context
	3.4.4. UPSERT – Upserting a Context
	3.4.5. UPSERT – Upserting a Context which has optional identifier fields
	3.4.6. UPSERT – Upserting a Context by aliasId
	3.4.7. UPSERT – Upserting a Context with aliasIds
	3.4.8. UPSERT – Upserting a Context with aliasIds by aliasId
	3.4.9. GET – Getting a Context
	3.4.10. GET – Getting a Context value
	3.4.11. GET – Getting a Context by aliasId
	3.4.12. GET – Getting a Context value by aliasId
	3.4.13. GET – Getting a Context’s Audit Data
	3.4.14. GET – Getting a Context’s Audit Data by aliasId
	3.4.15. GET – Getting Contexts’ Metadata by groupId
	3.4.16. UPDATE – Updating a Context
	3.4.17. UPDATE – Updating a Context value
	3.4.18. UPDATE – Updating a Context by aliasId
	3.4.19. UPDATE – Updating a Context value by aliasId
	3.4.20. UPDATE – Adding an aliasId by contextId
	3.4.21. UPDATE – Adding an aliasId by aliasId
	3.4.22. DELETE – Deleting a Context
	3.4.23. DELETE – Deleting a Context value
	3.4.24. DELETE – Deleting a Context by aliasId
	3.4.25. DELETE – Deleting a Context value by aliasId
	3.4.26. DELETE – Deleting an aliasId

	4. Context Store SDK Tutorial
	4.1. Java Client
	4.1.1. Overview
	4.1.2. SDK operations
	4.1.3. Configuration
	4.1.4. Usage

	4.2. C# Client
	4.2.1. GUI layout
	4.2.2. Application Layout:
	Code Snippet: addContext

	4.3. Security

	5. Screen Pop
	5.1. Overview
	5.2. Screen Pop Operations on the Context Store
	5.3. Output Format
	5.4. Rules Engine
	5.5. Rest Service
	5.6. Data-grid
	5.7. URLs & Operations
	5.7.1. Create & View a Context
	URL
	URL Parameters
	Example URLs

	5.7.2. Update & View a Context
	URL
	URL Parameters
	Example URLs

	5.7.3. View a Context
	URL
	URL Parameters
	Example URLs

	5.7.4. View a Context by Selecting contextId from Parameter (UCID)
	URL
	URL Parameters
	Example URLs

	5.7.5. View contextIds by groupId
	URL
	URL Parameters
	Example URLs

	5.7.6. Upsert & View a Context
	URL
	URL Parameters
	Example URLs

	5.7.7. View a Context by Selecting contextId from Parameter (UCID)
	URL
	URL Parameters
	Example URLs

	5.7.8. View contextIds by groupId
	URL
	URL Parameters
	Example URLs

	5.7.9. Older Browser Compatibility
	5.7.10. JSON Content Type

	5.8. Response Formats
	5.8.1. Format Selection
	1) Default Rules Format
	2) User Configurable Rules
	3) Format Override

	5.8.2. Format Types
	1) HTML
	Pre-defined
	User Configurable
	Override Format

	2) XML
	Pre-defined
	User Configurable
	Override Format

	3) JSON
	Pre-defined
	User Configurable
	Override Format

	4) URL
	Pre-defined
	User Configurable
	Override Format

	5) REDIRECT
	Pre-defined
	User Configurable
	Override Format

	6) MAILTO
	Pre-defined
	User Configurable
	Override Format

	7) WA
	Pre-defined
	Override Format

	8) JSONARRAY
	Pre-defined
	Override Format

	5.9. Pre-Configured Rules
	5.9.1. Rules Engine Overview
	5.9.2. Default Rules Provided
	Format - JSON
	Format - HTML
	Format - URL
	Format - REDIRECT
	Format - XML
	Format - WA
	Format - JSONARAY
	Format - MAILTO
	Filter - Include
	Filter - Exclude

	5.10. Editable Rules
	Configurable Rule Keywords
	Configurable Rule Format
	Breakdown of Rule Format and Keywords
	_if_contains_
	_then_format_

	Allowed Formats
	priority
	include or _exclude_
	update
	delete

	Examples
	Match on a Single Key - Only Return Key Matched
	Match on 2 Keys - Only Return 2 Set Keys
	Match on 3 Keys - Return all Context Data except 2 Keys excluded
	Match on 4 Keys - Return all Context Data except 2 Keys excluded
	Match on 5 Keys - Only Return 4 Set Keys
	Format set to HTML with css page set in rule
	Format set to URL with url set in rule
	Format set to REDIRECT with url set in rule
	Format set to REDIRECT with url set in rule, update keys and delete keys

	5.10.1. Configurable Properties
	5.10.2. Base for URL
	5.10.3. Context Store Rest Version
	5.10.4. CSS for HTML
	5.10.5. Identifier Delimit Character
	5.10.6. Identifier Delimit Position
	5.10.7. Identifier Parsing Position
	5.10.8. User Rules 01-20
	5.10.9. Example URLs & Their Functions
	Create a Context with a Single Entry and Return Context
	Create a Context with Multiple Entries and Return the Context
	Update a Single Entry in an Existing Context
	Update Multiple Entries in an Existing Context
	Create a Context with Multiple Entries and Update Multiple Times Changing the Response Format
	View an Existing Context
	View an Existing Context in HTML/XML/JSON
	View an Existing Context by Parsing a UCID in HTML
	Update a Context and Redirect to an External Web Page Passing Parameters

	5.11. Sample Usages
	5.11.1. Create and View
	5.11.2. Create, Update and View
	5.11.3. Create, Update Multiple Times, View then Redirect
	5.11.4. Create Context in CSRest, Update and Redirect

	5.12. Example Configuration for Communication Manager
	5.12.1. Configure CM to support Screen Pop

	5.13. Example Configuration for One-X Screen Pop
	5.13.1. Configuring Security Certificates for Agent Desktops
	5.13.2. Configuration of the Screen Pop feature in the One-X Agent Desktop client

	6. CRM Integration
	6.1. Overview
	6.1.1. Features
	6.1.2. Caveats

	6.2. High Level Design
	6.2.1. Basic Flow
	6.2.2. Example CRM & CS Integration

	6.3. Configuration
	6.3.1. Create EDP Event
	Create an event as follows
	Schema

	6.3.2. Create Workflow
	6.3.3. Configure Rule
	6.3.4. Firing a Rule
	Context Store Rest Response
	Eventing Connector Response
	Engagement Designer Response

	7. Context Store PDC
	7.1. Overview
	7.2. Installation Prerequisites of the Context Store PDC in Eclipse/Orchestration Designer
	7.2.1. Software requirements
	7.2.2. Prerequisites

	7.3. Installing/Upgrading the Context Store PDC plugin
	7.4. Tomcat configuration in Orchestration Designer
	7.5. Configuring certificates in Orchestration Designer
	7.6. Using the Context Store Connector
	7.6.1. Configure the Context Store plugin
	7.6.2. Add the Context Store Connector in the workflow
	7.6.3. Context Store PDC input/output variables
	7.6.4. Retrieving output variable values
	All GET operations (as well as POST operation for auto-generated contextId) send back data in the request response under normal circumstances: below are some examples

	7.7. Context Store PDC – Running Sample Projects
	7.7.1. Configuring the project to use the Context Store PDC
	7.7.2. Testing Context Store PDC Sample Applications
	7.7.3. Sample Audit Trail Application

	7.8. PDC - Experience Portal Test Setup
	7.8.1. Overview
	7.8.2. What’s needed
	7.8.3. Sample Call Flow One.

	7.9. Tomcat configuration in Orchestration Designer
	7.10. Configuring certificates in Orchestration Designer
	7.11. Using the Context Store Connector
	7.11.1. Configure the Context Store plugin
	7.11.2. Add the Context Store Connector in the workflow
	7.11.3. Context Store PDC input/output variables
	7.11.4. Retrieving output variable values
	All GET operations (as well as POST operation for auto-generated contextId) send back data in the request response under normal circumstances: below are some examples

	7.11.5. Sample Call Flow Two.
	Runtimeconfig application

	7.11.6. Installing the sample application plus runtimeconfig on an Experience Portal system

	8. Context Store Task Type for Engagement Designer
	8.1. Overview
	8.2. Usage
	8.2.1. Input and Output
	Required Input Mapping/Parameters
	Output Parameters

	8.2.2. CS Task Type Operations
	Add Context
	Add Context without Context Id
	Get Context
	Get Context Ids with Alias Id
	Get Context Ids for Group Id
	Get Context Audit Data
	Get Context Audit Data by Alias Id
	Get Key
	Get Key by Alias Id
	Update Context
	Update Context by Alias Id
	Update Key
	Update Key by Alias Id
	Update Alias Ids by Context Id
	Update Alias Ids by Alias Id
	Upsert Context
	Upsert Context by Alias Id
	Delete Context
	Delete Context by Alias Id
	Delete Alias Id
	Delete Key
	Delete Key by Alias Id

	8.2.3. Creating a workflow in ED
	Configuring the Variables Node
	Configuring the Start Node
	Configuring the End Node
	Deploying and testing the Workflow
	Verifying The Output From A Workflow.

	8.2.4. Importing the Sample Workflow into the Designer
	8.2.5. Validation
	8.2.6. Re-use of Collaboration Designer 3.0 Workflows

	9. Notifications
	9.1. Overview
	9.2. Security Configuration
	9.3. Usage
	9.4. Performance/Capacity
	9.5. High Availability and Fault Tolerance

	Event Tracker (Agent Notifications)
	9.6. Overview
	9.7. Configuration
	9.7.1. Configure EDP and Context Store
	Streams Service Endpoint

	9.7.2. Install Security Certificates

	9.8. Usage
	9.8.1. Setup the JavaScript Test Client
	9.8.2. Register and Verify an Event Stream
	9.8.3. Advanced Event Stream Configuration

	10. Performance and Scalability Considerations
	10.1. Overview
	10.2. Capacity Planning
	10.2.1. Enabling Optional Features
	Audit Feature
	Alias Feature
	Geo Redundancy
	CSNotifications
	Event Tracker

	10.3. Hardware and Network
	10.3.1. CPU
	10.3.2. Network
	10.3.3. VMware

	10.4. High Availability
	10.5. Geo Redundancy
	10.6. External DataMart
	10.6.1. Provisioning from External DataMart

	10.7. Throttling
	10.8. Sequenced Apps

	11. Appendix
	11.1. Context Store API Documentation
	11.1.1. Overview
	11.1.2. Data Types
	Context
	Data

	11.1.3. Context Operations
	postContext
	upsertContext by contextId
	upsertContext by aliasId
	getData by contextId
	getData by aliasId
	getValue by contextId
	getValue by aliasId
	getContexts by groupId
	getAuditData by contextId
	getAuditData by aliasId
	putData by contextId
	putData by aliasId
	putValue by contextId
	putValue by aliasId
	put aliasId by contextId
	put aliasId by aliasId
	deleteContext by contextId
	deleteContext by aliasId
	deleteValue by contextId
	deleteValue by aliasId
	delete aliasId

	11.1.4. Interface Error Codes
	REST Status Codes
	PDC Status Codes
	Screen Pop Error Codes

	11.2. Certificate Based Authentication
	11.2.1. Configuring Client Certificate Challenge
	11.2.2. Create Client Keystore
	11.2.3. Download Avaya Aura® Engagement Development Platform Trusted Certificate from System Manager
	11.2.4. Import Trusted Certificate into Keystore
	11.2.5. Verifying Successful Authentication
	11.2.6. General Information Regarding Java SSL
	11.2.7. Thin Client Access
	11.2.8. Troubleshooting SSL Connections

	11.3. A10 Load Balancer Configuration
	11.3.1. A10 Installation
	Prerequisites
	Installation

	11.3.2. HTTP Traffic Configuration
	Health Monitor
	Server
	Service Group
	Template
	Virtual Server
	Virtual Service
	IP Source NAT

	11.3.3. HTTPS Traffic Configuration
	Upload Certificate
	Create Client SSL Template
	Create Server SSL Template
	Health Monitor
	In A10 a health monitor profile is used to check if a server is available. The default health monitor profile uses pings to evaluate if a server is available. This will not work when only one of the active/standby machines is available and the other E...
	Click SLB -> Health Monitor -> Health Monitor -> Add. Enter a name for the health monitor, suggested "restCheckHTTPS", Choose "HTTPS" for the Type, choose "GET" for the URL type and enter "/services/CSRest/cs/contexts/HttpsHealthCheckFromTheLoadBalanc...
	Server
	Service Group
	Virtual Server
	Template
	Virtual Service

