

Avaya Interaction Center
Avaya Agent Integration

Release 7.3.x
October 2015

© 2012-2015 Avaya Inc. All Rights Reserved.

Notice
While reasonable efforts have been made to ensure that the information in this
document is complete and accurate at the time of printing, Avaya assumes no
liability for any errors. Avaya reserves the right to make changes and
corrections to the information in this document without the obligation to notify
any person or organization of such changes.

Documentation disclaimer
"Documentation" means information published by Avaya in varying mediums
which may include product information, operating instructions and performance
specifications that Avaya may generally make available to users of its products
and Hosted Services. Documentation does not include marketing materials.
Avaya shall not be responsible for any modifications, additions, or deletions to
the original Published version of documentation unless such modifications,
additions, or deletions were performed by Avaya. End User agrees to
indemnify and hold harmless Avaya, Avaya's agents, servants and employees
against all claims, lawsuits, demands and judgments arising out of, or in
connection with, subsequent modifications, additions or deletions to this
documentation, to the extent made by End User.

Link disclaimer
Avaya is not responsible for the contents or reliability of any linked websites
referenced within this site or documentation provided by Avaya. Avaya is not
responsible for the accuracy of any information, statement or content provided
on these sites and does not necessarily endorse the products, services, or
information described or offered within them. Avaya does not guarantee that
these links will work all the time and has no control over the availability of the
linked pages.

Warranty
Avaya provides a limited warranty on Avaya hardware and software. Refer to
your sales agreement to establish the terms of the limited warranty. In addition,
Avaya's standard warranty language, as well as information regarding support
for this product while under warranty is available to Avaya customers and other
parties through the Avaya Support website:
http://support.avaya.com or such successor site as designated by Avaya.
Please note that if you acquired the product(s) from an authorized Avaya
Channel Partner outside of the United States and Canada, the warranty is
provided to you by said Avaya Channel Partner and not by Avaya.
"Hosted Service" means a hosted service subscription that you acquire from
either Avaya or an authorized Avaya Channel Partner (as applicable) and
which is described further in Hosted SAS or other service description
documentation regarding the applicable hosted service. If you purchase a
Hosted Service subscription, the foregoing limited warranty may not apply but
you may be entitled to support services in connection with the Hosted Service
as described further in your service description documents for the applicable
Hosted Service. Contact Avaya or Avaya Channel Partner (as applicable) for
more information.

Hosted Service
THE FOLLOWING APPLIES IF YOU PURCHASE A HOSTED SERVICE
SUBSCRIPTION FROM AVAYA OR AN AVAYA CHANNEL PARTNER (AS
APPLICABLE), THE TERMS OF USE FOR HOSTED SERVICES ARE
AVAILABLE ON THE AVAYA WEBSITE, HTTP://SUPPORT.AVAYA.COM/
LICENSEINFO UNDER THE LINK "Avaya Terms of Use for Hosted Services"
OR SUCH SUCCESSOR SITE AS DESIGNATED BY AVAYA, AND ARE
APPLICABLE TO ANYONE WHO ACCESSES OR USES
THE HOSTED SERVICE. BY ACCESSING OR USING THE HOSTED
SERVICE, OR AUTHORIZING OTHERS TO DO SO, YOU, ON BEHALF OF
YOURSELF AND THE ENTITY FOR WHOM YOU ARE DOING SO
(HEREINAFTER REFERRED TO INTERCHANGEABLY AS "YOU" AND "END
USER"), AGREE TO THE TERMS OF USE. IF YOU ARE ACCEPTING THE
TERMS OF USE ON BEHALF A COMPANY OR OTHER LEGAL ENTITY,
YOU REPRESENT THAT YOU HAVE THE AUTHORITY TO
BIND SUCH ENTITY TO THESE TERMS OF USE. IF YOU DO NOT HAVE
SUCH AUTHORITY, OR IF YOU DO NOT WISH TO ACCEPT THESE TERMS
OF USE, YOU MUST NOT ACCESS OR USE THE HOSTED SERVICE OR
AUTHORIZE ANYONE TO ACCESS OR USE THE HOSTED SERVICE.
YOUR USE OF THE HOSTED SERVICE SHALL BE LIMITED BY THE
NUMBER AND TYPE OF LICENSES PURCHASED UNDER YOUR
CONTRACT FOR THE HOSTED SERVICE, PROVIDED, HOWEVER,
THAT FOR CERTAIN HOSTED SERVICES IF APPLICABLE, YOU MAY HAVE
THE OPPORTUNITY TO USE FLEX LICENSES, WHICH WILL BE INVOICED
ACCORDING TO ACTUAL USAGE ABOVE THE CONTRACT LICENSE
LEVEL. CONTACT AVAYA OR AVAYA'S CHANNEL PARTNER FOR MORE
INFORMATION ABOUT THE LICENSES FOR THE APPLICABLE HOSTED
SERVICE, THE AVAILABILITY OF ANY FLEX LICENSES (IF APPLICABLE),
PRICING AND BILLING INFORMATION,
AND OTHER IMPORTANT INFORMATION REGARDING THE HOSTED
SERVICE.

Licenses
THE SOFTWARE LICENSE TERMS AVAILABLEON THE AVAYA WEBSITE,
HTTP://SUPPORT.AVAYA.COM/LICENSEINFO OR SUCH SUCCESSOR
SITE AS DESIGNATED BY AVAYA, ARE APPLICABLE TO ANYONE WHO
DOWNLOADS, USES AND/OR INSTALLS AVAYA SOFTWARE,
PURCHASED FROM AVAYA INC., ANY AVAYA AFFILIATE, OR AN AVAYA
CHANNEL PARTNER (AS APPLICABLE) UNDER A COMMERCIAL
AGREEMENT WITH AVAYA OR AN AVAYA CHANNEL PARTNER. UNLESS
OTHERWISE AGREED TO BY AVAYA IN WRITING, AVAYA DOES NOT
EXTEND THIS LICENSE IF THE SOFTWARE WAS OBTAINED FROM
ANYONE OTHER THAN AVAYA, AN AVAYA AFFILIATE OR AN AVAYA
CHANNEL PARTNER; AVAYA RESERVES THE RIGHT TO TAKE LEGAL
ACTION AGAINST YOU AND ANYONE ELSE USING OR SELLING THE
SOFTWARE WITHOUT A LICENSE. BY INSTALLING, DOWNLOADING OR
USING THE SOFTWARE, OR AUTHORIZING OTHERS TO DO SO, YOU, ON
BEHALF OF YOURSELF AND THE ENTITY FOR WHOM YOU ARE
INSTALLING, DOWNLOADING OR USING THE SOFTWARE
(HEREINAFTER REFERRED TO INTERCHANGEABLY AS "YOU" AND "END
USER"), AGREE TO THESE TERMS AND CONDITIONS AND CREATE A
BINDING CONTRACT BETWEEN YOU AND AVAYA INC. OR THE
APPLICABLE AVAYA AFFILIATE ("AVAYA").

Avaya grants you a license within the scope of the license types described
below. Where the order documentation does not expressly identify a license
type, the applicable license will be a Designated System License. The
applicable number of licenses and units of capacity for which the license is
granted will be one (1), unless a different number of licenses or units of
capacity is specified in the documentation or other materials available to you.
“Designated Processor” means a single stand-alone computing device.
“Server” means a Designated Processor that hosts a software application to be
accessed by multiple users.

License type(s)
Designated System(s) License (DS). End User may install and use each
copy or an Instance of the Software only on a number of Designated
Processors up to the number indicated in the order. Avaya may require the
Designated Processor(s) to be identified in the order by type, serial number,
feature key, Instance, location or other specific designation, or to be provided
by End User to Avaya through electronic means established by Avaya
specifically for this purpose.
Concurrent User License (CU). End User may install and use the Software on
multiple Designated Processors or one or more Servers, so long as only the
licensed number of Units are accessing and using the Software at any given
time. A "Unit" means the unit on which Avaya, at its sole discretion, bases the
pricing of its licenses and can be, without limitation, an agent, port or user, an
e-mail or voice mail account in the name of a person or corporate function
(e.g., webmaster or helpdesk), or a directory entry in the administrative
database utilized by the Software that permits one user to interface with the
Software. Units may be linked to a specific, identified Server or an Instance of
the Software.

Copyright
Except where expressly stated otherwise, no use should be made of materials
on this site, the Documentation, Software, or hardware provided by Avaya. All
content on this site, the documentation and the Product provided by Avaya
including the selection, arrangement and design of the content is owned either
by Avaya or its licensors and is protected by copyright and other intellectual
property laws including the sui generis rights relating to the protection of
databases. You may not modify, copy, reproduce, republish, upload, post,
transmit or distribute in any way any content, in whole or in part, including any
code and software unless expressly authorized by Avaya. Unauthorized
reproduction, transmission, dissemination, storage, and or use without the
express written consent of Avaya can be a criminal, as well as a civil offense
under the applicable law.

Virtualization
Each Product has its own ordering code. Note that each instance of a Product
must be separately licensed and ordered. "Instance" means one unique copy
of the Software. For example, if the end user customer or Business Partner
would like to install 2 instances of the same type of Products, then 2 Products
of that type must be ordered.

Third party components
"Third Party Components" mean certain software programs or portions thereof
included in the Software or Hosted Service may contain software (including
open source software) distributed under third party agreements ("Third Party
Components"), which contain terms regarding the rights to use certain portions
of the Software ("Third Party Terms"). As required, information regarding
distributed Linux OS source code (for those Products that have distributed
Linux OS source code) and identifying the copyright holders of the Third Party
Components and the Third Party Terms that apply is available in the
Documentation or on Avaya's website at:

http://support.avaya.com
http://support.avaya.com/licenseinfo
http://support.avaya.com/

http://support.avaya.com/Copyright or such successor site as designated by
Avaya. You agree to the Third Party Terms for any such Third Party
Components.
THIS PRODUCT IS LICENSED UNDER THE AVC PATENT PORTFOLIO
LICENSE FOR THE PERSONAL USE OF A CONSUMER OR OTHER USES
IN WHICH IT DOES NOT RECEIVE REMUNERATION TO (i) ENCODE
VIDEO IN COMPLIANCE WITH THE AVC STANDARD ("AVC VIDEO")
AND/OR (ii) DECODE AVC VIDEO THAT WAS ENCODED BY A CONSUMER
ENGAGED IN A PERSONAL ACTIVITY AND/OR WAS OBTAINED FROM A
VIDEO PROVIDER LICENSED TO PROVIDE AVC VIDEO. NO LICENSE IS
GRANTED OR SHALL BE IMPLIED FOR ANY OTHER USE. ADDITIONAL
INFORMATION MAY BE OBTAINED FROM MPEG LA, L.L.C. SEE
HTTP://WWW.MPEGLA.COM.

Note to Service Provider
The Product or Hosted Service may use Third Party Components subject to
Third Party Terms that do not allow hosting and require a Service Provider to
be independently licensed for such purpose. It is your responsibility to obtain
such licensing.

Preventing Toll Fraud
"Toll Fraud" is the unauthorized use of your telecommunications system by an
unauthorized party (for example, a person who is not a corporate employee,
agent, subcontractor, or is not working on your company's behalf). Be aware
that there can be a risk of Toll Fraud associated with your system and that, if
Toll Fraud occurs, it can result in substantial additional charges for your
telecommunications services.

Avaya Toll Fraud intervention
If you suspect that you are being victimized by Toll Fraud and you need
technical assistance or support, call Technical Service Center Toll Fraud
Intervention Hotline at +1-800-643-2353 for the United States and Canada. For
additional support telephone numbers, see the Avaya Support website:
http://support.avaya.com or such successor site as designated by Avaya.
Suspected security vulnerabilities with Avaya products should be reported to
Avaya by sending mail to: securityalerts@avaya.com.

Trademarks
The trademarks, logos and service marks ("Marks") displayed in this site, the
Documentation, Hosted Service(s), and Product(s) provided by Avaya are the
registered or unregistered Marks of Avaya, its affiliates, or other third parties.
Users are not permitted to use such Marks without prior written consent from
Avaya or such third party which may own the Mark. Nothing contained in this
site, the Documentation, Hosted Service(s) and Product(s) should be
construed as granting, by implication, estoppel, or otherwise,
any license or right in and to the Marks without the express written permission
of Avaya or the applicable third party.
Avaya is a registered trademark of Avaya Inc.
All non-Avaya trademarks are the property of their respective owners. Linux®
is the registered trademark of Linus Torvalds in the U.S. and other countries.

Downloading Documentation
For the most current versions of Documentation, see the Avaya Support
website: http://support.avaya.com or such successor site as designated by
Avaya.

Contact Avaya Support
See the Avaya Support website: http://support.avaya.com for Product or
Hosted Service notices and articles, or to report a problem with your Avaya
Product or Hosted Service. For a list of support telephone numbers and contact
addresses, go to the Avaya Support website: http://support.avaya.com (or such
successor site as designated by Avaya), scroll to the bottom of the page, and
select Contact Avaya Support.

http://support.avaya.com
http://support.avaya.com
http://support.avaya.com/Copyright
http://support.avaya.com
http://www.mpegla.com
http://support.avaya.com

Avaya Agent Integration October 2015 1
Comments on this document? infodev@avaya.com

Chapter 1: Introduction . 5
Purpose. 5
Intended audience . 5
Reason for reissue. 5
Related resources . 6

Documentation . 6
Training . 7
Viewing Avaya Mentor videos. 8

Support . 8

Chapter 2: Overview . 9
Integration tasks . 9
IC Scripts overview . 10
Component overview . 10

Default component layout . 12
Customization steps . 12

Chapter 3: Avaya Agent basics . 15
Running Avaya Agent . 15
Keyboard navigation . 16
Specifying Avaya Agent properties. 16
Language implications . 18

Chapter 4: Customizing Avaya Agent . 19
The format of the CDL file . 20
Setting global options . 21
Specifying the login dialog . 22
Specifying Avaya Agent properties. 24
Specifying framework IC Scripts . 25
Specifying frames in your application . 28
Specifying panes within a frame . 31
Specifying IC Scripts within a pane . 33
Specifying controls within a pane . 33
Specifying IC Scripts within a control . 35
Ending the definition sections . 35
What are integration hooks? . 36
Information sent to the integration hook . 37
Start using integration hooks . 37
Example integration hook code. 38
Available integration hooks . 39

Contents

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

 Contents

2 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Ex*map tables . 46

Chapter 5: Initialization and exit hooks . 51
Avaya Agent initialization and exit hooks . 52
Relevant integration hooks . 54

Chapter 6: Contact handling . 55
Lifecycle of a contact . 56
Avaya Agent contact handling IC Scripts . 56
Unified Agent Directory . 58
Unified Agent Directory API. 59

SetSite (method) . 59
SetCustomTabFocus (method) . 59

CDL settings . 60
Relevant integration hooks . 60

Chapter 7: Core services . 63
Core control . 63
Status control . 63

Status states . 64
Status modes . 64
Retrieving and setting EDU data . 65

Blender client control . 66
CDL settings . 66
Relevant integration hooks . 66

Chapter 8: Contact viewing . 69
Active Contact Viewer . 69

CDL settings . 70
Relevant integration hooks . 70

EDU Viewer. 70
The EDU Viewer GUI . 72
The XSL stylesheet . 73
XML script generation . 74
EDU containers . 75
EDU lifecycle . 75
CDL settings . 76
Relevant integration hooks . 76

Contact History Browser . 76
MS TabStrip control . 77

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent Integration October 2015 3
Comments on this document? infodev@avaya.com

Contact History Filter control . 77
Example . 77
Configuring supporting servers and databases . 78
CDL settings . 78
Relevant integration hooks . 79

Chapter 9: Media channels . 81
The voice channel . 81

What is softphone? . 81
Voice channel terms and concepts. 81
Telephony programming overview . 83
CDL settings . 89
Relevant integration hooks . 90

The web agent . 90
CDL settings . 90
Relevant integration hooks . 90

The chat channel. 91
Web state event handling . 91
CDL settings . 91
Relevant integration hooks . 91

The email channel . 92
Email management channel terms and concepts 93
Required components . 93
The Avaya Email Management client . 94
CDL settings . 97
Relevant integration hooks . 97

Chapter 10: Prompter client integration . 99
Starting a flow on a prompter client . 99
Flow construction basics . 100
CDL settings . 101
Relevant integration hooks . 101

Chapter 11: Contact wrapup . 103
WrapUp process . 104
WrapUpEngine . 104
WrapUpEngine API . 105

StartWrapUp (method). 105
FinishWrapUp (function) . 105
RemoveWrapUp (method). 106

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

 Contents

4 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

GetWrapUpObject (function) . 106
WrapUpObject API . 107

AddCodes (method) . 107
EDUId (read-only property) . 107
MediaType (property) . 107
WrapTime (property). 108

WrapUpDialog Wrap-up . 108
WrapUp process with the wrap-up dialog . 109

Prompter wrap-up . 109
WrapUp process using the Prompter client . 110
Setting the correct IC Script variables . 110
Other pointers . 111

Other wrap-up . 111
Relevant integration hooks . 111

Appendix A: Troubleshooting . 113
Extra VTel session popping up when logging onto Avaya Agent 114
The modified eduviewer layout is not showing up in the EDU window in Avaya Agent. 114
Cannot enter a non-US style phone number in agent desktop application 114
Cannot log into components with an empty password 114
Database login failed. Please retry. . 115
Error occurred at Line x, Column n while parsing CDL file 115
Avaya Agent Error 11017: Cannot find layout – xxxxxx … 116
Softphone Logout Failed: xx . 116
The Avaya Agent configuration has changed
Please re-log into all components. 117

<name> Login Failed: <reason> Do you want to Retry? 117
Avaya Agent exits without restoring the desktop area it occupied 117
A visible control is in the CDL, but does not appear in Avaya Agent 117
“guest_xyz@company.com” appears in the Origin field of the Email Task List. 118
Avaya Agent hangs on startup . 118
Get "Warning: Could not get EDU for incoming contact". 118
Get “Invalid Email Server” from Web Agent when starting Avaya Agent 119
Avaya Agent customization issues. 119
The Out of string space error . 119

Index . 121

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent Integration October 2015 5
Comments on this document? infodev@avaya.com

Chapter 1: Introduction

Purpose
The purpose of this guide is to provide detailed information about integrating the Avaya Agent
framework into the Windows system that agent uses.

Intended audience
This guide is intended primarily for an administrator who is authorized to integrate the Avaya
Agent framework for an agent to use.

Reason for reissue
Following section is added in the document:

l Unified Agent Directory API on page 59

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 1: Introduction

6 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Related resources

Documentation
See the following related documents at http://support.avaya.com.

Title Use this document to: Audience

Avaya Interaction Center and
Avaya Operational Analyst
Overview and Specification

get information about the new
features and enhancements in
Avaya Interaction Center.

Sales Engineers
Supervisors
Business Partners
Customers

IC Installation Planning and
Prerequisites

get information about the
planning and third-party
software required to deploy an
Avaya Interaction Center
system.

Business partners
Customers
Implementation
engineers

IC Installation and Configuration get information about how to
install and configure an
out-of-the-box Avaya
Interaction Center.

Sales Engineers
Supervisors
Business Partners
Customers

Agent User Guide get agent-related information
about Avaya Interaction
Center Agent.

Business partners
Customers
Agents
Supervisors

Avaya Agent Web Client get information about Avaya
Agent Web Client.

Business partners
Customers
Agents
Supervisors

http://support.avaya.com
mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Related resources

Avaya Agent Integration October 2015 7
Comments on this document? infodev@avaya.com

Finding documents on the Avaya Support website

Use this procedure to find product documentation on the Avaya Support website.

1. Use a browser to navigate to the Avaya Support website at http://support.avaya.com.

2. At the top of the screen, enter your username and password and click Login.

3. Click Documents.

4. In the Enter your Product Here search box, type the product name and then select the
product from the drop-down list.

5. If there is more than one release, select the appropriate release number from the Choose
Release drop-down list.

6. Use the Content Type filter on the left to select the type of document you are looking for,
or click Select All to see a list of all available documents.

For example, if you are looking for user guides, select User Guides in the Content Type
filter. Only documents in the selected category will appear in the list of documents.

7. Click Enter.

Training
The following courses are available on the Avaya Learning website at www.avaya-learning.com.
In the Search field, enter the course code, and click Go to search for the course.

IC Administration Guide get information about Avaya
Interaction Center (Avaya IC).
This guide describes domain
and server administration
using Avaya IC Manager.

Sales Engineers
Supervisors
Administrators
Business Partners
Customers

Agent Web Client Customization get information about how to
customize Avaya Agent Web
Client.

Supervisors
Administrators
Business Partners
Administrators

Title Use this document to: Audience

Course Code Course Title

ATC01175WEN IC and OA Overview

ATC01176IEN Interaction Center Administration and Configuration

http://support.avaya.com
http://support.avaya.com
www.avaya-learning.com
mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 1: Introduction

8 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Viewing Avaya Mentor videos
Avaya Mentor videos provide technical content on how to install, configure, and troubleshoot
Avaya products.

Videos are available on the Avaya Support website, listed under the video document type, and
on the Avaya-run channel on YouTube.

l To find videos on the Avaya Support website, go to http://support.avaya.com and perform
one of the following actions:

- In Search, type Avaya Mentor Videos to see a list of the available videos.
- In Search, type the product name. On the Search Results page, select Video in the

Content Type column on the left.

l To find the Avaya Mentor videos on YouTube, go to www.youtube.com/AvayaMentor and
perform one of the following actions:

- Enter a key word or key words in the Search Channel to search for a specific product
or topic.

- Scroll down Playlists, and click the name of a topic to see the available list of videos
posted on the website.

Note:
Note: Videos are not available for all products.

Support
Go to the Avaya Support website at http://support.avaya.com for the most up-to-date
documentation, product notices, and knowledge articles. You can also search for release notes,
downloads, and resolutions to issues. Use the online service request system to create a service
request. Chat with live agents to get answers to questions, or request an agent to connect you
to a support team if an issue requires additional expertise.

AUCC100010695 IC-Siebel Integration

ATC100011017 IC Siebel Integration, Installation and Troubleshooting

Course Code Course Title

http://support.avaya.com
mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide
www.youtube.com/AvayaMentor
http://support.avaya.com

Integration tasks

Avaya Agent Integration October 2015 9
Comments on this document? infodev@avaya.com

Chapter 2: Overview

The Avaya Agent is a framework that can host OLE controls for an agent to use.

The framework is similar to the Microsoft Windows taskbar, consisting of one or more QFrames
(windows) that can be anchored to the left, right, top, or bottom of the agent’s screen. These
frames contain tabbed QPanes on which the OLE controls reside.

When agents launch Avaya Agent, their desktop is resized and Windows prevents other
applications from using the area occupied by the Avaya Agent frames. The rest of the agent’s
desktop is available for other applications, such as Microsoft Word.

This section includes the following sections:

l Integration tasks on page 9

l IC Scripts overview on page 10

l Component overview on page 10

l Customization steps on page 12

Integration tasks
As the system integrator for Avaya Agent, you define the agent’s work environment by deciding
what is displayed.

You need to determine:

l What controls you want displayed.

l What logical groups can be made from the controls—these groups become your panes.

l How many Avaya Agent QFrames you need and where they will appear.

l What QPanes you want in each QFrame.

l The size and position of the Avaya Agent QFrame(s), QPane(s), and controls.

l How the controls interact with each other and with any application running in the desktop
area, and which IC Scripts you need to run to make that interaction happen.

Avaya Agent’s layout is written in an XML (eXtensible Markup Language) specification file
called the CDL (Console Definition Language) file that you modify and save to the database.
When an agent logs in, the system accesses the stored layout and sets up the agent’s machine
accordingly.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 2: Overview

10 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

When you install the Avaya Agent design layouts, you select which configuration is the closest
match to what you intend to implement at your company. Then you use the default CDL file as a
starting point. For more information, see The format of the CDL file on page 20.

The interactions between controls, and between a control and an application, are governed by a
set of IC Scripts you write or modify using Visual Basic for Applications (VBA) based IC Script
methods provided by Avaya. For more information, see IC Scripts Language Reference.

IC Scripts overview
IC Scripts are VBA based subroutines that can be run either explicitly or when an event is
raised.

Events can be raised by:

l Controls.

l Framework events such as pane activation or deactivation. For more information, see IC
Scripts Language Reference.

l Mouse clicks or key clicks.

These subroutines can do almost anything, from displaying an alert for the agent to saving
information into the database. For more information, see IC Scripts Language Reference.

Information on how to change the behavior of Avaya Agent by writing IC Scripts that handle the
available Integration Hooks is provided in Customizing Avaya Agent on page 19.

Component overview
Components are made up of a control (or group of controls) and the corresponding IC Scripts
used to integrate the control(s) into Avaya Agent. Out-of-the-box, Avaya Agent has several
different types of components. This section lists the types of components with a brief
description.

Core Services: This component is the basis for the Avaya IC environment. It must be in place
before any Media Channel can be integrated.

Media Channels: These are components used for handling media contacts in Avaya Agent.
The following are included in Avaya Agent:

l Voice: Voice is provided through the Softphone, which is an electronic interface to an
agent's phone that controls all the standard telephony functions. It includes:

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Component overview

Avaya Agent Integration October 2015 11
Comments on this document? infodev@avaya.com

- Telephony aware buttons that support various operations such as answer call, hang
up, and make call.

- Informational fields that can display the agent or phone state.
- A call list that shows all active lines.
- A dial directory.

l Email: Allows Customer Service Representatives (CSRs) to view and respond to email
messages that come into the contact center.

l Chat: Allows CSRs to interact with contacts that come into the contact center via Chat
through the Web Agent Client.

Contact Viewing: These components can be used in conjunction with one or more Media
components. The following are the Contact Viewing components included in Avaya Agent:

l EDU Viewer: A GUI interface to the information contained in an Electronic Data Unit (EDU)
that is associated with every contact.

l Contact History Browser, Contact History Filter, and Active Contact Viewer: Allows CSRs
to view all historical contacts for a given contact.

Contact Wrapup: This component is used for wrapping up contacts across any media:

l Wrapup Dialog Control. A dialog box that appears when a contact is completed that
requests wrapup information from the agent.

Standalone: These are components which can be used by themselves or with others. The
following are included in Avaya Agent:

l PrompterClient: PrompterClient is a component used for running Prompter Flows in Avaya
Agent.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 2: Overview

12 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Default component layout
The following drawing shows the location of components in the out-of-the-box Avaya Agent
layout:

Customization steps
The Avaya Agent interface developer should complete the following tasks to produce a
functioning contact center application:

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Customization steps

Avaya Agent Integration October 2015 13
Comments on this document? infodev@avaya.com

1. Design the general flow of the interface based on the components described in this
manual.

2. Mock up the interface: location, customizable components and application.

3. Review the avaya_agent_en.cdl file found in IC_INSTALL_DIR\IC73\design\qconsole for
items to alter. This file is created during installation. Modify or remove items based on your
design.

4. Modify those IC Scripts which interact with the components you have customized. You
would use IC Scripts to perform activities triggered by events in the Avaya Agent interface.
Refer to IC Scripts Language Reference for more information.

5. Design Media workflows and Prompter scripts using Workflow Designer. In general, you
use these scripts to enforce business rules. You may use workflows to control the flow of
contacts entering your contact center. Prompter scripts are used to prompt and direct
responses from agents in different scenarios. For more information, refer to the Avaya IC
Media Workflow Reference and Agent Script Workflow Reference.

6. Save both modified IC Scripts and the avaya_agent_en.cdl file to the application database
via Database Designer. For more information, refer to IC Database Designer Application
Reference.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 2: Overview

14 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Running Avaya Agent

Avaya Agent Integration October 2015 15
Comments on this document? infodev@avaya.com

Chapter 3: Avaya Agent basics

This chapter describes the basic elements of using Avaya Agent. It includes how to run the
application, some of the fundamental keystrokes required for navigating around Avaya Agent,
how to specify Avaya Agent properties, and some of the language implications with Avaya
Agent.

This section includes the following sections:

l Running Avaya Agent on page 15

l Keyboard navigation on page 16

l Specifying Avaya Agent properties on page 16

l Language implications on page 18

Running Avaya Agent
When you have created your CDL file(s) and IC Scripts, you save them to the database as
described in the IC Database Designer Application Reference. When they are uploaded, you
can have your agents access them by setting up a shortcut for each agent using the command
line arguments described below. Note that shortcut keys only work when Avaya Agent has the
focus, not when the customer application is focused.

When you set up shortcuts for your agents, you can specify the following command line
arguments:

Parameter Value Description

-d[irectory] "file_location" Directory where the temporary files that are
downloaded from the database are kept. If
this entry is not mentioned the files go to
the system temp directory.

-n[ame] "datasource_name" Name of the datasource mentioned in IC
Manager. This information is put in the
Datasource field of the login dialog.

-u[ser] "loginname" Login name of the user. If this parameter is
specified along with the -p option, Avaya
Agent will login automatically.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 3: Avaya Agent basics

16 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Note:
Note: For a description of ADL files, refer to IC Database Designer Application

Reference.

Keyboard navigation
In addition to any keyboard shortcuts you have defined for a pane, Avaya Agent includes these
standard shortcut keys:

Specifying Avaya Agent properties
This section lets you specify name/value pairs that can be used by the IC Scripts associated
with Avaya Agent.

-p[assword] "password" Login password. If this parameter is
specified along with the -u option, Avaya
Agent will login automatically.

-layout "layout_name" The database name of the Avaya Agent
layout spec to use when the agent logs into
Avaya Agent. This name may be case
sensitive depending on the database you
are logging into. This parameter overrides
the entry for the agent property (Under
“Agent/Desktop” Layout property has to be
set)

Parameter Value Description

Key Function

F6 Navigate between QFrames.

<ctrl Tab> Navigate between tabbed QFrames, and the Avaya Agent
button if there is one in the currently active pane.

Tab, <shift Tab> Navigate between controls.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Specifying Avaya Agent properties

Avaya Agent Integration October 2015 17
Comments on this document? infodev@avaya.com

The following table describes some of the IC Manager properties that are used by Avaya Agent.
For more information on setting properties, see IC Administration Guide.

Section Description

Agent/Desktop This section contains the Agent's Desktop
settings applicable to Avaya Agent.

Agent/Desktop/BlendingMode This section contains properties for defining
how Blending Mode works in the Agent’s
Desktop.

Agent/Desktop/ContactSuspension This section contains properties for defining
how Contact Suspension works in the
Agent's Desktop.

Agent/Desktop/Directory This section contains properties for defining
the behavior of the Directory in the Agent's
Desktop.

Agent/Desktop/Directory/SkillProficiency This section contains Skill
Proficiency-specific properties of the
Directory in the Agent's Desktop.

Agent/Desktop/Directory/Voice This section contains Voice-specific
properties of the Directory in the Agent's
Desktop.

Agent/Desktop/Email This section contains email specific
properties of the agent's desktop.

Agent/Desktop/Email/AlertInfo/REQ This section contains properties for to the
Alert Info to be set for Emails sent to a
Customer requiring more info from the
Agent's Desktop.

Agent/Desktop/Email/AlertInfo/SME This section contains properties for the Alert
Info to be set for emails sent to a Subject
Matter Expert from the Agent's Desktop.

Agent/Desktop/Layout This section contains properties for
associating a Console layout to a
workgroup/agent

Agent/Desktop/Prompter This section contains properties for defining
the behavior of the Prompter in the Agent's
Desktop.

Agent/Desktop/ScreenPop This section contains properties for defining
how Screen Pops work in the Agent's
Desktop.

Agent/Desktop/Softphone This section contains properties for defining
the behavior of the Softphone in the Agent's
Desktop.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 3: Avaya Agent basics

18 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Language implications
If you modified the standard CDL file to customize your Avaya Agent layout, this section
describes how to specify language properties in this file.

Avaya IC provides standard CDL files to enable language properties. They are named Avaya
Agent with a language suffix appended to the filename. Some examples of these files are:

l avaya_agent_en.cdl = English

l avaya_agent_jp.cdl = Japanese

l avaya_agent_fr.cdl = French

You can use the syntax in these files as examples as you change your customized CDL to
specify language properties.

For this example, use "avaya_agent_yours.cdl" as the name of your customized CDL file.

To specify language properties:

1. Make a copy of your customized CDL file in the same directory.

2. Append a language suffix to the filename. For example: avaya_agent_yours_en.cdl. Refer
to the IC Administration Guide for a complete list of supported language suffixes.

3. Open the CDL file and edit the <QConsole name = > section to read the exact name of
your customized CDL file.
For example: <QConsole name = avaya_agent_yours_en.cdl>

4. Save the changes to the file.

5. Repeat steps 1 through 4 for each language you want to support changing the language
suffix to the filename and the file text as appropriate.

Avaya IC will select the appropriate CDL file based on the setting of the UILanguage property in
IC Manager.

Agent/Desktop/WAC This section contains properties for defining
the behavior of the Web Agent in the Agent’s
Desktop.

Agent/Desktop/WrapUpDialog This section contains properties for defining
the behavior of the WrapUp Dialog in the
Agent's Desktop.

Section Description

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent Integration October 2015 19
Comments on this document? infodev@avaya.com

Chapter 4: Customizing Avaya Agent

This chapter discusses the various ways you can customize Avaya Agent to meet your specific
business requirements. Typically, customizations to Avaya Agent fall into one of the following
categories: Layout, Behavior, and Database.

This section includes the following topics:

l Customizing Avaya Agent layout on page 20

l Customizing Avaya Agent behavior on page 36

l Connecting to an external database on page 46

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 4: Customizing Avaya Agent

20 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Customizing Avaya Agent layout
As discussed in Overview on page 9, Avaya Agent consists of one or more frames whose size,
position, and contents you specify using a CDL file written in XML. In those frames, you can
include one or more panes, and in each of those panes can embed one or more controls.

Note:
Note: While customizing the Avaya Agent interface, if you add or remove the UI controls

or change the position of the UI controls, ensure that the UI controls are visible on
the user interface and do not overlap.

During the Avaya Agent designer installation, the default CDL file is saved in the
IC_INSTALL_DIR\IC73\design\QConsole\avaya_agent_en.cdl directory.

You can edit CDL file using any text or XML editor, and then save it to the database using
Database Designer. (For details, refer to IC Database Designer Application Reference.)

The format of the CDL file
The CDL file is built from a series of tags. Some tags affect the application as a whole, while
others apply to just one pane or control. The file has a nested structure; each section starts with
a beginning tag and ends with a closing tag.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

October 2015 21

The basic structure looks like this:

The available tags are described in this chapter. To see examples of how the
out-of-the-box version of Avaya Agent looks and functions when you put the entire
system together, refer to Avaya Agent User Guide.

All CDL tags have the format <tagname ...attributes...> [optional
intermediate tags] </tagname> to show the start and end points for each tag. If a
tag is only one line long, you can also use the format <tagname ...attributes...
/> to designate the start and end of a tag instead of using the full </tagname>.

Setting global options
The first section in the CDL file lets you set the global options for Avaya Agent.

<QConsole> ... </QConsole>

Description

The QConsole tag lets you set global Avaya Agent attributes.

Syntax

<QConsole Name="Name" Version="Version" Description="Description">

Start QConsole
Login options
Avaya Agent properties
IC Script Files
Framework IC Scripts
Frame 1

Pane 1 in Frame 1
IC Scripts for a pane
Controls in the pane

IC Scripts for the control
End Controls
End Pane 1

Pane 2 in Frame 1
IC Scripts for a pane
Controls in the pane

IC Scripts for the control
End Controls

End Pane 2
End Frame 1
Frame 2

... Pane, IC Script, and Control definitions ...
End Frame 2

End QConsole

Chapter 4: Customizing Avaya Agent

22 Avaya Agent Integration

...rest of the QConsole definition statements...
</QConsole>

Example

<QConsole Name="avaya_agent_en" Version="7.3" Description="Default Avaya
Agent Layout Spec in English">

Specifying the login dialog
This section lets you specify which controls require login information and what
information they need. It is built from a series of tags that get increasingly more
specific, and there is a cumulative example after the QField tag to show what they
look like when put together.

For a detailed description of the login process, see Avaya Agent initialization and
exit hooks on page 52.

<QLogin> ... </QLogin>

Description

The QLogin tag lets you specify which components need login information.

Syntax

<QLogin>
...rest of the QLogin section statements...

</QLogin>

<QComponentDictionary> ... </QComponentDictionary>

Description

The QComponentDictionary tag is a wrapper around all the components that
require login information.

Attribute Value Description

Name Any text string The case-sensitive name of the CDL layout
in the database. Each layout must have a
unique name.

Version Any text string The version number so you can keep track
of changes.

Description Any text string A description of the layout that should
indicate what the layout is used for.

October 2015 23

Syntax

<QLogin>
<QComponentDictionary>

...QComponent definition statements...
</QComponentDictionary>

</QLogin>

<QComponent> ... </QComponent>

Description

The QComponent tag provides a tab name that will be used for a specific
component and becomes a wrapper around the login fields. You may add QField
tags within this tag; these fields will be added to the first Avaya Agent Login tab.

Syntax

<QLogin>
<QComponentDictionary>

<QComponent Name="Name" Visible="Visible">
...field definitions...

</QComponent>
</QComponentDictionary>
</QLogin>

<QField> ... </QField>

Description

The QField tag lets you specify what login fields to display for a specific
component.

Syntax

<QLogin>
<QComponentDictionary>

<QComponent Name="sName">

Attribute Value Description

Name Any text string The name of the component. This name is
displayed as the tab name in the Avaya
Agent Login dialog box.

Visible “True” or “False” Whether the component is visible or not.
Default: True.

Label Any text string This is the name that is displayed in the tab
of the login.

Chapter 4: Customizing Avaya Agent

24 Avaya Agent Integration

<QField Label="Label" Space="Space" Password="Password" />
</QComponent>

</QComponentDictionary>
</QLogin>

Example

<QLogin>
<QComponentDictionary>

<QComponent Name="Application">
<QField Label="Login ID:" Space="0" Password="FALSE" />
<QField Label="Password:" Space="0" Password="TRUE" />

</QComponent>
</QComponentDictionary>

</QLogin>

Specifying Avaya Agent properties
This section lets you specify name/value pairs that can be used by the IC Scripts
associated with Avaya Agent.

<QPropertyDictionary> ... </QPropertyDictionary>

Description

The QPropertyDictionary tag begins and ends the name/value pair definition
section.

Attribute Value Description

Label Any text string The field label.

Space Any integer The number of blank lines to leave
between the label and the input field.

For example, to have the input field on the
same line as the label, you would use
Space="0" (zero). To have it on the
following line, use Space="1" (one).
Default: Space="0"

Password “True” or “False” Whether this field is a password. If this is
set to True, Avaya Agent replaces the
user’s input with asterisks (*).
Default: False.

October 2015 25

Syntax

<QPropertyDictionary>
...name/value statements...

</QPropertyDictionary>

<QSection> ... </QSection>

Description

The QSection tag lists the name/value pair (or pairs) you want to set for a given
section. (You can think of each QSection as the equivalent of an application
Preferences section, where functionally-related properties are grouped together
under a common header.)

Syntax

<QPropertyDictionary>
<QSection Name="Name" sPairName="Value" [sPairName="Value"
sPairName="Value" ... sPairName="Value"]>
</QSection>

</QPropertyDictionary>

Example

<QPropertyDictionary>
<QSection Name="General" HasApp="False" HasSoftphone="False"/>
<QSection Name="Application" CommandLine=""/>
<QSection Name="Softphone" ACD="False"/>

</QPropertyDictionary>

Specifying framework IC Scripts
The next two sections are the:

l QScript File Dictionary, which is the collection of files in which the Avaya
Agent IC Scripts are stored.

Attribute Value Description

Name Any text string The name of the section whose name/
value pairs you want to set.

PairName Any text string The name portion of the name/value pair.

Value Any text string The value portion of the name/value pair.

Chapter 4: Customizing Avaya Agent

26 Avaya Agent Integration

l QScript Dictionary, which specifies what IC Scripts are to be run at the main
Avaya Agent hook points. For details, refer to IC Scripts Language
Reference.

<QScriptFileDictionary> ... </QScriptFileDictionary>

Description

The QScriptFileDictionary tag begins and ends the list of files that contain the
Avaya Agent IC Scripts.

Syntax

<QScriptFileDictionary>
...IC Script files...

</QScriptFileDictionary>

<QScriptFile> ... </QScriptFile>

Description

The QScriptFile tag lists gives the name of an IC Script and specifies what file it is
in. The file attribute is that file name you open in Database Designer and save to
the database. You should have a <QScriptFile> definition for each IC Script that
your Avaya Agent application will run.

Syntax

<QScriptFileDictionary>
<QScriptFile Name="Name" File="File">
</QScriptFile>

</QScriptFileDictionary>

Example

<QScriptFileDictionary>
<QScriptFile Name="QConsole_BeforeLogin" File="qconsole.qsc"/>
<QScriptFile Name="QConsole_Login" File="qconsole.qsc"/>

Attribute Value Description

Name Any text string The name of the IC Script.

File Any text string The file name in which the IC Script
resides. This can be a fully qualified file
name, or a name relative to the directory in
which the CDL layout (the one that you
open in Database Designer and compiled)
is stored. Default is relative to the CDL
layout directory.

October 2015 27

<QScriptFile Name="QConsole_AfterLogin" File="qconsole.qsc"/>
<QScriptFile Name="QConsole_BeforeExit" File="qconsole.qsc"/>
<QScriptFile Name="QConsole_Exit" File="qconsole.qsc"/>
<QScriptFile Name="QConsole_MouseDown" File="qconsole.qsc"/>
<QScriptFile Name="QConsole_KeyDown" File="qconsole.qsc"/>
<QScriptFile Name="LM_BeforeNavigate2" File="listmanagement.qsc"/>

</QScriptFileDictionary>

<QScriptDictionary> ... </QScriptDictionary>

Description

The QScriptDictionary tag begins and ends the list of hooks that will launch IC
Scripts. You need to specify a separate QScriptDictionary section for the
framework as whole as well as for each pane and each control that uses IC
Scripts.

Syntax

<QScriptDictionary>
...IC Script hooks...

</QScriptDictionary>

<QScript> ... </QScript>

Description

The QScript tag gives a hook and the associated IC Script.

Syntax

<QScriptDictionary>
<QScript Hook="Hook" [Key="Key"] Name="QScriptName"> </QScript>

</QScriptDictionary>

Attribute Value Description

Hook A text string The name of the hook point at which you
want the IC Script to run.

Key (optional) Any key or a
combination
using:
Alt+<any key>
Ctrl+<any key>
Shift+<any key>

The key or key combination that runs the
script specified in Name.

This is an optional parameter that is only
used when the IC Scripts are being
associated with a pane.

Chapter 4: Customizing Avaya Agent

28 Avaya Agent Integration

Example

This example shows the QScript Dictionary for the framework. Examples of pane
and control dictionaries can be found in those sections.
<QScriptDictionary>

<!-- Keyboard Accelerator Definitions for Avaya Agent-->
<QScript Hook="KeyDown" Key="Alt+A" Name="QConsole_KeyDown"/>
<QScript Hook="KeyDown" Key="Alt+C" Name="QConsole_KeyDown"/>
<QScript Hook="KeyDown" Key="Alt+D" Name="QConsole_KeyDown"/>
<QScript Hook="KeyDown" Key="Alt+H" Name="QConsole_KeyDown"/>
<QScript Hook="KeyDown" Key="Alt+N" Name="QConsole_KeyDown"/>
<QScript Hook="KeyDown" Key="Alt+O" Name="QConsole_KeyDown"/>
<QScript Hook="KeyDown" Key="Alt+P" Name="QConsole_KeyDown"/>
<QScript Hook="KeyDown" Key="Alt+R" Name="QConsole_KeyDown"/>
<QScript Hook="KeyDown" Key="Alt+S" Name="QConsole_KeyDown"/>

</QScriptDictionary>

Specifying frames in your application
The next sections define the frames that will appear in Avaya Agent. You need
one QFrame definition within this section for each frame in the application. You
can have up to four frames.

<QFrameDictionary> ... </QFrameDictionary>

Description

The QFrameDictionary tag begins and ends the list of frames.

Syntax

<QFrameDictionary>
...Frame definition statements...

</QFrameDictionary>

QScriptName A text string The name of the IC Script you want to run.

Label Any text string This is the name that is displayed in the
GUI

Attribute Value Description

October 2015 29

<QFrame> ... </QFrame>

Description

The QFrame tag begins and ends each frame definition section.

Syntax

<QFrameDictionary>
<QFrame Name="sName" [Width="Width"|Height="Height"]

Orientation="Orientation" Visible="Visible">
.... Pane and control definition statements

</QFrame>
</QFrameDictionary>

Example

<QFrameDictionary>
<QFrame Name="Right_Frame" Width="200" Orientation="RIGHT"
Visible="TRUE">

.... Pane and control definition statements
</QFrame>

</QFrameDictionary>

Attribute Value Description

Name Any text string The name of the Avaya Agent frame.

Width or
Height

A numeric value If the orientation is Left or Right, use the
Width attribute to specify the width in
pixels.

If the Orientation is Top or Bottom, use the
Height attribute to specify the height in
pixels.

Orientation "Left", "Right",
"Top", or
"Bottom"

Where the frame is anchored on the user’s
desktop.

Visible “True” or “False” Whether the frame is visible. If not, none of
the entities it contains will be created and
none of its associated IC Scripts will be
pushed to the database.
Default: True.

Label Any text string This is the name that is displayed in the
GUI

Chapter 4: Customizing Avaya Agent

30 Avaya Agent Integration

<QStartMenu> ... </QStartMenu>

Description

The QStartMenu tag controls whether there is a Start menu button in the frame.

Syntax

<QStartMenu Visible="Visible"> </QStartMenu>

Example

<QStartMenu Visible="True" />

<QTab> ... </QTab>

Description

The QTab tag controls what the tabs for Avaya Agent look like.

Attribute Value Description

Visible “True” or “False” Whether the Avaya Agent menu is visible
or not.
Default: True.
Note: If all frames have the QStartMenu tag
set to false, or the tag is not defined for any
Avaya Agent frame, then the application
forces QStartMenu="True" for the first
visible frame defined in the CDL file.

October 2015 31

Syntax

<QTab Wrap="Wrap" Appearance="Appearance"> </QTab>

Example

<QTab Wrap="True" Appearance="Buttons"> </QTab>

Specifying panes within a frame
The next section is the Pane Dictionary that collects all the panes that are part of
Avaya Agent. For each pane, you specify its name and the IC Scripts that should
run at different points during execution. After you specify the IC Scripts, you create
a Control Dictionary that lists the OLE controls in the pane. (For more information,
see Specifying controls within a pane on page 33.)

<QPaneDictionary> ... </QPaneDictionary>

Description

The QPaneDictionary tag begins and ends the list of panes in the given frame.

Syntax

<QPaneDictionary>
...Pane definition statements...

</QPaneDictionary>

Attribute Value Description

Wrap “True” or “False” Whether the tabs should wrap if they are
longer than the pane is wide.

If this is set to False and they do not fit on
one row, the application adds a scroll bar to
the frame.

Default: True.

Appearance "Tabs" or
"Buttons"

Whether the tab names look like standard
tabs or buttons.

Default: Tabs.

Chapter 4: Customizing Avaya Agent

32 Avaya Agent Integration

<QPane> ... </QPane>

Description

The QPane tag begins and ends each pane definition section. If you want to keep
this pane in the CDL file for reference or future use, set the Visible option to False
and it will be ignored when the CDL file is compiled.

Syntax

<QPaneDictionary>
<QPane Name="Name" Label=”Label” Visible="Visible">

.... Control definition statements
</QPane>

</QPaneDictionary>

Example

<QPaneDictionary>
<QPane Name="Contact" Label="Contact" Visible="TRUE">

.... Control definition statements
</QPane>

</QPaneDictionary>

Attribute Value Description

Name Any text string The name of the Avaya Agent pane.

This name must be unique between all
panes in a given frame because IC Script
methods use the name to identify the pane.

You can, however, have two panes with the
same name if they are in different frames.

Label Any text string The label that Avaya Agent displays on the
pane in the client GUI.

If this field is omitted or set to Label=””,
Avaya Agent uses the Name attribute as
the label.

Visible “True” or “False” Whether the pane is visible. If not, it will not
be created and any associated IC Scripts
will not be pushed to the database.
Default: True.

October 2015 33

Specifying IC Scripts within a pane
You can specify the IC Scripts within a pane using a QScript Dictionary section
exactly the same as the one described for the framework on <QScriptDictionary>
... </QScriptDictionary> on page 27.

The following is an example of this dictionary for a pane:
<QPaneDictionary>

<QPane Name="Media" Visible="True">
<QScriptDictionary>

<QScript Hook="MouseDown" Name="QConsole_MouseDown" />
<QScript Hook="KeyDown" Key="Alt+N" Name="QConsole_KeyDown" />
<QScript Hook="KeyDown" Key="Alt+P" Name="QConsole_KeyDown" />
<QScript Hook="KeyDown" Key="Alt+D" Name="QConsole_KeyDown" />
<QScript Hook="KeyDown" Key="Alt+C" Name="QConsole_KeyDown" />

</QScriptDictionary>
... Control definition statements

</QPane>
</QPaneDictionary>

Specifying controls within a pane
The next section is the Control Dictionary. You need one control dictionary section
for each pane named above. This section is also where you specify what IC
Scripts runs in response to events raised by the control. When you are setting up
the control dictionary, you must determine what events might be raised and how
you want to handle them. Ensure that the event names you use match exactly
with the names that the control uses.

<QControlDictionary> ... </QControlDictionary>

Description

The QControlDictionary tag begins and ends the list of controls in the given pane.

Syntax

<QControlDictionary>
...Control definition statements...

</QControlDictionary>

Chapter 4: Customizing Avaya Agent

34 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

<QControl> ... </QControl>

Description

The QControl tag begins and ends each control definition section. If you want to keep this
control in the CDL file for reference or future use, set the Visible option to False and it will be
ignored when the CDL file is compiled.

Syntax

<QControlDictionary>
<QControl Name="Name" ProgId="ProgID" Left="Left" Top="Top"
Width="Width" Height="Height" Visible="Visible">

.... QScript definition statements
</QControl>

</QControlDictionary>

Example

<QControlDictionary>
<QControl Name="StatusControl" ProgID="AvayaStatus.StatusCtrl.73" Left="1" Top="1"
Width="193" Height="51" Visible="TRUE"/>

Attribute Value Description

Name Any text string The name of the control. This name must
be unique no matter what pane or frame
the control appears in.

ProgId Any text string The ProgID of the OLE control. (You can
find this name in the documentation for the
control.)

Left A numeric value,
in pixels

The location of left-hand edge of the
control, relative to the left edge of the pane
(the X coordinate).

Top A numeric value,
in pixels

The amount of space between the top of
the pane and the top of the control (the Y
coordinate)

Width A numeric value,
in pixels

The width of the control in pixels.

Height A numeric value,
in pixels

The height of the control in pixels.

Visible “True” or “False” Whether the control is created. If not, the
control is not used and the associated IC
Scripts are not pushed to the database.

Label Any text string This is the name that is displayed in the
GUI.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent Integration October 2015 35
Comments on this document? infodev@avaya.com

... QScript Definitions ...
</QControl>

</QControlDictionary>

Specifying IC Scripts within a control
You can specify the IC Scripts within a control using a QScript Dictionary section exactly the
same as the one described for the framework on <QScriptDictionary> ... </
QScriptDictionary> on page 27. IC Scripts can be attached to application events to override or
add to the default action, or to implement business rules.

You can use IC Scripts with Avaya Agent:

l To pop a message when an agent is assigned a phone call or email.

l To determine which requests should get routed to which agents or queues.

l To store information entered by the agent into the Avaya Agent database.

For information on creating, editing, and debugging IC Scripts, as well as information on how to
save your IC Scripts to the database, refer to IC Database Designer Application Reference.

For information on the available IC Script methods and the event hooks that you can associate
with IC Script programs, refer to IC Scripts Language Reference.

The following is an example of this dictionary for a control:
<QControlDictionary>

<QControl Name="CallList" ProgID="AvayaSoftPhone.CallListCtrl.73" Left="2" Top="55"
Width="190" Height="43" Visible="TRUE">

<QScriptDictionary>
<QScript Event="OnActivate" Name="Shared_OnActivate"/>
<QScript Event="OnSelect" Name="Shared_OnSelect"/>

</QScriptDictionary>
</QControl>

</QControlDictionary>

Ending the definition sections
When you are done defining the components in this pane, and then in Avaya Agent, you must
end all the definition sections.

</QPane>
</QPaneDictionary>
</QFrame>
</QFrameDictionary>
</QConsole>

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 4: Customizing Avaya Agent

36 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Customizing Avaya Agent behavior
As discussed in Overview on page 9, Avaya Agent IC Scripts control the behavior of the Avaya
Agent. These IC Scripts are the “glue” that binds controls within components as well as
components to other components. IC Scripts are programmed to make the Avaya Agent act the
way it does. You may need to modify the behavior of the Avaya Agent to suit your business
requirements. This chapter describes how to do that. First, you must become familiar with a
concept called “Integration Hooks”.

What are integration hooks?
Integration Hooks is the concept of running your custom code from the out-of-the-box IC
Scripts. Placed in very key places throughout the out-of-the-box IC Scripts, in very key places,
are hooks where a main Integration Hook IC Script is called. The following diagram provides a
visual depiction of the concept of Integration Hooks:

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent Integration October 2015 37
Comments on this document? infodev@avaya.com

In this diagram, calls from IC Scripts are made to the Avaya Agent Integration Hook. Inside the
Avaya Agent Integration Hook, the call is added to the Custom Integration Hook Handler.
Everything on this half of the diagram is your code. You can write code directly in the Custom
Integration Hook Handler or you can call individual Custom Handlers for each of the Hooks you
are handling. The latter is the preferred method, because it is easier to maintain as well as to
understand what your implementation is composed of.

Information sent to the integration hook
When this Integration Hook IC Script is called, the following parameters are passed with it:

1. Source – name of the IC Script from which the main Integration Hook IC Script is being
called. Use Source to determine where in Avaya Agent the call to your code is being
made.

2. Source Object – object that was part of the Source IC Script that is calling the Integration
Hook. An example is the TelephonyChangeEvent Object. Most Integration Hooks do not
contain a Source Object, however, if they do, you can use this object to perform
processing in your Integration Hook Handler.

3. Source SeqCouple – parameter used to pass various pieces of data to (and sometimes
from) the Integration Hook. Because the Integration Hook is called from many, various
places in the Avaya Agent framework, it was determined that a sequence of couples
provided the easiest means of transporting this data. The actual names of the couples
within the Source SeqCouple vary greatly by Integration Hook.

4. Cancel Flag – Integration Hooks exist to give the integrator the capability of changing the
behavior of Avaya Agent (within reason). Some Integration Hooks have the capability to
completely override the default behavior. Therefore, in order to signify to the calling IC
Script, a Cancel Flag is provided. This is a simple Boolean variable, which can be set to
Cancel if necessary. Note that for Integration Hooks that DO provide this capability, care
should be taken when taking advantage of this.

The following is the syntax of the QConsole_IntegrationHook routine:
Sub QConsole_IntegrationHook(sSource As String, iSourceObject As Object,
iSourceSeqCouple As Object, bCancel As Boolean)

Start using integration hooks
Integration Hooks are not enabled with Avaya IC. If you must customize Avaya Agent in such a
way that requires using them, perform the following steps:

1. In your CDL file, turn on the Integration Hooks:

a. Open your .cdl file in an editor.

b. Find the following QProperty Section:

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 4: Customizing Avaya Agent

38 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

<QSection Name="General"
ScreenPopScript="ScreenPop"
IntegrationHooksEnabled="False"
/>

c. Set “IntegrationHooksEnabled” = “True”.

d. Save your .cdl file.

e. Use Avaya Database Designer to push your .cdl to the database.

2. Create an Integration Hook Handler:

a. Copy the existing Avaya Agent Integration Hook Handler
(QConsole_IntegrationHook.qsc) to a new file
(for example: My_IntegrationHookHandler.qsc)

b. Inside “My_IntegrationHookHandler.qsc”, rename all “QConsole_IntegrationHook” to
“My_IntegrationHookHandler”.

c. Save “My_IntegrationHookHandler.qsc”.

d. Use Avaya Database Designer to push My_IntegrationHookHandler to the database.

3. Change the Avaya Agent Integration Hook to call your Integration Hook Handler:

a. Using Avaya Database Designer, locate the “QConsole_IntegrationHook” IC Script.

b. Add your Integration Hook Handler to the “QScript API Declarations” section.

c. Read and follow all comments inside “QConsole_IntegrationHook” for very specific
directions on where you should place your call to your Integration Hook Handler.

d. Save “QConsole_IntegrationHook”.

e. Upload “QConsole_IntegrationHook”.

The above steps bring you to a point where you have enabled the Integration Hooks and your
Integration Hook Handler is called every time an Integration Hook is run. Now, you must write all
your individual handler IC Scripts that handles each of the Integration Hooks you wish to “plug”
into. For each handler you write, you must change your Integration Hook Handler to call the
individual handler based on the Source parameter.

Example integration hook code
In order to help jumpstart your customization effort, as well as give a real face to the Integration
Hook concept, an entire set of sample Integration Hook code is included with your IC Design
installation. This code is located in the following directory: IC_INSTALL_DIR\IC73\design\
qconsole\custom.

In this directory, there is a complete assortment of IC Scripts that demonstrate the use of
Integration Hooks from a perspective of doing a full application integration.

To turn on this set of custom code to run in Avaya Agent:

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent Integration October 2015 39
Comments on this document? infodev@avaya.com

1. First enable the IntegrationHooks in your .cdl file using step 1 from the previous Chapter.

2. Add the IC_INSTALL_DIR\IC73\design\qconsole\custom to your ADL Include
Path of your application .adl file so that the custom IC Scripts will be loaded into the
Database

a. In Database Designer, open the ccq.adl file.

b. Add IC_INSTALL_DIR\IC73\design\qconsole\custom to the ADL Include
Path.

c. Save the setting.

d. Select File > Generate Windows Application… (be sure to check “IC Scripts” and
select the "interaction_center" application).

3. Set the “Agent/Desktop.IntegratedApplication” = “Custom” property in IC Manager. Refer
to IC Administration Guide for instructions.

When you run Avaya Agent, various dialogs are displayed at different points doing startup/
shutdown. Right-click on Avaya Agent to see the Context Menu Choices that were added.
Everything you see running was accomplished using Integration Hooks without changing any
Base IC Scripts.

! Important:
Important: Read each of the IC Scripts included in the IC_INSTALL_DIR\IC73\design\

qconsole\custom directory. They contain many lines of comments that
describe everything that is possible in all of the individual Handlers. This set of IC
Scripts can be used as a great starting point to get you on your way using
Integration Hooks.

Available integration hooks
This section provides a complete list and description of the Integration Hooks that are available
within Avaya Agent. Be sure to look at the sample code provided IC_INSTALL_DIR\
IC73design\qconsole\custom as each individual Integration Hook passes different data in
the parameters than what is described in Information sent to the integration hook on page 37.

BlenderClient_ADUChange
This Integration Hook is fired every time an ADU Field that the BlenderClient is monitoring
changes. You can add additional fields to the Blender Clients monitor criteria. See the sample
code in IC_INSTALL_DIR\IC73\design\qconsole\custom for an example of this.

BlenderClient_AgentStateEvent
This Integration Hook is fired every time the Agent's state changes. This allows you to do
custom coding for when an agent moves from one state to another.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 4: Customizing Avaya Agent

40 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

BlenderClient_ChannelStateEvent
This Integration Hook is fired every time the Agent's Channel state changes. This allows you to
do custom coding for when an agent’s channel moves from one state to another.

CHBrowser_Initialize
This Integration Hook is fired when the CHBrowser is being Initialized. This is a special place
where you can perform additional configuration on the CHBrowser. If you choose to, you can
completely reconfigure the CHBrowser, then set the Cancel flag of the routine to "True" so the
out-of-the-box initialization is not executed.

CHBrowser_OnContactSelected
This Integration Hook is fired when an item in the CHBrowser is selected. There are 3 things
you can do with this Integration Hook:

1. Nothing, use the default behavior.

2. Using the Key, do the work to determine how to retrieve the mediainteraction record, and
set the appropriate QBEKey and QBEValue into the sMediaInteractionQBEKey and the
sMediaInteractionQBEValue fields.

3. Customize to your specific requirements. You can do that by just doing what you want here
and setting Cancel flag to "True".

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent Integration October 2015 41
Comments on this document? infodev@avaya.com

MailEngine_TaskDeclined
This Integration Hook is fired from the MailEngine when an incoming email is rejected. This is
used to tell if RONA occurred and/or if the agent manually rejected an email.

Note:
Note: The EDUID parameter is not always filled. Many times this event is raised before

the contact was actually delivered to Avaya Agent.

MailEngine_TransferResponse
This Integration Hook is fired from the MailEngine in response to a Transfer request. It is used
to determine if the Transfer request succeeded or failed and why.

PhoneEngine_OnCoreStateChanged
This Integration Hook is fired every time an EDU Field changes that the Phone Engine is
monitoring. You can add other fields to the Phone Engine's list of monitored fields. See the
sample code for an example of this.

PhoneEngine_OnTelephonyStateChanged
This Integration Hook is fired whenever a change occurs in the Avaya Agent Softphone. This is
a full event source of all the Telephony Events you might need to use in a customization.

QConsole_AddContact
This Integration Hook is fired for every contact that enters Avaya Agent. Here you would do
whatever needs to happen to your custom component when a contact is added to Avaya Agent.

QConsole_BuildActiveContactCriteria
This Integration Hook is fired during the QConsole_AddContact process. It is used for building
the criteria that will be used to fill the Active Contact Viewer with contacts related to the one
being handled. This Integration Hook and the one for QConsole_BuildCHBrowserInfo go
hand-in-hand. If you are doing something custom to retrieve historical records in the
CHBrowser, then you would probably do something custom to fill the Contacts in the Active
Contact Viewer. Like the choices found in QConsole_BuildCHBrowserInfo, the following are
options for what you can do with this Integration Hook.

1. Nothing, use the default behavior.

2. Fill the Criteria parameter with the criteria for finding the Active Contacts. Your criteria is
mutually exclusive and an out-of-the-box criteria is not used (except for the vdu_id).

3. Customize to your specific requirements. You can do that by doing what you want here, set
the Cancel flag to "True", then fill the ActiveContactCriteria variable with the *exact*
VDU.Find criteria you want.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 4: Customizing Avaya Agent

42 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

QConsole_BuildCHBrowserInfo
This Integration Hook is fired during the QConsole_AddContact process. It is used for building
the information that will go into the process of filling the CHBrowser with records. The following
are options for what you can do with this Integration Hook.

1. Nothing, use the default behavior.

2. Fill the CHBrowserField parameter with a field you want to use for backfilling records. In
the CHBrowserValue parameter, place the value that will be used to search in the
CHBrowserField. If you don't have a value to put into CHBrowserValue parameter, leave
the field blank and fill the DummyCHBrowserValue parameter with a value that will cause
the CHBrowser to retrieve no records. This is only be used if nothing was found in the
out-of-the-box code either.

3. Customize to your specific requirements. You can do that by just doing what you want here
and setting Cancel flag to "True".

QConsole_CompleteContact
This Integration Hook is fired for a contact to complete it. This is after QConsole_WrapContact
and calls QConsole_RemoveContact. You perform any Contact related cleanup to your custom
component.

QConsole_ExitComponents
This Integration Hook is fired during the shutdown of Avaya Agent. Basically, during shutdown,
you log out of your custom component, then, if this succeeds, invoke additional methods to
completely shut your component down.

QConsole_InitializeComponents
This Integration Hook is fired during the startup of Avaya Agent. It should be used for doing
things like setting properties and running methods on controls in your integration that are done
once, at the beginning. Remember that anything you do here will need to be "undone" in the
QConsole_Exit Integration Hook.

Another thing that should be done here is the setting of properties on other controls within
Avaya Agent. Because the Integration Hook that is fired for this routine is last, you can change
any properties that were set by the Components individual Initialize routine. Remember that
wherever possible, try to use configuration either in the Agent Properties and/or in the .cdl
settings where available first.

QConsole_LoginComponents
This Integration Hook is fired during the startup of Avaya Agent, but after all controls are
initialized. It should be used for doing things to your component (or other components) that can
only be done after they have been logged into.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent Integration October 2015 43
Comments on this document? infodev@avaya.com

QConsole_MouseDown
This Integration Hook is fired whenever someone right-clicks on Avaya Agent. This should be
used to add additional Context Menu options to Avaya Agent. These menu items can be added
in any order as Avaya Agent automatically sorts in the following way: None Component Items
Alphabetically, followed by Component names Alphabetically with sub menu items being sorted
within component alphabetically as well.

QConsole_PerformScreenPopFromEDU
This Integration Hook is fired when a Contact has met the configured rule for being popped.
When using Integration Hooks, the standard, configured ScreenPop IC Script is no longer run. It
is up to you to do something here.

QConsole_RemoveContact
This Integration Hook is fired when a contact is physically being removed from Avaya Agent.
This is typically called from QConsole_CompleteContact. If your custom component has some
relationship to the contact in Avaya Agent, you should update it here.

QConsole_ShowContact
This Integration Hook is fired when a contact is being shown in Avaya Agent. If your custom
component needs to be kept in synch with the currently shown contact in Avaya Agent, you
could add code to do this here.

QConsole_WrapContact
This Integration Hook is fired for every contact when it is entering the wrapped state. Note that
this event handler will only be fired if the wrap-up state has been entered. If WrapUp is not
enabled, or if the requirements for entering wrap-up are not met, this Integration Hook is not
fired.

Shared_OnActivate
This Integration Hook is fired for controls that expose the OnActivate event. Those controls are
the Chat List and Call List.

Shared_OnSelect
This Integration Hook is fired for controls that expose the OnSelect event. Those controls are
the Chat List and Call List.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 4: Customizing Avaya Agent

44 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Softphone_PlaceCall
This Integration Hook is fired whenever a call is placed...just before placing the call. You have
two options:

1. If you modify the sDestination variable, this is used when the call is placed. This is where
you could prepend Feature Access Codes (such as 9).

2. Since you have the EDUID, you can place information into the EDU before the call is
placed. This lets you prepopulate the EDU with something that is needed when the call is
received somewhere.

TaskList_Change
This Integration Hook is fired whenever there is a change in the Avaya Agent TaskList. This is a
full event source of all the Email Events you might need to use in a customization.

TaskList_GuiActivate
This Integration Hook is fired when there is a GUI Activation of a task in the TaskList. Gui
Activation differs from Activation, as Active can be a state of a test. Gui Activate come on tasks
that are double-clicked or [Enter] hit on, regardless of their state.

UAD_CancelContact
This Integration Hook is fired when a contact is being cancelled from the UAD. Sometimes you
might need to do something in your own integration, like update an internal state, as a result of
this.

UAD_Initialize
This Integration Hook is fired when the UAD is being Initialized. This is a special place where
you can do extra configuration on the UAD.

UAD_Login
This Integration Hook is fired during login for the UAD. This is a special place where you can do
extra configuration on the UAD that must be done after Login. This can be used to add
additional Contact Lists to the UAD based on Workgroup names. Note that when loading
Contact lists, the UAD must be first loaded. Usually, the UAD loads on the first showing (which
is why it takes a few seconds to show the very first time). If you do not mind taking the hit at
login, you may do the UAD.Load here (as well as add the Contact Lists). If loading at login is not
an option then you can use the UAD_Show Integration Hook instead.

UAD_Show
This Integration Hook is fired just before the UAD is displayed. You can use the Cancel flag to
prevent the UAD from being displayed. Also, as explained in the UAD_Login Integration Hook
description, you might want to load contact lists only at the time the UAD is first displayed.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent Integration October 2015 45
Comments on this document? infodev@avaya.com

UAD_UADStateChange
This Integration Hook is fired whenever something happens in the UAD. You can use this
Integration Hook for taking action before the Avaya Agent handlers run. This means you can do
things like manipulate the EDU or other things.

WACEngine_AgentStateChanged
This Integration Hook is fired from the Web Agent through the WACEngine as its various
servers go through various state changes.

WACEngine_ErrorOccurred
This Integration Hook is fired from the Web Agent through the WACEngine when certain errors
are encountered.

WACEngine_PerformConsoleAction
This Integration Hook is fired from the Web Agent through the WACEngine when it wants to
request an action be done in Avaya Agent. Examples of this is for Supervisor monitoring
("display_edu"/"remove_edu")...forcing windows to come to the top ("show_window")...and
launching URLs (display_url). The action you will most likely find a need to handle is
"shellexecute". This is sent when the Web Agent wants to open an attachment for an email. In
your implementation, you might want to launch a custom app, or, as we have found with other
file types, fix the launch to work properly.

WebEngine_ActivateCallback
This Integration Hook is fired whenever a callback is placed for a chat...just before placing the
call. The number is coming from the Web Agent GUI. This will (unless the agent changed)
contain the original spaces in the phonenumber as arranged on the website. You can use this to
your advantage as the PhoneNumber variable can be modified. Also, this is where you could
potentially pre-pend Feature Access Codes (such as 9), although, Softphone_PlaceCall is used
to place the call, so that Integration Hook will be hit as well.

WebEngine_TaskDeclined
This Integration Hook is fired from the WebEngine when an arriving chat is rejected. This is
used to tell if RONA occurred and/or if the agent manually rejected a chat. Note that the EDUID
parameter is not always filled. Many times this event is raised before the contact was actually
delivered to Avaya Agent.

WebEngine_TransferResponse
This Integration Hook is fired from the WebEngine in response to a Conference request. It is
used to determine if it succeeded or failed and why.

WebEngine_WebStateChanged
This Integration Hook is fired whenever there is a change in the Avaya Agent WebEngine. This
is a full event source of all the Chat Events you might need to use in a customization.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 4: Customizing Avaya Agent

46 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Connecting to an external database
When you deploy Avaya IC, you may need to link records from a third party application to record
in the IC Repository. You can create the required links with the mapping tables (ex*map tables)
that are provided with IC Repository.

In standard Avaya IC deployments, the following records are typically linked to third party
application records:

l Customers

l Organizations

l Contacts

If you build a relationship between the third party application records and these Avaya IC
records, you can perform reporting that links IC Repository and the third party application
database. For example, if you relate a Customer record in the third party application database
with a Customer record in IC Repository, you can easily perform database lookups to retrieve
Customer information from the third party application database.

Ex*map tables
The ex*map tables are the mapping tables in IC Repository These tables store the relationships
between entities in IC Repository and third party application databases.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent Integration October 2015 47
Comments on this document? infodev@avaya.com

Structure and relationships of ex*map tables

The following diagram shows the structures/relationships of the mapping tables:

List of ex*map tables

The following list defines the ex*map tables:

excontactmap - Used to map records in a third party application to the contact’s record in
Avaya IC, which allows for an association between an Avaya IC contact and the business
objects associated with that contact in the external system. For example, you can link an order,
task, or other object that was used or created as a result of the contact. The object can then be
used to provide a link back into the 3rd party application for historical and reporting purposes.

excustomermap - Used to map records in a third party application to the customer record in
Avaya IC. This allows for an association to the customer data without redirecting the customer
table. The goal is to provide Avaya IC with the capability to store customer data for Avaya
specific data.

exorganizationmap - Used to map records in a third party application to the organization
record in Avaya IC. This allows for an association to the organization data without redirecting
the organization table. The goal is to provide Avaya IC with the capability to store organization
data for Avaya specific data.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 4: Customizing Avaya Agent

48 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Each of these ex*map tables have two fields in common, the datasource column and the
subdatasource column. The data sources are used to be able to re-access the data linked to the
table. By looking at these fields, a program can determine how to fetch the data when
necessary to retrieve.

Columns in ex*map tables

The following list defines the columns in the ex*map tables:

datasource - The source for the system where the data is located. For example, if you integrate
with a system called “abc”, you would set “datasource” to “abc” when you create records in each
of the ex*map tables. This is a text field, so you can set this value to anything you need.

subdatasource - The object within the datasource to which you are relating. If you are linking to
a record from the “Bar” table in your "abc" system, you would set “subdatasource” to “Bar”. This
is a text field, so you can set this value to anything you need.

individual/organization/businessobject - The foreign key fields of the ex*map tables. Put the
unique key from the datasource.subdatasource record you want to relate to the record in these
fields. This is a text field, so you can set this value to anything you need.

Populating the Ex*map Tables

Each of the ex*map tables are populated differently. The following table provides a list of which
methods can be used to populate each of the ex*map tables. These methods are defined in the
section immediately after this table.

Table name Methods used to populated

excontactmap Direct access via SQL
IC Script
Workflow
EDU (via Report Server)

excustomermap Direct access via SQL
IC Script
Workflow

exorganizationmap Direct access via SQL
IC Script
Workflow

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent Integration October 2015 49
Comments on this document? infodev@avaya.com

IC Script or workflow
You can use an IC Script or a workflow to populate the ex*map tables. An IC Script or workflow
can populate the table when a contact is routed or qualified, when authentication is performed,
or when an agent uses Avaya Agent.

Direct access to database via SQL
You can use SQL and the tools available with your database to directly load records into the
tables. This method can be useful if you need to maintain a constant relationship between
Customer and Organization data in a third party application database synchronized with IC
Repository.

EDU (via Report Server)
For the excontactmap table only, you can use an EDU to populate this table. When an EDU
retires, the Report Server takes the EDU and runs it through mapping rules to create and store
records in IC Repository. Since the excontactmap table is related to the IC Repository records,
you can use the out-of-the-box mapping rules to create excontactmap records.

IC Repository must have the proper structure to use this method. The required structure is:

excontactmap.<n>.businessobject

excontactmap.<n>.datasource

excontactmap.<n>.subdatasource

An example of this would be for the “abc” system, “Bar” table, “xyz” example. To create a record
in the excontactmap when the EDU retired, you must write:

excontactmap.+.businessobject

excontactmap.!.datasource

excontactmap.!.subdatasource

which, if the first excontactmap container written, is written as:

excontactmap.1.businessobject

excontactmap.1.datasource

excontactmap.1.subdatasource

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 4: Customizing Avaya Agent

50 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent Integration October 2015 51
Comments on this document? infodev@avaya.com

Chapter 5: Initialization and exit hooks

This chapter discusses the Avaya Agent Initialization and Exit Hooks that can be used for the
initialization and exit processing for your customizations.

This section includes the following topics:

l Avaya Agent initialization and exit hooks on page 52

l Relevant integration hooks on page 54

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 5: Initialization and exit hooks

52 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Avaya Agent initialization and exit hooks
The following flowchart shows the process when an agent logs into, and eventually out of,
Avaya Agent. From this flowchart, you can tell when the main IC Scripts hooks are run.

After the agent has successfully logged into the database and before Avaya Agent downloads
the CDL layout file specified on the command line, Avaya Agent tries to execute the IC Script
AfterLoginHook. If this IC Script exists, Avaya Agent waits for the IC Script to run.
Out-of-the-box, this IC Script is used to read the Agent/Desktop/Layout property value, and, if
needed, set into the SApplication.Layout property. When you change this property, it overrides
the CDL file specified on the command line based on whatever parameters you choose. For
details about adding layouts to the database, refer to IC Database Designer Application
Reference.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent initialization and exit hooks

Avaya Agent Integration October 2015 53
Comments on this document? infodev@avaya.com

After the determination of which layout to use, Avaya Agent compares the database layout's
modified time with the layout file cached on the agent’s machine. If the database version is
newer, the new layout is retrieved and the agent is required to re-log in to any components
specified in the Login section of the new CDL.

Note:
Note: It does not matter where the changes actually are in the CDL file—the agent must

log in every time a new CDL file is retrieved from the database.

When the agent has successfully logged in, Avaya Agent proceeds to initialize the applications.
If found, it runs the InitAppHook IC Script in the <application>.qsc file before it initializes and
displays the Avaya Agent controls and logs into the other components specified in the CDL.

Finally, when the agent selects Exit, Avaya Agent runs the ExitAppHook IC Script in the
<application>.qsc file. You can use this IC Script to ensure that agents have wrapped up all
open contacts before they can exit the application.

For details about writing IC Scripts and a complete list of the events emitted by the Avaya
Interaction Center, refer to IC Scripts Language Reference. For a complete listing of IC Scripts
used by Avaya Agent, and general CDL settings, see IC Scripts on page 111.

The following diagram illustrates the IC Scripts that are involved during the initialization and exit
process:

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 5: Initialization and exit hooks

54 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Relevant integration hooks
The following integration hooks are directly related to the Avaya Agent Initialization and Exit
process. You can use these hooks to enhance or modify the behavior of the Avaya Agent by
creating Integration Hook Handlers as described in Customizing Avaya Agent behavior on
page 36.

l QConsole_InitializeComponents

l QConsole_LoginComponents

l QConsole_ExitComponents

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent Integration October 2015 55
Comments on this document? infodev@avaya.com

Chapter 6: Contact handling

As described in Chapter 2: Overview, the out-of-the-box Avaya Agent layout has separate
components for handling different types of media contacts. When they are integrated into the
design, however, Avaya Agent treats all contacts uniformly so you can set up a single strategy
that can be applied to any and all media components.

This chapter describes the way contacts are handled, and discusses the Avaya Agent IC Scripts
that you could use to integrate a new media channel if necessary.

This section includes the following topics:

l Lifecycle of a contact on page 56

l Avaya Agent contact handling IC Scripts on page 56

l CDL settings on page 60

l Relevant integration hooks on page 60

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 6: Contact handling

56 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Lifecycle of a contact
The following diagram outlines the lifecycle of a contact within Avaya Agent:

** For more information, see Chapter 11: Contact wrapup on page 103.

The previous diagram shows that any media channel can be integrated with Avaya Agent if it
emits events when a contact:

l comes in.

l is selected.

l is finished.

Because all contacts are handled through IC Scripts, changing the contact handling behavior
can be done easily and uniformly.

Avaya Agent contact handling IC Scripts
In this section we will take a look at the IC Scripts that are used for handling contacts in Avaya
Agent. The first of these IC Scripts is QConsole_AddContact.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent contact handling IC Scripts

Avaya Agent Integration October 2015 57
Comments on this document? infodev@avaya.com

QConsole_AddContact is run from a Event Handler of an incoming contact. It performs the
following functions:

1. It activates the Avaya Agent Contact tab so information about the incoming contact can be
displayed.

2. It adds the information needed for handling the contact to the contact’s EDU. This
information includes things like media type, screen pop values, customer key information,
and contact labeling.

3. It adds the contact to an internal store of contacts via ContactList_Add. This will be used
later for accessing information about all contacts in Avaya Agent.

4. If there is only one contact in Avaya Agent and Screen Pop is enabled, it performs a
screen pop. (For details, see Screen pop on page 58.)

5. It adds the contact to the EDU Viewer. (For details, see EDU Viewer on page 70.)

6. Finally, it adds the contact to the Contact History Browser.

Multiple contacts can be added to Avaya Agent using QConsole_AddContact. While the contact
is still active in Avaya Agent, the information about the contact remains in the Contact Tab.

You can use QConsole_ShowContact to select a contact within one media, or to change to a
contact in a different media. QConsole_ShowContact automatically refreshes any components
displaying information about the newly-selected contact. In the out-of-the-box layout, this
includes both the EDU Viewer and Contact History Browser.

To close, or wrap up, a contact, you can use the QConsole_WrapContact IC Script.
Out-of-the-box, there are two different means of performing Contact WrapUp; through the
WrapUp Dialog or Prompter. (For details, see Chapter 11: Contact wrapup). When the WrapUp
Process is completed, then the QConsole_CompleteContact IC Script performs any logic
necessary to “finish-up” the contact. At the end of QConsole_CompleteContact,
QConsole_RemoveContact removes information about the contact from the components in
Avaya Agent, including the EDU Viewer and Contact History Browser.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 6: Contact handling

58 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Screen pop
This section provides an overview of how information about contacts coming into Avaya Agent
is shown in the application. An application can retrieve relevant customer information for display
on an agent’s desktop just as a customer’s contact arrives. This display of customer information
is usually referred to as a screen pop.

As described above, when a contact comes into Avaya Agent, QConsole_AddContact is run. In
this IC Script, based on information in the EDU and type of contact, more information is put into
the EDU so that a screen pop can be performed at any time. If the contact is associated with a
known customer, then this information is the customer record’s key. If not, then it is the identifier
for the customer specific to the media the contact came in on.

Avaya Agent uses the IC Script QConsole_PerformsScreenPopFromEDU when a screen pop is
done. This IC Script uses information put into the EDU by QConsole_AddContact, then runs the
ScreenPop IC Script.

You can customize the Screen Pop behavior in either of the following ways:

l Invent a new IC Script that will do the Screen Pop to your specifications. Set the name into
the “General/ScreenPopScript” QProperty in the .cdl. Note that to do this, your syntax of
the Screen Pop Script you define must match that of the ScreenPop IC Script found in
<application>.qsc.

l Hook into the QConsole_PerformScreenPopFromEDU Integration Hook.

Note:
Note: When you have enabled Integration Hooks, Option 1 above no longer applies.

When you are using Integration Hooks (for other things), one side effect is that
you MUST handle the QConsole_PerformScreenPopFromEDU Integration Hook
yourself.

Unified Agent Directory
The Unified Agent Directory (UAD) is used for initiating new contacts and handling existing
contacts though transfers, consultative conferences, or conferences. IC Scripts surround the
initialization, showing, hiding, and operating of the UAD. Therefore, if you want to implement
custom behavior surrounding the UAD, you can do so by taking advantage of the various
Integration Hooks that are fired from these IC Scripts. You may want to do things like add
Contact Lists, write extra data to the EDU, etc. All of these things can be accomplished using
the Integration Hook.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Unified Agent Directory API

Avaya Agent Integration October 2015 59
Comments on this document? infodev@avaya.com

Unified Agent Directory API
This section describes the Unified Agent Directory (UAD) API.

SetSite (method)

Description

This method sets the default site in the site drop down of the UAD to the value passed as
parameter.

Syntax

Boolean StartWrapUp(siteName As String)

Returns

The method returns a Boolean. True is returned if AARC was able to set the site, else false is
returned and default site for the agent is set.

In case the value of the default site to be selected in the site drop down has to be changed
frequently, a corresponding property can be declared in the IC manager and its value can be
used in the scripts. The Administrator will then not be required to redeploy the scripts each time
the value is changed.

For example, 'SiteSelection' property of Datatype string can be created in 'Avaya\Desktop\
Directory'.

SetCustomTabFocus (method)

Description

This method sets the default focus on the tab whose value is passed as a parameter. The
method returns true if the argument is valid, else false is returned and default Tab is set for the
agent.

Value Description

siteName Name of the site which should be selected by default
when the UAD opens. The value is case sensitive and
should exactly match with the site name configured
using the IC manager.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 6: Contact handling

60 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Syntax

Boolean SetCustomTabFocus (TabSel As Long)

Returns

The method returns a Boolean. True is returned if the argument is valid, else false is returned
and default Tab is set for the agent.

In case the value of the Tab to be focused has to be frequently changed, a corresponding
property can be declared in the IC manager and its value can be used in the scripts. The
Administrator will then not be required to redeploy the scripts each time the value is changed.

For example, 'TabFocus' property of Datatype Integer can be created in 'Avaya\Desktop\
Directory'.

CDL settings
The following CDL settings are applicable to Contact Handling:

Relevant integration hooks
The following Integration Hooks are directly related to Contact Handling. Use them to either
enhance or change the behavior by creating Integration Hook Handlers as described in
Customizing Avaya Agent behavior on page 36.

l QConsole_AddContact

l QConsole_CompleteContact

l QConsole_PerformScreenPopFromEDU

Value Description

TabSel The corresponding long value of the tab on which the
focus should be set. For instance in OOTB AARC the
value of Queues tab is 0 and Agents tab is 1.

QSection
Name

Attribute(s) Description

General ScreenPopScript the name of the IC Script that is used
for screen popping.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Relevant integration hooks

Avaya Agent Integration October 2015 61
Comments on this document? infodev@avaya.com

l QConsole_RemoveContact

l QConsole_ShowContact

l QConsole_WrapContact

l UAD_CancelContact

l UAD_Initialize

l UAD_Login

l UAD_Show

l UAD_UADStateChange

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 6: Contact handling

62 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Core control

Avaya Agent Integration October 2015 63
Comments on this document? infodev@avaya.com

Chapter 7: Core services

The Core control, the Status control, and the Blender Client control make up the core services
for Avaya Agent. This chapter discusses each of these controls in detail.

This section includes the following topics:

l Core control on page 63

l Status control on page 63

l Blender client control on page 66

l CDL settings on page 66

l Relevant integration hooks on page 66

Core control
The Core control is the pivotal point of all contact handling within Avaya Agent. The main
responsibility of Core is to provide EDU access to all of the Media Engines and IC Scripts in
Avaya Agent. This control is part of the Phone Engine.

Status control
The Status control is used to change the status of multimedia channels and shows a visual
indication of that status in Avaya Agent. It interacts with the invisible QBlenderClient control,
which performs the majority of the processing, and QCore services. Optionally, it may interact
with the Async control to provide status information of a long-running operation external to
Avaya Agent. Such an operation may be an OLE Automation function, for example to perform a
screen pop into an agent desktop application.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 7: Core services

64 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Status states
The Status Control can be in any of the following states:

Similarly, each channel control can be in one of these states:

Status modes
There are two modes of operation in the Status Control, automatic and manual. In automatic
mode, the maximum number of allowable tasks/channel is set by the system, and any change
the agent makes to his or her availability applies to all channels.

In manual mode, the agent can set their own load for each channel, and they can set Availability
or Unavailability separately for each channel.

Note:
Note: The maximum number of allowable tasks is controlled by Blender Flows. For

more information, see Avaya Workflow Designer User Guide, “Blender Flows”.
You can prevent the agent from changing his load level, on a media by media
basis. To do so, set a variable in the agent’s Agent Data Unit (ADU),
media.privileges, via a Workflow. Set to "true" to enable manual mode or set to
"false" (or omit the setting) to disable manual mode. For more information on
ADUs, see Agent Data Unit Server Programmer Guide.

State Description

available The Agent is available to be assigned tasks in one or more channels.

auxwork The Agent is not available to work on any tasks in any channel. (This is
denoted by red Xs over the Agent and channel icons.)

init auxwork The Agent has requested a transition from Available to Unavailable, but
there are still open tasks that must be wrapped up before the transition
can be completed. (This is denoted by a grey X over the Agent icon.)

State Description

available The channel is open and the agent can be assigned tasks of this type.

busy The channel is closed and no new tasks can be assigned. (This is
denoted by a red X over the icon.)

logged out The channel is unavailable. (This is denoted by a grey X over the icon.)

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Status control

Avaya Agent Integration October 2015 65
Comments on this document? infodev@avaya.com

Automatic mode

In automatic mode, only the Agent icon looks like a button because changes affect all channels.
The agent can toggle between Available and Unavailable by clicking the Agent icon. If the Agent
attempts to designate themselves as Unavailable while they have an active task, Avaya Agent
goes into the init auxwork state and displays a message requesting that the agent wrap up any
active tasks. When the last active task is closed, Avaya Agent goes into the auxwork state and
the agent becomes Unavailable.

At this point, Avaya Agent displays a red X over the agent icon and each of the channel icons to
indicate the agent is unavailable.

Manual mode

In manual mode, the agent may transition each of the media channels manually from available
to busy, or from busy to available. To indicate this, Avaya Agent displays the channel icons as
buttons.

In addition, the agent may change the channel load values that control how many tasks the
agent may have at any one time on a given media channel. Changing these load values may
only be performed in manual mode.

To go into manual mode, the agent:

1. Right-clicks Agent icon.

2. Selects Options from the pop-up menu.

Avaya Agent displays the Channel Load dialog box.

3. Selects the Manual Mode check box.

Avaya Agent changes to manual mode and allows the agent to change the channel loads

Retrieving and setting EDU data
For each contact received by an agent there is an accompanying EDU that contains information
throughout the lifetime of that contact. Among the information that can be contained within the
EDU is the customer specific information such as Account Number or Service ID. EDU data is
accessible as name/value attribute pairs. To retrieve a value, methods exist to specify the
attribute name (e.g., "account"). The value is returned in a string representation. In addition,
methods exist that allow name/value attributes to be set in the EDU.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 7: Core services

66 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Blender client control
The Blender Client control is the control that runs media blending within Avaya Agent. When
logging into CoreServices, the BlenderClient assigns to the Blender server and ADU server. It
processes ADU change events in order to set Agent availability. It also is advised of all Media
channel engines in Avaya Agent so that it may set availability.

Note:
Note: For a full description of Blender processing, refer to Blender chapter in the Avaya

Workflow Designer User Guide.

CDL settings
To use the Core services, set the following CDL parameters:

Relevant integration hooks
The following Integration Hooks are directly related to Core Services. Use them to either
enhance or change the behavior by creating Integration Hook Handlers as described in
Customizing Avaya Agent behavior on page 36.

l BlenderClient_ADUChange

l BlenderClient_AgentStateEvent

QSection Name Attribute(s) Description

CoreServices MakeChannelBusyWaitTime amount of time to wait (milliseconds)
for the result of the IC Script
CoreServices_MakeChannelBusy.

Core Services ServerRestartRetryCount number of times to retry to restart a
failed server.

Core Services ServerRestartRetryWaitTime number of seconds to wait between
each try to restart a failed server.

CoreServices ContextMenuKey the ASCII key combination that
displays the Context menu. This must
be pressed when the Status Control
has focus.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Relevant integration hooks

Avaya Agent Integration October 2015 67
Comments on this document? infodev@avaya.com

l BlenderClient_ChannelStateEvent

l PhoneEngine_OnCoreStateChange

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 7: Core services

68 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Active Contact Viewer

Avaya Agent Integration October 2015 69
Comments on this document? infodev@avaya.com

Chapter 8: Contact viewing

There are three controls that show information about the contact. The Active Contact Viewer
shows any active contacts related to the customer of the current contact (such as emails in the
system). The EDU Viewer shows information from the current contact's EDU. And finally, the
Contact History Browser shows all of the previous contacts made by the customer of the current
contact.

This section includes the following topics:

l Active Contact Viewer on page 69

l EDU Viewer on page 70

l Contact History Browser on page 76

Active Contact Viewer
The Active Contact Viewer is a control that lets you look at any arbitrary set of existing EDUs
using a given set of criteria, and it is represented by an icon that resides on the GUI. When
criteria for EDU is given and found, the icon changes allowing you to click and bring up a
window containing an EDU Viewer displaying all EDUs matching the criteria you specified.

The Active Contact Viewer has been integrated with Avaya Agent’s Contact History Browser in
order to display the active contacts related to the currently selected customer. Avaya IC stores
the EDU criteria for each contact in the Tag property of the Tabs in the ContactHistoryBrowser.
When a tab is selected in the Contact History Browser, the criteria is pulled from that Tab and
applied to the Active Contact Viewer.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 8: Contact viewing

70 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

CDL settings
To use the Active Contact Viewer, you need to set the following CDL parameters:

Relevant integration hooks
The following Integration Hook is directly related to the Active Contact Viewer. Use them to
either enhance or change the behavior by creating Integration Hook Handlers as described in
Customizing Avaya Agent behavior on page 36.

l QConsole_BuildActiveContactCriteria

EDU Viewer
For all incoming or outgoing contacts such as a telephone call or an email message, Avaya IC
creates an EDU. The EDU consists of a sequence of name/value pairs called couples that
contain information relating to the contact.

A set of couples is called a sequence of couples. For example, in an environment with
telephony integration, each telephone call arriving at or originating on the PBX triggers the
creation of a permanent call-detail record stored in the EDU.

For example, a telephony-specific EDU may contain:

l The time the call arrived at the PBX.

l VRU information entered by the caller.

l Transfers between agents.

l The time the call concluded.

l The customer service actions performed by the agents.

QSection
Name

Attribute(s) Description

ACViewer TabLabelEDUField Specifies which EDU field to use for the label of
the Tabs of the EDU Viewer in the Active
Contact Viewer.

ACViewer EDUFindScope Specifies the scope to use for finding related
EDU’s. This matches the possible values for
EDU Monitoring.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

EDU Viewer

Avaya Agent Integration October 2015 71
Comments on this document? infodev@avaya.com

In addition to uniquely identifying each contact, the EDU collects information about activity that
is performed on behalf of the contact and updates that information as the contact traverses the
contact center.

The EDU Viewer is an ActiveX control that displays the information contained in the EDU. When
a contact is routed to an agent’s desktop, the EDU Viewer looks at the stylesheet name/value
couple in the EDU and retrieves the name of the associated Extensible Style Language (XSL)
stylesheet template. If it finds that stylesheet in the database, it uses it to display the information
in the EDU. Otherwise, it uses the default stylesheet.

If additional contacts come in while the agent is still viewing the first one, Avaya Agent creates a
tab for each contact so the agent can preview it before he or she actually accepts
communication with that contact.

As the system integrator, you can use the default stylesheet for all calls, emails, and chats that
will be displayed in the EDU Viewer, or you can create a unique XSL stylesheet for each type. If
you want to have different stylesheets, then you must also ensure your EDU contains the name/
value couple where name is "stylesheet" and value is a string that uniquely identifies that
stylesheet.

If you have Routing Engine, you can add the stylesheet name/value couple to the EDU as part
of the call flow. Otherwise, you can add the pair by invoking the VDU.Set method on the VDU
server. For details on using Routing Engine, refer to Avaya Workflow Designer User Guide. For
details on the VDI.Set method, refer to Electronic Data Unit Server Programmer Guide.

You may also want to write IC Scripts that are run when various events are triggered in the EDU
Viewer. For an in-depth discussion of how to write IC Scripts, as well as a list of the general
methods that are available, refer to IC Scripts Language Reference. For information on
creating, editing, and debugging IC Scripts, as well as information on how to save your IC
Scripts to the database, refer to IC Database Designer Application Reference.

This chapter discusses the basics of the EDU Viewer, and how to create your style sheets and
save them to the database. For information about adding the EDU Viewer to your Avaya Agent
framework, see Chapter 4: Customizing Avaya Agent.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 8: Contact viewing

72 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

In this diagram, XSL stylesheets have been set using the AddTemplate API. Core receives
knowledge of a new contact through an EDU. The IC Script then tells the EDU Viewer to
monitor that EDU. The EDU Viewer then creates an HTML page to display in the IE browser
based on the XSL stylesheet.

The EDU Viewer GUI
Here is a sample of what the EDU Viewer control might look like:

If another contact comes into the agent's EDU viewer, then it creates a new tab showing that
contact's information. Avaya Agent uses the ContactLabel property in the EDUFields section of
the CDL to retrieve EDU couple that contains the tab label. Using this value in the EDU, the IC
Script calls SetTabLabel for that EDU.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

EDU Viewer

Avaya Agent Integration October 2015 73
Comments on this document? infodev@avaya.com

The XSL stylesheet
The style sheet controls how the information is displayed in the EDU Viewer.
<?xml version="1.0"?>

<xsl:template match="/">
<HTML>
<HEAD>
<TITLE>EDU Viewer</TITLE
</HEAD>
<BODY STYLE="border: 0px; margin: 0px; font-family: arial;
font-style: bold;font-size: 10pt"

<xsl:for-each select="vdu">
<TABLE BORDER="1" CELLSPACING="1" CELLPADDING="1"
STYLE="border:0px;
margin: 0px; font-family: arial; font-style:
bold;font-size: 8pt">

<xsl:apply-templates/>
</TABLE>

</xsl:for-each>
</BODY>
</HTML>

</xsl:template>
<xsl:template match="Field">

<TR>
<xsl:apply-templates/>

</TR>
</xsl:template>
<xsl:template match="vdu/Field">
<xsl:if test="Name [. ='account' or . ='account_value'

or . = 'ani' or . = 'caller' or . = 'createtime'
or . = 'cust_name' or . = 'dest' or . = 'question'
or . = 'dnis' or . = 'ext' or . = 'orig'
or . = 'purpose' or . = 'transfercount'
or . = 'sender'or . = 'recipient'or . = 'subject'
or . = 'routingcount'or$. = 'hasattachments']">
<TR>

<xsl:apply-templates/>
</TR>

</xsl:if>
</xsl:template>
<xsl:template match="vdu/Field/Container/Field">
<xsl:if test="Name [. = 'sender' or . = 'recipient'

or . = 'subject' or . = 'routingcount']">
<TR>

<xsl:apply-templates/>
</TR>

</xsl:if>
</xsl:template>
<xsl:template match="Container">
<xsl:apply-templates/>
</xsl:template>
<xsl:template match="Name">

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 8: Contact viewing

74 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

<TH ALIGN="left">
<xsl:choose>
<xsl:when test="../Name

[. = 'account']">Account</xsl:when>
<xsl:when test="../Name [. = 'account_value']"

>Cust Val</xsl:when>
<xsl:when test="../Name[. = 'ani']">ANI</xsl:when>
<xsl:when test="../Name[. = 'caller']">Caller</xsl:when>
<xsl:when test="../Name[. = 'createtime']">Created</xsl:when>
<xsl:when test="../Name[. = 'cust_name']">Customer</xsl:when>
<xsl:when test="../Name[. = 'dest']">Dest</xsl:when>
<xsl:when test="../Name[. = 'dnis']">DNIS</xsl:when>
<xsl:when test="../Name[. = 'ext']">Ext</xsl:when>
<xsl:when test="../Name[. = 'orig']">Origin</xsl:when>
<xsl:when test="../Name[. = 'purpose']">Purpose</xsl:when>
<xsl:when test="../Name[. = 'transfercount']">

Xfercount</xsl:when>
<xsl:when test="../Name[. = 'sender']">From</xsl:when>
<xsl:when test="../Name[. = 'recipient']">To</xsl:when>
<xsl:when test="../Name[. = 'subject']">Subject</xsl:when>
<xsl:when test="../Name[. = 'question']">Question</xsl:when>
<xsl:when test="../Name[. = 'routingcount']">ForwardCount
</xsl:when>
<xsl:when test="../Name[. = 'hasattachments']"> HasAttachments
</xsl:when>
<xsl:otherwise>
<xsl:value-of/>
</xsl:otherwise>
</xsl:choose>

</TH>
</xsl:template>
<xsl:template match="Seq">

<TH>
<xsl:value-of/>

</TH>
</xsl:template>
<xsl:template match="Value">

<TD>
<xsl:value-of/>

</TD>
</xsl:template>

</xsl:stylesheet>

XML script generation
For all contacts, Avaya Agent creates an EDU that has a unique ID and consists of a series of
name/value fields. It is converted into the following XML structure:
<vdu vdu_id="3769579c000000000a64038e22bd0002">

<Field>
<Name>name_1</Name>
<Value>value_1</Value>

</Field>

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

EDU Viewer

Avaya Agent Integration October 2015 75
Comments on this document? infodev@avaya.com

<Field>
<Name>name_2</Name>
<Value>value_2</Value>

</Field>
.
.
.

<Field>
<Name>name_N</Name>
<Value>value_N</Value>

</Field>
</vdu>

EDU containers
In addition to ordinary couples (name/value pairs), EDUs may contain hierarchical data
structures organized into containers through field naming conventions. Containers are special
EDU couples that reflect a grouping of values under a common name, and they make a tree-like
data structure within the EDU. For example, these couples are containers:

agent.1 dev6

agent.2 dev5

This information reflects the agents that handled the EDU contact.

Container fields are merged into a single XML structure:
<Field>

<Name>agent</Name>
<IndexedContainer count="2" min="1" max="2">

<Field>
<Seq>1</Seq><Value>dev6</Value>

</Field>
<Field>

<Seq>2</Seq><Value>dev5</Value>
</Field>

</IndexedContainer>
</Field>

For more information on EDUs and their contents, refer to Electronic Data Unit Server
Programmer Guide or the Core Services Programmer Guide.

EDU lifecycle
There are three stages in the lifecycle of an EDU:

l Creation.

l Activity.

l Termination.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 8: Contact viewing

76 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

EDU creation

Every contact must have a corresponding EDU. For example, in the case of a voice contact,
whenever an inbound call arrives at a telephone on the PBX system or an agent dials out,
Telephony creates an EDU.

EDU activity

The EDU is a real-time storage device that collects strings of text from multiple sources and
stores them as couples. Couples are paired data. During its life, the EDU's job is to collect the
information entered by the contact, agent or automated software, and to notify interested clients
of changes to the EDU. Typically, clients want to examine, modify, or add EDU data.

EDU termination

When an agent’s conversation ends, this does not necessarily mean that the EDU associated
with the call is terminated. The agent may still need to perform wrap-up activities that involve
the EDU. If the call is transferred to another agent, the call and its associated EDU continue to
assist. In fact, it is possible to have multiple agents accessing a single EDU.

After an agent is finished with the EDU, the agent's interest in the EDU should be terminated.
When an EDU has no more interested clients, it is usually archived to back-end databases
before finally being purged from Avaya IC.

CDL settings
This component does not have any CDL settings.

Relevant integration hooks
This component has no relevant Integration Hooks.

Contact History Browser
The Contact History Browser control shows the previous contacts made by the currently
selected customer. It consists of the Contact History Browser control, which is an instance of the
MS Tabstrip control, and the Contact History Filter control. All three of these controls are tied
together by several IC Scripts to give the user the ability to pick which customer’s contact
history they want to see and how to filter that history.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Contact History Browser

Avaya Agent Integration October 2015 77
Comments on this document? infodev@avaya.com

The Contact History Browser displays the previous contacts made by the currently selected
customer. Contact history for the customer is retrieved from IC Repository.

The Contact History Browser displays a table with the following columns:

l Time - the date and time that a particular contact was made.

l Type - the type of media that was used to make the contact (phone, email, or other).

l Subject - the subject of the previous email.

The Contact History Browser retrieves contact information from IC Repository using the DCO
Application Programming Interface (API).

The Contact History Browser also caches information about contacts as they are added. In
order to figure out which contact’s history is being viewed, tabs are present using the MS
TabStrip Control.

MS TabStrip control
The MS TabStrip control is a standard Microsoft control installed with Avaya Agent. An instance
of this control is used to determine which contact is being viewed in the Contact History
Browser.

Contact History Filter control
At times, the contact history that is retrieved for a particular contact is overwhelming. This
information can be filtered to make it more useful to the agent. The Contact History Filter control
is the filter or sorting mechanism of the Contact History Browser.

The Contact History Filter control enables agents to narrow down their search of any contacts
based on the following search criteria:

l Media Type - filters the emails by the media type that was used to make the previous
contact. The media type can be “phone” or “email”.

l Date - displays customers contacts that occurred between two dates that are specified by
the agent.

l LastNContacts - filters contacts based on the last number or contacts made by the
customer whose contact history you are viewing.

Example
The three filters can be used in any combination. For example, to quickly find an email sent on
July 4th:

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 8: Contact viewing

78 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

1. Select the Media Type check box and select the email option.

2. Select the Time check box and select the Start Date and the End Date to be the July 4.

The Contact History Browser displays a list of the emails received on the specified date.

Configuring supporting servers and databases
The Contact History Browser retrieves information about previous contacts made by the
customer currently selected from IC Repository. For IC Repository to store data about previous
contacts, the IC Repository database and supporting servers must be configured.

If Avaya Interaction Center was properly installed, then the supporting servers and databases
will already be available. Your Avaya IC system should include:

l The IC Repository database.

l The CCQ database.

l The Report Wizard application.

l Seed data for the databases. This data includes default mapping rules for the Report
server that describes how EDU data (data about a contact) should be written to the
database after an EDU has been “retired.”

l The Report server.

If any of these elements are missing, refer to IC Installation and Configuration for details about
how they can be installed and configured.

CDL settings
The following CDL settings are applicable to Contact History.

QSection
Name

Attribute(s) Description

CHFilter MediaField name of the field which is used when
a media filter is applied from the
Contact History filter to Contact
History.

CHFilter TimeField name of the field which is used when
a time filter is applied from the
Contact History filter to Contact
History.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Contact History Browser

Avaya Agent Integration October 2015 79
Comments on this document? infodev@avaya.com

Relevant integration hooks
The following Integration Hooks are directly related to the Contact History Browser. Use them to
either enhance or change the behavior by creating Integration Hook Handlers as described in
Customizing Avaya Agent behavior on page 36.

l CHBrowser_Initialize

l CHBrowser_OnContactSelected

l QConsole_BuildCHBrowserInfo

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 8: Contact viewing

80 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

The voice channel

Avaya Agent Integration October 2015 81
Comments on this document? infodev@avaya.com

Chapter 9: Media channels

This chapter describes the three media channels in which Avaya Agent can accept contacts:
voice, email, and chat.

This section includes the following topics:

l The voice channel on page 81

l The web agent on page 90

l The chat channel on page 91

l The email channel on page 92

The voice channel
The Avaya Softphone controls provide access to the Telephony system. This section defines
some telephony terms used and describes some telephony call management concepts. This
information is general in nature; see your telephone switch documentation to determine which
points apply to your system.

What is softphone?
The Avaya Softphone is comprised of a set of software components that allow agents to
perform telephone operations without touching a physical phone set. The Softphone enables
these agents to perform standard telephony functions such as making calls, answering calls,
handling conference calls, and transferring calls.

The Softphone consists of the following components:

l The VTel Automation server.

l The PhoneEngine control.

l The GUI controls.

Voice channel terms and concepts
This section defines some of the terms that are used in this section and describes a few
concepts involved in telephony call management.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 9: Media channels

82 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Phones, calls, switches

The terms call, call type, phone line appearance, and switch, as used in this chapter, are
defined as follows:

l A call is an active connection between two or more parties that allows transmission of
speech.

l The call type distinguishes between direct calls, which are calls placed to a specific
equipment phone number, and Automatic Call Distribution (ACD) calls, which are calls
placed to a phone number that is controlled by an ACD system.

l A phone relates to a phone number that can accept and/or make calls, and has at least
one line appearance available. This chapter discusses simple phones and ACD phones.

l Simple phones can accept direct calls.

l ACD phones can accept both direct and ACD calls.

l A line appearance is the number of simultaneous calls that are possible on a phone.
Available line appearances for a phone can be divided according to whether a call is
inbound or outbound, internal or external, with mixed limits for different types of calls.

l A switch is a general term used to refer to a telephone switching system, such as a Private
Branch Exchange (PBX) or an ACD system. The term ACD is often used in this chapter to
refer to any switch or system, such as the Expert Agent Selection (EAS) on the Avaya
Definity switch, capable of routing calls through a queue.

Call routing and queues

Calls can be routed in several ways:

l Calls can be routed directly to a phone when the specific phone number assigned to the
physical phone set is called (a direct call).

l Calls can use a logical phone number which is mapped to the physical phone by an
external resource (also considered a direct call).

l Calls can be indirectly routed through a call queue (a queued call).

A queue is a means of routing calls to any one of a number of agents qualified to handle the
call. Each queue is often oriented toward a specific product, service, or skill set. In some
systems, each time agents log into the system, the skills associated with their ID are used to
place them in the appropriate queue. In other systems, the agent must directly specify the
queue. Depending on the phone switch used, an agent can be in several queues at the same
time, or can be changed to other queues by a supervisor to meet changing needs during the
day.

All ACD calls are handled through a queue. When an ACD call is transferred directly to another
agent (not another queue), it generally becomes a direct call.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

The voice channel

Avaya Agent Integration October 2015 83
Comments on this document? infodev@avaya.com

Phone states

Some telephone switches support a variety of states for ACD phones, such as Ready, Busy,
and WrapUp. They can provide statistics on the time spent in each state. Other switches may
not support these states, or the rules may vary.

The Softphone configuration file is the Vtel.ini file. This configuration file accommodates and
supports the variation among switches. The following is provided as a general discussion.

Note:
Note: The terms used to describe phone states vary among call centers. For example,

Ready may be known as Available, Busy as Auxiliary Work or Idle, and WrapUp
as After Call Work.

An ACD phone can be in one of three states:

l Ready state makes the phone available to receive another call.

l Busy state prevents the queue from sending a new ACD call, but will generally allow new
direct calls if additional inbound line appearances are available.

l WrapUp is a state following a call when the call has ended (on hook, hangup) but the
agent is still processing information related to that call or customer.

l When the call is in WrapUp state, it is usually implicitly busy and will not accept
another ACD call, but will accept direct calls if additional inbound line appearances are
available.

l For direct calls, it is possible to set some phone switches into WrapUp mode, but this
is not generally available.

While a direct call is active, you generally cannot make the phone Ready for another ACD call.
Although Softphone may remain in the Ready state, the switch will prevent the queue from
dispatching another call until the phone is idle.

Telephony programming overview
This section describes the Softphone components and some concepts associated with
telephony programming. This section provides system level background information designed
to help you better understand the Softphone.

VTel Automation server

The VTel Automation server provides the communications link between the PhoneEngine
control and the Telephony servers. Telephony requests and responses are transmitted from the
VTel Automation server to Softphone’s ActiveX controls.

See IC Installation Planning and Prerequisites for supported telephone switches.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 9: Media channels

84 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Note:
Note: Avaya Agent does not support another application using another Vtel OLE

session for telephony function calls.

PhoneEngine control

The PhoneEngine Control is an ActiveX control that gives you access to the telephony
functionality that is provided by the VTel Automation server. The PhoneEngine is a non-GUI
control that resides between the GUI controls and the VTel Automation server. For more
information, see The GUI controls on page 84.

Note:
Note: To successfully communicate with Telephony servers, the Phone Engine control

requires that a current VTel Automation server is running in the background. If
your system is running an older version of VTel, the Avaya Agent installation
process automatically upgrades it to this version.

The PhoneEngine Control supplies both Telephony and CoreServices information for the logged
in agent. The PhoneEngine is actually a wrapper around the following ActiveX controls:

l CoreServices control.

l Telephony Services control.

The CoreServices control provides methods and is an event source. It contains information that
pertains to Login/Logout, EDU data, and Directory server information. It gets this information
from the Directory server and EDU server on CTI.

The Telephony Services control provides information about the call, agent, and phone states
from the Telephony server.

The CoreServices and Telephony functionality and events are the most important controls to a
client developer. The PhoneEngine control contains two methods that provide access to the
CoreServices and Telephony controls:

l GetCoreObject().

l GetTelephonyObject().

Each of these methods returns an IDispatch pointer, which enables you to register your client as
a listener of the events that are provided. Because these are ActiveX controls, their reference
count is incremented as part of each of these calls. You must perform a release when you are
finished with the control.

The GUI controls

The Softphone contains the following GUI controls:

l Telephony Button.

l Call List.

l DTMF.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

The voice channel

Avaya Agent Integration October 2015 85
Comments on this document? infodev@avaya.com

Telephony Button control

The Softphone contains Telephony Buttons (phone buttons) to provide telephony functionality.
These buttons are enabled and disabled based on the current phone state and call state of the
physical phone set and the agent state of the logged in user.

Note:
Note: For direct calls, the WrapUp button is disabled.

The Telephony Button control component contains the following phone buttons:

Call List control

The Call List control displays a list of the calls that are currently assigned to the agent. For each
line appearance, the Softphone displays the caller’s number, the call state, the time in call, and
preset (if available).

Button Name Function

Ready If the phone was previously placed in the Busy or HangUp state,
enables the Softphone to accept a call.

Busy Places the Softphone in a Busy state so that it is unable to
receive a queue call. When it is pressed during an active call, it
places the phone in a Busy state after the call (Preset).

Answer/HangUp Toggles between Answer and Hang Up based on the phone
state.
l The Answer button is active when the phone state is Ready

and the phone is ringing.
l The HangUp button disconnects the call.

Hold/Reconnect Places a call on hold. Click again to active the Reconnect button
and take the call off hold.

WrapUp Places the Softphone in WrapUp state after the call is
disconnected enabling you to enter specific information about
the call.

Directory Displays the Dial Directory window from which you can make,
transfer, or conference a call.

Initiate Enables you to make an outbound call.

Transfer Enables you to transfer the call to another agent or queue.

ConsultativeTransfer Allows agents to consult with each other prior to transferring the
call. The agent has the ability to cancel the transfer.

Conference Allows multiple people (three or more) to interact in a
conference call.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 9: Media channels

86 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Information Field control

The Information Field control provides the ability to display the following Telephony status
information:

l Agent State.

l Phone State.

l Call State.

Control initialization

The OnBeforeLogin event that is fired from Avaya Agent is designed to be used for control
initialization. The system performs the following major Softphone related tasks in this IC Script:

l Control Introduction.

l EDU Viewer Initialization.

The VTel.ini file is used to specify the switch type and other configuration items.

Registration

All of the GUI controls that are discussed in PhoneEngine control on page 84 must register with
the PhoneEngine control in order to receive Telephony and/or CoreServices events. The GUI
controls use the AdviseEventSinktoTelephony() method to be a listener of Telephony Services.
They use AdviseEventSinktoCore() to be a listener of CoreServices.

Registering as a CoreServices and Telephony listener allows each listener to receive
completion events for any requests made to the controls, as well as unsolicited events such as
incoming call.

The call object

Call management is done using a Call object. This object represents a single incoming or
outgoing call. It provides such telephony manipulation methods as call answering, transferring,
and hang-up. Call also provides methods to retrieve call state information. The EDU data is
retrieved or set through the call object.

A single PhoneEngine can contain multiple Call objects — mirroring a multi-line telephone.
These objects make up a PhoneEngine's call collection. All of the call specific operations are
part of the Telephony control. The Telephony control provides access methods to simulate a
multiple-line phone. A line can be selected and operated on before switching to another line.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

The voice channel

Avaya Agent Integration October 2015 87
Comments on this document? infodev@avaya.com

Call states are illustrated in the following Call States diagram:

Accessing the EDU

Each Call object provides access to the call's EDU object. EDU data is stored as a SeqCouple
(sequence of couples) object. A couple is a name/value attribute and can be processed as a
SeqCouple, an unordered collection of zero or more Couple objects. Data is stored in the EDU
as name/value pairs. Both name and value are represented as strings. Using the EDU object,
the value of an attribute stored in the EDU can be retrieved directly by specifying the name of
the attribute using the QCall.GetVduValue (attribute,Value) method.

A client can retrieve account information that a customer may have entered at the VRU by using
the QCall.GetVduValue () method. This information is valuable if telephony capabilities are
being integrated with other business applications.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 9: Media channels

88 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Call termination

A Call object will be created as a result of an agent receiving an incoming call or initiating an
outgoing call. However, the Call object can persist, maintaining interest in the EDU, even after
the actual call has been transferred or hung up. This permits the PhoneEngine client to provide
wrapup information.

Event handling

The CoreServices control emits Core events that contain a CoreChangeEvent object. The
CoreChangeEvent has the following information:

l RequestObj - created and returned to the caller as part of the original request.

l VduObj - populated with EDU information or left empty if not associated with the call.

l EventId - indicates the type of event.

The Telephony control emits Telephony events that contain a ChangeEvent. The Telephony
ChangeEvent has the following information:

l RequestObj - created and returned to the caller as part of the original request.

l Call- the object that contains call operations and information.

l EventId - indicates the type of event.

In order to receive events from the PhoneEngine, the client must register as a listener of Core
and Telephony Events.

Note:
Note: Both the Core and Telephony controls contain a method to return the textual

representation of the eventID. It is GetName(LONG Id, BSTR *Name), the
description is returned in the name field.

Each Core and Telephony Event contains an EventID to identify the type of event that occurred
or the information that has changed. This information can be accessed from the
get_EventId(long) method that is part of the object that arrives with the event.

Phone state

Phone state is a representation of the PhoneEngine’s interaction with the switch. The details of
this interaction depend on the switch and phone type. In the direct phone case, the state model
is degenerate and reflects the status of the switch association.

GUI controls

This section contains the system constants for the Information Fields and Telephony Buttons
controls.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

The voice channel

Avaya Agent Integration October 2015 89
Comments on this document? infodev@avaya.com

Voice event handling

In order to recognize that an agent is being assigned a call, the application must be able to
process events emitted by the telephony component. While the telephony component provides
call-level events such as answer, hangup, hold, un-hold, and others, not all events need to be
processed by the application. Applications usually process events in one of two ways: callback
or polling.

l In the callback approach, the application registers a method with the telephony
component. This method is called whenever a new event occurs. Event data is passed to
the application using this method.

l In the polling approach, the telephony component does not notify the application. Instead,
the application must periodically query the telephony component for any event.

The telephony component also has methods to retrieve agent, phone, and call state information
as integer values.

DTMF Control (Definity switch only)

The DTMF (Dual-Tone Multi-Frequency) control enables the agent to type numbers, such as the
customer’s account number, on a numeric key pad and sends this information as if they had
dialed the tones on their telephone.

To enable support for DTMF on the Softphone, set the attribute Visible to TRUE for the
“tbDTMF” control in your CDL file:

<QControl Name="tbDTMF" ProgID="QSoftPhone.TelButtonCtrl.56" Left="3" Top="128"
Width="94" Height="32" Visible="TRUE"/>

CDL settings
To use the Softphone, set the following CDL parameters:

QSection
Name

Attribute(s) Description

Softphone ButtonFontName Name of the font used for the
Softphone related buttons in Avaya
Agent.
Leave this blank to use the default
system font.

Softphone ButtonFontSize Size of the font used for the
Softphone related buttons in Avaya
Agent.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 9: Media channels

90 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Relevant integration hooks
The following Integration Hooks are directly related to the Voice Channel. Use them to either
enhance or change the behavior by creating Integration Hook Handlers as described in
Customizing Avaya Agent behavior on page 36.

l PhoneEngine_OnTelephonyStateChanged

l Shared_OnActivate

l Shared_OnSelect

l Softphone_PlaceCall

The web agent
In Avaya IC, the Web Agent is used for email and chat tasks. On the Avaya Agent pane, the
ChatList control displays web tasks. The Task List control displays email tasks. There is a
common control that works together in conjunction with the Web Agent and the Engines for
Chat and Email. This control is the WACEngine control. It serves as the communication Hub
between the WebAgentClient and Chat/Email Engines.

CDL settings
The following CDL settings are applicable to the Web Agent client:

Relevant integration hooks
The following Integration Hooks are directly related to the Voice Channel. Use them to either
enhance or change the behavior by creating Integration Hook Handlers as described in the
Customizing Avaya Agent behavior on page 36.

l WACEngine_AgentStateChanged

QSection
Name

Attribute(s) Description

WACEngine JavaVMParameters used to pass parameters to the Java
VM when the Web Agent client is
instantiated by the WACEngine.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

The chat channel

Avaya Agent Integration October 2015 91
Comments on this document? infodev@avaya.com

l WACEngine_ErrorOccurred

l WACEngine_PerformConsoleAction

The chat channel
In order to run Chat in Avaya Agent, the Web Agent must be installed on the Agent’s desktop,
along with the WebEngine, ChatList, and the IC Scripts used to tie all the pieces together. (All
components are installed with the Web Agent.) The following table describes these
components:

Web state event handling
The WebEngine emits the WebStateChanged event every time the state changes. This event
includes an Event Object parameter, which can be interrogated to determine what type of event
is occurring and what action should be taken. In the out-of-the-box Avaya Agent, the
WebEngine_WebStateChanged event is assigned to this event to perform the logic needed to
add the contact into Avaya Agent.

CDL settings
This component has no CDL settings.

Relevant integration hooks
The following Integration Hooks are directly related to the Voice Channel. Use them to either
enhance or change the behavior by creating Integration Hook Handlers as described in
Customizing Avaya Agent behavior on page 36.

l Shared_OnActivate

Component Description

WebEngine ActiveX control that coordinates Web Agent, ChatList, and Avaya
Agent. Is the Source for Logging in and out of Avaya Agent and
receiving events from chats.

ChatList ActiveX control that the Agent uses to select which Chat he or she is
working on.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 9: Media channels

92 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

l Shared_OnSelect

l WebEngine_ActivateCallback

l WebEngine_TaskDeclined

l WebEngine_TransferResponse

l WebEngine_WebStateChanged

The email channel
Email Management is a software component that allows Customer Service Representatives
(CSRs) to view and respond to email messages that come into the call center. It is controlled by
the agent through the Web Agent and the Task List control. Using Email Management, you can:

l Receive email messages.

l View all the email messages that are currently active.

l View the details of each message.

l Defer (pend) the email.

l Transfer an email to another agent or task type.

l Choose responses using the Web Agent resources view.

l View a list of messages that have been previously received.

l View details of these historical messages.

Each Email Management component is an ActiveX control. Email Management is made up of
the following controls:

l Task List.

l MailEngine.

l Web Agent.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

The email channel

Avaya Agent Integration October 2015 93
Comments on this document? infodev@avaya.com

Email management channel terms and concepts
This section defines some of the terms used in this section and describes a few concepts
involved in email management.

Required components
To successfully integrate Email Management, the following third party components must be
installed on the system’s server:

l SMTP/POP3 server – A mail server that supports the POP3 incoming mail and SMTP
outgoing mail.

Email Management also requires the installation of the following Avaya IC server components:

l IC Manager – Used to administer agents and view statistics of the WACD.

l WACD server - receives messages from the email add-ons and performs the necessary
actions. These actions include creating EDUs, setting EDU values, running Flows for
out-of-the-box queuing, running Prompter Flows, and extracting data from Avaya data
sources.

l IC Workflow server - tells the WACD server where to route the email request based on a
customizable routing script.

Term Definition

Transfer Transfers the email to another agent or task type.

Dismiss Dismiss the email. In Avaya Email terminology, this means to set the
status of an email. Statuses are defined in the Avaya Email Manager.

Defer Defer (pend) is the email equivalent of putting a call on hold.

Reply Reply to an email.

History A message which was received in the past by the call center.

CSR Customer Service Representative. The end user of the Email
Management client. May also be referred to as an agent.

WACD The central component of the integration. This server receives
messages from the email add-ons and performs the necessary actions.
These actions include creating EDUs, setting EDU values, running
workflows for queuing, running prompter workflows, and extracting data
from Avaya data sources.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 9: Media channels

94 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

l EDU server - creates EDUs in response to the WACD server and the client applications. It
stores open EDUs, records EDU events, and provides services that enable clients to
interact with an email request. The EDU server provides information like the Status, Age,
and Body of the message to the Active eMail Browser.

l Report server - listens for VDU.end events and writes the information from the terminated
EDU into the database. The Report server writes the EDU data directly into a normalized
data model. It captures only the information that you have designated to be used in your
reporting requirements.

l IC Repository - stores the historical contact information that is retrieved by the Contact
History Browser. IC Repository archives terminated EDUs for long term storage that the
reporting application can access to generate reports. For more information, see OA
Reports Reference.

The Avaya Email Management client
The Email Management client is comprised of a set of components which allow an agent to
quickly view a summary of email contacts:

l MailEngine control.

l Task List control.

l Web Agent.

The agent may also use the Contact History Browser to view historical information about an
email. The agent can use this browser view the contents of past emails and when they were
sent.

MailEngine control

The MailEngine is a non-GUI control that provides the communications link between other
controls and the Avaya Telephony servers. It communicates with the Web Agent and the Core
Services OCX via COM. The Web Agent is responsible for communicating with the WACD
using XML. The CoreServices OCX gives the MailEngine access to the EDU server.

The MailEngine provides two major services:

l It handles events coming from the Web Agent and fires off ActiveX events that can then be
handled by any component with an event sink.

l It implements the new Task interface model so that it may be used by the Task List control.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

The email channel

Avaya Agent Integration October 2015 95
Comments on this document? infodev@avaya.com

Task List control

The Task List is a GUI control that displays tasks. Although the Task List is designed to be
media-independent, out-of-the-box the Task List only displays email tasks controlled by the
MailEngine control. The Task List shows the state of the task, the origin, and the time in state.
However, additional columns may be displayed also.

The Task List provides the following functionality:

l Allows the agent to view all email tasks currently assigned and their state. The state shown
for email tasks is incoming (new), active, inactive (deferred), or wrapup.

l Allows the agent to activate an email task in the Web Agent. When activated, it becomes
visible in the client.

l Allows the agent to view task-specific information in columns, a tool tip, or both.

The agent may choose to preview an email task or reply to it through the Web Agent user
interface. When an agent is replying to it, it is considered to be active.

As the integrator, you can set the control object properties to display any columns of information
you want, including, but not limited to, the ones shown below. The columns may be specified in
the CDL by setting the value for the Columns property in the TaskList section.

The following table shows the tables that are available out-of-the-box. Those items marked
“Specific to Email tasks” are examples of properties of the Mail Task object that you could also
choose to display.

Column Out-of-the-box Specific to Email tasks

Task icon Yes No

State icon Yes No

Origin Yes No

Time in state Yes No

Subject No No

Age No No

State No No

EDU ID No No

Task ID No Yes

Tracking number No Yes

Queue time No Yes

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 9: Media channels

96 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

For example, if you wanted to display the account balance for a task as a tooltip when the agent
hovers the mouse cursor over the task, you would place the code in the initialization code of
Avaya Agent, as in TaskList_Initialize.

Dim iQConsole As Application

Dim iTaskList As Object

Set iQConsole = GetApp

Set iTaskList = iQConsole.GetControlObject(“TaskList”)

iTaskList.SetFormat “{task_source_type} ({task_state}): Origin:

'{origin}' Subject: '{subject}' Tracking Number:

{[tracking_number]} Balance: {[acct_balance]}”

This sample code could be used to then set the account balance into the email Task object.
When set, the property is displayed when the mouse is hovered over that task.

The account balance could be retrieved from an EDU object, for example.

Dim iQConsole As Application

Dim iTaskList As Object

Dim iProperties As Object

Set iQConsole = GetApp

Set iTaskList = iQConsole.GetControlObject(“TaskList”)

Set iProperties = iTaskList.Properties

iProperties.SetOneValue “acct_balance”, “$245.36”

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

The email channel

Avaya Agent Integration October 2015 97
Comments on this document? infodev@avaya.com

In this state diagram, the Mail Task states are shown. The corresponding WACD states are
shown in parentheses, if applicable.

CDL settings
To configure the Task List component, you need to modify the following CDL parameters:

For details about the QSection tag, see Customizing Avaya Agent on page 19.

Relevant integration hooks
The following Integration Hooks are directly related to the Email Channel. Use them to either
enhance or change the behavior by creating Integration Hook Handlers as described in
Customizing Avaya Agent behavior on page 36.

QSection Name Attribute(s) Description

Email DeferOnLogoutWait
Time

When an agent logs out, specifies the period
of time (in milliseconds) that Avaya Agent
waits to logout after automatically deferring
the agent’s email.

TaskList Columns Specifies the columns displayed using the
Columns property.

TaskList DisableContextMenu Disables the context menu using the
DisableContextMenu property.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 9: Media channels

98 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

l MailEngine_TaskDeclined

l MailEngine_TransferResponse

l TaskList_Change

l TaskList_GuiActivate

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Starting a flow on a prompter client

Avaya Agent Integration October 2015 99
Comments on this document? infodev@avaya.com

Chapter 10: Prompter client integration

The Prompter client lets agents run workflow-driven scripts that assist them with handling
contacts. These scripts are displayed in the Prompter client, which resides in an Avaya Agent
frame (so agents can access both the script and the information in Avaya Agent’s other
controls). For information on writing Prompter scripts, refer to Agent Script Workflow Reference.

This chapter describes starting a workflow in a Prompter client instance, how workflows should
be constructed to function properly, any IC Scripts that allow Prompter to work, and the CDL
settings for configuring the Prompter client.

This section includes the following topics:

l Starting a flow on a prompter client on page 99

l Flow construction basics on page 100

l CDL settings on page 101

l Relevant integration hooks on page 101

Starting a flow on a prompter client
You can launch a flow in a Prompter client instance using the out-of-the-box IC Script called
QPrompter_StartFlow. The IC Script takes the following parameters:

l iQPrompterClient — the instance of the Prompter client in which the flow should be
launched.

l sFlowserName – the name of the Flowset containing flow to be launched.

l sFlowName – the name of Flow to launch.

l FlowParameters — the parameters to be sent to the flow in an array of name/value pairs
(name=value).

l sLabel – The label that appears in the Prompter client Session Tree so that the agent
knows what this particular flow is designed to do.

The following portion of the IC Script’s code shows how a flow can be launched using the
QPrompter_StartFlow IC Script:
Dim iApp As Application
Dim iQPrompterClient As Object
Dim sFlowsetName As String
Dim sFlowName As String
Dim FlowParameters(1 To 3) As String
Dim sLabel As String

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 10: Prompter client integration

100 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Dim sSessionId As String

Set iApp = GetApp
Set iQPrompterClient = iApp.GetActiveXControl("QPrompterClient")

sFlowsetName = "SomeFlowsetName"
sFlowName = "SomeFlowName"
sLabel = "Nice Looking Label for Flow"

FlowParameters(1) = "name1=value1"
FlowParameters(2) = "name2=value2"
FlowParameters(3) = "name3=value3"

sSessionId = QPrompter_StartFlow(iQPrompterClient, sFlowsetName, sFlowName,
FlowParameters, sLabel)

Flow construction basics
Flow construction is the most important part of the Prompter client integration. The flow to be
run must:

l Present the scripting interface

l Determine which IC Script will be used to pass the data collected in the flow to the
database.

To build a flow:
1. Create a flow that an agent can run to accomplish a certain task (for more information refer

to Agent Script Workflow Reference).

2. Set the following symbol values, within the flow, which will be extracted by the
QPrompterClient_FlowDelete IC Script:

l QcriptName – name of the IC Script to execute when the flow is done.

l QScriptParam1, QScript Param2, ...QScriptParamN – these will become the parameters
passed to the specified IC Script.

l QScriptParamCount – Number of QScriptParam's to pass to IC Script Name

The following is a short example of how the symbols set in the flow translate into an IC Script
being run at flow completion. If specifying the following symbols within the flow:

QScriptName="QScriptToRun"

QScriptParam1="value1"

QScriptParam2="value2"

QScriptParam3="value3"

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

CDL settings

Avaya Agent Integration October 2015 101
Comments on this document? infodev@avaya.com

QScriptParamCount=3

Then you must have created an IC Script defined as:

Sub QScriptToRun(sParam1 As String, sParam2 As String,

sParam3 As String)

CDL settings
There are no CDL settings for this component.

Relevant integration hooks
This component has no relevant Integration Hooks.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 10: Prompter client integration

102 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent Integration October 2015 103
Comments on this document? infodev@avaya.com

Chapter 11: Contact wrapup

This chapter describes the out of the box wrap-up functionality included in Avaya Agent. There
are two methods of performing wrap-up integrated out of the box: wrap-up through the WrapUp
Dialog or WrapUp through Prompter. Both methods of wrapup are discussed in this chapter as
well as the general outline of how wrapup should be handled in Avaya Agent.

When configuring wrapup, you can choose a third type of "Other". Whichever method of wrapup
you use, the WrapUpEngine should be used to track wraptime as well as write the codes to
Avaya IC in a way that is required by Avaya IC.

This section includes the following topics:

l WrapUp process on page 104

l WrapUpEngine on page 104

l WrapUpDialog Wrap-up on page 108

l Prompter wrap-up on page 109

l Other wrap-up on page 111

l Relevant integration hooks on page 111

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 11: Contact wrapup

104 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

WrapUp process
No matter how you choose to do WrapUp in Avaya Agent, the main process is the same. The
following diagram outlines this process:

WrapUpEngine
One of the reasons for performing WrapUp when a contact ends is to gather information about
that contact and the results of the agent’s interaction with the contact. This information comes in
the form of Wrapup Codes that are configured and built within IC Manager. More information on
Wrapup Codes is provided in IC Administration Guide.

These wrap-up codes are then taken and written into the agent’s ADU and the contact’s EDU.
This allows the real-time and historical reporting that keeps track of this information. Writing this
data into the ADU and EDU is complex. The IC components that rely on this data, look for it in
specific containers and subcontainer. Rather than force an integrator to learn this structure and
implement on their own, the WrapUpEngine ActiveX control in Avaya Agent that does this for
the integrator.

The WrapUpEngine doesn't just write wrap-up codes in the way IC requires it, it also provides
the capability of tracking wraptime for multiple WrapUp Objects at once. This allows an
integrator to use the WrapUpEngine to create custom wrap-up solutions without having to keep
track of time.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

WrapUpEngine API

October 2015 105

WrapUpEngine API
This section describes the WrapUpEngine API.

StartWrapUp (method)

Description

This method starts a new wrap-up session in the WrapUpEngine. It creates an
internal WrapUpObject.

Syntax

StartWrapUp(sEDUId As String, sMediaType As String)

FinishWrapUp (function)

Description

This function “finishes” the wrap-up session for a given EDUID. The codes are
written to Avaya IC, and, if successful, the WrapUpObject is removed.

Syntax

FinishWrapUp(sEDUId As String) As WrapUpEngineFinishWrapUpConstants

Returns

An integer (WrapUpEngineFinishWrapUpConstants), defined as:
Public Enum WrapUpEngineFinishWrapUpConstants

Value Description

sEDUid The EDUID of the contact for on whom you are starting
wrapup.

sMediaType The media type string (chat, email, or voice).

Value Description

sEDUid The EDUID of the contact for whom you are finishing
wrapup.

Chapter 11: Contact wrapup

106 Avaya Agent Integration

wuwfcSuccess = 0
wuwfcFailedADU = 1
wuwfcFailedEDU = 2

End Enum

RemoveWrapUp (method)

Description

This method removes an internal WrapUpObject. It can be used for removing
WrapUpObjects when FinishWrapUp failed.

Syntax

RemoveWrapUp(sEDUId As String)

GetWrapUpObject (function)

Description

This function returns a WrapUpObject for a given EDUID. You must have
previously used the StartWrapUp method to internally create this WrapUpObject.

Syntax

GetWrapUpObject(sEDUId As String) As WrapUpObject

Returns

This function returns a WrapUpObject.

Value Description

sEDUid The EDUID of the contact for whom you wish to remove
the WrapupObject.

Value Description

sEDUid The EDUID of the contact for whom you want to retrieve
the WrapUpObject.

WrapUpObject API

October 2015 107

WrapUpObject API
This section describes the WrapUpObject API.

AddCodes (method)

Description

This methods lets you add a set of codes to the WrapUpObject. A set can contain
1 to 10 codes. Typically, a set contains 3 codes (category, outcome, and reason).

Syntax

AddCodes(sCodeKey1 As String, Optional sCodeKey2 As String, _
Optional sCodeKey3 As String, Optional sCodeKey4 As String, _
Optional sCodeKey5 As String, Optional sCodeKey6 As String, _
Optional sCodeKey7 As String, Optional sCodeKey8 As String, _
Optional sCodeKey9 As String, Optional sCodeKey10 As String)

sCodeKey<N> - This is a string code

EDUId (read-only property)

Description

This is a read-only property that returns the EDUId of the WrapUpObject.

Syntax

EDUId() As String

MediaType (property)

Description

This property allows you to get/set the media type for the WrapUpObject.

Syntax

MediaType() As String

Chapter 11: Contact wrapup

108 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

WrapTime (property)

Description

This property allows you to get/set the wraptime (in seconds) for a contact. During a wrap-up
session, the WrapTime accumulates. However, if you set the WrapTime explicitly, it is stored. If
you set WrapTime to an empty string, WrapTime will dynamically accumulate again.

Syntax

WrapTime() As String

WrapUpDialog Wrap-up
The Wrap Up Dialog may be used when an agent needs to complete a contact by indicating a
wrapup reason, category, and outcome:

l Reason – lets the agent to specify the purpose of a customer's initial reason for contacting
that agent, or the intent of the work performed (for example, Account Balance, Fund
Transfers).

l Category – lets the agent wrap up more efficiently by presenting only the categories
associated with that reason (for example, Insurance: Auto, Home, Life).

l Outcome – specifies the result of the contact with the customer.

Multiple WrapUp Dialogs may be shown at a time. For example, there may be wrapup needed
on both the chat and e-mail channels at the same time. This lets the designer invoke the
Wrapup Dialog method ShowWrapup followed by WrapupContact while another wrapup
operation is still in progress.

If a contact is transferred between agents, each agent may select a wrapup reason. Each of
these wrapup reasons may be shown in a list that shows all the previous entries made by other
agents.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Prompter wrap-up

Avaya Agent Integration October 2015 109
Comments on this document? infodev@avaya.com

WrapUp process with the wrap-up dialog
As stated at the beginning of this chapter, whatever method is used to perform the WrapUp in
Avaya Agent, the process remains the same. The following diagram shows how the WrapUp
Dialog fits into this process:

Prompter wrap-up
This section outlines how the Prompter client performs Contact WrapUp. As described in Flow
construction basics on page 100, the most important part of using the Prompter client is
designing the proper flow. When creating the flow for wrap-up, you will need to devise a script
for the Agent to follow that results in a set of wrap-up data. You can write your data to a
database, EDU, or a 3rd Party system. This can be done on the Avaya Work Flow Designer or
the Avaya Agent. Because doing wrap-up through Prompter is so generic, the Integrator does
most of the tasks. The framework that is provided out-of-the-box gives you a lot of flexibility for
your implementation.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 11: Contact wrapup

110 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

WrapUp process using the Prompter client
As stated at the beginning of this chapter, whatever method is used to perform the WrapUp in
Avaya Agent, the process remains the same. The following diagram shows how the Prompter
client fits into this process:

Setting the correct IC Script variables
As described in Starting a flow on a prompter client on page 99, there are several global
variables that need to be set in a Prompter flow if an IC Script needs to be run. Because we
need to remove the contact from Avaya Agent when WrapUp is complete, these parameters
need to be set up to run QConsole_CompleteContact. The following are required settings in the
Prompter flow to complete the contact in Avaya Agent properly:

l QScriptName = "QConsole_CompleteContact"

l QScriptParam1 = eduid (from input parameters)

l QscriptParam2 = mediatype (from input parameters)

l QScriptParamCount = “2”

QPrompterClient_FlowDelete

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Other wrap-up

Avaya Agent Integration October 2015 111
Comments on this document? infodev@avaya.com

Other pointers
As described in Contact wrapup on page 103, doing Prompter Wrap-up is primarily a
customization exercise. This section provides the following pointers for doing various things.

If you want to write wrap-up codes and wraptime to the ADU/EDU, you should use the
WrapUpEngine. To do this, you can use the QConsole_WrapContact Integration Hook to start a
wrap-up session on the WrapUpEngine (which, is included in the out-of-the-box .cdl layout). You
can then change the Prompter flow to set your own IC Script name to run when the flow is done,
passing data from the flow into your IC Script. Use this Script to take the data, determine the
applicable wrapcodes, and use the WrapUpEngine API store the codes and finish the wrap-up.

Other wrap-up
As described in the Contact wrapup on page 103, there is another type of wrap-up possible in
Avaya Agent, which is named “Other”. Setting Agent/Desktop.WrapUpType to “Other”, gives
you the responsibility of handling the wrap-up. When the WrapUpType is “Other”, Avaya Agent
stops after the “QConsole_WrapContact” point in the Wrap-up Process and waits for some
“other” source to run the “QConsole_CompleteContact”.

This puts how to do wrap-up, what you do during wrap-up, and even if you want to do wrap-up,
totally in your control. You can take advantage of the QConsole_WrapContact Integration Hook
to trigger your own wrap-up processing. You must call “QConsole_CompleteContact” when you
are finished.

With this option, you can implement Selective After Contact Work….simple wrap-up button
wrap-up…3rd Party Application initiated wrap-up.

Relevant integration hooks
The following Integration Hooks are directly related to WrapUp. Use them to either enhance or
change the behavior by creating Integration Hook Handlers as described Customizing Avaya
Agent behavior on page 36.

l QConsole_WrapContact

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Chapter 11: Contact wrapup

112 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent Integration October 2015 113
Comments on this document? infodev@avaya.com

Appendix A: Troubleshooting

This appendix provides information about common errors and error messages that may occur
when using and modifying Avaya Agent. Each error is accompanied by description, possible
problem(s), and corresponding possible solution(s).

The errors covered in this document are:

l Extra VTel session popping up when logging onto Avaya Agent

l The modified eduviewer layout is not showing up in the EDU window in Avaya Agent.

l Cannot enter a non-US style phone number in agent desktop application

l Cannot log into components with an empty password

l Database login failed. Please retry.

l Error occurred at Line x, Column n while parsing CDL file

l Avaya Agent Error 11017: Cannot find layout – xxxxxx …

l Softphone Logout Failed: xx

l The Avaya Agent configuration has changed Please re-log into all components

l <name> Login Failed: <reason> Do you want to Retry?

l Avaya Agent exits without restoring the desktop area it occupied

l A visible control is in the CDL, but does not appear in Avaya Agent

l “guest_xyz@company.com” appears in the Origin field of the Email Task List

l Avaya Agent hangs on startup

l Get "Warning: Could not get EDU for incoming contact"

l Get “Invalid Email Server” from Web Agent when starting Avaya Agent

l Avaya Agent customization issues

l The Out of string space error

The type of messages logged is controlled by the DebugLevel setting in Application Preferences,
stored in the Avaya database. If DebugLevel is set to 1, 2, or 3, Avaya IC logs any errors that
Avaya Agent encounters, along with all Login and Shutdown messages, to the application log
file stored in IC_INSTALL_DIR\IC73logs. In addition, if the DebugLevel is set to 3, the messages
from every IC Script that Avaya Agent runs are also logged. (For more information, see IC
Administration Guide.)

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Appendix A: Troubleshooting

114 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Extra VTel session popping up when logging onto Avaya
Agent

Set GuiType to none in the bin directory.

The modified eduviewer layout is not showing up in the
EDU window in Avaya Agent.

Solution: Deleted all the layouts from the database, and deleted the adl, adf, and cdl from the
apps directory. Log back in.

Cannot enter a non-US style phone number in agent
desktop application

The data mask for phone number format is fixed at the time of installation, and cannot be
modified within an application. You can remove or modify the masks using Database Designer
by editing the object of the form in question.

Cannot log into components with an empty password
Avaya Agent was designed so that if a user has synchronized all of their passwords all
components contained within will be logged into from the main Avaya Agent Login Tab. To
accomplish this, the following logic was built into the OOB IC Scripts for Avaya Agent.

For each component to log into, get the Login ID & Password from the corresponding tab in the
Avaya Agent Login. If any Login ID and/or Password was left blank, then fill with the default from
Avaya Agent Login.

Therefore, if a User actually has a Login ID with an empty Password, they may not be able to
log into that component because the default will be used from the Avaya Agent login. There are
two ways this can be handled. The Developer can modify the IC Script logic to not apply
defaults to Passwords OR always have a password for a Login ID.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Database login failed. Please retry.

Avaya Agent Integration October 2015 115
Comments on this document? infodev@avaya.com

Database login failed. Please retry.
This happens when Avaya Agent could not log into the database. Could be caused by:

l This happens when an invalid Login ID/Password combination is used for Avaya Agent.
Use correct Login ID/Password.

l The Data server is down. Make sure the Data server is started.

l The Database is down. Make sure the Database is up.

l The IC Data Source was specified incorrectly

Error occurred at Line x, Column n while parsing CDL file
When pushing a Avaya Agent layout specification to the database, the specification is parsed to
make sure it follows basic XML structure rules. If there is anything fundamentally wrong with the
.cdl file, the above error will occur.

To resolve the problem, note the Line number, open your .cdl file and look for a fundamental
syntax problem. This is usually caused by an unmatched starting and ending tag. For example:

<QControl Name="PhoneEngine" ProgID="QPHONEENGINE.QPhoneEngineCtrl.1">

<QScriptDictionary>

<QScript Event="OnTelephonyStateChanged"

Name="Softphone_OnTelephonyStateChanged"/>

</QControl>

The above example would cause a parsing error because the <QScriptDictionary> is missing a
matching </QScriptDictionary> after it. The below example is how this error would be fixed:

<QControl Name="PhoneEngine"

ProgID="QPHONEENGINE.QPhoneEngineCtrl.1">

<QScriptDictionary>

<QScript Event="OnTelephonyStateChanged"
Name="Softphone_OnTelephonyStateChanged"/>

</QScriptDictionary>
</QControl>

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Appendix A: Troubleshooting

116 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

Avaya Agent Error 11017: Cannot find layout – xxxxxx …
Avaya Agent uses the layout file (.cdl) to determine how it looks. It pulls this file from the
database upon startup. There are two places in which the name for which specification to use is
determined. First and foremost, there is a parameter in the command line for starting Avaya
Agent (-layout). Second, when Avaya Agent starts up, it calls an IC Script Hook called
AfterLoginHook (located in system.qsc). Inside this IC Script, a developer can change which
specification name to be used by changing the value of a variable sLayoutName. When
AfterLoginHook completes, Avaya Agent uses the end layout name and searches the database
for the specification to pull onto the local machine. This being said, there are two reasons why
you would get the above error message:

l The most basic is the developer forgot to push the layout specification to the database.
Use Database Designer and push the specification using “Generate Windows
Application…”/Avaya Agent Layout.

l The name in the specification pushed to the database does not match the one Avaya
Agent was looking for. The name appearing in the error message should match the name
setting in the CDL file:

<QConsole Name="avaya_agent_en" Version="7.3" Description="Default
Avaya Agent Layout Spec in English">
In the above example, the name of the specification is “qconsole”, but let us assume that the
error message shows that Avaya Agent was looking for “qconsolespec”. To fix this, either the
name has to be changed, or the name Avaya Agent was given to look for must be changed.

Note:
Note: Before Avaya Agent searches the database, it translates the specification name

to lower case. That means the name is case-insensitive.

Finally, Avaya Agent specifications are pushed to the database per application. For example if
Avaya Agent is hooking up to a ccq_request design, make sure you did not push the layout
specification to the ccq_contact application.

Softphone Logout Failed: xx
If an agent is using Avaya Agent containing Softphone, when Avaya Agent shuts down, it will
attempt to log that agent out of the Softphone. If, for some reason, Avaya Agent cannot log the
agent out of the Softphone, they will be presented with the above message. xx will usually give
you some indication of why Avaya Agent could not log out. The most common cause of this is
the agent having a call in the Softphone when they try to logout.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

The Avaya Agent configuration has changed Please re-log into all components

Avaya Agent Integration October 2015 117
Comments on this document? infodev@avaya.com

The Avaya Agent configuration has changed
Please re-log into all components

As mentioned above, Avaya Agent is built base on a layout specification. Not only is Avaya
Agent’s layout determined by this specification, but so is the Login dialog that appears.
Therefore, if a developer pushes a new layout specification to the database, the Login dialog
could have possibly changed. Thus Avaya Agent recognizes this and will force the user to
“…re-log into all components…”

<name> Login Failed: <reason> Do you want to Retry?
Most operations done in Avaya Agent are done via IC Scripts, including logging into the
components and controls. Avaya Agent uses standard login messages so that you can modify
them to fit your needs. The above error message is specific to the Softphone, but it can be
applied to other components and controls as well.

When you encounter one of these error messages, there are two pieces of information that
should tell you what failed and why:

l <name> – Component/Control name whose login failed.

l <reason> – Reason why login failed.

Avaya Agent exits without restoring the desktop area it
occupied

Resize the system task bar to reclaim the desktop area.

A visible control is in the CDL, but does not appear in
Avaya Agent

l Make certain the control’s Visible property is set to “TRUE”.

l Make certain the control is positioned so that it can be seen. On lower resolution video
modes, you may not see the whole control (for example, the Chat List control)

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Appendix A: Troubleshooting

118 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

“guest_xyz@company.com” appears in the Origin field of
the Email Task List

l Check WACD function as described in the IC Installation and Configuration.

l Check that WACD hostname is set up properly, via WACD Administration

Avaya Agent hangs on startup
l Make certain that you have rebooted after installing Avaya Agent.

l Check that "EnhancedDialDirectory" and "FilterADUOLE" are set to "y" in the
IC_INSTALL_DIR\IC73bin\vtel.ini file.

Get "Warning: Could not get EDU for incoming contact"
For Email contacts:

1. Check that the WACD is working correctly.

l In IC Manager, verify that the WACD is running.

l Check the WACD log file (in IC_INSTALL_DIR\IC73logs) to see if there are errors that
may indicate the cause of the problem.

2. Check that the WACD hostname is set up properly in the Email Script. This value is set in
the WACD administration pages. For more information, refer to IC Installation and
Configuration.

3. Check if the EDU timed out.

l Using IC Manager's DDE Direct, invoke "[VDU.GetValues("eduid")]", where eduid is
the EDUID that may have timed out. This should return the EDU's contents if things
are working properly.

l Check the agent's vagent_vtel.log file for a line "[VDU.GetValues("eduid")]" and see
if it returns the EDU successfully.

If either check failed, the DUStore may be failing. Check that the DUStore is properly
configured and running.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Get “Invalid Email Server” from Web Agent when starting Avaya Agent

Avaya Agent Integration October 2015 119
Comments on this document? infodev@avaya.com

For Web Management chat:

l Try changing the IC_INSTALL_DIR\IC73chatserver\website\public\escalate.jsp
ChatConnector timeout. For more information, refer to IC Installation and Configuration.

For Web Management chat transfers:

l Check that you have a DUStore server. Set up the DUStore in IC Manager as a server. If
DUStore is not set up properly and the EDU server is shut down, the EDU server will not
be able to restore the EDU from the DUStore.

Get “Invalid Email Server” from Web Agent when starting
Avaya Agent

l Check that the Email server is running. In IC Manager check to see that the Email server is
Up.

l Check that the WACD Email is configured properly. For more information refer to IC
Installation and Configuration.

Avaya Agent customization issues
If a catastrophic failure occurs with any Avaya IC CORBA customized server from which it does
not recover, dependent custom desktop components will attempt to communicate with the failed
server. To avoid desktop delays, it is recommended that the custom component and server
support Assigns to bind the desktop to a particular instance for the life of the session. Do not
perform any MakeRequestSynch() requests on Core Services if not logged in to Core Services.
This will peg the CPU.

The Out of string space error
Avaya IC scripts sometimes displays an error message: Out of string space. Following
are the scenarios in which the Avaya IC script displays the error message:

The length of a string exceeds 32 KB

In this scenario, check all the string concatenations in the IC scripts.

For example:

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Appendix A: Troubleshooting

120 Avaya Agent Integration October 2015
Comments on this document? infodev@avaya.com

If (len(debugout) + len({_#vduData}(i).name) + _
numSpaces + len({_#vduData}(i).value) + 3) < {_#maxDebugLength} then
debugOut = debugOut & {_#vduData}(i).name & ":" & _
String$(numSpaces," ") & {_#vduData}(i).value & ebCrLf

Where, maxDebugLength is equal to 32000.

Number of strings is greater than 32 KB

In this scenario, check the IC scripts for the number of string used. Try to reduce the number of
strings used in the IC scripts.

The total size of all the strings exceeds 32 MB

In this scenario, check the IC scripts for the number of string used and also the length of each
string. Try to reduce both, the number of strings and the length of each string used in the IC
scripts.

mailto:infodev@avaya.com?Subject= Avaya Interaction Center 7.3.x Agent Integration Guide

Avaya Agent Integration October 2015 121

 Index

Index

A
ACD (Automatic Call Distribution) 82
active contact viewer

CDL parameters for 66, 70, 89
active contact viewer control 69
AfterLoginHook IC Script 52
agent states64, 89
agent, setting availability 65
agent’s login ID, using to set CDL layout. 52
answer . 86
arguments, command line 15
automatic mode for QStatus control 65
availability, setting 65
Avaya Agent

command line arguments 15
integration tasks 9
login procedure 22
overriding the command line layout 52
overview . 9

B
Blender Client control 66

C
Call . 82
Call List Control 85
Call routing and queues 82
call state .86, 89
Call type . 82
callback . 89
category, for wrapup 108
CDL file . 9

format of . 20
when downloaded 53

CDL parameters
for active contact viewer. 66, 70, 89
for contact history browser 78
for EDU Viewer 76
for Email channel 97

channels
chat . 90
Email . 92
states . 64
voice. 81

chat channel . 90
Chat component 11
command line arguments 15
components

default layout 12
list of . 10

Contact History Browser 76
contact history browser

CDL parameters for 78
Contact History Filter 77
contact viewing component 11
contact wrapup 11
contacts

completing 57
displaying . 70
handling . 63
lifecycle. . 56
selecting . 57
viewing previous 76

containers for an EDU 75
Control Initialization. 86
controls

active contact viewer 69
Blender Client 66
Contact History Browser 76
Contact History Filter 77
Core . 63
IC Scripts for 35
interaction between 10
Prompter client 99
QStatus. . 63
specifying . 33
that work with Avaya Agent 9

Core control . 63
core services component 10
Core Services Control 84

D
default components. 10
desktop resizing 9
direct phone . 88
DTMF Control 89

E
EDU . 65, 76

containers 75

122 Avaya Agent Integration October 2015

 Index

lifecycle . 75
EDU Viewer . 70

CDL parameters for 76
GUI . 72
stylesheet 73

Email
client. 94
Components 93

Email channel 92
CDL parameters for 97

Email component 11
Event Handling 88
events. 89

raised by Avaya Agent 10
exit hooks . 52
ExitAppHook IC Script 53

F
filtering contact history 77
flows

constructing 100
starting. 99

format of the CDL file. 20
frames

definition of. 9
specifying 28

framework
definition of. 9
specifying IC Scripts 25

G
getVduValue. 87
GUI Controls 84, 88

H
hangup . 86
hooks . 52

I
IC Repository and the Contact History Browser . . . 77
IC Repository, configuring 78
IC Scripts

for controls 35
for panes. 33
overview . 10
specifying for the framework. 25
working with controls 10

Information Field Control 86
InitAppHook IC Script 53
initialization hooks 52

integration hooks
definition . 36
example . 38
information sent to. 37
out-of-the-box hooks. 39
parameters 37

integration tasks 9

K
keyboard navigation 16

L
layouts

Avaya Agent properties 16
controls . 33
downloading changes 53
ending the sections 35
frames . 28
framework IC Scripts 25
global options 21
login procedure 22
panes . 31
setting based on agent ID 52
specifying . 20

lifecycle of a contact 56
Line appearance 82
line, phone . 86
login procedure, specifying 22

M
manual mode for QStatus control 65
media channels

chat . 90
Email . 92
voice . 81

media channels component 10
media channels, integrating 56
MS TabStrip control 77

N
name/value couples, displaying 70
name/value pair 16, 65, 87

O
OLE controls . 9
out of string space error119
outcome, for wrapup 108
overview . 9

Avaya Agent Integration October 2015 123

 Index

P
panes

controls in 33
definition of. 9
IC Scripts for 33
specifying 31

PBX. 82
phone . 82
phone line . 86
phone state 88, 89
Phone States 83

Busy . 83
Ready . 83
WrapUp . 83

phone type . 88
PhoneEngine Control 84

Registration 86
polling. 89
Preferences equivalent 25
Prompter client control 99, 110

wrapup process 110
Prompter flows

constructing 100
starting. 99

Q
QComponent tag 23
QComponentDictionary tag 22
QConsole tag 21
QConsole_AddContact IC Script 57
QConsole_CompleteContact IC Script. 57, 110
QConsole_PerformScreenPopFromEDU IC Script . . 58
QConsole_RemoveContact. 57
QConsole_ShowContact IC Script 57
QConsole_WrapContact IC Script. 57
QControl tag. 34
QControlDictionary tag 33
QEMailEngine Control 94
QField tag . 23
QFrame tag . 29
QFrameDictionary tag 28
QLogin tag . 22
QPane tag. 32
QPaneDictionary tag 31
QPrompter_StartFlow IC Script 99
QPrompterClient11
QPrompterClient_FlowComplete IC Script 100
QPropertyDictionary tag 24
QRouter, using with EDU Viewer 71
QScript tag . 27
QScriptDictionary tag. 27
QScriptFile tag. 26

QScriptFileDictionary tag 26
QSection tag . 25
QStartMenu tag 30
QStatus control. 63

modes . 64
states. . 64

QTab tag. . 30

R
reason, for wrapup 108
resizing the desktop 9

S
screen pops . 58
SeqCouple . 87
sequence of couples 87
Softphone . 81
softphone

concepts . 81
Softphone Components 81
softphone. See also telephony.
speed keys, list of 16
standalone components. 11
state

agent . 89
call . 86, 89
phone . 89

Switch . 82
switch . 88
system integrator tasks 9

T
tags, XML . 20
tasks for the system integrator. 9
TbCall . 86
Telephony

concepts . 81
telephony

programming overview. 83
Telephony Button Control 85
Telephony Services Control 84
Telephony state event 89
terminate. . 88
transfer . 86
troubleshooting 113-117

U
unavailability, setting 65

124 Avaya Agent Integration October 2015

 Index

V
VDU .87, 88
voice channel 81
Voice component 10
VTel Automation Server 83

W
wrapup

IC Script for 57
when transferred between agents 108

WrapUp Dialog 108
process . 109

wrapup process 104
with Prompter client 110
with WrapUp Dialog. 109

X
XML file. See CDL file.
XML tags . 20
XSL stylesheet 71

example . 73

	Contents
	Chapter 1: Introduction
	Purpose
	Intended audience
	Reason for reissue
	Related resources
	Documentation
	Finding documents on the Avaya Support website

	Training
	Viewing Avaya Mentor videos

	Support

	Chapter 2: Overview
	Integration tasks
	IC Scripts overview
	Component overview
	Default component layout

	Customization steps

	Chapter 3: Avaya Agent basics
	Running Avaya Agent
	Keyboard navigation
	Specifying Avaya Agent properties
	Language implications

	Chapter 4: Customizing Avaya Agent
	The format of the CDL file
	Setting global options
	<QConsole> ... </QConsole>

	Specifying the login dialog
	<QLogin> ... </QLogin>
	<QComponentDictionary> ... </QComponentDictionary>
	<QComponent> ... </QComponent>
	<QField> ... </QField>

	Specifying Avaya Agent properties
	<QPropertyDictionary> ... </QPropertyDictionary>
	<QSection> ... </QSection>

	Specifying framework IC Scripts
	<QScriptFileDictionary> ... </QScriptFileDictionary>
	<QScriptFile> ... </QScriptFile>
	<QScriptDictionary> ... </QScriptDictionary>
	<QScript> ... </QScript>

	Specifying frames in your application
	<QFrameDictionary> ... </QFrameDictionary>
	<QFrame> ... </QFrame>
	<QStartMenu> ... </QStartMenu>
	<QTab> ... </QTab>

	Specifying panes within a frame
	<QPaneDictionary> ... </QPaneDictionary>
	<QPane> ... </QPane>

	Specifying IC Scripts within a pane
	Specifying controls within a pane
	<QControlDictionary> ... </QControlDictionary>
	<QControl> ... </QControl>

	Specifying IC Scripts within a control
	Ending the definition sections
	What are integration hooks?
	Information sent to the integration hook
	Start using integration hooks
	Example integration hook code
	Available integration hooks
	Ex*map tables
	Structure and relationships of ex*map tables
	List of ex*map tables
	Columns in ex*map tables
	Populating the Ex*map Tables

	Chapter 5: Initialization and exit hooks
	Avaya Agent initialization and exit hooks
	Relevant integration hooks

	Chapter 6: Contact handling
	Lifecycle of a contact
	Avaya Agent contact handling IC Scripts
	Unified Agent Directory
	Unified Agent Directory API
	SetSite (method)
	SetCustomTabFocus (method)

	CDL settings
	Relevant integration hooks

	Chapter 7: Core services
	Core control
	Status control
	Status states
	Status modes
	Retrieving and setting EDU data

	Blender client control
	CDL settings
	Relevant integration hooks

	Chapter 8: Contact viewing
	Active Contact Viewer
	CDL settings
	Relevant integration hooks

	EDU Viewer
	The EDU Viewer GUI
	The XSL stylesheet
	XML script generation
	EDU containers
	EDU lifecycle
	CDL settings
	Relevant integration hooks

	Contact History Browser
	MS TabStrip control
	Contact History Filter control
	Example
	Configuring supporting servers and databases
	CDL settings
	Relevant integration hooks

	Chapter 9: Media channels
	The voice channel
	What is softphone?
	Voice channel terms and concepts
	Phones, calls, switches
	Call routing and queues
	Phone states

	Telephony programming overview
	VTel Automation server
	PhoneEngine control
	The GUI controls
	Telephony Button control
	Call List control
	Information Field control
	Control initialization
	Registration
	The call object
	Accessing the EDU
	Call termination
	Event handling
	Phone state
	GUI controls
	Voice event handling
	DTMF Control (Definity switch only)

	CDL settings
	Relevant integration hooks

	The web agent
	CDL settings
	Relevant integration hooks

	The chat channel
	Web state event handling
	CDL settings
	Relevant integration hooks

	The email channel
	Email management channel terms and concepts
	Required components
	The Avaya Email Management client
	MailEngine control
	Task List control

	CDL settings
	Relevant integration hooks

	Chapter 10: Prompter client integration
	Starting a flow on a prompter client
	Flow construction basics
	CDL settings
	Relevant integration hooks

	Chapter 11: Contact wrapup
	WrapUp process
	WrapUpEngine
	WrapUpEngine API
	StartWrapUp (method)
	FinishWrapUp (function)
	RemoveWrapUp (method)
	GetWrapUpObject (function)

	WrapUpObject API
	AddCodes (method)
	EDUId (read-only property)
	MediaType (property)
	WrapTime (property)

	WrapUpDialog Wrap-up
	WrapUp process with the wrap-up dialog

	Prompter wrap-up
	WrapUp process using the Prompter client
	Setting the correct IC Script variables
	Other pointers

	Other wrap-up
	Relevant integration hooks

	Appendix A: Troubleshooting
	Extra VTel session popping up when logging onto Avaya Agent
	The modified eduviewer layout is not showing up in the EDU window in Avaya Agent.
	Cannot enter a non-US style phone number in agent desktop application
	Cannot log into components with an empty password
	Database login failed. Please retry.
	Error occurred at Line x, Column n while parsing CDL file
	Avaya Agent Error 11017: Cannot find layout - xxxxxx …
	Softphone Logout Failed: xx
	The Avaya Agent configuration has changed Please re-log into all components
	<name> Login Failed: <reason> Do you want to Retry?
	Avaya Agent exits without restoring the desktop area it occupied
	A visible control is in the CDL, but does not appear in Avaya Agent
	“guest_xyz@company.com” appears in the Origin field of the Email Task List
	Avaya Agent hangs on startup
	Get "Warning: Could not get EDU for incoming contact"
	Get “Invalid Email Server” from Web Agent when starting Avaya Agent
	Avaya Agent customization issues
	The Out of string space error

	Index

