

Avaya Proactive Contact 5.0
Software Developer’s Kit

Issue 1.1

June 2011

© 2011 Avaya Inc.

All Rights Reserved

Notice

While reasonable efforts were made to ensure that the information in this document was
complete and accurate at the time of printing, Avaya Inc. can assume no liability for any
errors. Changes and corrections to the information in this document may be incorporated
in future releases.

To locate this document on our Web site, simply go to
http://www.avaya.com/support and search for the document number in the search
box.

Documentation disclaimer

Avaya Inc. is not responsible for any modifications, additions, or deletions to the original
published version of this documentation unless such modifications, additions, or
deletions were performed by Avaya. Customer and/or End User agree to indemnify and
hold harmless Avaya, Avaya's agents, servants and employees against all claims,
lawsuits, demands and judgments arising out of, or in connection with, subsequent
modifications, additions or deletions to this documentation to the extent made by the
Customer or End User.

Link disclaimer

Avaya Inc. is not responsible for the contents or reliability of any linked Web sites
referenced elsewhere within this documentation, and Avaya does not necessarily
endorse the products, services, or information described or offered within them. We
cannot guarantee that these links will work all of the time and we have no control over
the availability of the linked pages.

Warranty

Avaya Inc. provides a limited warranty on this product. Refer to your sales agreement to
establish the terms of the limited warranty. In addition, Avaya‟s standard warranty
language, as well as information regarding support for this product, while under
warranty, is available through the following Web site:
http://www.avaya.com/support.

Copyright

Except where expressly stated otherwise, the Product is protected by copyright and
other laws respecting proprietary rights. Unauthorized reproduction, transfer, and or use
can be a criminal, as well as a civil, offense under the applicable law.

Avaya support

Avaya provides a telephone number for you to use to report problems or to ask
questions about your product. The support telephone number is 18002422121 in the
United States. For additional support telephone numbers, see the Avaya Web site:
http://www.avaya.com/support.

http://www.avaya.com/support
http://www.avaya.com/support
http://www.avaya.com/support/

Contents

Contents.. iii

Preface.. 1

Purpose .. 1

Audience .. 1

Reasons for issue .. 1

Related documents .. 1

Overview ... 2

Avaya Proactive Contact fundamentals.. 2

Avaya Proactive Contact configurations .. 2

Blending options .. 4

Job types ... 5

Call management ... 6

Call activities ... 6

Call .. 7

Device ... 7

Calling lists .. 7

Campaign management .. 8

Monitoring calling activity ... 8

Agent activities ... 8

Agent types ... 9

Agent tasks ...10

Logging in to Avaya Proactive Contact ...10

Joining jobs ..10

Handling calls ...10

Transferring calls ..10

Placing manual calls ...11

Placing field calls ..11

Calling alternative telephone numbers ...11

Scheduling recalls ..11

Updating customer records ..11

Ending calls ..11

Leaving jobs ...12

Disconnecting headsets ...12

Logging out ...12

Working in a CORBA environment ..13

Developing client applications ...13

Sample applications ..14

Using the Avaya Proactive Contact SDK ...15

Working with interface definition language ..15

Connecting to the Avaya Proactive Contact SDK ..15

Connect using the Naming Service ..16

Connect using the Naming Service IOR ...19

Connect to the Avaya Proactive Contact SDK ..20

Call event state diagrams ..21

Inbound calling ...22

Outbound calling ..23

Blind native voice transfer ...29

Supervised native voice transfer ...30

Supervised native voice transfer with consulted ..31

Trunk-to-trunk transfer with consulted ...32

Trunk-to-trunk transfer without consulted ..33

Job state scenarios ...34

Agent state scenarios ..34

Commands and notification events ..36

SDK common data types...36

Generic data types ..38

Real-time events ...39

CallEventNotify ...39

AgentEventNotify ..47

JobEventNotify ...52

Real-time statistics ..61

systemStatNotify ..61

JobStatNotify ..64

AgentStatNotify ..70

LineStatNotify ...74

Using the Client IDL ...76

CallEventNotify ..76

IDL declaration ...76

Exceptions ..77

Examples ..77

AgentEventNotify ..77

IDL declaration ...77

Exceptions ..77

Examples ..77

JobEventNotify ..77

IDL declaration ...77

Exceptions ..78

Examples ..78

SystemStatNotify ...78

IDL declaration ...78

Exceptions ..78

Examples ..78

JobStatNotify ...78

IDL declaration ...78

Exceptions ..79

Examples ..79

AgentStatNotify ...79

IDL declaration ...79

Exceptions ..79

Examples ..79

LineStatNotify ..79

IDL declaration ...79

Exceptions ..80

Examples ..80

Using the Server IDL ..81

Logon ..81

IDL declaration ...81

Exceptions ..82

Logoff ..82

IDL declaration ...82

Exceptions ..82

SetPasswd ..82

IDL declaration ...82

Exceptions ..83

registerEventStat ...83

IDL declaration ...83

Exceptions ..84

Examples ..84

unRegisterEventStat ...84

IDL declaration ...84

Exceptions ..84

getStatistics ...85

IDL declaration ...85

Exceptions ..85

addInactive ..85

Appendix A: Avaya Proactive Contact SDK exceptions ...86

Appendix B: System exceptions ...88

Appendix C: Completion codes ..90

Appendix D: Windows sample setup ..94

ORB TAO setup on Windows ..94

Build client executable on Windows for Proactive ...97

Contact 5.0 SDK ...97

Appendix E: RHEL 5.5 sample setup ...104

ORB TAO setup on RHEL 5.5 ...104

Overview ..104

Build client executable on RHEL 5.5 for APC 5.0 ..106

Event Services ..106

Appendix F: Java sample application ...108

Required software ...108

Building the JacORB on Linux ...108

Executing on RHEL 5.5 for APC 5.0 Event ...109

Services ..109

Executing the Application ...110

Building JacORB on Windows ...111

Executing on Windows for APC 5.0 Event ..111

Services ..111

Appendix G: Certificate Generation, Signing and Maintenance ...114

Generating certificates and Keystore using ...114

OpenSSL CA ...114

Appendix H: 4.2 Event SDK clients interacting with PC 5.0 Dialer ...115

Avaya Proactive Contact 5.0 Software Developer’s Kit

1

Preface

This section contains the following topics:

 Purpose

 Audience

 Reasons for issue

 Related documents

Purpose
The purpose of this guide is to provide detailed information about Avaya Proactive

Contact.

Audience
This guide is for personnel who develop client applications for Avaya Proactive

Contact. The Avaya Proactive Contact SDK provides a CORBA-based interface for

monitoring and reporting real-time and historical operations.

Reasons for issue
 TAO is upgraded to 1.6a

 JacORB is upgraded to 2.3.1

 JRE is upgraded to 1.6.0_21

 Added description related to multi unit selection in

Contents of struct Contents of struct AgentDynDataPerJob ->unitID.

 Certificates are renewed to increase expiry date.

 Added support for Windows 32-bit for Windows Vista, Windows 7, Windows

2008 and 64-bit for Windows XP, Windows Vista, Windows 7, Windows 2008

 Corrected the resolution of the images

Related documents
 Planning and Prerequisites for Avaya Proactive Contact

 Administering Avaya Proactive Contact (Linux-based Interface)

 Using Avaya Proactive Contact Supervisor

 Using Avaya Proactive Contact Agent

 Avaya Proactive Contact Safety and Regulatory Information

Avaya Proactive Contact 5.0 Software Developer’s Kit

2

Overview

This section contains an overview of Avaya Proactive Contact and the Software

Developer‟s Kit.

This section contains the following topics:

 Avaya Proactive Contact Fundamentals

 Call Management

 Agent Activities

 Working in a CORBA environment

 Developing client applications

 Sample applications

Avaya Proactive Contact fundamentals
Avaya Proactive Contact is a predictive dialing system designed to support both

centralized and distributed call centers. It initiates outbound calls and receives and

manages inbound calls. Avaya Proactive Contact consists of software and hardware

components such as a digital telephone switch, host computer, system cabinet,

workstations, and printers.

This section contains the following topics:

 Avaya Proactive Contact configurations

 Blending options

 Agent Blending

 Intelligent Call Blending

 Job types

Avaya Proactive Contact configurations

There are three basic Avaya Proactive Contact configurations:

Avaya Proactive Contact

In this configuration, the system includes the Avaya PG230 digital switch and the dialer

server. The Avaya PG230 digital switch is controlled by the dialing system software.

Avaya Proactive Contact with PG230

In this configuration, the system separates the Avaya PG230 digital switch and the

dialer server. The Avaya PG230 digital switch is controlled by the dialing system

software.

Avaya Proactive Contact with AES

In this configuration, the Avaya Communication Manager performs outbound calling

functions instead of the Avaya PG230 digital switch.

The following figures illustrate the three basic configurations.

Avaya Proactive Contact 5.0 Software Developer’s Kit

3

Figure 1:
Avaya Proactive Contact - dialer and dialer server in one cabinet

Figure 2:
Avaya Proactive Contact with PG230 - dialer and dialer server in two cabinets

Avaya Proactive Contact 5.0 Software Developer’s Kit

4

Figure 3:
Avaya Proactive Contact with AES

Blending options

There are two types of blending in Avaya Proactive Contact, Agent Blending and

Intelligent Call Blending. Blending mixes inbound and outbound calling activities so that

agents can handle either kind of call. Appropriate use of blending helps optimize agent

and job effectiveness.

This section contains the following sections:

l Agent Blending

l Intelligent Call Blending

Agent Blending

Agent Blending integrates outbound calling activities on your Avaya Proactive Contact

with inbound calling activities on your automatic call distributor (ACD). Avaya Proactive

Contact provides two types of Agent Blending: Predictive Agent Blending and Proactive

Agent Blending.

Both types of Agent Blending systems use a pool of ACD blend agents for outbound

calling. The ACD agents log in to the dialer and the ACD. Agent Blending monitors the

activity on the ACD to determine when to move agents between inbound and outbound

calling activities.

The dialer acquires the pooled agents for outbound calling when the inbound calling

activity decreases. The dialer releases the pooled agents to inbound calling when the

Avaya Proactive Contact 5.0 Software Developer’s Kit

5

inbound calling activity increases. The movement between inbound and outbound

calling keeps the ACD blend agents busy and the ACD service level within your

prescribed limits.

Predictive Agent Blending - Enables call centers to focus on the inbound mission.

Predictive Agent Blending uses events from the ACD to forecast call volume and

determine when to move ACD agents between inbound and outbound calling. The

dialer predicts when too many agents receive inbound calls. The dialer then acquires

agents from the ACD to handle outbound calls until the inbound volume increases.

Proactive Contact Agent Blending - Enables call centers to focus is on outbound

calling, but you need to service a low volume of inbound customers. Proactive Agent

Blending focuses on outbound calls and releases agents to inbound only when an

inbound calls enters a monitored queue on the ACD.

When an ACD agent logs in, the system immediately acquires the agent for outbound

calling. When an inbound call arrives in the ACD queue, the dialer releases the agent

to handle the call. If inbound calls continue to arrive, the dialer continues to release

agents. When the queue is empty, the dialer acquires agents for outbound calls.

Agent Blending is an enhanced system that requires an ACD and AES. If the call

center site has an ACD, either Agent Blending or Intelligent Call Blending can be used.

However, both methods cannot be used on the same dialer server at the same time.

Intelligent Call Blending

In an Intelligent Call Blending system, blend agents handle outbound calls until there

are more inbound calls than available inbound agents. Intelligent Call Blending passes

the excess inbound calls to the blend agents. When the call volume decreases, Avaya

Proactive Contact returns to passing outbound calls to blend agents.

Job types

Avaya Proactive Contact manages outbound calling and inbound calling through three

types of calling jobs: outbound, inbound, and blend. Jobs provide means to organize

groups of agents to handle certain customers to support the business goals of the

enterprise.

Outbound jobs

When using outbound jobs, Avaya Proactive Contact dials phone numbers and routes

outbound calls to agents on Intelligent Call Blending and Agent Blending systems.

Avaya Proactive Contact screens for answering machines, phone operator intercepts,

busy signals, Interactive Voice Responses (IVR), and no answers. The system reports

on the outbound calls and agent activities.

Managed and Cruise Control jobs are special types of outbound jobs. A Managed job

is used for Managed Dialing where an agent previews the record of an outbound call

before the dialer places the call. A Cruise Control job is an outbound job where the

dialer automatically monitors and adjust the dialing pace throughout the oubound job.

Inbound jobs

When using inbound jobs, Avaya Proactive Contact routes inbound calls to agents. If

the call center has an Intelligent Call Blending system, the system supervisor uses the

Avaya Proactive Contact 5.0 Software Developer’s Kit

6

system menus to control the inbound job settings. The system reports on the inbound

calls and agent events when handling inbound calls on Avaya Proactive Contact.

If the call center has an Agent Blending system, the system supervisor uses the Agent

Blending menus and the ACD to control inbound calling activity. The ACD reports on

inbound calls and agent activities when handling inbound calls.

Blend jobs

Blend jobs are jobs on an Intelligent Call Blending system.

When using blend jobs, Avaya Proactive Contact moves agents between outbound and

inbound calls. Blend agents receive inbound calls during peak inbound activity and

outbound calls when inbound activity decreases. The customer uses Avaya Proactive

Contact menus to control the inbound job settings. The system reports on all calls and

agent events when handling outbound and inbound calls on Avaya Proactive Contact.

Call management
The following sections provide an overview of how Avaya Proactive Contact manages

calling activities to make productive use of agent time and system resources:

 Call activities

 Call

 Device

 Calling lists

 Campaign management

 Monitoring calling activity

Call activities

A client application can use calling activity data that the dialing server gathers and

stores. The SDK retrieves data from the following perspectives:

 The calls made and received

 The agents who handle the calls

 The job, a collection of calls that fulfills a goal

 The dialer server that conducts the calling activity

 The phone lines used to transmit the calls

The components of a call include:

 The devices that participate in the call

 The connection that defines the relationship between the devices and the

call

 The agent who handles the call

 Possibly other agents or personnel involved in call transfers and

conferences

Avaya Proactive Contact 5.0 Software Developer’s Kit

7

 The customer, or far end party that particiates in the call

Call

A call is a communication connection between two or more devices. At the

programming level, call object consists of a call identifier and call state. The call

identifier is a numeric string of 18 digits. It is composed of the following digits:

DDDPPPJJJHHNNNNNNN

 DDD represents the dialer identifier

 PPP represents the porter number

 JJJ represents the day in the year as a decimal number from 001 to 366

 HH represents the hour when the call was initiated from 01 to 23

 NNNNNNN represents the numeric identifier for the call

The system generates a call identifier in the following instances:

 A job initiates an outbound call

 A job checks for an inbound call on an inbound trunk

 An agent initiates a manual call

 An agent initiates a field call

 An agent initiates a transfer

When an agent transfers a call to a third party, there are three call identifiers (ID). Call

ID 1 is the original call ID from the customer. Call ID 2 is the call that the receiving

agent makes to connect to a second agent. Call ID 3 is the call created when the agent

completes the transfer and disconnects from the call.

Device

A device can be a physical device such as the equipment number for an agent

headset. It can also be a logical device identification number, such as a headset

number, trunk group number, or line number.

A physical device identifier has a number that is unique within the switch. A logical

device identification number is only unique within the device type. For example, you

may have headset1, line1, and trunk1 on the same switch.

Calling lists

Avaya Proactive Contact uses a calling list to record call results in customer records.

Avaya Proactive Contact 5.0 Software Developer’s Kit

8

Avaya Proactive Contact uses outbound calling lists to determine what customers to

call. It creates the calling lists by converting host database files into the system format

and adding fields. After Avaya Proactive Contact adds the necessary fields, it checks

for and flags duplicate records and invalid phone numbers. It can also mark records

that have been on the system more than a specified number of days.

Typical added fields include:

 The name of the last agent to speak with the customer

 The date and time of the last call attempt

 The result of the last call attempt

 The number of days the record has been on the system

 The date the record was first downloaded

 The time zone

 The record status

Avaya Proactive Contact with Intelligent Call Blending uses inbound calling lists for

inbound and blend jobs. An inbound calling list contains data fields but no customer

records.

Avaya Proactive Contact and agents use completion codes to record call results in

customer records.

Campaign management

A campaign is a strategy that supervisors design to achieve call center goals. One

element of a campaign is a job. Campaigns can include one or more jobs. A job‟s

objective is to accomplish specific campaign goals. A job consists of a calling list, a

phone strategy, a record selection, a job definition, job screens, and other settings.

Monitoring calling activity

When a job is active, the Avaya Proactive Contact supervisor can monitor the calling

activity and adjust settings to ensure that the job meets call center goals.

Agent activities
Call center agents are responsible for talking with customers and updating customer

records. To develop agent applications, you need an understanding of agent tasks.

This section provides background information to help you understand the agent

functions.

This section contains the following topics:

 Agent types

 Agent tasks

 Logging into Avaya Proactive Contact

 Joining jobs

 Handling calls

Avaya Proactive Contact 5.0 Software Developer’s Kit

9

 Transferring calls

 Placing manual calls

 Placing field calls

 Calling alternative telephone numbers

 Scheduling recalls

 Updating customer records

 Ending calls

 Leaving jobs

 Disconnecting headsets

 Logging out

Agent types

Agents work on specific types of jobs by logging in to the system as a specific type of

agent. An agent who logs in to an Intelligent Call Blending system handles outbound

and inbound calls during outbound, inbound, and blend jobs. An agent who logs in to

an Agent Blending system handles outbound calls on Avaya Proactive Contact and

inbound calls on the ACD. The agent type determines which features are available and

which jobs the agents can handle.

Agent Type Description

Outbound Agent Agents handle calls that Avaya Proactive Contact
places during outbound and blend jobs on Intelligent
Call Blending systems and outbound jobs on Agent
Blending systems.

Inbound Agent Agents handle calls received from customers during
inbound and blend jobs on Intelligent Call Blending
systems.

Blend Agent Agents handle calls received from customers during
inbound and blend jobs on Intelligent Call Blending
systems.

Person to Person Agent Agents receive calls only when all other agents on
the job are busy during any job on Intelligent Call
Blending and Agent Blending systems.

Managed Agent Agents handle only outbound calls during Managed
Dialing jobs on Intelligent Call Blending and Agent
Blending systems.

Avaya Proactive Contact 5.0 Software Developer’s Kit

10

ACD Agent ACD agents log in to both Avaya Proactive Contact
and the ACD. They handle outbound calls from
Avaya Proactive Contact when not handling inbound
calls from the ACD on Agent Blending systems.

Agent tasks

Call center agents talk with customers and update customer records. Throughout the

day, agents work on Avaya Proactive Contact handling calls. This section describes the

tasks agents complete while on the system.

Logging in to Avaya Proactive Contact

An agent enters a user name or user identification number (ID) and a password to log

in to Avaya Proactive Contact. The system prompts the agent to enter a workstation or

headset ID. Avaya Proactive Contact confirms that the ID is valid, displays the agent

interface, and establishes a voice connection to the agent headset.

If the agent is an ACD Agent on an Agent Blending system, the agent also logs in to

the ACD.

Joining jobs

After establishing workstation and voice connections, the agent joins or attaches to an

active job.

Finally, the agent tells Avaya Proactive Contact that he or she is available to take calls.

Handling calls

Depending on the configuration, Avaya Proactive Contact distinguishes between calls

answered by a person and calls answered by an electronic device. Avaya Proactive

Contact refers to calls answered by a person as "live" calls; calls answered by an

electronic device are Autovoice calls .

The supervisor configures the job to determine which call types Avaya Proactive

Contact passes to the agents. Supervisors may decide to pass Autovoice calls to

agents so that agents can leave messages on the device. Or, they may decide to

screen these calls. In addition, the supervisor decides whether to place calls in a wait

queue when no agents are available.

Transferring calls

Agents can transfer inbound or outbound calls to another telephone number, a

supervisor, or an extension. Avaya Proactive Contact can be configured to allow the

agent to transfer both the call and customer record. Avaya Proactive Contact refers to

this as Voice and Data Transfer.

Agents can disconnect from the customer who is on hold before the transfer party

answers the phone, or they can stay on the line and announce the transfer. While on

the call, agents can remain in the on-call state until they disconnect from the transfer or

the call. Agents use function keys to disconnect from the transfer.

Avaya Proactive Contact 5.0 Software Developer’s Kit

11

During a supervised transfer, the agent can disconnect the call transfer by a manual

hang up and restore the contact with the customer. An agent may disconnect the call if

a call transfer reaches a wrong number, busy signal, answering machine, or an error

message.

Placing manual calls

When placing a manual call, the agent may get a busy signal, answering machine, or

no answer. The agent must enter the appropriate completion code in the customer‟s

record.

Placing field calls

The agent screen displays fields that contain telephone numbers. The agent selects a

customer telephone number and tells Avaya Proactive Contact to place the call. The

system calls the number.

When placing a field call, the agent may get a busy signal, answering machine, or no

answer. The agent must enter the appropriate completion code in the customer‟s

record.

Calling alternative telephone numbers

The agent screen displays fields that contain telephone numbers. The agent selects a

customer telephone number and tells Avaya Proactive Contact to place the call. The

system then calls the number.

The agent may tell Avaya Proactive Contact to dial a different phone number. If the

agent chooses to dial digit by digit, the system prompts the agent for each digit.

Otherwise, the system prompts the agent for the entire telephone number.

Scheduling recalls

Avaya Proactive Contact can be set up to allow the agent to schedule recalls. A

scheduled recall allows the agent to specify the phone number and set the time and

date to place a phone call to the customer. On systems with the Agent Owned Recall

feature, agents can specify that they handle the call. When Avaya Proactive Contact

places an agent owned recall, it attempts to locate the agent from the list of agents

logged in to the system. If the agent is not logged in, Avaya Proactive Contact

postpones the call.

Updating customer records

Agents update the customer records on their screens and send the updated information

to Avaya Proactive Contact or the host.

Ending calls

When the conversation ends, the agent may be finished with the customer‟s record and

ready for another call, or the agent may need additional time to finish customer record

updates.

If the agent needs additional update time, the agent releases the telephone line and

then finishes updating the customer record.

When the agent is ready to take another call, the agent assigns a completion code that

identifies the conversation‟s outcome. Avaya Proactive Contact saves the record

Avaya Proactive Contact 5.0 Software Developer’s Kit

12

update, the agent releases the record. Avaya Proactive Contact then records that the

agent is available for another call.

Leaving jobs

Agents typically leave a job or go offline for the following reasons:

 To transfer to another job

 To stop handling calls temporarily during the day to take a break or attend a

meeting

 To log out at the end of the day

To leave a job, the agent requests to go on "break". If the system was about to pass a

call to the agent when it receives the request, the system may complete the connection

to the agent.

Avaya Proactive Contact stops placing calls when all agents leave a job. However, if

there are calls in the wait queue, the last agent to leave a job continues to receive calls

until the call queue is empty.

Disconnecting headsets

When the agent stops work for the day, the agent logs out. Avaya Proactive Contact

disconnects from the agent‟s headset and clears the memory buffer reserved for that

headset identification. On most Avaya Proactive Contact agent interfaces, the logout

process automatically disconnects the headset.

Logging out

Agents log out of Avaya Proactive Contact from the agent menu. Avaya Proactive

Contact logs the agent out of the system and returns the workstation to the Avaya

Proactive Contact log in prompt.

If the agent is an ACD agent working on an Agent Blending system, the agent must log

out of the ACD before logging out of Avaya Proactive Contact.

If the workstation also connects to a host system, the agent may need to log out of

the host system after logging out of Avaya Proactive Contact.

The SDK is a Common Object Request Broker Architecture (CORBA) based service

that provides an Event Interface for Avaya Proactive Contact. The SDK gathers and

processes Avaya Proactive Contact events and statistics. This information can be

integrated with client or third-party applications to store or display data and to make

decisions about call center processes.

Avaya Proactive Contact 5.0 Software Developer’s Kit

13

The SDK communicates with client applications over a CORBA interface. This interface

is defined in Interface Definition Language (IDL) files. CORBA hides the underlying

communication between client applications and Avaya Proactive Contact, provides

scalable services, and helps manage the interfaces between client applications and

servers.

Working in a CORBA environment
CORBA defines a framework for developing object-oriented, distributed applications.

With CORBA, applications can communicate with one another no matter where they

are located or how they are designed. Developers can create distributed applications

that interact as though the applications were implemented in one programming

language on one computer.

The Avaya Proactive Contact event SDK CORBA interface is implemented using a

CORBA 2.6, IIOP 1.2 compliant interface. For information on CORBA see

http://www.omg.org/gettingstarted/corbafaq.htm. The CORBA implementation used by

Avaya Proactive Contact is the ACE ORB (TAO) version 1.6a; for information on TAO

see: http://www.theaceorb.com/

Developing client applications
The SDK provides access to real-time Avaya Proactive Contact event and statistical

information. Customers can develop monitoring and tracking applications that receive

these events from the SDK. This information is helpful when a customer is making

decisions concerning operations, staffing, and business goals.

The application developer begins by developing a client application that implements or

instantiates a callback object to receive the event notifications. The callback object

http://www.theaceorb.com/

Avaya Proactive Contact 5.0 Software Developer’s Kit

14

implements the methods the SDK uses to deliver events and statistics. For more

information on creating callback objects, see Using the Avaya Proactive Contact SDK.

A user name and password is required to access the event API. For more details,

see Logon and SetPasswd.

Sample applications
The developer‟s kit includes sample applications that illustrate how you can implement

SDK client applications. For more information about each application, refer to the

appendices.

The Java Sample Application demonstrates how a CORBA complaint Object Request

Broker (ORB) can be used to connect to the SDK. This application demonstrates how

to test the SDK interface. This sample code was written for customers who want to

implement client applications using Java.

Avaya Proactive Contact 5.0 Software Developer’s Kit

15

Using the Avaya Proactive Contact SDK

The Avaya Proactive Contact SDK was developed using the Common Object Request

Broker Architecture (CORBA) to allow interoperability between distributed applications.

This application-to-application communication is independent of the programming

language, the operating system it runs on, and the network location.

This section contains the following topics:

 Working with interface definition language

 Connect to the Avaya Proactive Contact SDK

 Call event state diagrams

 Blind native voice transfer

 Supervised native voice transfer

 Supervised native voice transfer with consulted

 Trunk-to-trunk transfer with consulted

 Trunk-to-trunk transfer without consulted

 Job state scenarios

 Agent state scenarios

Working with interface definition language
The Avaya Proactive Contact SDK Interface Definition Language (IDL) files define the

interface between client and server applications. The IDL files, however, do not contain

all information a client application needs to use Avaya Proactive Contact SDK.

The client application submits requests to Avaya Proactive Contact SDK using

operations that are defined in the IDL files. You can implement the interface in various

programming languages, such as C++, Visual Basic, and Java, according to the

language mapping defined by the Object Management Group (OMG).

When the Avaya Proactive Contact SDK server receives a logon request from the

client, it creates an object that implements the Avaya Proactive Contact SDK interface

as defined by the IDL and returns a reference to that object to the client application.

When the Avaya Proactive Contact SDK server receives a logoff request from a client

with the object, it reclaims the object and performs cleanup work.

Connecting to the Avaya Proactive Contact SDK
A client application can connect to the Avaya Proactive Contact SDK using standard

CORBA methods to locate and connect to CORBA objects, choosing either the

standard name of the Naming Service or the Interoperable Object Reference (IOR) of

the Naming Service to do so.

This section contains the following topics:

 Connect using the Naming Service

Avaya Proactive Contact 5.0 Software Developer’s Kit

16

 Connect using the Naming Service IOR

 Connect to the Avaya Proactive Contact SDK

Connect using the Naming Service

The Naming Service allows a client to locate object references based on abstract,

programmer defined object names.

A CORBA server assigns a name to an object and registers the name and the object

with the Naming Service. Before a client application can use a CORBA object, the

application gets a reference to the object, called an object reference.

To locate an object using the Naming Service, the client application must connect to

the Naming Service and query it for an object reference that corresponds to the name

of the same object. The client application connects to the object named

dialer.ServerHostName.eventserver, where the ServerHostName is the host on which

the Avaya Proactive Contact SDK runs. The Naming Service returns an object

reference to the Avaya Proactive Contact SDK object. The client application then uses

this object to connect to and to log in to the Avaya Proactive Contact SDK.

The following Visual C++ code illustrates how to use the Naming Service to locate an

object. Begin your client application with this code:

#include <fstream.h>

#include <time.h>

#include "ace/Get_Opt.h"

#include "CosNamingC.h"

#include "EventClientS.h"

#include "EventServerC.h"

#include "StringConvert.h"

#include "ace/SString.h"

using namespace EventServer;

using namespace ESType;

using namespace Common;

#include "EventClient.h"

#include "EventClient_i.h"

client_global_t * g;

// forward declarations:

void usage (void);

void init (int, char **);

void initSigHandlers (void);

static void sigIntHandler (int);

long dt_to_abs_time(const char *ts);

CORBA::Object_ptr import_object (CORBA::ORB_ptr, const char *);

/*-

 * Function: main

Avaya Proactive Contact 5.0 Software Developer’s Kit

17

 *

 * Description:

 *

 * Usage:

 *

 * Return Values:

 *

 * Side Effects:

 *

 * Process:

 *

 * Calls:

 */

int

main (int argc, char ** argv)

{

 // Create the client global object:

 client_global_t client_global_obj;

 g = &client_global_obj;

 CORBA::ORB_var orb = CORBA::ORB::_nil ();

 try

 {

 cout << "initializing the ORB" << endl;

 orb = CORBA::ORB_init (argc, argv, "TAO");

 }

 catch (...)

 {

 cout << "Error: ORB_init failed" << endl;

 exit (1);

 }

 init (argc, argv);

 initSigHandlers ();

 setbuf (stdout, 0);

 setbuf (stderr, 0);

 PortableServer::POA_var child_poa;

 PortableServer::POAManager_var poa_manager;

 try

 {

 CORBA::Object_var objV;

 CosNaming::NamingContext_var rootContext;

 // Initialize the ORB:

 CORBA::Object_var poa_obj = orb->resolve_initial_references ("RootPOA");

Avaya Proactive Contact 5.0 Software Developer’s Kit

18

 // Narrow the Root POA to POA_var:

 PortableServer::POA_var root_poa =

 PortableServer::POA::_narrow (poa_obj);

 assert (! CORBA::is_nil (root_poa));

 // Share the root POAs POA Manager:

 poa_manager = root_poa->the_POAManager ();

 // Create the Empty Sequence for Default POA Policies:

 CORBA::PolicyList policyList;

 policyList.length (0);

 child_poa = root_poa->create_POA ("child", poa_manager, policyList);

 objV = orb->resolve_initial_references ("NameService");

 try

 {

 rootContext = CosNaming::NamingContext::_narrow (objV);

 }

 catch (CORBA::SystemException &e)

 {

 cerr << "Unexpected system exception" << &e << endl;

 exit (-1);

 }

 if (CORBA::is_nil (rootContext))

 {

 cout << "rootContext is nil" << endl;

 exit (1);

 }

 if (g->using_IOR_flag)

 {

 objV= import_object (orb, g->IOR_file);

 }

 else

 {

 // Construct a Name:

 CosNaming::Name serverNameV;

 serverNameV.length (5);

 serverNameV[(unsigned long) 0].id = CORBA::string_dup ("PDS");

 serverNameV[(unsigned long) 0].kind = CORBA::string_dup ("");

 serverNameV[(unsigned long) 1].id = CORBA::string_dup ("dialers");

 serverNameV[(unsigned long) 1].kind = CORBA::string_dup ("");

 serverNameV[(unsigned long) 2].id = CORBA::string_dup (g->server_host);

 serverNameV[(unsigned long) 2].kind = CORBA::string_dup ("");

Avaya Proactive Contact 5.0 Software Developer’s Kit

19

 serverNameV[(unsigned long) 3].id = CORBA::string_dup ("eventserver");

 serverNameV[(unsigned long) 3].kind = CORBA::string_dup ("");

 serverNameV[(unsigned long) 4].id = CORBA::string_dup ("v2_0");

 serverNameV[(unsigned long) 4].kind = CORBA::string_dup ("");

 // Now resolve with name server

 objV = rootContext->resolve (serverNameV);

 }

 g->serverV = DialerEventServerIF::_narrow (objV);

 if (CORBA::is_nil (g->serverV))

 {

 cout << "Error: failed to narrow object reference" << endl;

 return 1;

 }

 }

 catch (CORBA::SystemException &e)

 {

 cerr << "Unexpected system exception" << &e << endl;

 exit (-1);

 }

 catch (...)

 {

 // an error occurred while trying to bind to the object.

 cerr << "Error: Bind to object failed" << endl;

 exit (1);

 }

Connect using the Naming Service IOR

An IOR is a data structure that encodes a particular object. A CORBA client can use

the IOR to locate and connect directly to that object. An alternative method is to do the

following:

 Connect to the Avaya Proactive Contact SDK using the Naming Service IOR

to connect to the Naming Service.

 Query the Naming Service to obtain a reference to the Avaya Proactive

Contact SDK.

You can view an IOR as a string using certain tools or as a hex string. The Naming

Service IOR contains the information that uniquely identifies the object to the network.

Clients can use the IOR to locate and connect directly to that object.

If you have command line access to the Naming Service, invoke the following

command to retrieve the IOR file:

/opt/ACE_wrappers/TAO/bin/Naming_Service -o <myIORfile>

If you don‟t have command line access, contact your Avaya Customer Support

representative to arrange to have the IOR file sent to you.

The following Java code illustrates how to use the Naming Service IOR to locate an

object.

Avaya Proactive Contact 5.0 Software Developer’s Kit

20

FileInputStream fis = new FileInputStream("NSIOR");

DataInputStream dis = new DataInputStream(fis);

String ior = dis.readLine();

System.out.print("IOR: ");

System.out.println(ior);

org.omg.CORBA.Object obj = orb.string_to_object(ior);

NamingContext ncRef = NamingContextHelper.narrow(obj);

NameComponent nc0 = new NameComponent("PDS", "");

NameComponent nc1 = new NameComponent("eventserver", "");

NameComponent path[] = new NameComponent[2];

 path[0] = nc0;

 path[1] = nc1; DialerEventServer_IF desRef =

DialerEventServer_IFHelper.narrow(ncRef.resolve(path));

 return desRef;

} catch(Exception e)

 {

 System.out.println("ERROR : " + e);

 e.printStackTrace(System.out);

 throw e;

}

Connect to the Avaya Proactive Contact SDK

After you set up the Naming Service or IOR, complete the following steps to develop a

client application and connect with the Avaya Proactive Contact SDK:

To develop the client application:

1. Choose a development language and Object Request Broker (ORB).

2. Connect to the Avaya Proactive Contact SDK using the method appropriate to

the ORB and development language you have chosen.

3. Write application code that connects and logs on to the Avaya Proactive Contact

SDK as illustrated in the sample applications discussed in the appendices in this

guide.

4. Write the application code that invokes appropriate requests on the server

according to the interface defined in the server side IDL.

5. Write the application code that implements a callback object according to the

interface defined in the client side IDL.

To set up a run-time environment on the client run-time host:

1. Obtain an ORB for the client application‟s machine.

2. Install and configure the client machine.

3. Complete any network configuration required to establish communication

between the client and server machines.

To ensure the client application talks to the Avaya Proactive Contact SDK:

1. Install the client application.

2. Log in to the client application.

3. Register for events or statistics.

Avaya Proactive Contact 5.0 Software Developer’s Kit

21

4. Process the event or statistical information received through the callback object

methods.

After you log in to the Avaya Proactive Contact SDK, you receive a confirmation that

the service object was created.

After you receive this confirmation, you can register to receive events. Use the

following sections to help you determine which events you want to receive.

Call event state diagrams
This section provides state diagrams for the following call types supported in Avaya

Proactive Contact:

 Inbound calling

 Outbound calling , including both predictive and managed calls.

The circles in the state diagrams represent the states that the calls can be in.

The arcs are the state transitions. They are labeled with the names of call events

described in Commands and notification events. Call events represent the possible

actions that can be taken on a call to progress it through its life cycle.

The state diagrams represent the valid sequence of states and events that a call can

progress through. Equivalently stated, follow the directional arcs to progress through

the possible scenarios of a call.

The possible call states and their meanings are given in the following table.

Call state Meaning

Answered An outbound call is answered by a far end party.

An inbound call is answered by an agent.

Connected The agent is capable of controlling an answered call.

Consulted (1) The call is connected between the agent and a consulted-to
party.

Dialed An outbound call is in the process of being dialed and
monitored for answer.

Disconnected The call connection no longer exists.

Initiated The dialer is in the process of preparing to create a new
outbound call, or it is preparing to deliver an inbound call to an
agent.

On hold The call is on hold.

Avaya Proactive Contact 5.0 Software Developer’s Kit

22

null state A state diagram is entered with a solid circle, and exits with a
clear circle with a contained solid circle. These are both
considered to be null states. A null state means the entity being
modeled, in this case a call, does not yet exist or no longer
exists.

Previewed The customer data for a managed call is being presented to
and previewed by an agent.

Queued The call is in a wait queue and a message may be played to
the far end party. This occurs because there is no agent
available to handle the call. This can happen to inbound and
outbound calls, although proper tuning of the dialer can avoid
the latter.

Transferred A call is in the process of being transferred.

Note: Certain call states are not actual call states

within the dialer. Certain call events happen in

an immediate sequence but do not cause a real

state transition, yet to be represented as

transitions on a state diagram they have to go

through a state. Thus the use of the imputed

states.

To facilitate the implementation of your client application, use the state diagrams to

help identify the appropriate sequences of call events described in Commands and

notification events.

Inbound calling

An inbound call scenario starts when a customer places an inbound call to Avaya

Proactive Contact. If an agent is available, the system passes the call to the agent. If

no agent is available, the system passes the call to an inbound wait queue. When an

agent is available, the system connects the call and agent. The agent may place the

call on hold and retrieve it to continue the conversation. The caller may hang up and

disconnect the call while the call is in the wait queue or on hold.

Avaya Proactive Contact 5.0 Software Developer’s Kit

23

Outbound calling

This section covers the state behaviors of predictive and managed outbound calling.

This section includes the following:

 A brief description of the types of calling covered

 The state diagram for outbound calling

 A description of each of the possible state transitions

Predictive outbound calling

 Avaya Proactive Contact determines when to place an outbound call to the customer.

The system selects a trunk, and then dials the customer‟s telephone number.

If the customer answers the call, he or she will normally be connected to an agent. If an

agent is not available, the system places the dialed call in the wait queue. When an

agent later becomes available, the system connects customer to the agent.

If the call is not answered, the call attempt is ended. Also, depending on job

configuration, if an answering machine is detected, the call may be routed to an agent,

or to a recorded message, or merely ended.

Managed outbound calling

Avaya Proactive Contact first selects a customer, and the agent application presents

information on that customer to the agent. The agent can preview this information for a

time interval which is specified in the job configuration.

If the preview time is zero, the system attempts the call immediately. If the preview time

is greater than zero, the agent may cancel or call that customer within that time interval.

If the agent waits longer than the preview time, the system will start the call attempt.

Depending on configuration, either the system or the agent will determine whether a

connection is made to a live party, an answering machine, or was not successful.

Avaya Proactive Contact 5.0 Software Developer’s Kit

24

In all of the above cases, when an agent is connected to a customer, the agent may

then place a call on hold, and later retrieve it to continue the conversation. The caller

may hang up and disconnect the call while the call is on hold. The agent may also

transfer a call, or hang up on the call, which is not a desirable agent behavior.

In the following diagram, the circles represent the outbound calling states, and the

directed lines represent the state transitions. Each transition is labeled with the

appropriate call event; the call events are described in detail in Commands and

notification events.

Avaya Proactive Contact 5.0 Software Developer’s Kit

25

The following table describes the possible state transitions:

Original

state

Call event New state Meaning

null (starting) CALLINTIATED Initiated The dialer is starting the process
creating a call, using customer
information from the calling list of a job.

Initiated CALLPREVIEWED Previewed Information about a managed call is
presented to an agent and the agent
previews it.

Initiated CALLENDED null Call initiation failed due to an
equipment or internal resource error.

Initiated CALLTRANSFER null Completion of a trunk-to-trunk transfer.

Initiated CALLDIALED Dialed A predictive call is being dialed.

Avaya Proactive Contact 5.0 Software Developer’s Kit

26

Previewed CALLDIALED Dialed A managed call is being dialed.

The agent has accepted to pursue a
managed call, or a time-out was
reached whereupon the dialer initiated
dialing. The connection to the desired
far end phone number is being
established.

Previewed CALLENDED null The agent has chosen to cancel a
managed call. “Cancel” means that the
agent determined that some preview
data for the desired far end party
indicated it was not appropriate to call
at this time, and decided to not pursue
the managed call.

Dialed CALLANSWERED Answered The device at the far end party is now
part of a physical call.

For managed calls without automated
call progress analysis (CPA), this is the
result of the far end being answered. It
could be answered by a person, an
answering device, be a network or
switch message or special information
tone (SIT), or due to some other
means.

For predictive calls, which always use
CPA, the CPA has determined that an
agent is needed to talk to a live party,
or to leave a message if answering
machine detection is supported and
the job is appropriately configured.

Dialed CALLENDED null For managed calls without CPA, the
call was hung up on by the agent
before it was answered. (This is how
an agent treats a busy indication.)

For predictive calls, the CPA
determined that the far end was not
answered by a live person or an
answering machine; or it could have
been answered by an answering
machine but the job is configured to
not accept such calls.

Answered CALLCONNECTED Connected The agent is in control of the call.

Note, CALLANSWERED indicates that
the physical call has been established.

Avaya Proactive Contact 5.0 Software Developer’s Kit

27

Answered CALLQUEUED Queued The call is in a wait queue and a
message may be played to the far end
party. This occurs because there is no
agent available to handle the call. This
can happen to inbound and outbound
calls, although proper tuning of the
dialer can avoid the latter.

Answered CALLENDED null A call was answered by an answering
machine or other electronic voice
device, and, per job configuration, the
call was not sent to an agent.

Queued CALPLAYMSG Queued A message is played to a call in queue.
This can happen repeatedly as long as
the call is queued.

Queued CALLCONNECTED Connected An agent has become available to take
a queued call, the call is delivered to
the agent, and the agent is in control of
the call.

Note, CALLANSWERED indicates that
the physical call has been established.

Queued CALLENDED null The call has ended because the far
end party abandoned it while waiting in
queue.

Connected CALLENDED null The call has been ended.

The agent may or may not be in a wrap
up mode. That is determined from
Agent states, described inAgent st.

Connected CALLDISCONNECTED Disconnected A call has been physically
disconnected, but the agent has not
released the line. This allows the agent
to make follow up calls related to the
initial call.

Connected CALLHELD OnHold The agent puts a call on hold.

This allows the agent to transfer the
call to another party.

Connected CALLTRANSFER Transferred The call was transferred.

OnHold CALLCONSULTED Consulted

Avaya Proactive Contact 5.0 Software Developer’s Kit

28

OnHold CALLENDED null The call has ended because the far
end party abandoned it.

Consulted CALLRETRIEVED OnHold

Transferred CALLENDED null

Disconnected CALLDIALED Dialed The agent is making a manual call as a
follow up to a prior call.

Disconnected CALLENDED null

Avaya Proactive Contact 5.0 Software Developer’s Kit

29

Blind native voice transfer
Blind native voice transfer disconnects the transferring agent before transferring the call

and customer record. Avaya Proactive Contact places the customer call in the queue

for the new job or connects the customer to an available agent. Use this diagram to

help identify the Blind Native Voice transfer to implement through your client

application.

Avaya Proactive Contact 5.0 Software Developer’s Kit

30

Supervised native voice transfer
Supervised native voice transfer transfers a telephone call and the customer record to

another job, maintaining the transferring agent‟s telephone connection. The transferring

agent stays connected to the telephone number during the transfer. The system places

the customer on hold. Use this diagram to help identify the supervised native voice

transfer to implement through your client application.

Avaya Proactive Contact 5.0 Software Developer’s Kit

31

Supervised native voice transfer with consulted
Supervised native voice transfer with consulted transfers a telephone call and the

customer record to another job, maintaining the transferring agent‟s telephone

connection. The transferring agent does not stay connected to the telephone number

during the transfer. The system places the customer on hold. Use this diagram to help

identify the supervised native voice transfer with consulted to implement through your

client application.

Avaya Proactive Contact 5.0 Software Developer’s Kit

32

Trunk-to-trunk transfer with consulted
Trunk-to-trunk transfer with consulted transfers a configured customer call. The Avaya

Proactive Contact places the customer on hold, then uses a telephone configured as a

trunk to place a manual call to another job. Use this diagram to help identify the trunk-

to-trunk transfer to implement through your client application.

Avaya Proactive Contact 5.0 Software Developer’s Kit

33

Trunk-to-trunk transfer without consulted
Trunk-to-trunk transfer without consulted transfers a configured customer call. Use this

diagram to help identify the trunk-to-trunk transfer without consult to implement through

your client application.

Avaya Proactive Contact 5.0 Software Developer’s Kit

34

Job state scenarios
During calling activity, the Avaya Proactive Contact starts, stops, links, and shuts down

jobs. Between the time the Avaya Proactive Contact starts and stops a job, the job

progresses through several different states.

Use this diagram to help identify the job events to implement through your client

application.

Agent state scenarios
During a job, an agent logs in to the Avaya Proactive Contact, selects a job, performs

job setup activities, joins a job, and handles calls. When the job is finished, the agent

logs out of Avaya Proactive Contact. Between login and logout an agent progresses

through a number of different states.

The following diagram identifies the agent events and corresponding agent states.

Agent states can include:

 Not logged in to Avaya Proactive Contact

 Logged in to Avaya Proactive Contact but not attached to a job

 Attached to a job but not available for work

 Attached to a job, available for work, but not ready for a call

 Waiting for a call

 On a call

When an agent logs in, he or she establishes an agent identification. After an agent

establishes a headset connection, he or she is in the online state.

On an Intelligent Call Blending system, an agent‟s headset connection is always open

including when outbound and inbound calls are routed through an ACD. The agent is

always in the online state.

Avaya Proactive Contact 5.0 Software Developer’s Kit

35

On an Agent Blending system, an agent‟s headset connection is broken when the

Avaya Proactive Contact releases an ACD agent to inbound calling on the ACD. To the

Avaya Proactive Contact, the ACD agent is offline but logged in to the Avaya Proactive

Contact.

Use the following diagram to help identify the agent states to implement through your

client application.

Avaya Proactive Contact 5.0 Software Developer’s Kit

36

Commands and notification events

The Avaya Proactive Contact SDK consists of two major services, real-time events and

real-time statistics. The Avaya Proactive Contact SDK uses the Common Object

Request Broker (CORBA) Interface Definition Language (IDL) to define interfaces for

network objects used by client applications.

The SDK IDL files consist of a client interface definition, server interface definition, and

common data types. The EventClient.idl and EventServer.idl files use the data types

defined in the EventTypes Common.idl and EventTypes.idl to display Avaya Proactive

Contact events and statistics. Client applications implement the EventClient.idl, which

is used by the Avaya Proactive Contact server application to return statistics and

events data to the client application. The system‟s server application implements the

EventServer.idl.

This chapter describes the common data types and data structures used to represent

the real-time events and real-time statistics provided in the Common module of the

Common.idl file, and the ESType module of the EventTypes.idl file. The real- time

events and real-time statistics descriptions are organized by the corresponding method

defined in the EventClient.idl.

This section contains the following topics:

 SDK common data types

 Generic data types

 Real time events

 Real time statistics

SDK common data types
The SDK defines common data types to handle event and statistical information. The

following table defines these data types.

Data Type Parameters Description

JobType OUTBOUNDJOB

INBOUNDJOB

MANAGEDJOB

BLENDJOB

Identifies the types of jobs available on the SDK:

l Outbound jobs generate outbound calls

l Inbound jobs receive inbound calls

l Managed jobs is a special outbound job
used for Managed Dialing where an agent
previews the record of an outbound call
before teh dialer places the call

l Blend jobs generate outbound calls and
receive inbound calls

Avaya Proactive Contact 5.0 Software Developer’s Kit

37

AgentType OUTBOUNDAGENT

INBOUNDAGENT

MANAGEDAGENT

BLENDAGENT

ACDAGENT

PTPAGENT

Identifies the agent log in types available on the
SDK:

l Outbound agents handle outbound calls
only

l Inbound agents handle inbound calls only

l Managed agents can preview records for
outbound calls before the number is
dialed

l Blend agents handle both inbound and
outbound calls

l ACD agents on Agent Blending systems
handle outbound calls on Avaya Proactive
Contact and inbound calls on the ACD

l Person to Person agents handle
outbound calls when outbound or blend
agents are unavailable

EventDataType

Common Data

JOBNAME

JOBNUMBER

TYPEOFJOB

DEVICEID

EQUIPNUM

EXITCODE

Identifies the data that is passed during agent
event activity:

l Whether an agent goes online to join a
job or be acquired from the ACD to
handle Avaya Proactive Contact outbound
calls

l The unique identifier for the call or for the
agent headset

l The equipment number for the agent
headset

EventDataType

Call Data

DNIS

ANI

HEADSETEXTENSION

TYPEOFAGENT

AGENTNAME

MESSAGEID

PVLENGTH

TRANSFERTYPE

UCID

Identifies the following data that is passed
during call event activity:

l Number dialed

l Number answered

l Agent type

l Agent name

l Identifier of the message played during a
call

l Time an agent previews a record

l Type of transfer that occurred

l Universal Call Identifier

Avaya Proactive Contact 5.0 Software Developer’s Kit

38

EventDataType

Job Data

RECORDSELECT

RECALLSELECT

AVAILOUTBLINES

AVAILINBLINES

TOTALJOBTIME

PARAM

VALUE

TYPEOFCALL

USERDATA

Identifies the type of data that is passed during
job event activity:

l Records selected or recalls selected for
calling

l Number of available outbound and
inbound lines

l Total time the job is active

l Whether the call is inbound or outbound

l User-defined data set up by the customer

EventDataType

Agent Data

REASON

CALLID

AGENTDEVICEID

AGENTEQUIPNUM

SWITCH ID

Identifies the data that is passed during agent
event activity:

l Whether an agent goes on line to join a
job or be acquired from the ACD to
handle Avaya Proactive Contact outbound
calls

l Unique identifier for the call or for the
agent headset

l Device identifier for the agentheadset.

l Equipment number for the agent headset

l Identifier for the switch

Generic data types
Avaya Inc. created a generic data type, LocText, to allow for localization because

CORBA does not support the Registering data type. This data type is identified as

LocText in the Common module.

LocText simply consists of a sequence of 8-bit octets you can use to store any type of

character set, typically MBCS and ASCII. Text data passed to or from the Event Server

will be sent using the LocText CORBA data type. The internal contents may be either

standard ASCII strings or MBCS strings.

The KeywordValue and KeywordValueSeq lists consist of keywords and their

corresponding values. Combine these basic data structures with other data structures

to form composite data types.

The Keyword Value structure creates the tag value pair.

Type Variable Definition

LocText keyword The server defined keyword for the value.

LocText value The data associated with the keyword

Avaya Proactive Contact 5.0 Software Developer’s Kit

39

The KeywordValueSeq list creates the sequenceofKeywordValue structs:

typedef sequence<KeywordValue> KeywordValueSeq;-.

There is an EventList sequence defined as a sequence of EVENT types:

enum EVENT {DIALERSTATUS, PASSWDSTATUS}

 typedef sequence<Common::EVENT>EventList;

There is an ID List sequence defined as a sequence of eventRegistration types:

Type Variable

unsigned long Id

Common::EVENT eventName

Real-time events
The SDK generates real-time events when changes occur in the state of Avaya

Proactive Contact agents, calls, and jobs. The SDK delivers the events to callback

objects created by the client application.

The EventNotify methods for calls, agents, and jobs have unique headers and event

type enumerations and structures.

This section identifies the data structures used to deliver the events to the method for

the callback object. It also describes the structure of the method header and data

segments.

This section contains the following methods:

 Call Event Notify

 Agent Event Notify

 Job Event Notify

CallEventNotify

The callEventNotify method definition is located in the EventClient module of the

EventClient.idl.

The SDK uses this method to notify the client application of call events. Each call event

contains a common event header structure, plus each has its own unique data segment

information. CallEventNotify does not generate call events for dialback calls or acquire

calls.

This section identifies the following call events and their data contents for all call event

types found in EventTypes.idl:

 IDL declaration

 Call event header

Avaya Proactive Contact 5.0 Software Developer’s Kit

40

 Call event types

IDL declaration

Below is the code for IDL Declaration:

oneway void callEventNotify(

in ESType:: EventDataSegment callEventData);

in ESType:: eventTypeKind eventTypeKind,

Call event header

The eventTypeKind describes the basic information about the call. All call event types

share this eventTypeKind structure.

 Type Variable Definition

CallEventType eventType Identifies the type of call event. For details, see Call
event types.

long timeStamp A number that when converted identifies the date and
time that the call event occurred. For example
954951746 converts to 04/05/2000 09:22:26.

The system returns the number stored as a 32-bit long
that contains the number of seconds since January 1,
1970. This is given in time local to where the particular
dialer server is sited.

short dialerID Identifies the dialer server in which the call event
occurred. For example: 1, 2, 3.

CallIDType callID Uniquely identifies the call. For example:
000366095090001

Avaya Proactive Contact 5.0 Software Developer’s Kit

41

Call event types

Each call event may have a different number of data elements in the data segment

structure callEventData.

The callEventData data segment is a sequence of name-value pairs, one for each data

element, per the following definitions from EventTypes.idl:

struct EventData

 {

 EventDataType keyword;

 Common::LocText value; // The client-

defined values

 // for the Event data types

 };

typedef sequence<EventData> EventDataSeq;

For descriptions of the call events and their associated data elements, see:

 CALLINITIATED

 CALLDIALED

 CALLANSWERED

 CALLCONNECTED

 CALLDISCONNECTED

 CALLQUEUED

 CALLHELD

 CALLPREVIEWED

 CALLTRANSFER

 CALLCONSULTED

 CALLENDED

 CALLRETRIEVED

 CALLPLAYMSG

CALLINITIATED

The process of establishing a call between an agent and a far end party has started.

Keyword Description

DEVICEID The logical identification number the trunk on which the call is
made. For example: 254

EQUIPNUM The trunk number on which the call is made. For example: 25

Avaya Proactive Contact 5.0 Software Developer’s Kit

42

ANI The calling phone number. For example: 2065551212 or
4401753727211

DNIS The phone number dialed. For example:

7185555555 or 4401777727211

JOBNAME The name of the job with which the call is associated. For example:
30day

JOBNUMBER The job number of the job as assigned by the dialer server. For
example: 2

TYPEOFJOB The job type. This can be one of the following types:
OUTBOUNDJOB, INBOUNDJOB, MANAGEDJOB, or BLENDJOB.

Managed job is a special outbound job used for Managed Dialing
where an agent previews the record of an outbound call before the
dialer places the call.

USERDATA The customer‟s key data associated with this call. For example:
IDENT: ACCTNUM 1234567890123456. This information comes
from the job‟s calling list.

TYPEOFCALL The call type, either OUTBOUNDCALL or INBOUNDCALL.

CALLDIALED

An outbound call has just started dialing.

Keywords Description

DNIS The phone number dialed. For example:

7185555555 or 4401777727211

UCID The universal call identifier (UCID) of the associated call at the PBX.
This value is valid for Avaya Proactive Contact with AES
configurations. Otherwise, the value is zero (0).

CALLANSWERED

A call has been answered.

Keywords Description

ANI The calling phone number. For example:

2065551212 or 4401753727211

Avaya Proactive Contact 5.0 Software Developer’s Kit

43

DNIS The phone number dialed. For example:

7185555555 or 4401777727211

RESPONSECODE One of the "system" type of completion code numeric values, as
defined in the compcode.cfg configuration file. See Avaya
Proactive Contact 5.0 Configuration Reference for a description
of this file.

CALLCONNECTED

The agent is capable of controlling an answered call.

Keywords Description

AGENTNAME The log in name of the agent connected with the call. For
example: jdoe

HEADSETEXTENSION The headset identifier number for the agent connected to the
call. For example: 2

AGENTDEVICEID The logical identification number of the line that the agent is
using. For example: 15

AGENTEQUIPNUM The line number of the line that the agent is using. For
example: 2510

USERDATA The customer‟s key data associated with this call. For
example: IDENT: ACCTNUM 1234567890123456. This
information comes from the job‟s calling list.

SWITCHID The switch identification of the switch that the agent is logged
in to. Provided only for agents that do agent blending (which
have TYPEOFAGENT = ACDAGENT in the AGENTOFFLINE
event. For details, see AGENTOFFLINE.

If the agent is not of this type, then this parameter is 0.

CALLDISCONNECTED

The call is disconnected.

Keywords Description

none There are no data segment items associated with this message.

Avaya Proactive Contact 5.0 Software Developer’s Kit

44

CALLQUEUED

The call is in a wait queue, waiting for an agent to be come available.

Keywords Description

none There are no data segment items associated with this message.

CALLHELD

The call is on hold.

Keywords Description

none There are no data segment items associated with this message.

CALLPREVIEWED

An agent is previewing a the customer record in preparation for a managed call.

Keywords Descriptions

AGENTNAME The log in name of the agent previewing the call. For
example: jdoe

HEADSETEXTENSION The headset identifier number for the agent previewing the
call. For example: 2

AGENTDEVICEID The logical identification number of the line that the agent is
using. For example: 15

AGENTEQUIPNUM The line number of the line that the agent is using. For
example: 2510

PVLENGTH The amount of time, in seconds, that the call can be
previewed during a Managed call. For example: 30
(seconds). A value of zero indicates that there is no timeout
value.

SWITCHID
 The switch identification of the switch that the agent is

logged in to. Provided only for agents that do agent

blending. The agents have TYPEOFAGENT =

ACDAGENT in the AGENTOFFLINE event that is

described in CALLTRANSFER .

Avaya Proactive Contact 5.0 Software Developer’s Kit

45

CALLTRANSFER

A call is being transferred

Keywords Description

TRANSFERTYPE Type of transfer. Values are: BLIND, SUPERVISED or TRUNK.

TRUNK indicates a trunk-to-trunk transfer, which is a transfer to
an extension, and it is always a supervised transfer.

BLIND or SUPERVISED indicate a "Native Voice and Data
Transfer", which is a transfer from an agent on an outbound job to
an inbound job, where the dialer server picks the next available
agent on the inbound job to receive the transfer. As the words
indicate, this type of transfer can be either blind or supervised.

DNIS If TRANSFERTYPE is TRUNK, then DNIS is the phone number to
which the call is being transferred. For example, 4251245678.

If TRANSFERTYPE is BLIND or SUPERVISED, then DNIS is the
name of the job to which the call is being transferred. For
example: inboundjobone

CALLID The CALLID for the first leg of the call, the originating agent to
customer.

CALLID The CALLID for the second leg of the call, agent to agent.

CALLID The CALLID for the third leg of the call, the receiving agent to
customer.

EQUIPNUM The trunk number that the call is transferred to.

CALLCONSULTED

An agent has established a consult call with another agent.

Keywords Description

none There are no data segment items associated with this message.

Avaya Proactive Contact 5.0 Software Developer’s Kit

46

CALLENDED

The agent, system, or customer ended a call.

Keywords Description

RESPONSECODE One of the "system" type completion code numeric values, as
defined in the compcode.cfg configuration file. See the document
Avaya Proactive Contact 5.0 Configuration Reference for a
description of this file.

CALLRETRIEVED

A call is retrieved from being on hold.

Keywords Description

none There are no data segment items associated with this message.

CALLPLAYMSG

A message is played to an answering machine or customer.

Keywords Description

MessageID The identifier of the message to play. For example: 351

Avaya Proactive Contact 5.0 Software Developer’s Kit

47

AgentEventNotify

The agentEventNotify method definition is located in the EventClient module of the

EventClient.idl.

The SDK uses this method to notify the client application of agent events. Each agent

event contains a common event header structure, plus each has its own unique data

segment information.

This section identifies the following agent events and their data contents for all agent

event types found in EventTypes.idl:

 IDL declaration

 Event Type Kind

 Agent event types

IDL declaration
oneway void agentEventNotify (

in ESType:: eventTypeKind eventTypeKind,

in ESType:: EventDataSegment agentEventData);

Event Type Kind

The eventTypeKind describes the basic information about the agent. All agent event

types share this eventTypeKind structure.

Type Variable Definition

AgentEventType eventType Identifies the type of agent event. For details, see Agent
event types.

long timeStamp A number that, when converted, identifies the date and
time that the agent event occurred, example 954951746
converts to 04/05/2000 09:22:26.

The system returns the number stored as a 32-bit long
that contains the number of seconds since January 1,
1970. This is given in time local to where the particular
dialer server is sited.

short dialerID Identifies the dialer server in which the agent event
occurred. For example: 123.

long agentID The user ID of the agent. For example: 1001.

LocText agentHsExt The agent headset extension number.

Avaya Proactive Contact 5.0 Software Developer’s Kit

48

SWITCHID switchID The switch identification of the switch that the agent is
logged in to. Provided only for agents that do agent
blending which have TYPEOFAGENT = ACDAGENT in
the AGENTOFFLINE event. See Agent event types.

Agent event types

Each agent event may have a different number of data elements in the data segment

structure agentEventData.

The agentEventData data segment is a sequence of name-value pairs, one for each

data element, per the following definitions from EventTypes.idl:

struct EventData

 {

 EventDataType keyword;

 Common::LocText value; // The client-defined values

 // for the Event data types

 };

typedef sequence<EventData> EventDataSeq;

For descriptions of the agent events and their associated data elements, see:

 AGENTLOGON

 AGENTNOTREADY

 AGENTREADY

 AGENTOFFLINE

 AGENTONLINE

 AGENTPREVIEW

 AGENTONCALL

 AGENTOFFCALL

 AGENTLOGOFF

AGENTLOGON

An agent logged in to Avaya Proactive Contact.

Keyword Description

AGENTNAME The UNIX login ID of the agent.

Avaya Proactive Contact 5.0 Software Developer’s Kit

49

AGENTNOTREADY

The agent is on a job but not ready to receive calls.

Keyword Description

COMPCODE Completion code value that an agent assigns when releasing a
customer record.

This is one of the completion code numeric values, as defined in
the compcode.cfg configuration file. See the document Avaya
Proactive Contact 5.0 Configuration Reference for a description
of this file.

This may also show a value of -1. This happens the first time the
agent reaches the Not Ready state after logging in, or if there is
not a completion code to report at that time. This can occur when
an ACD agent acquired for outbound is transverses before the
agent handles any call.

AGENTREADY

The agent is ready to receive calls.

Keyword Description

none There are no data segment items associated with this message.

AGENTOFFLINE

Occurs after AGENTLOGON indicating that the agent headset number is validated.

At other times, this indicates that the agent released the line or has gone on break.

Keyword Description

TYPEOFAGENT The agent‟s type. One of the following types:
OUTBOUNDAGENT, INBOUNDAGENT, MANAGEDAGENT,
BLENDAGENT, ACDAGENT, or PTPAGENT.

REASON Provides a reason why the agent is offline. One of the following
reasons: Login, Released, NoFUrtherWork, Logoff, or Joblink.

AGENTONLINE

The agent headset is connected and the agent joined a job.

Keyword Description

Avaya Proactive Contact 5.0 Software Developer’s Kit

50

TYPEOFAGENT The agent‟s type. One of the following agent types:
OUTBOUNDAGENT, INBOUNDAGENT, MANAGEDAGENT,
BLENDAGENT, ACDAGENT, or PTPAGENT

AGENTDEVICEID The logical identification number of the line that the agent is
using. For example: 15

AGENTEQUIPNUM The line number of the line that the agent is using. For
example: 2510

JOBNAME Identifies the name of the job to which the agent is assigned.
For example: 30day

JOBNUMBER The job number assigned by the dialer server. For example: 2

TYPEOFJOB The job type. One of the following types: OUTBOUNDJOB,
INBOUNDJOB,

MANAGEDJOB, BLENDJOB.

Managed job is a special outbound job used for Managed
Dialing where an agent previews the record of an outbound
call before the dialer places the call.

REASON Provides a reason why the agent is on the named job. One of
the following reasons: Acquired or JoinJob.

AGENTPREVIEW

The agent is previewing a record on a managed call.

Keyword Description

TYPEOFCALL The call type. For this event it is always OUTBOUNDCALL.

CALLID Uniquely identifies the call. For example 000366095090001

DEVICEID The logical device identification number. For example: 254

EQUIPNUM The physical equipment number. For example 25

DNIS The phone number to be dialed. For example 4255588694

USERDATA The customer‟s key data associated with this call. For example:
IDENT: ACCTNUM 1234567890123456. This information comes
from the job‟s calling list.

Avaya Proactive Contact 5.0 Software Developer’s Kit

51

AGENTONCALL

The agent is connected to a call.

Keyword Description

TYPEOFCALL Identifies the call as OUTBOUNDCALL or INBOUNDCALL.

CALLID Uniquely identifies the call. For example: 000366095090001

DEVICEID The logical device identification number. For example: 254

EQUIPNUM The physical equipment number. For example: 25

DNIS The phone number dialed. For example: 7185555555 or
4401777727211

USERDATA The customer‟s key data associated with this call. For example:
IDENT: ACCTNUM 1234567890123456. This information comes
from the job‟s calling list.

AGENTOFFCALL

The agent or the far end party has released the call.

Keyword Description

none There are no data segment items associated with this message.

AGENTLOGOFF

The agent has logged off.

Keyword Description

EXITCODE Provides an event code that identifies the reason an agent logged
off: Possible values are Normal or Abort.

Avaya Proactive Contact 5.0 Software Developer’s Kit

52

JobEventNotify

The jobEventNotify method definition is located in the EventClient module of the

EventClient.idl.

The SDK uses this method to notify the client application of a job event. Each job event

contains a common event header structure, plus each has its own unique data segment

information.

This section identifies the following job event header and data structures found in

EventTypes.idl:

 IDL declaration

 Job event header

 Job event types

IDL declaration
oneway void job EventNotify(

in ESType:: eventTypeKind eventTypeKind,

in ESType:: EventDataSegment jobEventData);

Job event header

The eventTypeKind describes the basic information about job events. All job event

types share this eventTypeKind structure.

type variable Definition

JobEventType eventType Identifies the type of job event.

For details, see Job event types .

long timeStamp A number that, when converted, identifies the date and
time that the call event occurred. For example
954951746 converts to 04/05/2000 09:22:26.

The system returns the number stored as a 32-bit long
that contains the number of seconds since January 1,
1970. This is given in time local to where the particular
dialer server is sited.

short dialerID Identifies the Avaya Proactive Contact in which the call
event occurred. For example: 123.

long jobNumber The job number assigned by the Avaya Proactive
Contact for example: 2.

Avaya Proactive Contact 5.0 Software Developer’s Kit

53

Job event types

Each job event may have a different number of data elements in the data segment
structure jobEventData.

The jobEventData data segment is a sequence of name-value pairs, one for each data

element, per the following definitions from EventTypes.idl:

struct EventData

 {

 EventDataType keyword;

 Common::LocText value; // The client-defined values

 // for the Event data types

 };

typedef sequence<EventData> EventDataSeq;

For descriptions of the job events and their associated data elements, see:

 JOBSTARTED

 JOBEVENTS

 JOBDYNAMICCHANGE

 JOBENDED

JOBSTARTED

Basic job parameters used when the Avaya Proactive Contact starts a job.

Keyword Description

JOBNAME The name of the job started. For example: 30day

TYPEOFJOB The job type started. For example:

OUTBOUNDJOB, INBOUNDJOB

MANAGEDJOB, BLENDJOB, CRUISE_JOB. Cruise job is a
special outbound job where the dialer automatically monitors and
adjust the dialing pace throughout the outbound job.

Message content example:
event = JOBSTARTED

timeStamp = 1112981212(10:26:52)

dialerID = 16

jobNumber = 29

JOBNAME = perf_out1

TYPEOFJOB = CRUISE_JOB

RECORDSELECT The number of records selected for this job. For example: 10527
(Outbound only)

RECALLSELECT The number of recalls selected for this job. For example: 35
(Outbound only)

Avaya Proactive Contact 5.0 Software Developer’s Kit

54

AVAILOUTBLINES The total number of outbound lines available for this job. For
example: 240 (Outbound only)

AVAILINBLINES The total number of inbound lines available for this job. For
example: 120 (Inbound only)

JOBEVENTS

Various events that occur during a job

Keyword Description

TERMINATED The job ended abruptly. The value will be „1‟.

SHUTDOWN The job was ended manually. The value will be „1‟.

LINKED The job was linked to another job. For example: LINKED outb2

E_RECORDCNT The number of records in the job.

E_RECALLCNT The number of recall times in records in the job.

E_OUTLINES The number of lines for outbound for the job.

E_INLINES The number of lines for inbound for the job.

Message content example:
event = JOBEVENTS

timeStamp = 1112981214(10:26:54)

dialerID = 16

jobNumber = 29

 PARAM = E_RECORDCNT

 VALUE = 62794

 PARAM = E_RECALLCNT

 VALUE = 0

 PARAM = E_OUTLINES

 VALUE = 192

 PARAM = E_INLINES

 VALUE = 0

E_TIMESTAMP Timestamp as an integer in seconds since 1970.

E_LINENUM Line number in the configuration code table, starting at 1.

E_RAC_DEF Contents of a configuration code table line.

Avaya Proactive Contact 5.0 Software Developer’s Kit

55

Message content example:
event = JOBEVENTS

timeStamp = 1112981214(10:26:54)

dialerID = 16

jobNumber = 29

 PARAM = E_TIMESTAMP

 VALUE = 1112916615

 PARAM = E_LINENUM

 VALUE = 1

 PARAM = E_RAC_DEF

 VALUE = 0:NOTCALLED:SYS:YES:NO:NO:NO:NO:YES:NOTCALLED:Record not yet

called

E_SCRIPT Data script (.dat) file name.

E_IDCNTRL Expert Calling Ratio.

E_JLABEL Job description.

E_LIST Outbound calling list name.

E_SELECT Record selection file name.

E_STRATEGY Call Strategy file name.

E_JOBTYPE Indicates whether the job is an inbound, outbound, blend,
managed, or cruise control job. Values are INB, OUT, BLND,
MNGD, and CRSE.

Message content example:
event = JOBEVENTS

timeStamp = 1112981234(10:27:14)

dialerID = 16

jobNumber = 29

 PARAM = E_SCRIPT

 VALUE = alljobs

 PARAM = E_IDCNTRL

 VALUE = W80

 PARAM = E_JLABEL

 VALUE = Outbound Job

 PARAM = E_LIST

 VALUE = list1

 PARAM = E_SELECT

 VALUE = test

 PARAM = E_STRATEGY

 VALUE = phone1

 PARAM = E_JOBTYPE

 VALUE = CRSE

Avaya Proactive Contact 5.0 Software Developer’s Kit

56

E_JOIN Indicates that an agent joined the job. The actual value is the
type of agent, one of the following job types: INBOUND,
OUTBOUND, MANAGED, BLEND, or PTP.

E_AGENTNAME The name of the agent that joined the job.

Message content example:
event = JOBEVENTS

timeStamp = 1112981253(10:27:33)

dialerID = 16

jobNumber = 29

 PARAM = E_JOIN

 VALUE = OUTBOUND

 PARAM = E_AGENTNAME

 VALUE = op9test

E_AGENTNAME The agent name associated with this event. For example: jdoe

E_IDLE The time duration during which the agent was not working on
calls or customer records. This applies to the agent named with
the AGENTNAME parameter, which appears after the IDLE
parameter,

E_IDLETYPE The type of idle activity. For example: I=inbound, O=outbound

This applies to the agent named with the AGENTNAME
parameter, which appears after the IDLE parameter,

Message content example:
event = JOBEVENTS

timeStamp = 1112829018(16:10:18)

dialerID = 11

jobNumber = 13

 PARAM = E_IDLE

 VALUE = 6

 PARAM = E_AGENTNAME

 VALUE = bp121tes

 PARAM = E_IDLETYPE

 VALUE = O

RECORDSELECT The number of records selected for this job. For example:
10527 (Outbound only)

RECALLSELECT The number of recalls selected for this job. For example: 35
(Outbound only)

AVAILOUTBLINES The total number of outbound lines available for this job. For
example: 240 (Outbound only)

Avaya Proactive Contact 5.0 Software Developer’s Kit

57

AVAILINBLINES The total number of inbound lines available for this job. For
example: 120 (Inbound only)

E_HIT_RATES The number of calls connected for that type compared to the
total number of call attempts for this job.

Examples:

First 32/37, Busy 0/3, Noanswer 0/0, Callback 0/0, Misc 0/0

First 19/46, Busy 1/4, Noanswer 0/0, Callback 0/0, Misc 0/0

Message content example:
event = JOBEVENTS

timeStamp = 1112829027(16:10:27)

dialerID = 11

jobNumber = 13

 PARAM = E_HIT_RATES

 VALUE = First 32/47, Busy 0/3, Noanswer 0/0, Callback 0/0, Misc 0/0

E_CURR_HIT_RATE The hit rate in a percentage during the last five minutes for this
job.

Examples:

Hit Rate[phone1] = 39enclinet

Message content example:
event = JOBEVENTS

timeStamp = 1112829035(16:10:35)

dialerID = 11

jobNumber = 13

 PARAM = E_CUR_HIT_RATE

 VALUE = Hit Rate[phone1] = 39

E_LINE_USAGE The number of assigned lines used during the peak demand.

Examples:

Lines Assigned = 528, Peak Demand = 38

Peak Demand is the most recent largest number of lines in use.

Line Assigned is the current umber of lines assigned to this job.

E_CURR_DIALING The current Expert Calling Ratio method in use for this job.

Examples:

IDM = W85, Dial Ahead = 155, Q Rate = 82, Ops = O P

Message content example:
event = JOBEVENTS

timeStamp = 1112829035(16:10:35)

dialerID = 11

jobNumber = 13

 PARAM = E_LINE_USAGE

 VALUE = Lines Assigned = 528, Peak Demand = 38

 PARAM = E_CURR_DIALING

 VALUE = IDM = W85, Dial Ahead = 155, Q Rate = 82, Ops = 0 P

Avaya Proactive Contact 5.0 Software Developer’s Kit

58

This set of values is used in the job events for a cruise control job. Five data elements are
reported every 2 minutes.

E_CC Cruise control flag for the job. A value of 1 indicates that this is
a cruise control job, and 0 indicates it is not a cruise control job.

E_DSL Desired service level

E_CONNTOLE Job connection tolerance

E_SERVCALLS Job serviced calls within tolerance

E_OFFEREDCALLS Job total calls that demand agent connection

E_CC_PARAMS Job running parameters; this appears only with cruise control
jobs.

Message content example for a cruise control job:
event = JOBEVENTS

timeStamp = 1112981455(10:30:55)

dialerID = 16

jobNumber = 29

 PARAM = E_CC

 VALUE = 1

 PARAM = E_DSL

 VALUE = 0.900000

 PARAM = E_CONNTOLE

 VALUE = 1

 PARAM = E_SERVCALLS

 VALUE = 69

 PARAM = E_OFFEREDCALLS

 VALUE = 84

 PARAM = E_CC_PARAMS

 VALUE =

Hitrate=0.310000,Qrlimit=0.004433,Noagent_r=0.009138,QrRatio=0.651420

Message content example for a non-cruise control job:
event = JOBEVENTS

timeStamp = 1112829035(16:10:35)

dialerID = 11

jobNumber = 13

 PARAM = E_CC

 VALUE = 0

 PARAM = E_DSL

 VALUE = 0.990000

 PARAM = E_CONNTOLE

 VALUE = 1

 PARAM = E_SERVCALLS

 VALUE = 10785

 PARAM = E_OFFEREDCALLS

 VALUE = 11663

Avaya Proactive Contact 5.0 Software Developer’s Kit

59

E_LEAVE Indicates that the agent left the job.

E_AGENTNAME The name of the agent that left the job.

Message content example:
event = JOBEVENTS

timeStamp = 1112981595(10:33:15)

dialerID = 16

jobNumber = 29

 PARAM = E_LEAVE

 VALUE = 342

 PARAM = E_AGENTNAME

 VALUE = op38test

JOBDYNAMICCHANGE

Job parameters that are modified during a job.

Keyword

(parameter)

Description (value)

CALLSTGY A number indicates which aspect of the call strategy has been
changed. 1=Alternate initial phone setting was changed, 2=Recall
setting was changed, 3=Progress setting was changed.

ORDERZONE This is a 0/1 toggle which asks if you want to order your calls by
time zone. If value is „1‟, calls will be made by time zone (east to
west). If value is „0‟, calls will be placed „round-robin‟ style.

VIEWCNTRL Preview time limit in seconds that an agent can preview a record
before the Proactive Contact dials the record. 0=infinite preview
time. n=n second preview time.

DIALCNTRL 1=YES; Allows agents to cancel the call before Proactive Contact
dials the previewed record.

0=NO; Disallows agents to cancel a call before Proactive Contact
dials the previewed record for managed calls only.

IDCNTRL This is the Expert Calling ratio. The range is between 0% - 100%.
0% dial only when an agent is available for a call and puts no
calls in a queue. 100% = full capacity of Proactive Contact.

Avaya Proactive Contact 5.0 Software Developer’s Kit

60

Message content example:
event = JOBDYNAMICCHANGE

timeStamp = 1112981422(10:30:22)

dialerID = 16

jobNumber = 29

 PARAM = E_PARAM

 VALUE = IDCNTRL

 PARAM = E_VALUE

 VALUE = W70

SERVETIME The amount of time the Avaya Proactive Contact allows as a
cushion between transferring an agent from an inbound job to an
outbound job.

INBQUEFACTOR The maximum number of calls that will be allowed into the
inbound wait queue before Proactive Contact assigns a Blend
agent to take inbound calls.

RETURNTIME The amount of time a Blend agent can be idle before returning to
outbound calling.

LINKJOB This is the name of the job that is linked to the current job.

MIN_HITRATE A parameter that tells the Avaya Proactive Contact the lowest
number of call attempts it will place before achieving a
connection. The system uses the minimum hit rate to adjust the
number of lines a job is using, therefore adjusting the speed of
dialing.

ADDLINETYPE States the name of the line pool that was added to the job.

DELETELINETYPE States the name of the line pool that was removed from the job.

Avaya Proactive Contact 5.0 Software Developer’s Kit

61

JOBENDED

Information provided when a job ends.

Keyword Description

EXITCODE Provides an exit code that identifies the reason the job ended
Values 0=Normal or 1=Aborted

TOTALJOBTIME The cumulated time a job is active with at least one agent.

Real-time statistics
Real-time statistics are organized into four categories: system, job, agent, and phone

line.

This section describes the data structures that the SDK uses to deliver statistical

information to client applications.

This section contains the following methods:

 systemStatNotify

 JobStatNotify

 AgentStatNotify

 LineStatNotify

systemStatNotify

The systemStatNotify method definition is located in the EventClient module of the

EventClient.idl.

The SDK uses this method to deliver Avaya Proactive Contact general system

configuration statistics to client applications. The SystemStatData structure provides

basic configured information about Avaya Proactive Contact.

This section identifies the following system statistics data structures found in the

EventTypes.idl:

 IDL declaration

 Contents of struct SystemStatData

 Contents of struct LinePoolData

IDL declaration
oneway void systemStatNotify(

in ESType:: SystemStatData systemStatData);

Avaya Proactive Contact 5.0 Software Developer’s Kit

62

Contents of struct SystemStatData

Type Variable Definition

long timeStamp A number that, when converted, identifies the current
date and time for Avaya Proactive Contact. For
example 954951746 converts to 04/05/2000
09:22:26.

The system returns the number stored as a 32-bit
long that contains the number of seconds since
January 1, 1970. This is given in time local to where
the particular dialer server is sited.

short dialerID Unique Identifier of the dialer server.

long systemLines The number of ports listed in master.cfg for the
Avaya Proactive Contact and Avaya Proactive
Contact with Avaya Proactive Contact Gateway
PG230 systems.

The number of lines that can be used for Avaya
Proactive Contact with AES systems.

long systemAgents The maximum number of agents allowed on the dialer
server.

long systemJobs The maximum number of jobs allowed on the dialer
server.

long systemUpdateTime The update interval, in seconds, at which Avaya
Proactive Contact returns data to the client
application. Note that the Avaya Proactive Contact
load will affect the update frequency.

LocText timeZone The time where the dialer is located.

LinePoolSeq linePoolList List of line counts by line pool. A sequence of struct
LinePoolData. See Contents of struct LinePoolData

Avaya Proactive Contact 5.0 Software Developer’s Kit

63

Contents of struct LinePoolData

Type Variable Definition

LocText linePool Line Pool Name

octet lineType I=Inbound or O=Outbound for Avaya Proactive Contact
and Avaya Proactive Contact with PDG230 systems.

O=Outbound for Avaya Proactive Contact with AES
systems.

short lineCount Total number of lines in this Line Pool.

Avaya Proactive Contact 5.0 Software Developer’s Kit

64

JobStatNotify

The jobStatNotify method definition is located in the EventClient module of the

EventClient.idl.

The SDK uses this method to deliver job statistics to client applications.

This section identifies the following job statistic data structures found in EventTypes.idl:

 IDL declaration

 Contents of struct JobStatData

 Contents of struct JobData

 Contents of struct StaticJobData

 Contents of struct DynamicJobData

 Contents of struct AgentCountData

IDL declaration
oneway void jobStatNotify

(in ESType::JobStatData jobData);

Contents of struct JobStatData

Type Variable Definition

long timeStamp A number that, when converted, identifies the current
date and time for Avaya Proactive Contact. For example
954951746 converts to 04/05/2000 09:22:26.

The system returns the number stored as a 32-bit long
that contains the number of seconds since January 1,
1970. This is given in time local to where the particular
dialer server is sited.

short dialerID Unique identifier of the dialer server.

JobDataSeq jobDataList List of JobData structs.

Avaya Proactive Contact 5.0 Software Developer’s Kit

65

Contents of struct JobData

Type Variable Definition

StaticJobData staticJob Static information for an active job. See Contents of struct StaticJobData.
Contents of struct StaticJobData

DynamicJobData dynamicJob Dynamic statical information for an active job. See
Contents of struct DynamicJobData.

Avaya Proactive Contact 5.0 Software Developer’s Kit

66

Contents of struct StaticJobData

StaticJobData provides information about an active job that does not change during the

job.

Type Variable Definition

LocText jobName The job name. For example: 30day.

LocText callingList Calling list name.

LocText recordSelectionFile The name of the job‟s record selection file. For example:
30day.

Blank for inbound jobs.

LocText phoneStrategyFile The name of the job‟s phone strategy file. For example:
30day.

Blank for inbound jobs.

long jobNumber The job number assigned by the Avaya Proactive
Contact for example: 2.

long totalRecordsToCall The total number of records selected for calling. For
example: 15,802.

Zero for inbound jobs.

long jobStartTimeStamp The date and time that the job started running on the
Avaya Proactive Contact. The system returns the
number stored as a 32-bit long that contains the number
of seconds since January 1, 1970.

long jobEndTimeStamp The time at which the job ended.

The system returns the number stored as a 32-bit long
that contains the number of seconds since January 1,
1970.

short jobSlot The shared memory slot on the Avaya Proactive
Contact that is assigned to the job. For example: 2.

short linesAssigned The number of telephone lines assigned to each job that
is monitored on the Avaya Proactive Contact. For
example: 120.

octet jobType I, B, O, M, or C, designating respectively an inbound,
blend, outbound, managed, or cruise control job

Avaya Proactive Contact 5.0 Software Developer’s Kit

67

Contents of struct DynamicJobData

DynamicJobData provides statistical information about an active job that changes

during the job.

type variable Definition

boolean cruiseControl Indicates whether or not the job is a cruise
control job.

float desiredServiceLevel Desired service level.

long connectTolerance Call connection tolerance.

long servicedCalls Number of calls serviced within Tolerance.

long offeredCalls Number of calls that demand an agent
connection.

long runningHitRate The overall hit rate for the job since the job
started, which is calculated by measuring the
percentage of call completions measured
against call attempts. For example: 40.

long currentHitRate The hit rate for the job during the last 5 to 10
minutes, which is calculated by measuring the
percentage of call completions against call
attempts; Avaya Proactive Contact uses this
number to make adjustments to the dialing
model. For example: 42.

long recordsCalled The total number of calls made or handled for
the job includes both inbound and outbound
calls. For example: 6059.

long recordsAvailable The number of eligible records not yet called for
the job. For example: 39230.

Blank for inbound jobs.

long recordsRecalled The number of recalls remaining for the job. For
example: 218.

Blank for inbound jobs.

long inbConnects The total number of inbound connections since
the job started. For example: 859.

Avaya Proactive Contact 5.0 Software Developer’s Kit

68

long outbConnects The total number of outbound connections
since the job started. For example: 1784.

long inbTotalQueCalls The total number of inbound calls placed in the
wait queue since the job started. For example:
300.

long inbOutQueCalls Total number of calls removed from the
inbound queue. For example: 280.

long inbAverageQueTime The average amount of time that inbound calls
were in the wait queue. For example: 10
(seconds).

long inbTotalQueTime The total queue time for inbound calls. For
example: 360 (seconds).

long outbTotalQueCalls The number of outbound calls placed in the
wait queue since the job started. For example:
300.

long outbOutQueCalls Total calls removed from the outbound queue.
For example: 275.

long outbAverageQueTime The average amount of time that outbound calls
were in the wait queue. For example: 4
(seconds).

long outbTotalQueTime The total queue time for outbound calls. For
example: 240 (seconds).

long jobCallsAnswered JOB total IN/OUT connects.

long jobCallsInWait JOB total IN/OUT calls in WAITQ.

long jobCallsWorked JOB total IN/OUT calls worked.

long jobIdleCount JOB total idle.

long jobIdleTime JOB total idle time in seconds.

long jobTalkTime JOB total talk time in seconds.

long jobUpdateTime JOB total update time in seconds.

Avaya Proactive Contact 5.0 Software Developer’s Kit

69

long jobWaitQueueTime JOB total waitq time in seconds.

long jobWorkTime JOB total work time in seconds.

long mgdPreviewTime Total preview time for managed calls.

octet jobStatus Identifies the job‟s current status. Values
include:

0=active

1=job finished setup phase

2=job in shutdown phase

3=no more calls to ops

ExtJobDataSeq extJobDataList Sequence of extended job statistical data
groups. One of several possible structures with
further information. The possibilities are:

ExtPtpJobData

ExtInbJobData

ExtOutJobData

ExtAuxJobData

CompCodeSeq compCodeList Array of all possible outbound completion
codes. The values in the array are the counts
for each completion code. For example, if you
had twenty instances of code 19 (RECALL), the
values would be:
outbCallCompletionCode[19] = 20

AgentCountSeq agentCountList Composite of Agent Count information. This is
a sequence of AgentCountData structs. See
Contents of struct AgentCountData.

LocText expertCalling The current rate at which Avaya Proactive
Contact predicts when to make the next call.
Avaya Proactive Contact uses one of the
following settings to adjust the calling pace:

Calls in the wait queue achieves a balance
between agents waiting for a call and clients
placed in the wait queue.

Agent work time monitors the time agents take
to complete calls and update records.

Agent update time monitors the time agents
take to update records. Expert Calling is not
used for inbound calls.

Avaya Proactive Contact 5.0 Software Developer’s Kit

70

Contents of struct AgentCountData

The data in AgentCountData states how many agents of a given login type are present.

A sequence of these is provided in the dynamic job data.

Type Variable Definition

short count Current agent count

octet type Agent login type {I, O, B, M, P, Z}

73=I for Inbound

79=O for Outbound

66=B for Blend

77=M for Managed

80=P for Person-to-Person

90=Z for type not selected yet

AgentStatNotify

The agentStatNotify method definition is located in the EventClient module of the

EventClient.idl. The SDK uses this method to deliver agent statistics to client

applications. This section identifies the agent statistic data structures found in the

ESCommonTypes.idl.

Agent information exists from the time an agent logs on to the Avaya Proactive Contact

until he or she logs off. The system stores agent data on a job by job basis. To retrieve

agent statistical data for a job, look up the number for each job associated with each

agent data structure, then the corresponding job status for the job number.

This section contains the following topics:

 IDL declaration

 Contents of struct AgentStatData

 Contents of struct AgentSessionData

 Contents of struct AgentDynDataPerJob

IDL declaration
oneway void agentStatNotify (

in ESCommon:: AgentStatData agentStatData);

Contents of struct AgentStatData

Type Variable Definition

Avaya Proactive Contact 5.0 Software Developer’s Kit

71

long timeStamp A number that, when converted, identifies the
current date and time for Avaya Proactive
Contact. For example 954951746 converts to
04/05/2000 09:22:26.

The system returns the number stored as a 32-
bit long that contains the number of seconds
since January 1, 1970. This is given in time local
to where the particular dialer server is sited.

short dialerID Unique identifier of the dialer server

AgentDataSeq agentDataList List of AgentData structs, which is comprised of
agent session data and agent dynamic data.

Contents of struct AgentSessionData

AgentSessionData provides statistical information for an agent‟s session:.

Type Variable Definition

LocText agentName The agent login user name. For example: jdoe

LocText wkStn The agent‟s workstation identifier. This is a tty
port or a pseudo tty port (the data port). For
example: 4

LocText headsetID The agent‟s headset ID, a numerical value.

octet currentType The agent‟s current type:

79 = O outbound

73 = I inbound

90 = Z not on a call.

octet currentState An agent‟s current state:

84 = T for talk

85 = U update

73 = I for idle

76 = L transferring to another job

79 = O off job

82 = R released to inbound

88 = X logged off system

90 = Z log off requested

long currentJobNumber The number of the job that the agent is currently
working on. For example 57.

Avaya Proactive Contact 5.0 Software Developer’s Kit

72

long loginTimeStamp The time at which agent logged in to the dialer
system.

The system returns the number stored as a 32-
bit long that contains the number of seconds
since January 1, 1970. This is given in time local
to where the particular dialer server is sited.

long offlineTimeStamp The time an agent logged off last job:

l Set to sysLoginTimeStamp on log in

l Set to time agent reached jobname
prompt after selecting hid

The system returns the number stored as a 32-
bit long that contains the number of seconds
since January 1, 1970. This is given in time local
to where the particular dialer server is sited.

long acqFmAcdTimeStamp The time an agent was acquired from inbound
calling to handle outbound calls.

The system returns the number stored as a 32-
bit long that contains the number of seconds
since January 1, 1970. This is given in time local
to where the particular dialer server is sited.

long relToAcdTimeStamp The time an agent was released from outbound
calling to handle inbound calls.

The system returns the number stored as a 32-
bit long that contains the number of seconds
since January 1, 1970. This is given in time local
to where the particular dialer server is sited.

long elapsedJobTime Total of all time on jobs, in seconds, including
the current job, if any.

long elapsedSessionTime Total of all time logged in, in seconds, including
current session.

Contents of struct AgentDynDataPerJob

AgentDynDataPerJob provides statistical information for an agent by job.

Type Variable Definition

LocText jobName The job name. For example: 30day.

Avaya Proactive Contact 5.0 Software Developer’s Kit

73

LocText unitID The unit identifier for the job. For example: field
"state" = WA or

“state” = Washington.

For multi unti selection feature:

If agent selects more than one unit, unitID field
contains “Allid”.

If agent selects one unit, unitID fileld contains
selected unit.

octet agentType Type of agent:

73 = I for Inbound,

79 = O for Outbound,

66 = B for Blend,

77 = M for Managed,

80 = P for Person to Person,

65 = A for ACD

long jobNumber The number of the job that the agent was logged
in to. For example: 85.

If the value of the job number is -1 or 50, the
data within the structure is invalid.

While the agent is no longer logged in to this job,
it may still be active.

long lastLogonTimeStam
p

A number that, when converted, identifies the
date and time when the agent logged out of the
Avaya Proactive Contact job. For example,
954951746 converts to 04/05/2000 09:22:26.

The system returns the number stored as a 32-
bit long that contains the number of seconds
since January 1, 1970. This is given in time local
to where the particular dialer server is sited.

long lastLogoffTimeStam
p

A number that, when converted, identifies the
date and time that the last time an agent logged
out of the job. The system returns the number
stored as a 32-bit long that contains the number
of seconds since January 1, 1970. This is given
in time local to where the particular dialer server
is sited.

long lastStatusChgTimeS
tamp

A number that when converted identifies the
date and time of the agent‟s last status change.
The system returns the number stored as a 32-
bit long that contains the number of seconds
since January 1, 1970. This is given in time local
to where the particular dialer server is sited.

Avaya Proactive Contact 5.0 Software Developer’s Kit

74

long mgdPreviewTime Total preview time for managed calls.

long totalCallsWorked Number of calls worked, a total for all inbound
and outbound calls.

long totalIdleCount The number of times an agent is idle between
calls, a total for all inbound and outbound calls.

long totalIdleTime The time the agent has been idle, a total for all
inbound and outbound calls.

long totalTalkTime Talk time, a total for all inbound and outbound
calls.

long totalUpdateTime Time updating customer records, a total for all
inbound and outbound calls.

long totalWorkTime Work time, a total for all inbound and outbound
calls

ExtAgentDataSeq extAgentDataList This will be one of several possible extended
agent data structs. The possibilities are:

ExtPtpAgentData

ExtInbAgentData

ExtOutAgentData

ExtAuxAgentData

CompCodeSeq compCodeList Array of all possible outbound completion codes.
The values in the array are the counts for each
completion code. For example, if you had twenty
instances of code 19 (RECALL), the values
would be:

outbCallCompletionCode[19] = 20.

LineStatNotify

The lineStatNotify method definition is located in the EventClient module of the

EventClient.idl. LineStatData checks the status of telephone lines on Avaya Proactive

Contact. The SDK uses this method to deliver phone line statistics to client

applications.

This section identifies the following line statistic data structures found in the

ESCommonTypes.idl:

 IDL declaration

 Contents of struct LineStatData

Avaya Proactive Contact 5.0 Software Developer’s Kit

75

 Contents of struct PoolData

 Contents of struct LineData

IDL declaration
oneway void LineStatNotify

 in ESCommon:: LineStatData lineStatData);

Contents of struct LineStatData

Type Variable Definition

long timeStamp The current System time.

This is a number that when converted identifies the date
and time of the agent‟s last status change.

The system returns the number stored as a 32-bit long
that contains the number of seconds since January 1,
1970. This is given in time local to where the particular
dialer server is sited.

short dialerID Unique identifier of the dialer server.

LineSeq lineList Composite of line use info by Jobnumber and Line Pool
name.

Contents of struct PoolData

Type Variable Definition

LocText linePool Line pool name

short linesInUse Number of lines in use

Contents of struct LineData

Type Variable Definition

long jobNumber Job number

PoolSeq poolList List of lines in use by pool

Avaya Proactive Contact 5.0 Software Developer’s Kit

76

Using the Client IDL

Client applications implement the EventClient.idl, which is used by the Avaya Proactive

Contact server application. The EventClient.idl defines the client interface. It also

provides the real-time event report interface. The Avaya Proactive Contact SDK uses

this interface to send the client application callback data such as real-time events and

real-time statistics defined in the ESCommonTypes.idl. This section describes the

EventClient.idl.

This section contains the following topics:

 CallEventNotify

 AgentEventNotify

 JobEventNotify

 SystemStatNotify

 JobStatNotify

 AgentStatNotify

 LineStatNotify

CallEventNotify
The callEventNotify method is located in the EventStatIF interface of the EventClient

module in the EventClient.idl. The SDK uses this method to notify a client application of

call events.

IDL declaration
oneway void callEventNotify

 in ESCommon:: eventTypeKind eventTypeKind,

 in ESCommon:: EventDataSegment callEventData);

Parameter Description

eventTypeKind Describes the basic information about the call. For example, call ID and
time stamp.

callEventData A data segment that carries the specific data for an individual event.

Avaya Proactive Contact 5.0 Software Developer’s Kit

77

Exceptions

See Avaya Proactive Contact SDK exceptions for a description of standard CORBA

and TAO exceptions.

Examples

See an example in Java sample application.

AgentEventNotify
The agentEventNotify method is located in the EventStatIF interface of the EventClient

module in the EventClient.idl. The SDK uses this method to notify the client application

of all agent events.

IDL declaration
oneway void agentEventNotify

 in ESCommon:: eventTypeKind eventTypeKind,

 in ESCommon:: EventDataSegment agentEventData);

Parameters Description

eventTypeKind Describes the basic information about agents, such as agent name.

agentEventData A data segment that delivers specific data for an agent event, such as
ExitCode.

Exceptions

See Avaya Proactive Contact SDK exceptions for a description of standard CORBA

and TAO exceptions.

Examples

See an example in Java sample application.

JobEventNotify
The jobEventNotify method is located in the EventStatIF interface of the EventClient

module in the EventClient.idl. The SDK uses this method to notify the client application

of job events.

IDL declaration
oneway void jobEventNotify (

 in ESCommon:: eventTypeKind eventTypeKind,

 in ESCommon:: EventDataSegment jobEventData);

Parameters Description

eventTypeKind Describes the basic information about jobs, such as job name.

Avaya Proactive Contact 5.0 Software Developer’s Kit

78

jobEventData A data segment that describes specific information for individual job
events.

Exceptions

See Avaya Proactive Contact SDK exceptions for a description of standard CORBA

and TAO exceptions.

Examples

See an example in Java sample application.

SystemStatNotify
The systemStatNotify method is located in the EventStatIF interface of the EventClient

module in the EventClient.idl. The SDK uses this method to deliver statistics about the

Avaya Proactive Contact.

IDL declaration
oneway void systemStatNotify (

 in ESCommon:: SystemStatData systemStatData);

Parameter Description

systemStatData The SDK provides basic system information in this structure, including
system time, number of system lines in use, number of agents on the
system, number of running jobs, and the time the system updates the
data.

Exceptions

See Avaya Proactive Contact SDK exceptions for a description of standard CORBA

and TAO exceptions.

Examples

See an example in Java sample application.

JobStatNotify
The jobStatNotify method is located in the EventStatIF interface of the EventClient

module in the EventClient.idl. The SDK uses this method to deliver statistics about

active jobs.

IDL declaration
oneway void jobStatNotify (

 in ESType:: JobStatData jobStatData);

Parameter Description

Avaya Proactive Contact 5.0 Software Developer’s Kit

79

jobStatData The SDK provides basic job information in this structure, including the
record selection and phone strategy used for calling, the job number, and
the start time.

Exceptions

See Avaya Proactive Contact SDK exceptions for a description of standard CORBA

and TAO exceptions.

Examples

See an example in Java sample application.

AgentStatNotify
The agentStatNotify method is located in the EventStatIF interface of the EventClient

module in the EventClient.idl. The SDK uses this method to deliver statistics about

agents.

Agent information exists from the time an agent logs on to the Avaya Proactive

Contact until he or she logs off. The system stores agent data by job. To retrieve agent

statistical data for a job, look up the number for each job associated with each agent

data structure, then look up the corresponding job status for the job number.

IDL declaration
oneway void agentStatNotify (

 in ESType:: AgentStatData agentStatData);

Parameters Description

agentStatData The SDK provides basic agent information in this structure, including the
agent name, login type; current state and job number; time spent
updating calls, talking to customers, and being idle.

Exceptions

See Avaya Proactive Contact SDK exceptions for a description of standard CORBA

and TAO exceptions.

Examples

See an example in Java sample application .

LineStatNotify
The lineStatNotify method is located in the EventStatIF interface of the EventClient

module in the EventClient.idl. The SDK uses this method to deliver statistics about

lines.

IDL declaration
oneway void lineStatNotify (

 in ESType:: LineStatData lineStatData);

Avaya Proactive Contact 5.0 Software Developer’s Kit

80

Parameters Description

lineStatData The SDK provides basic telephone information in this structure, including
jobs assigned to a line and whether the line is ready, unassigned, or in
use.

Exceptions

See Avaya Proactive Contact SDK exceptions for a description of standard CORBA

and TAO exceptions.

Examples

See an example in Java sample application.

Avaya Proactive Contact 5.0 Software Developer’s Kit

81

Using the Server IDL

The Avaya Proactive Contact server application implements the EventServer.idl. The

EventService.idl defines the server interface. It provides the interfaces that client

applications use to retrieve event and statistical reports defined in

ESCommonTypes.idl.

This section describes the EventServer.idl.

This section contains the following topics:

 Logon

 Logoff

 SetPasswd

 registerEventStat

 unRegisterEventStat

 getStatistics

 addInactive

Logon
This login method is located in the DialerEventServerIF interface of the EventServer

module in the EventServer.idl. This method attempts to authenticate the client

application name and password on the local Avaya Proactive Contact.

When the Avaya Proactive Contact SDK receives a logon request from the client, it

creates an object that implements the SDK interface as defined by the IDL and returns

a reference to that object to the client application.

Note: The Avaya Proactive Contact provides a configured default password. In

the client application, verify that this password meets the customer‟s

requirement.

IDL declaration
EventServiceIF logon (

 in ESCommon:: LocText clientName,

 in ESCommon:: LocText passwd)

 raises (ESError);

Parameters Description

clientName The valid login name for the client application

passwd The encrypted password for the client application

Avaya Proactive Contact 5.0 Software Developer’s Kit

82

Exceptions
AUTHORIZATIONFAILED INTERNALERROR PASSWDEXPIRED INCOMPATIBLEVERSION

NOTREADY TOOMANYCLIENTS

See Avaya Proactive Contact SDK exceptions for descriptions of these Event Service

exceptions.

Logoff
This logout method is located in the DialerEventServerIF interface of the EventServer

module in the EventServer.idl. The logoff method cleans up lingering data structures

and pointers associated with the client and discards the service object.

When the Event Service receives a logoff request from a client with the object, it

reclaims the object and performs cleanup work.

IDL declaration
void logoff

 in EventServiceIF eventService)

 raises (ESError);

Parameters Description

eventService Returns the service object created when the logon method was successful.

Exceptions
INVALIDOBJECT NOTLOGON

NOTREADY INTERNALERROR

See Avaya Proactive Contact SDK exceptions for descriptions of these Event Service

exceptions.

SetPasswd
The setPasswd method is located in the DialerEventServerIF interface of the

EventServer module in the EventServer.idl. This method changes a user‟s password.

Note: The Avaya Proactive Contact provides a configured default password. In

the client application, verify that this password meets the customer‟s

requirement.

IDL declaration
void setPasswd (

 in ESCommon :: LocText clientName,

 in ESCommon :: LocText curPasswd,

 in ESCommon :: LocText newPasswd)

 raises (ESError);

Parameters Description

clientName The valid login name for the client.

Avaya Proactive Contact 5.0 Software Developer’s Kit

83

curPasswd The user‟s current password.

newPasswd The user‟s new password.

Exceptions
AUTHORIZATIONFAILED INVALIDPASSWD SETPASSWDFAILED INTERNALERROR NOTREADY

See Avaya Proactive Contact SDK exceptions for descriptions of these Event Service

exceptions.

registerEventStat
The registerEventStat method is located in the EventServiceIF interface of the

EventServer module in the EventServer.idl. The client application uses this method to

request real-time events and real-time statistics for calls, agents, or jobs. It can also

specify subset events or request system statistics. This application includes a callback

object reference to the registerEventStat method to tell the server where to deliver the

events.

Note: To avoid duplicate events, include unRegisterEventStat with the correct

registration ID in the client application before reissuing another event

with registerEventStat.

IDL declaration
void

 registerEventStat (

 in EventClient:EventStatIF eventStatObj,

 in Common;;KeywordValueSeq requestList,

 out long registrationID)

 raises (ESError);

Parameters Description

eventStatObj The callback object.

requestList The list of real-time events or statistics the client is registering to receive.
You can use any combination of call event, agent event, job event, or
system statistic methods in your request list. Each tag/value pair is enclosed
in parentheses with the tag and value separated by a comma. The following
example shows a tag/value pair in a request list:

(CallEvent,)

If you include statistics in your list, you must include the OnDemand tag.

If you do not include this tag, you will receive statistics at the default update
frequency of 6 seconds.

The Event Service returns a registration identification number for you to use
with the GetStatistics method.

registrationID The registration ID that is returned to the client.

Avaya Proactive Contact 5.0 Software Developer’s Kit

84

Exceptions
BADUPDATEFREQUENCY INTERNALERROR TOOMANYREGISTER DUPLICATEREQUEST

INVALIDOBJECT UNKNOWNEVENT

INCOMPATIBLEVERSION NOTREADY

See Avaya Proactive Contact SDK exceptions for descriptions of these Event Service

exceptions.

Examples

The following request list instructs the Event Service to deliver all call events, all job

events, and agent logon and logoff events to the client:

(CallEvent,)(JobEvent,)(AgentLogon,)(AgentLogoff,)

The following request list instructs the Event Service to deliver CallIntitiated, CallEnded,

AgentLogon, AgentLogoff, JobStarted, and JobEnded events to the client as they

happen. It also instructs the Event Service to deliver all system statistics to the client

when the GetStatistics method is used:

(CallInitiated,) (CallEnded,) (AgentLogon,) (AgentLogoff,) (JobStarted,)

(JobEnded,) (SystemStats,)(OnDemand,)

All values in the request list are null.

unRegisterEventStat
The unregisterEventStat method is located in the EventServiceIF interface of the

EventServer module in the EventServer.idl. The client application uses this method to

request that the server stop sending events and statistics. The method also removes

the client application from the list of registered clients.

Note: To avoid duplicate events, include unRegisterEventStat with the correct

registration ID in the client application before reissuing another event

with RegisterEventStat.

IDL declaration
void unRegisterEventStat (

 in long registrationID)

 raises (ESError);

Parameter Description

registrationID The registration ID that identifies the client

Exceptions
INTERNALERROR INVALIDREGID

NOTREGISTERED NOTREADY

See Avaya Proactive Contact SDK exceptions for descriptions of these Event Service

exceptions.

Avaya Proactive Contact 5.0 Software Developer’s Kit

85

getStatistics
The getStatistics method is located in the EventServiceIF interface of the EventServer

module in the EventServer.idl. The client application uses this method to request the

server return a "snapshot" of the real-time statistics. The client must be registered for

one or more statistic notification types before using the getStatistics method.

IDL declaration
void getStatistics (

 in long registrationID)

 raises (ESError);

Parameter Description

registrationID The registration ID that identified the client.

Exceptions

See Avaya Proactive Contact SDK exceptions for descriptions of these Event Service

exceptions.

addInactive
The addInactive method is located in the EventServiceIF interface of the Eventserver

module in the EventServer.idl. Client application requests the server to send inactive

Agent and Job statistics in the next update, one shot. The client must register before

invoking this method.

Avaya Proactive Contact 5.0 Software Developer’s Kit

86

Appendix A: Avaya Proactive Contact SDK
exceptions

The following table defines the Error IDs for the Avaya Proactive Contact SDK

interface.

Exception Returned by Description

AUTHORIZATIONFAILED logon

setPasswd

The client application does not have
the proper access privileges.

BADUPDATEFREQUENY registerEventStat The update frequency number
entered is outside the valid range.

DUPLICATEREQUEST registerEventStat The client application already sent this
request.

INCOMPATIBLEVERSION logon

registerEventStat

The client application is using an
incompatible version.

INTERNALERROR logon

logoff

setPasswd

registerEventStat

unRegisterEventStat

getStatistics

There was an internal error on the
system. Reissue the method.

INVALIDOBJECT logoff

registerEventStat

The object reference used is invalid.
Check the object reference and try
again.

INVALIDPASSWORD setPasswd The password entered is invalid.

INVALIDREGID unregisterEventStat

getStatistics

The registration identifier is invalid.

NOTIMPLEMENTED This exception is
reserved for future
use.

NOTLOGON logoff The client application is not logged in
to the system.

Avaya Proactive Contact 5.0 Software Developer’s Kit

87

NOTREADY logon

logoff

setPasswd

registerEventStat

unRegisterEventStat

getStatistics

The system is busy or down. If the
system is busy, reissue the method in
a few minutes. If the system is down,
restart the system and then reissue
the method.

NOTREGISTERED unRegisterEventStat

getStatistics

The client application has not
registered to receive events or
statistics.

PASSWDEXPIRED logon The password for the client
application expired.

SETPASSWDFAILED setPasswd There was an internal system error
and the password was not set.

TOOMANY REGISTER registerEventStat The number registered exceeds the
limit set by the client application.

TOOMANYCLIENTS logon The maximum number of client
connections has been exceeded.

UNKNOWNEVENT registerEventStat The client application sent an invalid
tag name in the request list. Check
your request list for errors and try
again.

Avaya Proactive Contact 5.0 Software Developer’s Kit

88

Appendix B: System exceptions

The following table defines the system Error IDs defined by the CORBA system. For

example, TAO_SYSTEM_EXCEPTION(UNKNOWN); //unknown exception.

Exception Description

BAD_CONTEXT An error processing context object occurred.

BAD_INV_ORDER Routine invocations are out of order.

BAD_OPERATION The operation is invalid.

BAD_PARM An invalid parameter was passed.

BAD_TYPECODE TypeCode is bad.

COMM_FAILURE A communication failure occurred.

DATA_CONVERSION A data conversion error occurred.

FREE_MEM Cannot free memory.

IMP_LIMIT Implementation limit was violated.

INITIALIZE An ORB initialization failure occurred.

INTERNAL An ORB internal error occurred.

INTF_REPOS An error accessing the interface repository occurred.

INV_FLAG An invalid flag was specified.

INV_IDENT Identifier syntax is invalid.

INV_OBJREF Object reference is invalid.

INV_POLICY Invalid policies are present.

INVALID_TRANSACTION Invalid TP context passed.

MARSHAL An error occurred when marshalling the

Avaya Proactive Contact 5.0 Software Developer’s Kit

89

parameter/result.

NO_IMPLEMENT Operation implementation is unavailable.

NO_MEMORY A dynamic memory allocation failure occurred.

NO_PERMISSION Permission does not exist for the attempted operation.

NO_RESOURCES There are insufficient resources for the request.

NO_RESPONSE The response to the request is not yet available.

OBJ_ADAPTER The object adapter had a failure.

OBJECT_NOT_EXIST Object does not exist.

PERSIST_STORE A persistent storage failure occurred.

REBIND A rebind is needed.

TIMEOUT Operation timed out.

TRANSACTION_MODE An invalid transaction mode occurred.

TRANSACTION_REQUIRED Operation needs transaction.

TRANSACTION_ROLLEDBACK Operation was a no-op.

TRANSACTION_UNAVAILABLE No transaction occurred.

TRANSIENT A transient failure occurred; reissue the request at a
later time.

UNKNOWN Exception is not known.

Avaya Proactive Contact 5.0 Software Developer’s Kit

90

Appendix C: Completion codes

The following table shows the completion codes for an Avaya Proactive Contact.

The values 20-34 and 51-85 are available for agent completion codes.

Code Keyword Type Description Report

Header

000 NOTCALLED System The account has not been called.

001 CODE1 System Reserved for the system.

002 ERROR System The system detected an invalid
phone number.

003 TIMEOUT System The system did not receive a dial
tone.

Timed out

004 HANG_PORT System The line was idle after the system
dialed the customer record phone
number.

005 NOTINZONE System The local time for the customer
phone is outside calling hours.

Not within
legal hours

006 MOFLASH_B Agent Used for native voice and data
transfer. An agent transfers a call
to an inbound agent without
remaining on the line.

Blind transfer

007 HANG_TRANS System No agent is available for a
supervisor transfer.

008 TDSS_HF_B Agent ADAPTS API: the agent transfers
a call without remaining on the
call. This is known as blind hook
flash transfer.

009 System Reserved for the system.

010 System Reserved for the system.

011 BUSY System The system detected a busy
signal.

Avaya Proactive Contact 5.0 Software Developer’s Kit

91

012 CONTTONE System The system detected a continuous
tone, such as a fax or modem.

013 AUTOVOICE System The system detected an answering
machine.

014 VOICE System Interim code when a person is on
the line.

015 NOANSWER System The call placed was not answered.

016 RINGING Agent Can be user defined but is usually
defined as a phone call that was
still ringing but was passed to an
agent.

017 CUSTHU Agent Can be user defined but is usually
used to define when a customer
hangs up while the call is in the
wait queue, and the call is still
passed to an agent.

018 TRANSFER Agent Can be user defined but is usually
defined as a transfer release.

Transferred

019 RECALL Agent Can be user defined but is usually
defined as a recall release.

020-034 Agent Customer assigned codes used by
agents.

035 CANCEL System Can be user defined but is usually
defined as the agent cancelled the
managed call.

036 INTERCEPT System Special Information Tone (SIT)
received that indicates an operator
intercepted the call.

037 NOCIRCUIT System SIT received that indicates the
circuits were unavailable.

038 DISCONN System SIT received that indicates the call
was a disconnected number.

039 VACANT System SIT received that indicates the call
cannot be completed as dialed.

Avaya Proactive Contact 5.0 Software Developer’s Kit

92

040 REORDER System The call resulted in a fast busy
tone.

041 R_RINGING System Reserved.

042 LINEFAIL System A failure on the phone line
occurred.

043 OP_RECALL System Operator set recall.

044 DTMF_V System DTMF tone detected. Voice DTMF

045 HU_INB System The customer hung up while in the
inbound wait queue.

046 HU_OUT System The customer hung up while in the
outbound wait queue.

047 HANG_INB System An agent was unavailable for the
inbound call.

048 HANG_OUT System An agent was unavailable for the
outbound call.

049 OPDIED System The agent session ended
abnormally.

050 R_HSONHOOK System The agent headset disconnected
from Avaya Proactive Contact.

051-088 Agent Customer assigned codes used by
agents.

089 MANAGEDA Agent Managed Dial: Managed non-
connection A.

090 MANAGEDB Agent Managed Dial: Managed non-
connection B.

091 VIRTVOICE System Virtual Agent: Virtual message to
VOICE, a person.

092 VIRTAUTOV System Virtual Agent: Virtual message to
AUTOVOICE, a calling machine.

Avaya Proactive Contact 5.0 Software Developer’s Kit

93

093 SOLD Agent Sales Verification: Sold campaign.

094 VERIFIED Agent Sales Verification: Sale verified. Verified sale

095 UNVERIFIED Agent Sales Verification: Sale not
verified.

096-097 System Reserved for the system.

098 AORECALL Agent Agent Owned Recall.

099 System Reserved for the system.

100-200 Agent Customer assigned

Avaya Proactive Contact 5.0 Software Developer’s Kit

94

Appendix D: Windows sample setup

This section explains how to set up the TAO. It also explains how to build the client

executable on Windows for the SDK.

The toolkit contains IDLs of EventService, ORB ACE+TAO-1.6a_Windows zip, solution

files, and sample code of clients for Windows.

This section contains the following topics:

 ORB TAO setup on Windows

 Build client executable on Windows for Proactive Contact 5.0 SDK

NOTE: For Windows 64-bit OS, the TAO and Client application were tested using

Win32 settings in Visual Studio.

Required Software:

Perl for windows (For Example:

http://www.activestate.com/Products/activeperl/features.plex)

WinZIP or similar tool for extracting software archives

ORB TAO setup on Windows
The ORB of CORBA that is tested in the toolkit for windows is ACE+TAO-

1.6a_Windows.zip. The sample code can be easily adjusted in higher versions of TAO

and other ORBs as long as they are CORBA 2.3 or higher compliant.

1. Copy the SDK package to the C drive. For example:

C:\v_pdssdk\EventService\...

C:\v_pdssdk\tao\

C:\v_pdssdk\idl

2. Ensure the file, ACE+TAO-1.6a_Windows.zip, is in the C:\v_pdssdk\tao

folder.

3. Use WinZip again to extract files from ACE+TAO-1.6a_Windows.zip to the root

C: directory (recommended location).

After extracting, C:\ACE_wrappers should be created.

4. Copy folder openssl to C: directory (recommended location).

5. Create a file named config.h in C:\ACE_wrappers\ace. Type the following line

and save the file:

Avaya Proactive Contact 5.0 Software Developer’s Kit

95

 #define ACE_DISABLE_WIN32_ERROR_WINDOWS

 #define ACE_DISABLE_WIN32_INCREASE_PRIORITY

#include "config-win32.h"

6. Follow these steps to configure your environment variables:

a. Right-click My Computer, and then select Properties.

b. On the Advanced tab, select Environment Variables.

 (For Windows 7 the Environment Variables can be accessed as

 My computer -> Properties -> System Protection ->Advanced ->

 Environment Variables)

c. In the User Variables area, click New.

d. In the New User Variable dialog box, type ACE_ROOT for Variable

Name and type

C:\ACE_wrappers for Variable Value.

e. Click OK.

f. In the User Variables area, click New.

g. In the New User Variable dialog box, type TAO_ROOT for Variable

Name and type %ACE_ROOT%\TAO for Variable Value.

h. Click OK.

i. In the User Variables area, click New.

j. In the New User Variable dialog box, type SSL_ROOT for Variable

Name and type C:\openssl for Variable Value.

k. In the User Variables area of the Environment Variables, click Path.

l. Click Edit.

m. In the Edit User Variable dialog box, type

%ACE_ROOT%\bin;%ACE_ROOT%\lib; %SSL_ROOT%\out32dll at

the end of the line with a semicolon in front of it in the Variable Value

field.

n. Click OK.

o. Close Environment Variables and Properties.

7. Copy folder Certificates to C: directory (recommended location).

8. In Certificates folder, open the file corba_svc.conf and edit the path of certificate

files to the current path.

 dynamic SSLIOP_Factory Service_Object *

TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() "-

SSLAuthenticate SERVER_AND_CLIENT -SSLPrivateKey

PEM:C:\Certificates\corbaServer_key.pem -SSLCertificate

PEM:C:\Certificates\corbaServer_cert.pem -SSLCAfile

PEM:C:\Certificates\ProactiveContactCA.pem"

Avaya Proactive Contact 5.0 Software Developer’s Kit

96

static Resource_Factory "-ORBProtocolFactory

SSLIOP_Factory"

9. Add ssl=1 to your MPC
%ACE_ROOT%/bin/MakeProjectCreator/config/default.features

file.

 If the default features file is not present, then create it.

10. Run MPC to add support for building the ACE_SSL library for ACETAO project

using DOS command prompt for the command execution.

 cd %TAO_ROOT%

 %ACE_ROOT%\bin\mwc.pl -type vc[version] TAO_ACE.mwc

 Where [version] is "71", "8", or "9" for Visual C++ 7.1,

 8, or 9, respectively.

 More information on MPC is available here:

 http://www.ociweb.com/products/mpc

11. Build TAO.

a. Create a new "openssl" folder in C:\openssl\include, the hierarchy

should now look like: C:\openssl\include\openssl

b. Copy all header files (.h) files from

C:\openssl\include directory to this new directory

C:\openssl\include\openssl.

c. Go to C:\ACE_wrappers\TAO and open the below solution file as per

the VC++ compiler version

 %TAO_ROOT%\TAO_ACE.sln

d. Set the OpenSSL library and include/header directory path

 Go to Tools->Options

 If Show all Setting checkbox is present at the bottom, select it.

 Select Projects and Solutions in Options pane

 Select VC++ Directories

 Set Platform to Win32

 Select Library file in Show Directories for:

 Add C:\openssl\out32dll

 Select Include files in Show Directories for:

 Add C:\openssl\include

e. Click the Build menu and select Batch Build

f. Sort by Platform column and select all Win32 projects in Build column

http://www.ociweb.com/products/mpc

Avaya Proactive Contact 5.0 Software Developer’s Kit

97

g. Ensure that all Win32 build entries are selected. In the Batch Build
dialog box, click Build. The build may take up to about 3 hours

The projects in the TAO_ACE solution build the ACE and TAO libraries, TAO IDL

compiler, gperf, ORB services libraries and executables, and some common

utilities.

Libraries will be installed in %ACE_ROOT%\lib. Some executables will be

installed in %ACE_ROOT%\bin, others (the ORB services executables) will be

installed in their source directories.

12. Perform the following steps to verify that ORB TAO is set up correctly.

a. In C:\ACE_wrappers\TAO\orbsvcs\Naming_service, start the

Naming_Service executable in a DOS window by typing:

Naming_Service –ORBEndpoint iiop://myhostname:88888

where 88888 can be any unused port number at the moment. The port
numbers will be less than 65000.

Note that here, myshostnsme is hostname of windows m/c.

b. In a different DOS window, cd to C:\ACE_wrappers\bin.

c. Then, start nslist by typing:

tao_nslist -ORBInitRef

NameService=iioploc://myhostname:88888/NameService

You should see the following result:

Naming Service:

Build client executable on Windows for Proactive

Contact 5.0 SDK
The below steps for creating a sample application is based on the Visual Studio 2008
Win32 project. For other Visual studios 2003 or higher the steps should be more or less
similar.

1. Before beginning, ensure the following items are complete.

● EventService SDK has been installed at C:\v_pdssdk.

● ORB TAO has been installed at C:\ACE_wrappers.

● Visual Studio 2008 has been installed.

● Environment Variables such as ACE_ROOT, TAO_ROOT and SSL_ROOT,
Path have been set as described earlier in the ORB TAO setup procedure.

2. Perform the following steps to set up your Visual C++ Options.

a. Start a Visual C++ session.
b. Select the menu option Tools > Options.

Avaya Proactive Contact 5.0 Software Developer’s Kit

98

c. If Show all Setting checkbox is present at the bottom, select it
d. In the Options dialog box, select the Projects and Solutions
e. Expand the Projects and Solutions by pressing “+” button
f. Select VC++ Directories
g. On the Directories page, select the Include Files from the Show

directories for combo box.
h. In the Directories add the following directories:

C:\ACE_wrappers
C:\ACE_wrappers\TAO
C:\ACE_wrappers\TAO\tao
C:\ACE_wrappers\TAO\orbsvcs
C:\ACE_wrappers\TAO\orbsvcs\orbsvcs
C:\openssl\include
C:\v_pdssdk\EventService\v4_0\C++\sdk
C:\v_pdssdk\EventService\v4_0\C++\sdk\Interface

i. In the Show directories for: list, select Library Files.
j. In the Directories box, type:

C:\ACE_wrappers\ace
C:\ACE_wrappers\TAO\tao
C:\ACE_wrappers\TAO\orbsvcs\orbsvcs
C:\openssl\out32dll
C:\ACE_wrappers\lib

k. In the Show directories for: list, select Executable Files
l. In the Directories box, add

 C:\ACE_wrappers\bin.
 C:\ACE_wrappers\lib.

m. Click OK.

3. Perform the following steps to create a solution.

a. In the Visual Studio session, select File > New > Project.
b. In the left pane select Other Project Types, then Visual Studio Solutions from

the expanded list.
c. Select Blank Solution from the Visual Studio installed templates in Templates

pane
d. Set the name sdk in Name box and location

C:\v_pdssdk\EventService\v4_0\C++ in Location box for your solution, and
then click OK.

e. At the top of the solution window, the following will appear:
 Solution „sdk‟ (0 projects)

4. Perform the following steps to create a Project Interface. The Interface project
contains the code generated by the IDL compiler.

Avaya Proactive Contact 5.0 Software Developer’s Kit

99

a. In Solution Explorer, right-click the solution Solution ‘sdk’ (0 projects),
click Add, and then click New Project.

b. In the New Project dialog box, select Visual C++.
c. Select Win32 from Visual C++ expanded list.
d. Select Win32 Project from the Visual Studio installed templates in

Templates pane
e. Enter Interface in Name box.
f. Enter the project location C:\v_pdssdk\EventService\v4_0\C++\sdk in

Location box.
g. Press OK
h. A Win32 Application Wizard – Interface dialog box will open.
i. From the Overview page of the Win32 Application Wizard – Interface

dialog, press Next.
j. From the Application Settings page of the Win32 Application Wizard –

Interface, select Static library
k. From the Application Settings page of the Win32 Application Wizard –

Interface, deselect Precompiled header under Additional options,
l. Press Finish to create the project.

Interface project will be created under the sdk solution.

5. Perform the following steps to add files to the Interface project.

a. In the solution explorer, right-click on project Interface.
b. Select Add > Add Existing Item.
c. On Add Existing Item dialog box, go to the path C:\v_pdssdk\idl\

v4_idl.

d. Select the files Common.idl, EventClient.idl, EventServer.idl, and
EventTypes.idl.

e. Press Add

6. Perform these steps to specify how IDL compiling takes place.

a. In the solution explorer, double-click Interface.
b. Double-click the Source Files folder.
c. Select all idl files.
d. Right-click all selected idl files and then select Properties.
e. In the Property Pages dialog box, select General from expanded list of

Configuration Properties in left pane.
f. In right pane, click on Excluded From Build and select No from the drop

down box.
g. In right pane, click on Tool and select Custom Build Tool from the drop

down box.
h. Now press Apply button.
i. Custom Build Step will be displayed under the Configuration Properties
j. Click on Custom Build Step
k. In right pane select Command Line box and type the following

Avaya Proactive Contact 5.0 Software Developer’s Kit

100

$(ACE_ROOT)\bin\tao_idl.exe -I$(InputDir) -GI $(InputPath)

l. select Description box and type the following

Invoking TAO IDL compiler on $(InputPath)

m. In Outputs box, click on the drop down and Select <Edit>

n. A new window will be opened, type the following in the Outputs window and
Press ok

$(InputName)C.cpp
$(InputName)C.h
$(InputName)C.i
$(InputName)S.cpp
$(InputName)S.h
$(InputName)S.i
$(InputName)S_T.cpp
$(InputName)S_T.h
$(InputName)S_T.i

7. Perform the following steps to run the IDL compiler on four IDL files.

a. In the Solution Explorer > Interface > Source Files, right-click Common.idl
and select Compile.

b. Repeat the above step for the all other idls.

8. These steps describe creating the Interface library and adding source files generated
by IDL compiling into the project Interface.

a. In the Solution Explorer, right-click Interface.
b. Select Add > Add Existing Item.
c. On Add Existing Item dialog box, go to the path C:\v_pdssdk\

EventService\v4_0\C++\sdk\Interface.

d. Select the following files

CommonC.cpp
CommonS.cpp
EventClientC.cpp
EventClientS.cpp
EventServerC.cpp
EventServerS.cpp
EventTypesC.cpp
EventTypesS.cpp

e. Press Add
f. Right-click on the Interface and select Properties
g. Interface Property Pages window will be opened.

Avaya Proactive Contact 5.0 Software Developer’s Kit

101

h. Select C/C++ from the Configuration Properties expanded list.
i. Select Code Generation from the C/C++ expanded list.
j. In right pane,

For debug: select Multi-threaded Debug DLL (/MDd) in Runtime
Library drop down.

For release: select Multi-threaded DLL (/MD) in Runtime Library drop
down.

k. Right-click on the Interface and select Build.

Wait for the build to complete.

9. Perform the following steps to create a project called enclient. The enclient project
contains the client code.

a. In Solution Explorer, right-click the solution Solution ‘sdk’ (1 projects),
click Add, and then click New Project.

b. In the New Project dialog box, select Visual C++.
c. Select Win32 from Visual C++ expanded list.
d. Select Win32 Console Application from the Visual Studio installed

templates in Templates pane
e. Enter enclient Interface in Name box.
f. Enter the project location C:\v_pdssdk\EventService\v4_0\C++\sdk in

Location box.
g. Press OK
h. A Win32 Application Wizard – enclient dialog box will open.
i. From the Overview page of the Win32 Application Wizard – enclient

dialog, press Next.
j. From the Application Settings page of the Win32 Application Wizard –

enclient, deselect Precompiled header and select Empty project under
Additional options,

k. Press Finish to create the project.

enclient project will be created under the sdk solution.

10. Perform these steps to add source files into the project enclient.

a. In the Solution Explorer, right-click enclient.
b. Select Add > Add Existing Item.
c. On Add Existing Item dialog box, go to the path C:\v_pdssdk\

EventService\v4_0\C++.

d. Select the following files

EventClient.cpp
EventClient.h
EventClient_i.cpp
EventClient_i.h
StringConvert.cpp
StringConvert.h

Avaya Proactive Contact 5.0 Software Developer’s Kit

102

e. Press Add
f. Right-click on the enclient and select Properties
g. enclient Property Pages window will be opened.
h. Select C/C++ from the Configuration Properties expanded list.
i. Select Code Generation from the C/C++ expanded list.
j. In right pane,

For debug:

select Multi-threaded Debug DLL (/MDd) in Runtime Library drop
down.

For release:

select Multi-threaded DLL (/MD) in Runtime Library drop down.

k. Select Linker from the Configuration Properties expanded list.
l. Select Input from the Linker expanded list.
m. In right pane,

Add the following libraries in the Additional Dependencies box:

For debug:

TAO_PortableServerd.lib

TAOd.lib

ACEd.lib

TAO_CosNamingd.lib

TAO_TypeCodeFactoryd.lib

TAO_Valuetyped.lib

TAO_AnyTypeCoded.lib

TAO_BiDirGIOPd.lib

TAO_CodecFactoryd.lib

For release:

TAO_PortableServer.lib

TAO.lib

ACE.lib

TAO_CosNaming.lib

TAO_TypeCodeFactory.lib

TAO_Valuetype.lib

TAO_AnyTypeCode.lib

TAO_BiDirGIOP.lib

TAO_CodecFactory.lib

n. Right-click on the enclient and select Project Dependencies….
o. On the Project Dependencies dialog box, select enclient in the Select

project to modify list.
p. In the Depends on box, select Interface.
q. Click OK.
r. Right-click on the enclient and select Build.

11. Verify that the contents of C:\Certificates\corba_svc.conf are as follows:

Avaya Proactive Contact 5.0 Software Developer’s Kit

103

dynamic SSLIOP_Factory Service_Object *

TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory() "-

SSLAuthenticate SERVER_AND_CLIENT -SSLPrivateKey

PEM:C:\Certificates\corbaServer_key.pem -SSLCertificate

PEM:C:\Certificates\corbaServer_cert.pem -SSLCAfile

PEM:C:\Certificates\ProactiveContactCA.pem"static

Resource_Factory "-ORBProtocolFactory SSLIOP_Factory"

NOTE: In case the .pem files are located in some other location, please change

the path accordingly in the corba_svc.

12. Perform these steps to execute client enclient.

a. First, make sure that the Proactive Contact 5.0 is up and running on the

server machine on Red Hat Linux 5.5.
b. On the client machine, in a DOS window, cd to

C:\v_pdssdk\EventServer\v4_0\C++\sdk\Release
or

 C:\v_pdssdk\EventService\v4_0\C++\sdk\Debug
c. Type:

enclient -ORBSvcConf C:\Certificates\corba_svc.conf

–ORBInitRef NameService=corbaloc:ssliop:<dialer

Name>:23201/NameService -h <dialer Name> -F

 Where 23201 is the port number used by Naming_Service on the Linux
 machine which is running Avaya Proactive Contact 5.0. It cannot be
 changed.

NOTE: In case enclient is executed without -h option, there may be an error
message displayed as follows: Error: Bind to object failed

Avaya Proactive Contact 5.0 Software Developer’s Kit

104

Appendix E: RHEL 5.5 sample setup

This appendix explains how to set up the ORB TAO and Linux GNU C++ coding

environments on RHEL 5.5. It also explains how to build the client executable on RHEL

5.5 for Event Services5.0.

This section contains the following topics:

 ORB TAO setup on RHEL 5.5

 Build client executable on RHEL 5.5 for APC 5.0 Event Services

ORB TAO setup on RHEL 5.5

Overview

The toolkit contains IDLs of EventService, ACE+TAO-1.6a_Linux.tar.gz, Makefile, and

sample code of clients for RHEL 5.5.

The ORB of CORBA that's tested in the toolkit for linux is ACE+TAO-1.6a_Linux.tar.gz

The sample code can be easily adjusted in higher versions of TAO and other ORBs as

long as they are CORBA 2.3 or higher compliant.

The tools that are used with RHEL 5.5 include the following:

 Compiler: /usr/bin/gcc

 gcc version 4.1.2 20080704 (Red Hat 4.1.2-48)

 Openssl: openssl-0.9.8e-12.el5_4.6

 GNU make executable (3.80 or higher)

/usr/bin/make

GNU Make 3.81

Copyright (C) 2002 Free Software Foundation, Inc.

This is free software; see the source for copying conditions.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE.

Follow the instructions below to set up ORB TAO on RHEL 5.5:

1. Install the SDK CD to /tmp/v_pdssdk.

2. Type the following to change directories and move the ACE+TAO-

1.6a_Linux.tar.gz file as well as some conf files:

cd /tmp/v_pdssdk/tao

mv ACE+TAO-1.6a_Linux.tar.gz /opt

cd /tmp/v_pdssdk/Certificates

mv corbaServer_cert.pem corbaServer_key.pem corba_svc.conf

ProactiveContactCA.pem /opt

Avaya Proactive Contact 5.0 Software Developer’s Kit

105

The directory /opt is preferred because the run time ORB TAO on the Proactive

Contact 5.0 system is installed to /opt. Throughout this appendix, /opt is

assumed to be the directory that contains ORB TAO.

3. Unpackage the compressed file by typing the following:

cd /opt

gunzip ACE+TAO-1.6a_Linux.tar.gz

 It will create ACE+TAO-1.6a_Linux.tar

 Unpackage the tar file by typing following command

 tar –xvf ACE+TAO-1.6a_Linux.tar

After unpackaging, the directory ACE_wrappers is created in /opt.

4. Set up the environment variables by typing the following:

export ACE_ROOT=/opt/ACE_wrappers

export TAO_ROOT=/opt/ACE_wrappers/TAO

export SHLIB_PATH=/opt/ACE_wrappers/ace:$SHLIB_PATH

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ACE_ROOT/lib

These environments can be set in .profile.

5. Next, customerize certain include files for the RHEL 5.5 platform in the directory

/opt/ACE_wrappers/ace. Create file config.h with following

entry in it.

include "ace/config-linux.h "

6. Create a new files named "platform_macros.GNU" in

/opt/ACE_wrappers/include/makeinclude with follwing entries

debug=0 # (or debug=1)

optimize=0 # (or optimize=1)

ssl=1

include $(ACE_ROOT)/include/makeinclude/platform_linux.GNU

7. In $TAO_ROOT, regenerate your build files using the $ACE_ROOT/bin/mwc.pl

 script.

 $ACE_ROOT/bin/mwc.pl -type gnuace TAO_ACE.mwc

8. This step (building the ORB TAO) takes up to 2 hours. Before beginning, ensure

/usr/bin/make is the one that you will use (If there are multiple make

executables).

cd $TAO_ROOT/

make all

9. Perform these steps to verify that ORB TAO was built correctly.

Avaya Proactive Contact 5.0 Software Developer’s Kit

106

a. Start Naming_Service and use nslist to connect to it.

b. Ensure that gateway address is set (using command netconfig)

correctly because Naming_Service is multicast by default.

c. Type:

cd $TAO_ROOT/orbsvcs/Naming_Service

d. Type

./Naming_Service –ORBEndpoint iiop://myhostname:88888

where 88888 can be any unused port number at the moment. The port
numbers will be less than 65000.

Note that here, myshostnsme is hostname of Linux m/c.

 cd $ACE_ROOT/bin

e. Type

./tao_nslist -ORBInitRef

NameService=iioploc://myhostname:88888/NameService

The following result should be seen:

Naming Service:

ORB TAO is now available. Do not forget to always set your environment

variables ACE_ROOT, TAO_ROOT, LD_LIBRARY_PATH,and SHLIB_PATH

whenever applications of TAO are compiled and started up. It is better to

set them in .profile.

Build client executable on RHEL 5.5 for APC 5.0

Event Services
The client executable build process for Avaya Proactive Contact is explained in the

following section.

1. Before building a client executable, verify that the following are installed:

 EventService SDK is installed at /tmp/v_pdssdk

 ORB TOA is installed at /tao/ACE_wrappers

 ORB TAO has been built successfully

For simplicity‟s sake, the build machine and the target machine explained here

are the same. However, they can be different as long as ORB TAO is installed at

the same location /opt/ACE_wrappers.

NOTE: If the SDK is ftped from another machine, it is recommended that you

use RHEL‟s plain ftp utility and not a different ftp application tool.

2. Set up your environment.

export ACE_ROOT=/opt/ACE_wrappers

export TAO_ROOT=/opt/ACE_wrappers/TAO

Avaya Proactive Contact 5.0 Software Developer’s Kit

107

export SHLIB_PATH=/opt/ACE_wrappers/ace:$SHLIB_PATH

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$ACE_ROOT/lib

It is recommended that you set up these environments in .profile.

3. Build the executable.

cd /tmp/v_pdssdk/EventService/v4_0/C++

make idl

make enclient

4. Ensure that the event service executable, enserver, is running on the dialer

machine.

TAO's client cannot automatically start up enserver if it is not running,

Go to /tmp/v_pdssdk/EventService/v4_0/C++

Type the following

./enclient -ORBSvcConf /opt/corba_svc.conf -ORBInitRef

NameService=corbaloc:ssliop:<dialer name>:23201/NameService

-h <dialer name> -F

 Where 23201 is the port number used by Naming_Service on the Linux
 machine which is running Avaya Proactive Contact 5.0. It cannot be
 changed.

Avaya Proactive Contact 5.0 Software Developer’s Kit

108

Appendix F: Java sample application

This section contains the following topics:

 Required software

 Building the JacORB on Linux

 Executing on RHEL 5.5 for APC 5.0 Event Services

 Building JacORB on Windows

 Executing on Windows for APC 5.0 Event Services

Required software
The Avaya Proactive Contact SDK requires the following software:

 Java JDK: version 1.6.0_21

 .Ant: Version 1.8.1 or above

 Jacorb 2.3.1

Building the JacORB on Linux
Follow the instructions below to build the JacORB version of the Avaya Proactive

Contact SDK Sample on the Linux environment:

1. Install the SDK CD to /tmp/v_pdssdk.

2. Type the following to change directories and move jacorb-2.3.1-src.zip file

cd /tmp/v_pdssdk/jacorb

mv jacorb-2.3.1-src.zip /opt

cd /tmp/v_pdssdk

cp -r keystore /opt

3. Unpackage the compressed file by typing the following:

cd /opt

unzip jacorb-2.3.1-src.zip

After unpackaging, the directory jacorb-2.3.1 is created in /opt

4. Set up the environment variables by typing the following

export JAVA_HOME="Path where you have installed java"

export JacORB_HOME=/opt/jacorb-2.3.1

5. Copy jacorb.properties from /tmp/v_pdssdk/jacorb to $JacORB_HOME/etc

cd /tmp/v_pdssdk/jacorb/

cp jacorb.properties $JacORB_HOME/etc/

6. orb.properties from /tmp/v_pdssdk/jacorb to $JAVA_HOME/lib dir

Avaya Proactive Contact 5.0 Software Developer’s Kit

109

cd /tmp/v_pdssdk/jacorb/

cp orb.properties $JAVA_HOME/lib

7. This step (building JacORB) takes up to 10 minutes. Go to directory JacORB-

2.3.1 and type the following:

cd jacorb-2.3.1

ant

You will get a BUILD SUCCESSFUL message.

Executing on RHEL 5.5 for APC 5.0 Event

Services
Before beginning the execution steps, ensure you have performed the following steps:

 EventService SDK has been installed at /tmp/v_pdssdk

 /opt/jacorb-2.3.1 has been installed at /opt/jacorb-2.3.1

 JacORB-2.3.1 has been built successfully

1. Set up your environment using the following:

 export JAVA_HOME="Path where you have installed java"

 export JacORB_HOME=/opt/jacorb-2.3.1

 export CLASSPATH=$CLASSPATH:$JacORB_HOME/lib/avalon-framework-

4.1.5.jar:$JacORB_HOME/lib/slf4j-api-1.5.6.jar:$JacORB_HOME/lib/slf4j-

jdk14-1.5.6.jar:$JacORB_HOME/lib/logkit-1.2.jar:

$JacORB_HOME/lib/idl.jar:$JacORB_HOME/lib/jacorb.jar

Note: It is recommended that you set up these environments in .profile

2. Check that idl compiler of JacORB is in PATH .If it is not in the specific path then

Set up in the environment variable using Export

PATH=$PATH:$JacORB_HOME/bin

3. Build the idl's using the following command:

cd /tmp/v_pdssdk/EventService/v4_0/Java

Compile all the following idls:

idl -I../../../idl/v4_idl/ -all ../../../idl/v4_idl/EventClient.idl

idl -I../../../idl/v4_idl/ -all ../../../idl/v4_idl/EventServer.idl

idl -I../../../idl/v4_idl/ -all ../../../idl/v4_idl/EventTypes.idl

idl -I../../../idl/v4_idl/ -all ../../../idl/v4_idl/Common.idl

The above commands will generate the EventClient, ESType Common and

EventServer subdirectories in the source directory.

4. Compile the Common package by executing the following command in the

specific directory:

Avaya Proactive Contact 5.0 Software Developer’s Kit

110

/tmp/v_pdssdk/EventService/v4_0/Java:

javac -classpath . Common/*.java

5. Compile the ESType package by using the following

/tmp/v_pdssdk/EventService/v4_0/Java :

javac -classpath . ESType/*.java

6. Compile the Event Client package by using the following command in the

following directory /tmp/v_pdssdk/EventService/v4_0/Java :

javac -classpath . EventClient/*.java

7. Compile the EventServer package by using the following command in the

specific directory /tmp/v_pdssdk/EventService/v4_0/Java :

javac -classpath . EventServer/*.java

8. Compile the sample application code by using the following command in the

specific directory

/tmp/v_pdssdk/EventService/v4_0/Java :

javac -classpath . *.java

javac -classpath . TIE/*.java

Executing the Application

Follow these steps to execute the application:

1. Check environment variable $JacORB_HOME is set.

2. Check file jacorb_properties is present in $JacORB_HOME/etc.

3. Check that file orb.properties is present in $JAVA_HOME/lib

4. Go to source directory and create two files using following commands:

/tmp/v_pdssdk/EventService/v4_0/Java/TIE

touch ActionMenu.txt

touch RegisterMenu.txt

5. Start the TestClient using following command:-

java -Djacorb.home=${JacORB_HOME} -

Djacorb.config.dir=${JacORB_HOME}/etc -

DORBInitRef.NameService=corbaloc:ssliop:1.2@hostname:port_no_naming_ser

vice/NameService -classpath $CLASSPATH:.. TestClient hostname username

password.

If you get the error ERROR : org.omg.CORBA.NO_PERMISSION: Client-side

policy requires SSL/TLS, but server doesn't support it vmcid: 0x0 minor

code: 0 completed: No

 org.omg.CORBA.NO_PERMISSION: Client-side policy requires

SSL/TLS, but server doesn't support it vmcid: 0x0 minor code: 0

completed: No

Avaya Proactive Contact 5.0 Software Developer’s Kit

111

Ensure that you are using jacorb's ORB not java's native orb

Building JacORB on Windows
Follow these steps to build the JacORB on Windows platform:

1. Install JDK version 1.6.0_21

2. Download Ant (version 1.8,1 or above) and install it as described in the Ant

documentation.

3. Copy the Avaya Proactive Contact SDK CD into a directory.

4. In the directory, unzip jacorb-2.3.1-src.zip to JacORB-2.3.1.

5. Set up following environment variables:

 JAVA_HOME= <Path of Java>

 JacORB_HOME=<Path of JacORB>

6. Copy jacorb.properties from v_pdssdk\jacorb to JacORB-2.3.1\etc

7. Edit jacorb.properties file and change the path of keystore to current location:

jacorb.security.keystore= <path of keystore folder>/jacorb

[NOTE: Replace all occurrences of back slash (\) with forward slash (/) in the

keystore path. The jacorb parser does not parse (\)]

8. Copy orb.properties from v_pdssdk\jacorb to <JAVA_HOME>\jre\lib

9. Edit orb.properties file and set the path of JacORB_HOME

 jacorb.config.dir=<path of JacORB_HOME>

[NOTE: Replace all occurrences of forward slash (\) with back slash (/) in the

config path. The jacorb parser does not parse (\)]

10. To build JacORB, execute the following command in the JacORB-2.3.1 directory:

$> ant

 You will get the BUILD SUCCESSFUL message.

You can refer to following file for JacORB build instructions: JacORB-

2.3.1/doc/install.html

Executing on Windows for APC 5.0 Event

Services
Before beginning, ensure you have installed the following:

 Java 1.6.0_21 is installed.

 JacORB-2.3.1 has been installed at <v_pdssdk/ JacORB-2.3.1>

 JacORB-2.3.1 has been built successfully

Avaya Proactive Contact 5.0 Software Developer’s Kit

112

 EventService SDK has been installed at <v_pdssdk/EventService>

1. Set up following environment variables:

 JAVA_HOME=<Path of Java>

 JacORB_HOME=<Path of JacORB>

 CLASSPATH=.;%JacORB_HOME%\lib\avalon-framework-

4.1.5.jar;%JacORB_HOME%\lib\slf4j-api-

1.5.6.jar;%JacORB_HOME%\lib\slf4j-jdk14-

1.5.6.jar;%JacORB_HOME%\lib\logkit-1.2.jar;

%JacORB_HOME%\lib\idl.jar;%JacORB_HOME%\lib\jacorb.jar

[NOTE: The format of the CLASSPATH string should be exactly as

mentioned above. Take care not to miss hyphens (-), semicolons (;) or

periods (.)]

 PATH=.;%JacORB_HOME%\bin

2. Compile all the idls by executing the following commands:

cd <path of v_pdssdk>\EventService\v4_0\Java

idl <path of v_pdssdk>\idl\v4_idl\EventClient.idl

idl <path of v_pdssdk>\idl\v4_idl\EventServer.idl

idl <path of v_pdssdk>\idl\v4_idl\EventTypes.idl

idl <path of v_pdssdk>\idl\v4_idl\Common.idl

This will generate the EventClient, ESType Common and EventServer

subdirectories in the source directory (<path of

v_pdssdk>\EventService\v4_0\Java).

3. Execute the following commands:.

javac -classpath . Common*.java

javac -classpath . ESType*.java

javac -classpath . EventClient*.java

javac -classpath . EventServer*.java

javac -classpath . *.java

javac -classpath . TIE*.java

 This will compile the client.

4. To execute the application

java -Djacorb.home=%JacORB_HOME% -

Djacorb.config.dir=%JacORB_HOME% -

DORBInitRef.NameService=corbaloc:ssliop:1.2@<dialername>:<Nam

ingServiceport>/NameService –classpath

Avaya Proactive Contact 5.0 Software Developer’s Kit

113

%CLASSPATH%;.\ESType;.\Common;.\EventClient;.\EventServer;.

\TIE TestClient <dialername> <username> <password>

If you get the error ERROR : org.omg.CORBA.NO_PERMISSION: Client-side

policy requires SSL/TLS, but server doesn't support it vmcid: 0x0 minor

code: 0 completed: No

org.omg.CORBA.NO_PERMISSION: Client-side policy requires SSL/TLS, but

server doesn't support it vmcid: 0x0 minor code: 0 completed: No

Ensure that you are using jacorb's ORB not java's native orb.

Avaya Proactive Contact 5.0 Software Developer’s Kit

114

Appendix G: Certificate Generation, Signing
and Maintenance

Currently OpenSSL CA is the CA which is evaluated . OpenSSL CA is Open Source

CA distributed from http://openssl.org

OpenSSL CA is a minimal CA application. It can be used to sign certificate requests in

a variety of forms and generate CRLs it also maintains a text database of issued

certificates and their status.

On the shipped PC 5.0 systems there will be default certificates for all the services and

internal clients. For external clients, they can get their default certificates from the SDK.

Also in the configuration file, it will provide information on whether both servers and

clients have certificates, or only servers have certificates.

If you want to generate your own certificates you need to deploy the same set of

certificates for server client and CA certificates on dialer as well. For deployment verify

/opt/avaya/pds/openssl/ directories.

Generating certificates and Keystore using

OpenSSL CA
// BBO=Black Box Operation which would not concern you. (CA creation and key

certification.)

1. // BBO: create CA

 % CA.pl -newca

2. // Create openssl server keys and cert request.

% openssl req -new -days 365 -nodes -newkey rsa:1024 -out serverreq.pem -

keyout serverkey.pem -subj "/C=US/ST=MO/L=St

Louis/O=OCI/CN=Hyperlink_server"

3. // BBO: CA signs server certificate

% openssl ca -in serverreq.pem -out servercert.pem

4. // Create JacORB client key

% keytool -genkey -keyalg RSA -alias clientalias -validity 365 -keystore client_ks

-storepass clientpass -dname "C=US,ST=MO,L=St.

Louis,O=OCI,CN=Hyperlink_client"

5. // Extract JacORB cert request

% keytool -certreq -alias clientalias -keystore client_ks -storepass clientpass -file

clientreq.pem

6. // BBO: CA signs client certificate

% openssl ca -in clientreq.pem -out client_cert.pem

7. // chop out the text portion of the certificates

Avaya Proactive Contact 5.0 Software Developer’s Kit

115

% openssl x509 -in demoCA/cacert.pem -out cacert.pem

% openssl x509 -in client_cert.pem -out clientcert.pem

8. // Import CA certificate into keystore

% keytool -import -alias caalias -keystore client_ks -storepass clientpass -file

cacert.pem

9. // Import signed client certificate into keystore

% keytool -import -alias clientalias -keystore client_ks -storepass clientpass -file

clientcert.pem

Appendix H: 4.2 Event SDK clients
interacting with PC 5.0 Dialer

For Proactive 4.x Event SDK client, certificates need to be updated to connect to

Proactive Contact 5.0 dialer. Certificates can be got from PC5.0 dialer.

1. Close any running Event SDK client application

2. Take a backup of the existing key/certificates files.

3. Copy the key/certificate files from dialer available under “/opt/avaya/pds/openssl/”

to the location where your Event SDK client certificates are present. Depending

on the client, C++ or Java, copy CORBA key/certificates or Java keystore file

respectively.

	Contents
	Preface
	Purpose
	Audience
	Reasons for issue
	Related documents

	Overview
	Avaya Proactive Contact fundamentals
	Avaya Proactive Contact configurations
	Avaya Proactive Contact
	Avaya Proactive Contact with PG230
	Avaya Proactive Contact with AES

	Blending options
	Agent Blending
	Intelligent Call Blending

	Job types
	Outbound jobs
	Inbound jobs
	Blend jobs

	Call management
	Call activities
	Call
	Device
	Calling lists
	Campaign management
	Monitoring calling activity

	Agent activities
	Agent types
	Agent tasks
	Logging in to Avaya Proactive Contact
	Joining jobs
	Handling calls
	Transferring calls
	Placing manual calls
	Placing field calls
	Calling alternative telephone numbers
	Scheduling recalls
	Updating customer records
	Ending calls
	Leaving jobs
	Disconnecting headsets
	Logging out

	Working in a CORBA environment
	Developing client applications
	Sample applications

	Using the Avaya Proactive Contact SDK
	Working with interface definition language
	Connecting to the Avaya Proactive Contact SDK
	Connect using the Naming Service
	Connect using the Naming Service IOR
	Connect to the Avaya Proactive Contact SDK

	Call event state diagrams
	Inbound calling
	Outbound calling

	Predictive outbound calling
	Managed outbound calling
	Blind native voice transfer
	Supervised native voice transfer
	Supervised native voice transfer with consulted
	Trunk-to-trunk transfer with consulted
	Trunk-to-trunk transfer without consulted
	Job state scenarios
	Agent state scenarios

	Commands and notification events
	SDK common data types
	Generic data types
	Real-time events
	CallEventNotify
	IDL declaration
	Call event header
	Call event types
	CALLINITIATED
	CALLDIALED
	CALLANSWERED
	CALLCONNECTED
	CALLDISCONNECTED
	CALLQUEUED
	CALLHELD
	CALLPREVIEWED
	CALLTRANSFER
	CALLCONSULTED
	CALLENDED
	CALLRETRIEVED
	CALLPLAYMSG

	AgentEventNotify
	IDL declaration
	Event Type Kind
	Agent event types
	AGENTLOGON
	AGENTNOTREADY
	AGENTREADY
	AGENTOFFLINE
	AGENTONLINE
	AGENTPREVIEW
	AGENTONCALL
	AGENTOFFCALL
	AGENTLOGOFF

	JobEventNotify
	IDL declaration
	Job event header
	Job event types
	JOBSTARTED
	JOBEVENTS
	JOBDYNAMICCHANGE
	JOBENDED

	Real-time statistics
	systemStatNotify
	IDL declaration
	Contents of struct SystemStatData
	Contents of struct LinePoolData

	JobStatNotify
	IDL declaration
	Contents of struct JobStatData
	Contents of struct JobData
	Contents of struct StaticJobData
	Contents of struct DynamicJobData
	Contents of struct AgentCountData

	AgentStatNotify
	IDL declaration
	Contents of struct AgentStatData
	Contents of struct AgentSessionData
	Contents of struct AgentDynDataPerJob

	LineStatNotify
	IDL declaration
	Contents of struct LineStatData
	Contents of struct PoolData
	Contents of struct LineData

	Using the Client IDL
	CallEventNotify
	IDL declaration
	Exceptions
	Examples

	AgentEventNotify
	IDL declaration
	Exceptions
	Examples

	JobEventNotify
	IDL declaration
	Exceptions
	Examples

	SystemStatNotify
	IDL declaration
	Exceptions
	Examples

	JobStatNotify
	IDL declaration
	Exceptions
	Examples

	AgentStatNotify
	IDL declaration
	Exceptions
	Examples

	LineStatNotify
	IDL declaration
	Exceptions
	Examples

	Using the Server IDL
	Logon
	IDL declaration
	Exceptions

	Logoff
	IDL declaration
	Exceptions

	SetPasswd
	IDL declaration
	Exceptions

	registerEventStat
	IDL declaration
	Exceptions
	Examples

	unRegisterEventStat
	IDL declaration
	Exceptions

	getStatistics
	IDL declaration
	Exceptions

	addInactive

	Appendix A: Avaya Proactive Contact SDK exceptions
	Appendix B: System exceptions
	Appendix C: Completion codes
	Appendix D: Windows sample setup
	ORB TAO setup on Windows
	Build client executable on Windows for Proactive
	Contact 5.0 SDK

	Appendix E: RHEL 5.5 sample setup
	ORB TAO setup on RHEL 5.5
	Overview

	Build client executable on RHEL 5.5 for APC 5.0
	Event Services

	Appendix F: Java sample application
	Required software
	Building the JacORB on Linux
	Executing on RHEL 5.5 for APC 5.0 Event
	Services
	Executing the Application

	Building JacORB on Windows
	Executing on Windows for APC 5.0 Event
	Services

	Appendix G: Certificate Generation, Signing and Maintenance
	Generating certificates and Keystore using
	OpenSSL CA

	Appendix H: 4.2 Event SDK clients interacting with PC 5.0 Dialer

