

 Product Support Notice © 2017 Avaya Inc. All Rights Reserved.

PSN # PSN020283u Avaya Proprietary – Use pursuant to the terms of your signed agreement or company policy.

Original publication date: 08-Mar-17. This is Issue #01, published date:

08-Mar-17.

Severity/risk level Medium Urgency When convenient

Name of problem Avaya Aura® Application Enablement (AE) Services CTI agent client design best practices.

Products affected

Avaya Aura® Application Enablement (AE) Services, Releases 6.3 - 7.0.1

Problem description

This notice provides best practices that should be implemented when developing CTI clients/applications integrating with Application

Enablement (AE) Services.

These best practices apply to DMCC Third Party Call Control (3PCC), TSAPI, JTAPI, CVLAN, and ASAI call control and exclude

DMCC First Party Call Control. DMCC First Party Call Control is documented in the DMCC Programmer’s Guide.

Note that CTI agent application/soft client development experience is assumed.

Resolution

When designing CTI agent client/applications that integrate with AE Services, the following development guidelines should be

followed to prevent overloading AE Services and causing AE Services message response latency.

 The application should implement an outstanding query/request (outstanding messages) counter and threshold.

o The counter should be incremented when a message is sent and decremented when a response to a previously sent

message is received.

o The threshold should be set relatively conservatively (e.g. 10 concurrent outstanding messages). The application

should not exceed the outstanding message threshold except in exceptional situations. For example, the application

should send out 10 queries/requests incrementing the counter each time, then wait until the counter is less than 10

before sending additional messages.

o To balance between polling message needs (e.g. agent state: TSAPI cstaQueryAgentState) and other message

requests (makeCall: TSAPI cstaMakeCall, Answer: TSAPI cstaAnswerCall, ClearConnection: TSAPI

cstaClearConnection), etc.), the application may need to exceed the outstanding message threshold for brief periods

of time (to accommodate message bursts), but the application should back off as soon as possible to compensate and

bring the message rate back within the outstanding message threshold. The application might also need to prioritize

call control messages over agent state query messages to assure the most important messages are sent first.

o It is desirable to make the threshold configurable so that other variables, such as the number of concurrent CTI

applications making queries/requests, can be accounted for and the threshold can be adjusted accordingly.

 Furthermore, it might be feasible for the application to implement a threshold that is internally and

automatically adjusted based on the response time to outstanding message requests. If the AE Services

message response time starts slowing the threshold could be adjusted (lowered). Once the threshold is

adjusted dynamically and the response time recovers to an acceptable level the threshold could be adjusted

accordingly (increased) again. This allows for more dynamic real-time application message throttling

adjustments based on AE Services message response latency.

 Note that specific solution dependent tuning of thresholds might be required on a recurring basis to account

for ongoing solution changes (e.g. changes to agent splits, VDNs, CM traffic increases, adding additional

applications to the AE Services integration, etc.).

 The application should implement an overall message rate threshold.

o The overall message rate threshold must be accounted for in addition to the outstanding message threshold described

above. The overall message rate threshold controls the amount of messages sent in a given period of time, for

example X messages in Y time interval (e.g. X might be 500 and Y might be 1 second for a 500 message/second

threshold). Preferably Y should be more granular than one second, such as 100ms intervals.

 X and Y should be configurable to allow the overall message rate to be changed as necessary.

 Note that specific solution dependent tuning of X and Y might be required on a recurring basis to account

for ongoing solution changes (e.g. changes to agent splits, VDNs, CM traffic increases, adding additional

applications to the AE Services integration, etc.).

 The following conceptual example provides a simplistic algorithm that implements the counters and thresholds described

above.

© 2017 Avaya Inc. All Rights Reserved. Page 2

While True

If MessagesToSend is greater than 0 And

 MessagesSentInInterval is less than MaxMessagesPerInterval And

 OutstandingMessages is less than MaxOutstandingMessages

Then

 Send the next message

 Increment MessagesSentInInterval

 Increment OutstandingMessages

Else

 Sleep for a small interval

o With the above example OutstandingMessages is decremented for every message response received. Also,

MessagesSentInInterval is reset to 0 after the Y time interval has passed.

o The algorithm can be further refined as needed. For instance, if request prioritization is desirable or necessary (e.g.

give call control priority over queries) the algorithm can be modified fairly simply to meet these specific needs.

Multiple send queues and priorities attached to send queues can be implemented for example.

 Polling for agent states should follow these general guidelines.

o Initial agent state polling at startup or after error recovery. This involves populating polling lists with initial agent

states at startup and after an error condition occurs in which polling lists can become out of date. The polling lists

should be populated in the following order (TSAPI examples provided):

 Domain control (cstaMonitorDevice()) for all split/skills in which agents reside. This provides login/logout

events for all agents.

 Monitor (cstaMonitorCallsViaDevice()) for all VDNs that route calls to splits/agents. This provides call

state information for all agents in most environments. If direct agent calling is utilized, monitors

(cstaMonitorDevice()) must be established on those agent-IDs which are direct dialed.

 Query (attQueryAgentLogin()) for logged in agents in all splits/skills. This provides the current set of

logged in agents.

 Add all logged in agents to an agent state query list. Note that an agent state is exactly that, an

agent busy on an ACD call for skill 1 will be busy for all skills, so an agent should never appear

more than once in this list regardless of the number of skills into which they are logged in.

o Agent steady state polling. This involves maintaining agent state lists once the initial state is known.

 Periodically querying agent states for all agents on the agent state query list. Note that this list will already

include all of the agents determined at startup or after error recovery. Agent state queries should be

performed based on the message counter and threshold guidance provided earlier.

 The frequency of querying a specific agent for its state should not be excessive (e.g. no more than

once every 10 seconds) and preferably should be configurable.

 When an event is received indicating that an agent is on a call, remove the agent from the agent state query

list and move them to another list e.g. active list). In other words, never poll for agent state when the agent

is active on a call.

 When an event is received indicating that an agent has dropped from the call, add them to the agent state

query list to re-determine their agent state.

 When an agent logout event is received, remove the agent from all lists.

 When an agent login event is received, add the agent to the agent state query list.

o Note that a single SMS query can be used to get a list of skills an agent has provisioned when the agent logs in.

Another method that has been used is to implement an extra “dummy” skill on CM. The dummy skill is configured

on all agents and the application monitors only this dummy skill. Then, only a single event is received when an

agent logs in or logs out.

 If the CTI application implementation spans multiple servers, each with its own communication link to AE Services, ensure

that the servers do not make redundant requests to AE Services. Either have an architecture where the servers share

information acquired from AE Services amongst themselves or segment the solution so each server is responsible for a proper

subset of the information to be acquired (VDNs, extensions, agents, etc.).

Workaround or alternative remediation

n/a

Remarks

n/a

© 2017 Avaya Inc. All Rights Reserved. Page 3

Patch Notes
The information in this section concerns the patch, if any, recommended in the Resolution above.

Backup before applying the patch

n/a

Download

n/a

Patch install instructions Service-interrupting?

n/a Yes

Verification

n/a

Failure

n/a

Patch uninstall instructions

n/a

Security Notes
The information in this section concerns the security risk, if any, represented by the topic of this PSN.

Security risks

n/a

Avaya Security Vulnerability Classification

Not Susceptible

Mitigation

n/a

If you require further information or assistance please contact your Authorized Service Provider, or visit

support.avaya.com. There you can access more product information, chat with an Agent, or open an online

Service Request. Support is provided per your warranty or service contract terms unless otherwise specified in the

Avaya support Terms of Use.

Disclaimer: ALL INFORMATION IS BELIEVED TO BE CORRECT AT THE TIME OF PUBLICATION AND IS PROVIDED “AS IS”.

AVAYA INC., ON BEHALF OF ITSELF AND ITS SUBSIDIARIES AND AFFILIATES (HEREINAFTER COLLECTIVELY REFERRED TO

AS “AVAYA”), DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING THE WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND FURTHERMORE, AVAYA MAKES NO REPRESENTATIONS

OR WARRANTIES THAT THE STEPS RECOMMENDED WILL ELIMINATE SECURITY OR VIRUS THREATS TO CUSTOMERS’

SYSTEMS. IN NO EVENT SHALL AVAYA BE LIABLE FOR ANY DAMAGES WHATSOEVER ARISING OUT OF OR IN CONNECTION

WITH THE INFORMATION OR RECOMMENDED ACTIONS PROVIDED HEREIN, INCLUDING DIRECT, INDIRECT, CONSEQUENTIAL

DAMAGES, LOSS OF BUSINESS PROFITS OR SPECIAL DAMAGES, EVEN IF AVAYA HAS BEEN ADVISED OF THE POSSIBILITY OF

SUCH DAMAGES.

THE INFORMATION PROVIDED HERE DOES NOT AFFECT THE SUPPORT AGREEMENTS IN PLACE FOR AVAYA PRODUCTS.

SUPPORT FOR AVAYA PRODUCTS CONTINUES TO BE EXECUTED AS PER EXISTING AGREEMENTS WITH AVAYA.

All trademarks identified by ® or TM are registered trademarks or trademarks, respectively, of Avaya Inc.

All other trademarks are the property of their respective owners.

http://support.avaya.com/
http://www.avaya.com/gcm/master-usa/en-us/includedcontent/termsofuse.htm

