

Avaya Client SDK External Application API

© 2019, Avaya, Inc. All Rights Reserved.

Notice

While reasonable efforts have been made to ensure that the information in this document is

complete and accurate at the time of printing, Avaya assumes no liability for any errors. Avaya

reserves the right to make changes and corrections to the information in this document without

the obligation to notify any person or organization of such changes.

Documentation disclaimer

“Documentation” means information published in varying mediums which may include product

information, operating instructions and performance specifications that are generally made

available to users of products. Documentation does not include marketing materials. Avaya shall

not be responsible for any modifications, additions, or deletions to the original published version

of Documentation unless such modifications, additions, or deletions were performed by or on the

express behalf of Avaya. End User agrees to indemnify and hold harmless Avaya, Avaya's

agents, servants and employees against all claims, lawsuits, demands and judgments arising out

of, or in connection with, subsequent modifications, additions or deletions to this documentation,

to the extent made by End User.

Link disclaimer

Avaya is not responsible for the contents or reliability of any linked websites referenced within

this site or Documentation provided by Avaya. Avaya is not responsible for the accuracy of any

information, statement or content provided on these sites and does not necessarily endorse the

products, services, or information described or offered within them. Avaya does not guarantee

that these links will work all the time and has no control over the availability of the linked pages.

Warranty

Avaya provides a limited warranty on Avaya hardware and software. Refer to your sales

agreement to establish the terms of the limited warranty. In addition, Avaya’s standard warranty

language, as well as information regarding support for this product while under warranty is

available to Avaya customers and other parties through the Avaya Support website:

https://support.avaya.com/helpcenter/ getGenericDetails?detailId=C20091120112456651010

under the link “Warranty & Product Lifecycle” or such successor site as designated by Avaya.

Please note that if You acquired the product(s) from an authorized Avaya Channel Partner

https://support.avaya.com/helpcenter/

outside of the United States and Canada, the warranty is provided to You by said Avaya Channel

Partner and not by Avaya.

“Hosted Service” means an Avaya hosted service subscription that You acquire from either

Avaya or an authorized Avaya Channel Partner (as applicable) and which is described further in

Hosted SAS or other service description documentation regarding the applicable hosted service.

If You purchase a Hosted Service subscription, the foregoing limited warranty may not apply but

You may be entitled to support services in connection with the Hosted Service as described

further in your service description documents for the applicable Hosted Service. Contact Avaya

or Avaya Channel Partner (as applicable) for more information.

Hosted Service

THE FOLLOWING APPLIES ONLY IF YOU PURCHASE AN AVAYA HOSTED SERVICE

SUBSCRIPTION FROM AVAYA OR AN AVAYA CHANNEL PARTNER (AS APPLICABLE),

THE TERMS OF USE FOR HOSTED SERVICES ARE AVAILABLE ON THE AVAYA WEBSITE,

HTTPS://SUPPORT.AVAYA.COM/LICENSEINFO UNDER THE LINK “Avaya Terms of Use for

Hosted Services” OR SUCH SUCCESSOR SITE AS DESIGNATED BY AVAYA, AND ARE

APPLICABLE TO ANYONE WHO ACCESSES OR USES THE HOSTED SERVICE. BY

ACCESSING OR USING THE HOSTED SERVICE, OR AUTHORIZING OTHERS TO DO SO,

YOU, ON BEHALF OF YOURSELF AND THE ENTITY FOR WHOM YOU ARE DOING SO

(HEREINAFTER REFERRED TO INTERCHANGEABLY AS “YOU” AND “END USER”),

AGREE TO THE TERMS OF USE. IF YOU ARE ACCEPTING THE TERMS OF USE ON

BEHALF A COMPANY OR OTHER LEGAL ENTITY, YOU REPRESENT THAT YOU HAVE

THE AUTHORITY TO BIND SUCH ENTITY TO THESE TERMS OF USE. IF YOU DO NOT

HAVE SUCH AUTHORITY, OR

IF YOU DO NOT WISH TO ACCEPT THESE TERMS OF USE, YOU MUST NOT ACCESS OR

USE THE HOSTED SERVICE OR AUTHORIZE ANYONE TO ACCESS OR USE THE HOSTED

SERVICE. Licenses THE SOFTWARE LICENSE TERMS AVAILABLE ON THE AVAYA

WEBSITE, HTTPS://SUPPORT.AVAYA.COM/LICENSEINFO, UNDER THE LINK “AVAYA

SOFTWARE LICENSE TERMS (Avaya Products)” OR SUCH SUCCESSOR SITE AS

DESIGNATED BY AVAYA, ARE APPLICABLE TO ANYONE WHO DOWNLOADS, USES

AND/OR INSTALLS AVAYA SOFTWARE, PURCHASED FROM AVAYA INC., ANY AVAYA

AFFILIATE, OR AN AVAYA CHANNEL PARTNER (AS APPLICABLE) UNDER A

COMMERCIAL AGREEMENT WITH AVAYA OR AN AVAYA CHANNEL PARTNER. UNLESS

OTHERWISE AGREED TO BY AVAYA IN WRITING, AVAYA DOES NOT EXTEND THIS

LICENSE IF THE SOFTWARE WAS OBTAINED FROM ANYONE OTHER THAN AVAYA, AN

AVAYA AFFILIATE OR AN AVAYA CHANNEL PARTNER; AVAYA RESERVES THE RIGHT

TO TAKE LEGAL ACTION AGAINST YOU AND ANYONE ELSE USING OR SELLING THE

SOFTWARE WITHOUT A LICENSE. BY INSTALLING, DOWNLOADING OR USING THE

SOFTWARE, OR AUTHORIZING OTHERS TO DO SO, YOU, ON BEHALF OF YOURSELF

AND THE ENTITY FOR WHOM YOU ARE INSTALLING, DOWNLOADING OR USING THE

SOFTWARE (HEREINAFTER REFERRED TO INTERCHANGEABLY AS “YOU” AND “END

USER”), AGREE TO THESE TERMS AND CONDITIONS AND CREATE A BINDING

https://support.avaya.com/LICENSEINFO
https://support.avaya.com/LICENSEINFO

CONTRACT BETWEEN YOU AND AVAYA INC. OR THE APPLICABLE AVAYA AFFILIATE

(“AVAYA”).

Avaya grants You a license within the scope of the license types described below, with the

exception of Heritage Nortel Software, for which the scope of the license is detailed below.

Where the order documentation does not expressly identify a license type, the applicable license

will be a Designated System License. The applicable number of licenses and units of capacity for

which the license is granted will be one (1), unless a different number of licenses or units of

capacity is specified in the documentation or other materials available to You. “Software”

means computer programs in object code, provided by Avaya or an Avaya Channel Partner,

whether as stand-alone products, pre-installed on hardware products, and any upgrades,

updates, patches, bug fixes, or modified versions thereto. “Designated Processor” means a

single stand-alone computing device. “Server” means a Designated Processor that hosts a

software application to be accessed by multiple users. “Instance” means a single copy of the

Software executing at a particular time: (i) on one physical machine; or (ii) on one deployed

software virtual machine (“VM”) or similar deployment.

License types

Designated System(s) License (DS). End User may install and use each copy or an Instance of

the Software only on a number of Designated Processors up to the number indicated in the

order. Avaya may require the Designated Processor(s) to be identified in the order by type,

serial number, feature key, Instance, location or other specific designation, or to be provided by

End User to Avaya through electronic means established by Avaya specifically for this purpose.

Concurrent User License (CU). End User may install and use the Software on multiple

Designated Processors or one or more Servers, so long as only the licensed number of Units are

accessing and using the Software at any given time. A “Unit” means the unit on which Avaya, at

its sole discretion, bases the pricing of its licenses and can be, without limitation, an agent, port

or user, an e-mail or voice mail account in the name of a person or corporate function (e.g.,

webmaster or helpdesk), or a directory entry in the administrative database utilized by the

Software that permits one user to interface with the Software. Units may be linked to a specific,

identified Server or an Instance of the Software.

Database License (DL). End User may install and use each copy or an Instance of the Software

on one Server or on multiple Servers provided that each of the Servers on which the Software is

installed communicates with no more than one Instance of the same database.

CPU License (CP). End User may install and use each copy or Instance of the Software on a

number of Servers up to the number

indicated in the order provided that the performance capacity of the Server(s) does not exceed

the performance capacity specified for the Software. End User may not re-install or operate the

Software on Server(s) with a larger performance capacity without Avaya’s prior consent and

payment of an upgrade fee.

Named User License (NU). You may: (i) install and use each copy or Instance of the Software on

a single Designated Processor or Server per authorized Named User (defined below); or (ii)

install and use each copy or Instance of the Software on a Server so long as only authorized

Named Users access and use the Software. “Named User”, means a user or device that has been

expressly authorized by Avaya to access and use the Software. At Avaya’s sole discretion, a

“Named User” may be, without limitation, designated by name, corporate function (e.g.,

webmaster or helpdesk), an e-mail or voice mail account in the name of a person or corporate

function, or a directory entry in the administrative database utilized by the Software that permits

one user to interface with the Software.

Shrinkwrap License (SR). You may install and use the Software in accordance with the terms and

conditions of the applicable license agreements, such as “shrinkwrap” or “clickthrough” license

accompanying or applicable to the Software (“Shrinkwrap License”).

Heritage Nortel Software

“Heritage Nortel Software” means the software that was acquired by Avaya as part of its

purchase of the Nortel Enterprise Solutions Business in December 2009. The Heritage Nortel

Software is the software contained within the list of Heritage Nortel Products located at

https://support.avaya.com/LicenseInfo under the link “Heritage Nortel Products” or such

successor site as designated by Avaya. For Heritage Nortel Software, Avaya grants Customer a

license to use Heritage Nortel Software provided hereunder solely to the extent of the authorized

activation or authorized usage level, solely for the purpose specified in the Documentation, and

solely as embedded in, for execution on, or for communication with Avaya equipment. Charges

for Heritage Nortel Software may be based on extent of activation or use authorized as specified

in an order or invoice.

Copyright

Except where expressly stated otherwise, no use should be made of materials on this site, the

Documentation, Software, Hosted Service, or hardware provided by Avaya. All content on this

site, the documentation, Hosted Service, and the product provided by Avaya including the

selection, arrangement and design of the content is owned either by Avaya or its licensors and is

protected by copyright and other intellectual property laws including the sui generis rights

relating to the protection of databases. You may not modify, copy, reproduce, republish, upload,

post, transmit or distribute in any way any content, in whole or in part, including any code and

software unless expressly authorized by Avaya. Unauthorized reproduction, transmission,

dissemination, storage, and or use without the express written consent of Avaya can be a

criminal, as well as a civil offense under the applicable law.

Virtualization

https://support.avaya.com/LicenseInfo

The following applies if the product is deployed on a virtual machine. Each product has its own

ordering code and license types. Note that each Instance of a product must be separately

licensed and ordered. For example, if the end user customer or Avaya Channel Partner would

like to install two Instances of the same type of products, then two products of that type must be

ordered.

Third Party Components

“Third Party Components” mean certain software programs or portions thereof included in the

Software or Hosted Service may contain software (including open source software) distributed

under third party agreements (“Third Party Components”), which contain terms regarding the

rights to use certain portions of the Software (“Third Party Terms”). As required, information

regarding distributed Linux OS source code (for those products that have distributed Linux OS

source code) and identifying the copyright holders of the Third Party Components and the Third

Party Terms that apply is available in the products, Documentation or on Avaya’s website at:

https:// support.avaya.com/Copyright or such successor site as designated by Avaya. The open

source software license terms provided as Third Party Terms are consistent with the license

rights granted in these Software License Terms, and may contain additional rights benefiting

You, such as modification and distribution of the open source

software. The Third Party Terms shall take precedence over these Software License Terms,

solely with respect to the applicable Third Party Components to the extent that these Software

License Terms impose greater restrictions on You than the applicable Third Party Terms.

The following applies only if the H.264 (AVC) codec is distributed with the product. THIS

PRODUCT IS LICENSED UNDER THE AVC PATENT PORTFOLIO LICENSE FOR THE

PERSONAL USE OF A CONSUMER OR OTHER USES IN WHICH IT DOES NOT RECEIVE

REMUNERATION TO (i) ENCODE VIDEO IN COMPLIANCE WITH THE AVC STANDARD

(“AVC VIDEO”) AND/OR (ii) DECODE AVC VIDEO THAT WAS ENCODED BY A

CONSUMER ENGAGED IN A PERSONAL ACTIVITY AND/OR WAS OBTAINED FROM A

VIDEO PROVIDER LICENSED TO PROVIDE AVC VIDEO. NO LICENSE IS GRANTED OR

SHALL BE IMPLIED FOR ANY OTHER USE. ADDITIONAL INFORMATION MAY BE

OBTAINED FROM MPEG LA, L.L.C. SEE HTTP://WWW.MPEGLA.COM.

Service Provider

THE FOLLOWING APPLIES TO AVAYA CHANNEL PARTNER’S HOSTING OF AVAYA

PRODUCTS OR SERVICES. THE PRODUCT OR HOSTED SERVICE MAY USE THIRD

PARTY COMPONENTS SUBJECT TO THIRD PARTY TERMS AND REQUIRE A SERVICE

PROVIDER TO BE INDEPENDENTLY LICENSED DIRECTLY FROM THE THIRD PARTY

SUPPLIER. AN AVAYA CHANNEL PARTNER’S HOSTING OF AVAYA PRODUCTS MUST BE

AUTHORIZED IN WRITING BY AVAYA AND IF THOSE HOSTED PRODUCTS USE OR

EMBED CERTAIN THIRD PARTY SOFTWARE, INCLUDING BUT NOT LIMITED TO

MICROSOFT SOFTWARE OR CODECS, THE AVAYA CHANNEL PARTNER IS REQUIRED

TO INDEPENDENTLY OBTAIN ANY APPLICABLE LICENSE AGREEMENTS, AT THE

http://support.avaya.com/Copyright
http://www.mpegla.com/

AVAYA CHANNEL PARTNER’S EXPENSE, DIRECTLY FROM THE APPLICABLE THIRD

PARTY SUPPLIER.

WITH RESPECT TO CODECS, IF THE AVAYA CHANNEL PARTNER IS HOSTING ANY

PRODUCTS THAT USE OR EMBED THE G.729 CODEC, H.264 CODEC, OR H.265 CODEC,

THE AVAYA CHANNEL PARTNER ACKNOWLEDGES AND AGREES THE AVAYA CHANNEL

PARTNER IS RESPONSIBLE FOR ANY AND ALL RELATED FEES AND/OR ROYALTIES.

THE G.729 CODEC IS LICENSED BY SIPRO LAB TELECOM INC. SEE

WWW.SIPRO.COM/CONTACT.HTML. THE H.264 (AVC) CODEC IS LICENSED UNDER THE

AVC PATENT PORTFOLIO LICENSE FOR THE PERSONAL USE OF A CONSUMER OR

OTHER USES IN WHICH IT DOES NOT RECEIVE REMUNERATION TO: (I) ENCODE

VIDEO IN COMPLIANCE WITH THE AVC STANDARD (“AVC VIDEO”) AND/OR (II)

DECODE AVC VIDEO THAT WAS ENCODED BY A CONSUMER ENGAGED IN A

PERSONAL ACTIVITY AND/OR WAS OBTAINED FROM A VIDEO PROVIDER LICENSED

TO PROVIDE AVC VIDEO. NO LICENSE IS GRANTED OR SHALL BE IMPLIED FOR ANY

OTHER USE. ADDITIONAL INFORMATION FOR H.264 (AVC) AND H.265 (HEVC) CODECS

MAY BE OBTAINED FROM MPEG LA, L.L.C. SEE HTTP:// WWW.MPEGLA.COM.

Compliance with Laws

You acknowledge and agree that it is Your responsibility for complying with any applicable laws

and regulations, including, but not limited to laws and regulations related to call recording, data

privacy, intellectual property, trade secret, fraud, and music performance rights, in the country

or territory where the Avaya product is used.

Preventing Toll Fraud

“Toll Fraud” is the unauthorized use of your telecommunications system by an unauthorized

party (for example, a person who is not a corporate employee, agent, subcontractor, or is not

working on your company's behalf). Be aware that there can be a risk of Toll Fraud associated

with your system and that, if Toll Fraud occurs, it can result in substantial additional charges for

your telecommunications services.

Avaya Toll Fraud intervention

If You suspect that You are being victimized by Toll Fraud and You need technical assistance or

support, call Technical Service Center Toll Fraud Intervention Hotline at +1-800-643-2353 for

the United States and Canada. For additional support telephone numbers, see

the Avaya Support website: https://support.avaya.com or such successor site as designated by

Avaya.

Security Vulnerabilities

https://support.avaya.com/

Information about Avaya’s security support policies can be found in the Security Policies and

Support section of https:// support.avaya.com/security.

Suspected Avaya product security vulnerabilities are handled per the Avaya Product Security

Support Flow (https:// support.avaya.com/css/P8/documents/100161515).

Downloading Documentation

For the most current versions of Documentation, see the Avaya Support website:

https://support.avaya.com, or such successor site as designated by Avaya.

Contact Avaya Support

See the Avaya Support website: https://support.avaya.com for product or Hosted Service notices

and articles, or to report a problem with your Avaya product or Hosted Service. For a list of

support telephone numbers and contact addresses, go to the Avaya Support website:

https://support.avaya.com (or such successor site as designated by Avaya), scroll to the bottom

of the page, and select Contact Avaya Support.

Trademarks

The trademarks, logos and service marks (“Marks”) displayed in this site, the Documentation,

Hosted Service(s), and product(s) provided by Avaya are the registered or unregistered Marks of

Avaya, its affiliates, its licensors, its suppliers, or other third parties. Users are not permitted to

use such Marks without prior written consent from Avaya or such third party which may own the

Mark. Nothing contained in this site, the Documentation, Hosted Service(s) and product(s)

should be construed as granting, by implication, estoppel, or otherwise, any license or right in

and to the Marks without the express written permission of Avaya or the applicable third party.

Avaya is a registered trademark of Avaya Inc.

All non-Avaya trademarks are the property of their respective owners. Linux® is the registered

trademark of Linus Torvalds in the U.S. and other countries.

Table of Contents

• Document Purpose

o Document Version

• What's New

• Overview

http://support.avaya.com/security
http://support.avaya.com/css/P8/documents/100161515
https://support.avaya.com/
https://support.avaya.com/
https://support.avaya.com/

o Application Integration

o Call Control Capability Table

o Why JSON?

o Named Pipe API Model

▪ Pipe Discovery

▪ Application Sandboxing for MacOS

▪ Basic Interworking Model

▪ Enhanced Interworking Model

o Security Model

▪ Authentication

▪ Networking

▪ Named Pipe Connectivity Model

▪ Protocol Framing

▪ Denial of Service

▪ Rate Limiting

▪ Application Identification

▪ Disabling the External Application Interface

▪ Internationalization

o Backward and Forward Compatibility

▪ Versions

▪ External Application API Backward Compatibility

▪ External Application API Forward Compatibility

▪ Current Version

• API Definition

o Media Types

o Pipe Management

o Pipe Management Events

o Calls

o Call Events

o Media Devices

• Call Flows

▪ Legend

o API Control Call Flows

▪ Client SDK Initialization

▪ Register

▪ Unregister

▪ DisconnectRequest

o Call Handling

▪ Make Call - Named Pipe

▪ Make Call - Named Pipe

▪ Answer Call

▪ Mute and Unmute call

▪ Hold and Retrieve call

▪ Terminate or End Call

o Media Device Listing

▪ GetActiveAudioDevices

o Application Interworking

▪ Call Created by UC Application

▪ Call Created by Peer External Application

▪ Call Hold by UC Application

▪ Call Hold by Peer External Application

• References

• Appendix

o Windows C# Named Pipe Sample Code

Document Purpose

The purpose of this document is to define the Unified Communications Application (UCA)

portfolio requirements for external applications to interact with the Avaya Client SDK

communication package and with applications that utilize this package, such as

Avaya Workplace.

This document describes the resources that make up the official External Application Interface

for the Client SDK Communication Services Package v1.2 (API).

Document Version

What's New

External Application APIs were up versioned to v1.2, with the primary difference being that calls

with media routed remotely, such as shared control and telecommuter calls, are clearly

identifiable within the API as calls with remote media. Applications written with to the v1.0 of

the External Application API will continue to work, and be supported.

Overview

The purpose of the APIs is to allow general applications executing locally on the workstation to

send primitive call control requests to Avaya Client SDK. The External API was defined as a

consolidated API to enable application vendors authoring applications for multiple platforms to

leverage a consistent API. This API is supported on Windows and Mac OS X platforms, and is

not applicable to Android or iOS platforms.

The API enables applications to create and control calls, and to discover calls through JSON

messaging over a named pipe. The API is versioned, and is versioned independently of the

Avaya Client SDK version to provide external applications with a stable set of functionality.

Avaya Workplace is the lead Avaya application that is built on the Avaya Client SDK, and is

often referred or used in examples throughout the document. The External Application API may

be enabled by any application that is built on the Avaya Client SDK. It is the choice of the

application to determine if the External Application API is enabled.

Within this document, the Avaya Client SDK will be referenced as either the Client SDK or

CSDK.

Application Integration

When developing an application that uses the External API, Avaya recommends that partners

integrate their applications with the Avaya Workplace (previously known as Avaya Equinox)

application first, treating Avaya Workplace as the reference implementation. The External API

will be available in other Client SDK applications written by Avaya or third party organizations.

Once you have successfully integrated with Workplace, you can begin integrating with other

Client SDK applications.

Call Control Capability Table

Avaya Workplace is the latest Avaya Unified Communications client, and it extends the

capabilities of Avaya Communicator and Avaya one-X® Communicator available for External

Applications. The following table shows the capabilities available to External Applications, and

if the capability is newly introduced with the External Application Interface.

Call Control

Capability

Avaya

Communicator

2.0 Interface

Avaya

Equinox

(3.0 - 3.6)

Avaya

Workplace

3.7+

Notes

--

Accept

Incoming Call
Y Y Y Existing capability

Add/Remove

video
N Y Y

capability

introduced in

Equinox

Block Camera N Y Y

capability

introduced in

Equinox

Calling line ID N Y Y

capability

introduced in

Equinox

Create call Y Y Y

Existing capability

• Not

supported

for

HTTPUA

calls.

Hold/Retrieve Y Y Y Existing capability

Ignore

Incoming Call
N Y Y Existing capability

Terminate Call Y Y Y Existing capability

Insert DTMF N Y Y

capability

introduced in

Equinox

Mute/Unmute

Call
Y Y Y Existing capability

Media Device

Listings
N Y Y

capability

introduced in

Equinox

Why JSON?

The External API uses JSON to exchange data between the External Application and the

External Application Interface API. JSON offers the following advantages:

• JSON is simple, open, and interoperable.

• Data is defined to allow generic tools to manipulate data.

• JSON data is (almost) human readable.

A key aspect of JSON leveraged through the API is that applications consuming the JSON can

easily disregard fields that it is unfamiliar, and the External API can do the same. This allows a

large degree of flexibility between versions of External Applications and the External API, as

long as JSON fields are never removed from the External API. This is critical to External API

versioning, which is described below.

Named Pipe API Model

The External API is an Avaya proprietary API that provides external applications with a basic

interface to influence call handling of the Client SDK. The interface uses JSON encoded

messages over a platform-provided named pipe, with the named pipe connecting the external

application to the Client SDK. The External API provided by the Client SDK is intended to

support two different types of applications, simple click to call and basic call control. Basic

application interoperability allows External Applications to invoke Make Call requests on the

Client SDK.

Pipe Discovery

When the API is enabled, the Client SDK establishes a single public named pipe. The named

pipe is strongly named, to allow applications to find the appropriate pipe. This allows multiple

users to use the same workstation simultaneously, and allows multiple external applications to

direct requests to the intended Client SDK instance. In the case where multiple Client SDK

Applications are executing as the same user, the first Client SDK Application to acquire the

named pipe "wins". If the pipe name is already in use when the Client SDK attempts to create

the named pipe, the operation will fail, and the External Application API will not be available for

the Client SDK instance. An alternative pipe name is not available.

Windows

PipeName = \\.\pipe\AvayaCSDK-%username%

i.e. \\.\\pipe\AvayaCSDK-bob

The name of the Windows pipe can be confirmed using pipelist.exe. Look for a pipe name

starting with "AvayaCSDK".

MacOS X

https://technet.microsoft.com/en-us/sysinternals/dd581625.aspx?f=255&MSPPError=-2147217396

Unix Domain Socket Name = <User Home Dir>/Application/ Support.com.avaya-%app

name%/AvayaCSDK-%platform user name%

i.e. /Users/joeuser/Library/Application Support/com.avaya/Avaya-

Workplace/AvayaCSDK-bob

The name of the MacOS Unix Domain Socket can be confirmed using "netstat -a". Look for a

socket name starting with "AvayaCSDK".

Application Sandboxing for MacOS

Not supported in this release.

Basic Interworking Model

Basic interworking occurs on the public pipe and allows external applications to invoke two

operations:

• create - Enables external applications to request the Client SDK to create a call on behalf

of the Client SDK user.

• register- Enables external applications to request a dedicated pipe in order to register for

call UpdateEvents. It also provides a dedicated pipe for the external application to send or

make advanced requests.

Each request is acknowledged with a response. The "create" response will contain the call object

containing the current state of the call attributes. If the External Application has not registered

for events, no subsequent updates will be provided.

Enhanced Interworking Model

When the External Application registers for call UpdateEvents, mid-call operations are permitted

and UpdateEvents are sent when a call attribute changes. Each External API call operation

request has an associated response, and an operation response will be returned for each request

received. The operation response will always contain the current state of the call object, with

subsequent call attribute changes being provided to the External Application through the

UpdateEvent.

As the External API is not the only mechanism available to control a call, External Applications

must be able to handle UpdateEvents for call operations invoked through another mechanism,

such as the UC client user interface. The External Application can track changes in the call that

are made externally (through the Avaya Client SDK application) because call attribute changes

are sent through an UpdateEvent without a call operation response.

Similarly, the External API can have multiple External Applications connected

simultaneously. External Applications only receive operation responses for requests invoked by

the External Application that sent the request, and call UpdateEvents will be received for all

calls, irrespective of how the call was created.

Security Model

Authentication

All named pipes are created by the Avaya Client SDK. This allows the Client SDK to control

security permissions for the named pipe.

All pipes should be created so that only applications running as the platform user are able to

connect to the pipe.

The platform (OS) is responsible for enforcing authentication, as defined by the application.

Networking

The external Application and the Avaya Client SDK processes must exist on the same

workstation. The External API interface is not available to remote network applications.

Named Pipe Connectivity Model

To allow multiple external applications to send requests on the public pipe, the external

application shall disconnect from the pipe 200ms after the request is made. If a request is not

received within 200ms of connecting, the pipe will be closed by the server.

The pipe name will be consistent for each platform user across Avaya Client SDK restarts.

The pipe is created with visibility local to the workstation. Network access is not permitted.

The named pipe can only be connected by a process with the same login identity as the Client

SDK process owner.

Applications that register for call events can remain connected to the named pipe indefinitely.

Protocol Framing

External API requests and events are JSON-encoded over the pipe. Each message (request or

event) is terminated with a NULL byte to act as a message delimiter. As JSON messages are

syntactically strong, it is possible for either side of the pipe to be aware when a complete request

is received. When the Avaya Client SDK receives a complete request, it will act on the

request. If the JSON request is not properly terminated within 200ms, the Client SDK will

disconnect the external application from the pipe, and purge the pipe buffer. This allows the pipe

to be reset for both parties.

If the external application detects a malformed response or event, it will disconnect from the

pipe and reconnect.

NullByte = \0

Multiple requests can be sent over the main pipe or the private pipe without waiting for the

associated response, as long as the following is true;

• Each request is properly encoded, and terminated with a NullByte.

• The transaction ID for each request is unique.

The External API parser expects complete External API requests to be written at once, not byte

by byte. The parser expects the NullByte to be encoded immediately following the closing brace

of the JSON message.

Transaction Identifiers (TransactionIds)

TransactionIds are used to correlate responses with the intended request. Each request shall have

its own transactionId, and the transactionId should be unique across time and space for all

messages sent by the external application. The transaction IDs need not to be numeric, not

monotonically increasing.

I.E.

a1-47.135.10.14, a2-47.135.10.14,a23-47.135.10.14

41.25.135.158-9bca, 41.25.135.158-9bcb,41.25.135.158-9bcc

Denial of Service

The Avaya Client SDK limits the number of private named pipes to 3.

Rate Limiting

Rate limiting is not implemented.

Application Identification

An Application-ID is used for correlation between external applications and the Avaya Client

SDK. Register requests directed to the Client SDK must have the Application-ID

populated. Register requests without an ApplicationId will be silently discarded. Two external

applications cannot register with the same ApplicationId, and the later registration will supercede

the original application registration.

Disabling the External Application Interface

The External Application Interface may be disabled by Avaya Client SDK. When the External

Application interface is disabled, the public pipe will not be created.

Internationalization

Unicode support

UTF-8 encoding shall be used for data exchange.

Backward and Forward Compatibility

Versions

The External Application API is versioned independently of the Avaya Client SDK version to

provide external applications with a stable set of functionality. The External Application API is

versioned with a major version and a minor version. A critical application requirement is to be

able to safely parse expected and unexpected fields. This allows the External Application API to

add incremental and supporting data to the responses and events without fear of breaking the

external application. The External Application API will behave similarly. The major version is

updated for the following reasons:

• When a change to the API is introduced that is not backward compatible with the

previous version.

o Example: A new parameter is introduced, or a mandatory parameter becomes

optional.

• When a portion of the API is deprecated.

The minor version of the API can change for the following reasons:

• A new capability is added to the API. This is a minor version update because new

functionality will not impact existing applications.

• A new optional parameter is added to an API request, response, or event.

The External Application API implements the following version strategy, which is based on

JSON's extensibility concepts.

If a new optional parameter is added to a media type, the minor version uses a dot increment.

Example: v1 becomes .v1.1, and v1.1 would become 1.2. v1.0 would become 1.1.

If a new mandatory parameter is added to a media type, the major version is incremented by 1

for all media types..

Example: v1 becomes v2. v9 becomes v10.

If a new capability is added to the External Application API, the new media types associated

with the capability would be versioned as v1.

If the external application registers for events, the External Application API will provide Event

media types based on the version of the RegisterRequest. The versions of the following media

types will be versioned at the same level. If the media type for one of the following changes, the

versioning for all the media types must be updated.

Application Versioning table for Register request, Register Response, and Events

Application Sends API Responds

vnd.avaya.clientresources.call.RegisterRequest.v1

vnd.avaya.clientresources.call.RegisterResponse.v1

vnd.avaya.clientresources.call.RegisterResponse.v1.2

vnd.avaya.clientresources.call.RegisterRequest.v3

vnd.avaya.clientresources.call.RegisterResponse.v3

vnd.avaya.clientresources.call.RegisterResponse.v3.3

The External API will use the latest available minor version of the API based on the version

number of the register request provided by the External Application.

External Application API Backward Compatibility

External Application API backward compatibility is the ability for the API to handle requests

from an older version of the API used by the external application. The External Application API

will support the current major version of the media types, and the previous version of the

External Application API. If the current version of the External Application API is v2, the

External Application API implemention will be capable of returning v1 responses. If the current

version of the External Application API is v3, the External API will be capable of returning v2

responses, but will not be capable of supporting v1 responses.

If a External Application API change forces the major version of the API to be updated, all

supported media types versions will be updated to the next major version number.

This will occur when the Avaya Client SDK External Application API version is newer than the

version of the External Application API used by the external application.

 Example: Avaya Workplace is newer than the headset application.

External Application API Forward Compatibility

External Application API forward capability is the ability for the external application to send

External Application API versions newer than the External Application API supports. In this

case, the External Application API will reply to the CreateCall or Register request with an Error,

Unsupported Media Type. When this occurs, the external application will reduce the major

version of the API by 1, and attempt the request again. This process may be repeated until the

version becomes v1, or until the version of the External Application API is not supported by the

external application. It is up the external application vendor to decide how many legacy versions

of the External Application API to support.

This will occur when the external application version is newer than the version of the External

Application API used by the Avaya External Application API

Example: Headset Application is newer than the Avaya Workplace.

Current Version

By default, all requests receive the v1 version of the External Application API. The version of

the API is explicitly captured in the messages.

vnd.avaya.clientservices.call.v1.2

Versioning will be supported at an External Application API level, and all media types will use

the same version. The version of an event sent to the application will be based on the major

version of register request received. The External Application API will always provide the

most recent minor version of the External Application API.

API Failures will return the following Accept header in the failure response.

vnd.avaya.clientservices.Error.v1.2

API Definition

Media Types

Applications shall always be prepared to receive a JSON Error response.

Errors

vnd.avaya.clientresources.Error.v1.2

Attribute Type Optional Description

displayMessage string N
A message that contains information that can be displayed

to an end user.

errorMessage string N
A message that contains information necessary for a

developer to correct the problem.

errorCode Enum N
A code associated with a unique error condition on the

server.

Attribute Type Optional Description

transactionId string Y The request associated with the error.

Error (JSON)

{

"vnd.avaya.clientresources.Error.v1.2" : {

"displayMessage" : " displayMessage text ",

"errorMessage" : " error Message text ",

"errorCode" : " error Code text ",

"transactionId": "1"

}

} \0

Failure and Error Codes

Error codes are similar to HTTP, to facilitate ease of use and understanding.

Code Description

400 Bad Request Could not parse request.

404 Not Found Call/Resource not found.

406 Not Acceptable Missing mandatory field.

408 Timeout Timeout processing the request.

409 Conflict applicationid has already registered on this pipe.

410 Gone Desired entity (call) does not exist

415 UnsupportedMediaType Improper media type.

500 Client SDK Error Error processing request.

503 Service Unavailable Client SDK not ready to accept requests.

497 Media Preserved
Call is in the media preserved state. The only

supported operation is Terminate.

Pipe Management

Register

vnd.avaya.clientresources.RegisterRequest.v1.2

vnd.avaya.clientresources.RegisterResponse.v1.2

vnd.avaya.clientresources.Error.v1.2

Register Request (JSON)

{

"vnd.avaya.clientresources.RegisterRequest.v1.2" : {

 "applicationId": "app",

 "transactionId: "1"

 }

}\0

Success Response (JSON)

{

"vnd.avaya.clientresources.RegisterResponse.v1.2" : {

 "transactionId": "1"

 }

}\0

Unregister

vnd.avaya.clientresources.UnregisterRequest.v1.2

vnd.avaya.clientresources.Error.v1.2

Unregister Request (JSON)

{

"vnd.avaya.clientresources.UnregisterRequest.v1.2" : {

 "transactionId": "1"

 }

}\0

An unregister response is not required. The Client SDK will immediately close the connection as

implicit acknowledgement to the request.

Pipe Management Events

DisconnectRequest

vnd.avaya.clientresources.DisconnectRequest.v1

DisconnectRequest (JSON)

{

 "vnd.avaya.clientresources.DisconnectRequest.v1.2" {

 "transactionId": "1"

 }

}\0

A Disconnect response is not required. When a DisconnectRequest is received, the recipient can

immediately close the pipe as acceptance. If the recipient does not close the pipe, the

DisconnectRequest sender will close the pipe after 200ms.

Calls

Call Resource

The following Call attributes are included in all call related responses and call events. Fields can

be left empty or blank intentionally by the External Application API.

vnd.avaya.clientresources.Call.v1.2

Attribute Values Relationship Description

CallId string mandatory Unique call identifier.

remote true,false mandatory

Call is on another device (MDA,

Bridged lines, EC 500). The call is not

being handled by the CSDK

Application. Media is not running

locally.

Headset call control applications

should not act on remote calls.

remotePartyName string mandatory
Name of the remote participant. The

value can be empty or blank.

remotePartyNumber string mandatory
Remote Party CLID. The value can be

empty or blank.

https://confluence.forge.avaya.com/pages/createpage.action?spaceKey=UCAPPSSE&title=true%2Cfalse&linkCreation=true&fromPageId=103787376

Attribute Values Relationship Description

privacy true,false mandatory
Privacy set for Remote Party. The

value can be empty or blank.

subject string mandatory
Call subject. The value can be empty

or blank.

https://confluence.forge.avaya.com/pages/createpage.action?spaceKey=UCAPPSSE&title=true%2Cfalse&linkCreation=true&fromPageId=103787376

callState

alerting

transferred

ended

ending

established

failed

far-end

renegotiating

Held

Holding

idle

ignored

initiating

remote alerting

renegotiating

transferring

unholding

video updating

mandatory

The call state, which represents:

public enum CallState values.

alerting- Call is alerting locally

(incoming call).

transferred - The call is being

transferred by a remote party on the

call.

ended - Call ended (by far-end, or end

request has been responded to by the

remote party).

ending - Request to end the call has

been sent.

established - Call has been established

and is active (not held).

failed- Failed.

far-end renegotiating- Call

renegotiating (requested by far-end).

held- Held.

holding - Holding.

idle - Uninitialized.

ignored - Call is ignored.

initiating - Call initiated (outgoing

only).

remote alerting- Call is alerting

remotely (outgoing call).

renegotiating - Call is renegotiating

(requested by us).

transferring -Transfer initiated by the

local user (outgoing).

Attribute Values Relationship Description

unholding - Retrieving.

video updating - Video is being added

or removed from the call.

muted true,false mandatory Audio on or off.

videoPossible true,false mandatory

Client informs the API if video

escalation is possible.

Video license is acquired.

Network applicable for video.

If a video device is not available, this

value will not be altered.

videoDirection

Inactive,

Send_Receive,

Send_Only,

Receive_Only

mandatory The direction of the video.

audioDirection

Remote,

Inactive,

Send_Receive,

Send_Only,

Receive_Only

mandatory

The direction of the audio. If audio is

directed to a remote device, the

direction will be remote.

transactionId
TransactionId of

the request.
optional

transactionID is only provided in

response messages, and it not provided

in events.

Call Operations

Call Operations Summary table

https://confluence.forge.avaya.com/pages/createpage.action?spaceKey=UCAPPSSE&title=true%2Cfalse&linkCreation=true&fromPageId=103787376
https://confluence.forge.avaya.com/pages/createpage.action?spaceKey=UCAPPSSE&title=true%2Cfalse&linkCreation=true&fromPageId=103787376

Operation MediaType Description

query vnd.avaya.clientresources.call.GetCallsRequest.v1.2
Discover calls on the

client.

create vnd.avaya.clientresources.call.CreateRequest.v1.2 Initiate call.

terminate vnd.avaya.clientresources.call.TerminateRequest.v1.2

End call. Terminates the

existing call, irrespective

of call state.

accept vnd.avaya.clientresources.call.AcceptRequest.v1.2

Answer the call. Possible

state for incoming alerting

state.

ignore vnd.avaya.clientresources.call.IgnoreRequest.v1.2

Ignore the call. Possible

state for incoming alerting

state.

Invoking the ignore

operation, the client's

ringer will be muted, and

the incoming call

notification will be

suppressed.

The call state does not

change, and the call can

still be answered.

hold vnd.avaya.clientresources.call.HoldRequest.v1.2 Hold call.

mute vnd.avaya.clientresources.call.MuteRequest.v1.2

Mute audio. Local mute

operation supported in

computer mode, and shared

control mode.

Network mute, for

conferencing applications,

is not supported.

Mute in other phone mode

(telecommuter mode) not

supported.

video vnd.avaya.clientresources.call.VideoRequest.v1.2 Add video to the call.

dtmf vnd.avaya.clientresources.call.DTMFRequest.v1.2
Insert DTMF digits during

the call.

Call Operations and Call State Validity Table

Call State Query Terminate Accept Ignore Hold Mute Video DTMF

1 alerting √ √ √ √ X √ X X

Call is

alerting

locally

(incoming

call).

2 initiating √ √ X X X √ X √

Call initiated

(outgoing

only).

3 established √ √ X X √ √ √ √

Call has been

established

and is active

(not held).

4 held √ √ X X √ √ X X

Call has been

established

but is not

active (held).

5 holding √ √ X X X √ X X

Call is in

process of

being held by

us.

6 unholding √ √ X X X √ X X
Unholding or

retrieving.

7 failed √ √ X X X √ X X call Failed.

8 idle √ √ X X X √ √ X
Call

Uninitialized.

9
remote

alerting
√ √ X X X √ X √

Call is

alerting

remotely

(outgoing

call).

10 ignored √ X √ √ X √ X X

Incoming

session is

ignored.

11 renegotiating √ √ X X X √ X √

Call

renegotiating

(requested by

us).

12
far-end

renegotiating
√ √ X X X √ X √

Call

renegotiating

(requested by

them).

13 transferring √ √ X X X √ X X

Transfer

initiated by

us

(outgoing).

14 transferred √ √ X X X √ X X

Being

transferred

by them

(incoming).

15 ending √ X X X X √ X X

Request to

end the

session has

been sent.

16 Ended √ X X X X √ X X

Call ended

(by far-end,

or end

request has

been

responded to

by the

remote

party).

17
video

updating
√ √ X X X √ √ √

States reflected in the English present participle (state names that end with "ing") are ephemeral

states, and the application should expect a subsequent state transition to follow. While a call is

in an ephemeral state, it is not possible for the external application to invoke signalling

operations.

The operation response JSON message will always contain the state of the session, which may be

unrelated to the operation requested.

Call State Transitions

Outgoing Call State Transition Table

Pre-Op Call State Operation Post Op Call State

idle <any non-create operation> idle

idle Create initiating

initiating Terminate ending/ended

initiating <any other operation> enitiating

remote alerting Terminate ending/ended

remote alerting DTMF remote alerting

remote alerting <any other operation> remote alerting

Incoming Call State Transition Table

Pre-Op Call State Operation Post Op Call State

alerting No Operation Timeout terminated, null

alerting Ignore ignored

alerting Accepted established

alerting Terminate alerting

ignored Ignore ignored

ignored Accepted established

ignored Terminate ignored

Established Call State Transition Table

Pre-Op Call State Operation Post Op Call State

established Terminate ending/ended

established Join (MDA, from UC Client) established

established DTMF established

Pre-Op Call State Operation Post Op Call State

established Hold holding/held

transferring Terminate ending/ended

transferring
any operation except

Terminate
transferring

transferred Terminate ending/ended

transferred
any operation except

Terminate
transferred

renegotiating Terminate ending/ended

renegotiating
any operation except

Terminate
renegotiating

far-end renegotiating Terminate ending/ended

far-end renegotiating
any operation except

Terminate
far-end renegotiating

Held Call State Transition Table

Pre-Op Call State Operation Post Op Call State

established Hold holding/held

held Unhold unholding/established

held Hold held

held/holding/unholding Terminate ending/ended

holding/unholding <any other operation> holding/unholding/held/established

Failed/Ending/Ended Call State Transition Table

Pre-Op Call State Operation Post Op Call State

ending <any operation> ending/ended

ended <any operation> ended

failed <any operation> failed

 Applications registering for call events when calls are in progress may not receive events

to support the existing state. Call Events are only guaranteed to be sent for call state transitions.

Call Messages

 External Application API documentation below highlights the important elements of the

API, given the context of the request. All call attributes will be returned for call-related requests.

Get Calls

vnd.avaya.clientresources.call.GetCallsRequest.v1.2

vnd.avaya.clientresources.call.GetCallsResponse.v1.2

vnd.avaya.clientresources.Error.v1.2

get Calls Request (JSON)

{

"vnd.avaya.clientresources.call.GetCallsRequest.v1.2": {

"transactionId": "1"

 }

} \0

Success Response -with single call (JSON)

get Calls Request (JSON)

{

"vnd.avaya.clientresources.call.GetCallsResponse.v1.2" : {

"vnd.avaya.clientresources.Call.v1.2" : {

"ASAIUserData" : "ASAI User Data",

"UCID" : "UCID value",

"VDNName" : "VDN Name",

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"callId": "xyz123",

"collectedDigits" : "Collected Digits",

"inVDNTime" : "VDN Time",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

},

"transactionId": "1"

}

}\0

Success Response -with calls (JSON)

get Calls Request (JSON)

{

"vnd.avaya.clientresources.call.GetCallsResponse.v1.2" : {

"vnd.avaya.clientresources.Call.v1.2" : [{

"ASAIUserData" : "ASAI User Data",

"UCID" : "UCID value",

"VDNName" : "VDN Name",

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

"callId": "xyz123",

"collectedDigits" : "Collected Digits",

"inVDNTime" : "VDN Time",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

},

{

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

 "callID": "abc124",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

}] ,

"transactionId": "1"

}

}\0

get Calls Request (JSON)

Success Response - without calls (JSON)

{

"vnd.avaya.clientresources.call.GetCallsResponse.v1.2" : {

"transactionId": "1"

}

}\0

Errors Responses (JSON)

{

"vnd.avaya.clientresources.Error.v1.2" : {

"displayMessage" : " displayMessage text ",

"errorMessage" : " error Message text ",

"errorCode" : " error Code text ",

"transactionId": "1"

}

}\0

GetCalls will return, at most, all active calls. The External API shall not constrain the number of

active calls.

Mute Call

vnd.avaya.clientresources.call.MuteRequest.v1.2

vnd.avaya.clientresources.call.MuteResponse.v1.2

vnd.avaya.clientresources.Error.v1.2

Mute Request Payload (JSON)

{

 "vnd.avaya.clientresources.call.MuteRequest.v1.2": {

"callId": "xxx",

"muted": "true",

"transactionId": "1"

}

}\0

Success Response (JSON)

{

 "vnd.avaya.clientresources.call.MuteResponse.v1.2": {

"vnd.avaya.clientresources.Call.v1.2" : {

"ASAIUserData" : "ASAI User Data",

"UCID" : "UCID value",

"VDNName" : "VDN Name",

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"collectedDigits" : "Collected Digits",

"inVDNTime" : "VDN Time",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

}

"transactionId": "1"

}

} \0

Failure Response

Unmute Call

vnd.avaya.clientresources.call.MuteRequest.v1.2

vnd.avaya.clientresources.call.MuteResponse.v1.2

vnd.avaya.clientresources.Error.v1.2

Unmute Request Payload (JSON)

{

 "vnd.avaya.clientresources.call.MuteRequest.v1.2": {

"callId": "xxx",

"muted": "false",

"transactionID": "1"

}

}\0

Success Response (JSON)

{

 "vnd.avaya.clientresources.call.MuteResponse.v1.2": {

"vnd.avaya.clientresources.Call.v1.2" : {

"ASAIUserData" : "ASAI User Data",

"UCID" : "UCID value",

"VDNName" : "VDN Name",

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"collectedDigits" : "Collected Digits",

"inVDNTime" : "VDN Time",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

},

"transactionId": "1",

}

} \0

Failure Response

Hold Call

vnd.avaya.clientresources.call.HoldRequest.v1.2

vnd.avaya.clientresources.call.HoldResponse.v1.2

vnd.avaya.clientresources.Error.v1.2

Hold Call Request Payload (JSON)

{

" vnd.avaya.clientresources.call.HoldRequest.v1.2": {

"callId": "xxx",

"held": "true",

"transactionId": "1"

}

}\0

Success Response (JSON)

{

 "vnd.avaya.clientresources.call.HoldResponse.v1.2": {

"vnd.avaya.clientresources.Call.v1.2" : {

"ASAIUserData" : "ASAI User Data",

"UCID" : "UCID value",

"VDNName" : "VDN Name",

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"collectedDigits" : "Collected Digits",

"inVDNTime" : "VDN Time",

"audioDirection" : "Remote,Inactive",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

},

"transactionId": "1",

},

} \0

Failure Response

Retrieve Call (unHold Call)

vnd.avaya.clientresources.call.HoldRequest.v1.2

vnd.avaya.clientresources.call.HoldResponse.v1.2

vnd.avaya.clientresources.Error.v1.2

Retrieve Call Request Payload (JSON)

{

"vnd.avaya.clientresources.call.HoldRequest.v1.2": {

"callId": "xxx",

"held": "false",

"transactionId": "1"

}

} \0

Success Response (JSON)

{

 "vnd.avaya.clientresources.call.HoldResponse.v1.2": {

"vnd.avaya.clientresources.Call.v1.2" : {

"ASAIUserData" : "ASAI User Data",

"UCID" : "UCID value",

"VDNName" : "VDN Name",

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"collectedDigits" : "Collected Digits",

"inVDNTime" : "VDN Time",

"audioDirection" : "Remote, Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

},

"transactionId": "1"

}

} \0

Failure Response

Terminate Call

vnd.avaya.clientresources.call.TerminateRequest.v1.2

vnd.avaya.clientresources.call.TerminateResponse.v1.2

vnd.avaya.clientresources.Error.v1.2

Terminate Call Request Payload (JSON)

{

"vnd.avaya.clientresources.call.TerminateRequest.v1.2": {

"callId": "xxx",

"transactionId": "1"

}

}\0

Success Response (JSON)

{

 "vnd.avaya.clientresources.call. TerminateResponse.v1.2": {

"vnd.avaya.clientresources.Call.v1.2" : {

"ASAIUserData" : "ASAI User Data",

"UCID" : "UCID value",

"VDNName" : "VDN Name",

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"collectedDigits" : "Collected Digits",

"inVDNTime" : "VDN Time",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

} ,

"transactionId": "1"

}

} \0

Failure Response

Answer Call (Accept Call)

vnd.avaya.clientresources.call.AcceptRequest.v1.2

vnd.avaya.clientresources.call.AcceptResponse.v1.2

vnd.avaya.clientresources.Error.v1.2

Accept Call Request Payload (JSON)

{

"vnd.avaya.clientresources.call.AcceptRequest.v1.2": {

"callId": "xxx",

"transactionId": "1"

}

}\0

Success Response (JSON)

{

 "vnd.avaya.clientresources.call.A cceptResponse.v1.2": {

"vnd.avaya.clientresources.Call.v1.2" : {

"ASAIUserData" : "ASAI User Data",

"UCID" : "UCID value",

"VDNName" : "VDN Name",

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"collectedDigits" : "Collected Digits",

"inVDNTime" : "VDN Time",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

}

,

"transactionId": "1"

}

} \0

Failure Response

Ignore Call

vnd.avaya.clientresources.call.IgnoreRequest.v1.2

vnd.avaya.clientresources.call.IgnoreResponse.v1.2

vnd.avaya.clientresources.Error.v1.2

Ignore Call Request Payload (JSON)

{

"vnd.avaya.clientresources.call.IgnoreCall.v1.2": {

"callId": "xxx",

"transactionId": "1"

}

}\0

Success Response (JSON)

{

 "vnd.avaya.clientresources.call.IgnoreResponse.v1.2": {

"vnd.avaya.clientresources.Call.v1.2" : {

"ASAIUserData" : "ASAI User Data",

"UCID" : "UCID value",

"VDNName" : "VDN Name",

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"collectedDigits" : "Collected Digits",

"inVDNTime" : "VDN Time",

"audioDirection" : "remote,inactive",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

},

"transactionId": "1"

}

} \0

Failure Response

CreateCall (MakeCall)

vnd.avaya.clientresources.call.CreateRequest.v1.2

vnd.avaya.clientresources.call.CreateResponse.v1.2

vnd.avaya.clientresources.Error.v1.2

Request Payload (JSON)

{

"vnd.avaya.clientresources.call. CreateRequest.v1.2": {
 "remotePartyNumber" : "Remote Party Number Value" ,

 "video" : "true" ,

 "subject" : "string " ,

 "conferencePasscode" : "0-9,#,*" ,

 "conferenceId" : "0-9",

"lineAppearanceOwner" : "a-z, 0-9",

"lineAppearanceId" : "int",

"transactionId": "1"
}

 }\0

Success Response (JSON)

{

 "vnd.avaya.clientresources.call.CreateResponse.v1.2": {

"vnd.avaya.clientresources.Call.v1.2" : {

"ASAIUserData" : "ASAI User Data",

"UCID" : "UCID value",

"VDNName" : "VDN Name",

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"collectedDigits" : "Collected Digits",

"inVDNTime" : "VDN Time",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

},

"transactionId": "1"

}

} \0

Failure Response

DTMF

vnd.avaya.clientresources.call.DTMFRequest.v1.2

vnd.avaya.clientresources.call.DTMFResponse.v1.2

vnd.avaya.clientresources.Error.v1.2

DTMF Request Payload (JSON)

{

"vnd.avaya.clientresources.call.DTMFRequest.v1.2": {
 "dtmfstring": "0-9,#,*",

"callId" : "xxx",

"transactionId": "1"
}

}\0

Response (JSON)

{

"vnd.avaya.clientresources.call.DTMFResponse.v1.2": {

"vnd.avaya.clientresources.Call.v1.2" : {

"ASAIUserData" : "ASAI User Data",

"UCID" : "UCID value",

"VDNName" : "VDN Name",

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"collectedDigits" : "Collected Digits",

"inVDNTime" : "VDN Time",

"audioDirection" : "send_receive",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

},

"transactionId": "1"
}

} \0

Failure Response

Add videoCall (Escalate)

vnd.avaya.clientresources.call.videoRequest.v1.2

vnd.avaya.clientresources.call.videoResponse.v1.2

vnd.avaya.clientresources.Error.v1.2

Add video Request Payload (JSON)

{

"vnd.avaya.clientresources.call.VideoRequest.v1.2": {
 "video": "true" ,

"callID" : "xxx",

"transactionId": "1"
}

} \0

Success Response (JSON)

{

"vnd.avaya.clientresources.call.VideoResponse.v1.2": {

"vnd.avaya.clientresources.Call.v1.2" : {

"ASAIUserData" : "ASAI User Data",

"UCID" : "UCID value",

"VDNName" : "VDN Name",

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"collectedDigits" : "Collected Digits",

"inVDNTime" : "VDN Time",

"audioDirection" : "remote,send_receive",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

} ,

"transactionId": "1"
}

} \0

Failure Response

Remove video (Deescalate)

vnd.avaya.clientresources.call.videoRequest.v1.2

vnd.avaya.clientresources.call.videoResponse.v1.2

vnd.avaya.clientresources.Error.v1.2

Remove Video Request Payload (JSON)

{

"vnd.avaya.clientresources.call.VideoRequest.v1.2": {
 "video": "false" ,

"callID" : "xxx",

"transactionId": "1"
}

}\0

Success Response (JSON)

{

"vnd.avaya.clientresources.call.VideoResponse.v1.2": {

"vnd.avaya.clientresources.Call.v1.2" : {

"ASAIUserData" : "ASAI User Data",

"UCID" : "UCID value",

"VDNName" : "VDN Name",

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"collectedDigits" : "Collected Digits",

"inVDNTime" : "VDN Time",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

}

,

"transactionId": "1"
}

} \0

Failure Response

Block Camera

vnd.avaya.clientresources.call.BlockCameraRequest.v1.2

vnd.avaya.clientresources.call.BlockCameraResponse.v1.2

vnd.avaya.clientresources.Error.v1.2

Block Camera Request Payload (JSON)

{

"vnd.avaya.clientresources.call.BlockCameraRequest.v1.2": {

"blockcamera": "true",

"callId": "xxx",

"transactionId": "1"

}

}\0

Success Response (JSON)

{

"vnd.avaya.clientresources.call.BlockCameraResponse.v1.2": {

"vnd.avaya.clientresources.Call.v1.2" : {

"ASAIUserData" : "ASAI User Data",

"UCID" : "UCID value",

"VDNName" : "VDN Name",

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"collectedDigits" : "Collected Digits",

"inVDNTime" : "VDN Time",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

}

"transactionId": "1"
}

} \0

Failure Response

UnBlock Camera

vnd.avaya.clientresources.call.BlockCameraRequest.v1.2

vnd.avaya.clientresources.call.BlockCameraResponse.v1.2

vnd.avaya.clientresources.Error.v1.2

Unblock Camera Request Payload (JSON)

{

"vnd.avaya.clientresources.call.BlockCameraRequest.v1.2": {

"blockcamera": "false",

"callId": "xxx",

"transactionId": "1"

}

}\0

Success Response (JSON)

{

"vnd.avaya.clientresources.call.BlockCameraResponse.v1.2": {

"vnd.avaya.clientresources.Call.v1.2" : {

"ASAIUserData" : "ASAI User Data",

"UCID" : "UCID value",

"VDNName" : "VDN Name",

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"collectedDigits" : "Collected Digits",

"inVDNTime" : "VDN Time",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

}

,

"transactionId": "1"
},

}\0

Failure Response

Call Events

vnd.avaya.clientresources.call.UpdatedEvent.v1.2

UpdatedEvent (JSON)

{

"vnd.avaya.clientresources.call.UpdatedEvent.v1.2" :{

 "transactionId": "1",

"vnd.avaya.clientresources.Call.v1.2" : {

"ASAIUserData" : "ASAI User Data",

"UCID" : "UCID value",

"VDNName" : "VDN Name",

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"collectedDigits" : "Collected Digits",

"inVDNTime" : "VDN Time",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

}

}

}\0

Call Events will be reported when the call is local to the device (Computer mode), the call media

is routed to the desk phone (Shared Control), and when call media is routed to the PSTN

(Telecommuter or Other Phone mode). Call Events are also reported when the call is acted on by

a remote device, in a MDA (Multiple Device Access, in Avaya Aura®) or Twinning (IP Office),

or in a bridged line appearance call (BLA). Calls being managed by a remote device are

identified with the remote attribute.

Media Devices

The media device API provides the external application with the current audio and video device

that is selected for calls. The external application cannot change the active devices. Active

devices can only be managed with the Client SDK Application.

Media Device

Resource Description

/Resources/MediaDevices/audio Specifies active audio devices.

Media Device Resource

Attribute Description

recordingDevice Specifies the recording device.

playbackDevice Specifies the playback device. This does not apply to video.

deviceName Specifies the name of the device.

Media Device Operations

Operation URI Description

query audio

devices
/Resources/MediaDevices/audio

Returns the active audio input or output

device.

Audio Device

vnd.avaya.clientresources.device.ActiveAudioDeviceRequest.v1.2

vnd.avaya.clientresources.device.ActiveAudioDeviceResponse.v1.2

vnd.avaya.clientresources.Error.v1.2

Audio Request Payload (JSON)

{

"vnd.avaya.clientresources.call.ActiveAudioDeviceRequest.v1.2": {

"transactionId": "14"

}

}\0

Successful Response (JSON)

{

"vnd.avaya.clientresources.device.ActiveAudioDeviceResponse.v1.2": {

 "RecordingDevice.v1.2" : {

 "deviceName" : "string"
 },

 "PlaybackDevice.v1.2" : {

 "deviceName" : "string"
 }

"transactionId": "14"
}

}\0

Call Flows

Legend

API Control Call Flows

Client SDK Initialization

Register

This is sent by the external application when it wants to provide a rich call control experience.

When the application registers again with a different applicationId, it is considered an application

error. The registration is rejected by the Client SDK if the applicationId is different than the

applicationId used in the initial Register request. The pipe is not closed and the original

applicationId remains valid.

Unregister

This is sent by external application when it no longer wants the External Pipe. For example, this

can occur during an application shut down or when the work station is in Sleep mode.

DisconnectRequest

This is sent by the Client SDK when it no longer wants the External Pipe. For example, this can

occur during an application shut down or when the work station is in Sleep mode.

Call Handling

The following sections show the possible call flows for each operation, but the actual

combination of responses and CallUpdatedEvents depend on the state of the call object at the

time the response is fired. Call state transitions vary depending on the remote endpoint, network

latency, and External Application API internal implementation. Examples include the following:

When creating a call to a conference server that answers the call immediately, the

Remote_Alerting call state transition might be skipped and only Established is reported.

Holding and Unholding might not be reported and the more stable Held or Established call state

is returned.

Make Call - Named Pipe

Make Call - Named Pipe

Answer Call

Mute and Unmute call

Hold and Retrieve call

Terminate or End Call

Media Device Listing

GetActiveAudioDevices

Application Interworking

Call Created by UC Application

The above example

shows the external application receiving call updates ahead of the External Application API, but

this is for illustrative purposes and this behaviour is not guaranteed. The order of events or

notifications is an implementation detail.

Call Created by Peer External Application

The above example shows the ExternalApp2 receiving call updates ahead of ExternalApp2, but

this is for illustrative purposes and this behaviour is not guaranteed. The order of events or

notifications is an implementation detail.

Call Hold by UC Application

The above example shows the user holding and resuming the call from the external application.

It is possible that the user can use HoldCall using the external application and resume through

the External Application API, or vice versa.

Call Hold by Peer External Application

In the above example, the sequence shows ExternalApp2 holding the call, and ExternalApp1

retrieving (unholding) the call. In addition, there is a UpdatedEvent containing the same call

state information as the HoldResponse. Since the data is identical, there is minimal impact, but

it is not ideal. The order of events is an implementation detail.

References

Windows NamedPipe Reference: https://msdn.microsoft.com/en-

us/library/windows/desktop/aa365590%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396

Windows PipeList: https://technet.microsoft.com/en-us/sysinternals/dd581625.aspx

Appendix

Windows C# Named Pipe Sample Code

using System;

using System.IO;

using System.IO.Pipes;

namespace ExternalApplicationConnect

{

 class Program

 {

 static void Main(string[] args)

 {

 NamedPipeClientStream pipeClient = new NamedPipeClientStream(".","AvayaCSDK-

Administrator",PipeDirection.InOut,PipeOptions.None);

 if (pipeClient.IsConnected != true)

 {

 pipeClient.Connect();

 }

 StreamReader sr = new StreamReader(pipeClient);

 StreamWriter sw = new StreamWriter(pipeClient);

 string registerString =

"{ \"vnd.avaya.clientresources.RegisterRequest.v1.2\" : { \"applicationId\" :

\"TestApp\", \"transactionId\" : \"23763992\" } } \0";

 string createCallString =

"{ \"vnd.avaya.clientresources.call.CreateRequest.v1.2\":

{ \"remotePartyNumber\":\"+13035382200,,683042\", \"transactionId\":

\"1765675\" } } \0 ";

 try

 {

 sw.Write(createCallString);

 sw.Flush();

 }

 catch (Exception ex) { throw ex; }

 }

 }

https://msdn.microsoft.com/en-us/library/windows/desktop/aa365590%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365590%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/sysinternals/dd581625.aspx

}

Word Doc....

Avaya Client SDK External Application API

© 2019, Avaya, Inc. All Rights Reserved.

Notice

While reasonable efforts have been made to ensure that the information in this document is

complete and accurate at the time of printing, Avaya assumes no liability for any errors. Avaya

reserves the right to make changes and corrections to the information in this document without

the obligation to notify any person or organization of such changes.

Documentation disclaimer

“Documentation” means information published in varying mediums which may include product

information, operating instructions and performance specifications that are generally made

available to users of products. Documentation does not include marketing materials. Avaya shall

not be responsible for any modifications, additions, or deletions to the original published version

of Documentation unless such modifications, additions, or deletions were performed by or on the

express behalf of Avaya. End User agrees to indemnify and hold harmless Avaya, Avaya's

agents, servants and employees against all claims, lawsuits, demands and judgments arising out

of, or in connection with, subsequent modifications, additions or deletions to this documentation,

to the extent made by End User.

Link disclaimer

Avaya is not responsible for the contents or reliability of any linked websites referenced within

this site or Documentation provided by Avaya. Avaya is not responsible for the accuracy of any

information, statement or content provided on these sites and does not necessarily endorse the

products, services, or information described or offered within them. Avaya does not guarantee

that these links will work all the time and has no control over the availability of the linked pages.

Warranty

Avaya provides a limited warranty on Avaya hardware and software. Refer to your sales

agreement to establish the terms of the limited warranty. In addition, Avaya’s standard warranty

language, as well as information regarding support for this product while under warranty is

available to Avaya customers and other parties through the Avaya Support website:

https://support.avaya.com/helpcenter/ getGenericDetails?detailId=C20091120112456651010

under the link “Warranty & Product Lifecycle” or such successor site as designated by Avaya.

Please note that if You acquired the product(s) from an authorized Avaya Channel Partner

outside of the United States and Canada, the warranty is provided to You by said Avaya Channel

Partner and not by Avaya.

“Hosted Service” means an Avaya hosted service subscription that You acquire from either

Avaya or an authorized Avaya Channel Partner (as applicable) and which is described further in

Hosted SAS or other service description documentation regarding the applicable hosted service.

If You purchase a Hosted Service subscription, the foregoing limited warranty may not apply but

You may be entitled to support services in connection with the Hosted Service as described

further in your service description documents for the applicable Hosted Service. Contact Avaya

or Avaya Channel Partner (as applicable) for more information.

Hosted Service

THE FOLLOWING APPLIES ONLY IF YOU PURCHASE AN AVAYA HOSTED SERVICE

SUBSCRIPTION FROM AVAYA OR AN AVAYA CHANNEL PARTNER (AS APPLICABLE),

THE TERMS OF USE FOR HOSTED SERVICES ARE AVAILABLE ON THE AVAYA WEBSITE,

HTTPS://SUPPORT.AVAYA.COM/LICENSEINFO UNDER THE LINK “Avaya Terms of Use for

Hosted Services” OR SUCH SUCCESSOR SITE AS DESIGNATED BY AVAYA, AND ARE

APPLICABLE TO ANYONE WHO ACCESSES OR USES THE HOSTED SERVICE. BY

ACCESSING OR USING THE HOSTED SERVICE, OR AUTHORIZING OTHERS TO DO SO,

YOU, ON BEHALF OF YOURSELF AND THE ENTITY FOR WHOM YOU ARE DOING SO

(HEREINAFTER REFERRED TO INTERCHANGEABLY AS “YOU” AND “END USER”),

AGREE TO THE TERMS OF USE. IF YOU ARE ACCEPTING THE TERMS OF USE ON

BEHALF A COMPANY OR OTHER LEGAL ENTITY, YOU REPRESENT THAT YOU HAVE

THE AUTHORITY TO BIND SUCH ENTITY TO THESE TERMS OF USE. IF YOU DO NOT

HAVE SUCH AUTHORITY, OR

IF YOU DO NOT WISH TO ACCEPT THESE TERMS OF USE, YOU MUST NOT ACCESS OR

USE THE HOSTED SERVICE OR AUTHORIZE ANYONE TO ACCESS OR USE THE HOSTED

SERVICE. Licenses THE SOFTWARE LICENSE TERMS AVAILABLE ON THE AVAYA

WEBSITE, HTTPS://SUPPORT.AVAYA.COM/LICENSEINFO , UNDER THE LINK “AVAYA

SOFTWARE LICENSE TERMS (Avaya Products)” OR SUCH SUCCESSOR SITE AS

DESIGNATED BY AVAYA, ARE APPLICABLE TO ANYONE WHO DOWNLOADS, USES

AND/OR INSTALLS AVAYA SOFTWARE, PURCHASED FROM AVAYA INC., ANY AVAYA

AFFILIATE, OR AN AVAYA CHANNEL PARTNER (AS APPLICABLE) UNDER A

COMMERCIAL AGREEMENT WITH AVAYA OR AN AVAYA CHANNEL PARTNER. UNLESS

OTHERWISE AGREED TO BY AVAYA IN WRITING, AVAYA DOES NOT EXTEND THIS

LICENSE IF THE SOFTWARE WAS OBTAINED FROM ANYONE OTHER THAN AVAYA, AN

AVAYA AFFILIATE OR AN AVAYA CHANNEL PARTNER; AVAYA RESERVES THE RIGHT

TO TAKE LEGAL ACTION AGAINST YOU AND ANYONE ELSE USING OR SELLING THE

SOFTWARE WITHOUT A LICENSE. BY INSTALLING, DOWNLOADING OR USING THE

SOFTWARE, OR AUTHORIZING OTHERS TO DO SO, YOU, ON BEHALF OF YOURSELF

https://support.avaya.com/helpcenter/
https://support.avaya.com/LICENSEINFO
https://support.avaya.com/LICENSEINFO

AND THE ENTITY FOR WHOM YOU ARE INSTALLING, DOWNLOADING OR USING THE

SOFTWARE (HEREINAFTER REFERRED TO INTERCHANGEABLY AS “YOU” AND “END

USER”), AGREE TO THESE TERMS AND CONDITIONS AND CREATE A BINDING

CONTRACT BETWEEN YOU AND AVAYA INC. OR THE APPLICABLE AVAYA AFFILIATE

(“AVAYA”).

Avaya grants You a license within the scope of the license types described below, with the

exception of Heritage Nortel Software, for which the scope of the license is detailed below.

Where the order documentation does not expressly identify a license type, the applicable license

will be a Designated System License. The applicable number of licenses and units of capacity for

which the license is granted will be one (1), unless a different number of licenses or units of

capacity is specified in the documentation or other materials available to You. “Software”

means computer programs in object code, provided by Avaya or an Avaya Channel Partner,

whether as stand-alone products, pre-installed on hardware products, and any upgrades,

updates, patches, bug fixes, or modified versions thereto. “Designated Processor” means a

single stand-alone computing device. “Server” means a Designated Processor that hosts a

software application to be accessed by multiple users. “Instance” means a single copy of the

Software executing at a particular time: (i) on one physical machine; or (ii) on one deployed

software virtual machine (“VM”) or similar deployment.

License types

Designated System(s) License (DS). End User may install and use each copy or an Instance of

the Software only on a number of Designated Processors up to the number indicated in the

order. Avaya may require the Designated Processor(s) to be identified in the order by type,

serial number, feature key, Instance, location or other specific designation, or to be provided by

End User to Avaya through electronic means established by Avaya specifically for this purpose.

Concurrent User License (CU). End User may install and use the Software on multiple

Designated Processors or one or more Servers, so long as only the licensed number of Units are

accessing and using the Software at any given time. A “Unit” means the unit on which Avaya, at

its sole discretion, bases the pricing of its licenses and can be, without limitation, an agent, port

or user, an e-mail or voice mail account in the name of a person or corporate function (e.g.,

webmaster or helpdesk), or a directory entry in the administrative database utilized by the

Software that permits one user to interface with the Software. Units may be linked to a specific,

identified Server or an Instance of the Software.

Database License (DL). End User may install and use each copy or an Instance of the Software

on one Server or on multiple Servers provided that each of the Servers on which the Software is

installed communicates with no more than one Instance of the same database.

CPU License (CP). End User may install and use each copy or Instance of the Software on a

number of Servers up to the number indicated in the order provided that the performance

capacity of the Server(s) does not exceed the performance capacity specified for the Software.

End User may not re-install or operate the Software on Server(s) with a larger performance

capacity without Avaya’s prior consent and payment of an upgrade fee.

Named User License (NU). You may: (i) install and use each copy or Instance of the Software on

a single Designated Processor or Server per authorized Named User (defined below); or (ii)

install and use each copy or Instance of the Software on a Server so long as only authorized

Named Users access and use the Software. “Named User”, means a user or device that has been

expressly authorized by Avaya to access and use the Software. At Avaya’s sole discretion, a

“Named User” may be, without limitation, designated by name, corporate function (e.g.,

webmaster or helpdesk), an e-mail or voice mail account in the name of a person or corporate

function, or a directory entry in the administrative database utilized by the Software that permits

one user to interface with the Software.

Shrinkwrap License (SR). You may install and use the Software in accordance with the terms and

conditions of the applicable license agreements, such as “shrinkwrap” or “clickthrough” license

accompanying or applicable to the Software (“Shrinkwrap License”).

Heritage Nortel Software

“Heritage Nortel Software” means the software that was acquired by Avaya as part of its

purchase of the Nortel Enterprise Solutions Business in December 2009. The Heritage Nortel

Software is the software contained within the list of Heritage Nortel Products located at

https://support.avaya.com/LicenseInfo under the link “Heritage Nortel Products” or such

successor site as designated by Avaya. For Heritage Nortel Software, Avaya grants Customer a

license to use Heritage Nortel Software provided hereunder solely to the extent of the authorized

activation or authorized usage level, solely for the purpose specified in the Documentation, and

solely as embedded in, for execution on, or for communication with Avaya equipment. Charges

for Heritage Nortel Software may be based on extent of activation or use authorized as specified

in an order or invoice.

Copyright

Except where expressly stated otherwise, no use should be made of materials on this site, the

Documentation, Software, Hosted Service, or hardware provided by Avaya. All content on this

site, the documentation, Hosted Service, and the product provided by Avaya including the

selection, arrangement and design of the content is owned either by Avaya or its licensors and is

protected by copyright and other intellectual property laws including the sui generis rights

relating to the protection of databases. You may not modify, copy, reproduce, republish, upload,

post, transmit or distribute in any way any content, in whole or in part, including any code and

software unless expressly authorized by Avaya. Unauthorized reproduction, transmission,

dissemination, storage, and or use without the express written consent of Avaya can be a

criminal, as well as a civil offense under the applicable law.

Virtualization

The following applies if the product is deployed on a virtual machine. Each product has its own

ordering code and license types. Note that each Instance of a product must be separately

licensed and ordered. For example, if the end user customer or Avaya Channel Partner would

like to install two Instances of the same type of products, then two products of that type must be

ordered.

https://support.avaya.com/LicenseInfo

Third Party Components

“Third Party Components” mean certain software programs or portions thereof included in the

Software or Hosted Service may contain software (including open source software) distributed

under third party agreements (“Third Party Components”), which contain terms regarding the

rights to use certain portions of the Software (“Third Party Terms”). As required, information

regarding distributed Linux OS source code (for those products that have distributed Linux OS

source code) and identifying the copyright holders of the Third Party Components and the Third

Party Terms that apply is available in the products, Documentation or on Avaya’s website at:

https:// support.avaya.com/Copyright or such successor site as designated by Avaya. The open

source software license terms provided as Third Party Terms are consistent with the license

rights granted in these Software License Terms, and may contain additional rights benefiting

You, such as modification and distribution of the open source software. The Third Party Terms

shall take precedence over these Software License Terms, solely with respect to the applicable

Third Party Components to the extent that these Software License Terms impose greater

restrictions on You than the applicable Third Party Terms.

The following applies only if the H.264 (AVC) codec is distributed with the product. THIS

PRODUCT IS LICENSED UNDER THE AVC PATENT PORTFOLIO LICENSE FOR THE

PERSONAL USE OF A CONSUMER OR OTHER USES IN WHICH IT DOES NOT RECEIVE

REMUNERATION TO (i) ENCODE VIDEO IN COMPLIANCE WITH THE AVC STANDARD

(“AVC VIDEO”) AND/OR (ii) DECODE AVC VIDEO THAT WAS ENCODED BY A

CONSUMER ENGAGED IN A PERSONAL ACTIVITY AND/OR WAS OBTAINED FROM A

VIDEO PROVIDER LICENSED TO PROVIDE AVC VIDEO. NO LICENSE IS GRANTED OR

SHALL BE IMPLIED FOR ANY OTHER USE. ADDITIONAL INFORMATION MAY BE

OBTAINED FROM MPEG LA, L.L.C. SEE HTTP://WWW.MPEGLA.COM .

Service Provider

THE FOLLOWING APPLIES TO AVAYA CHANNEL PARTNER’S HOSTING OF AVAYA

PRODUCTS OR SERVICES. THE PRODUCT OR HOSTED SERVICE MAY USE THIRD

PARTY COMPONENTS SUBJECT TO THIRD PARTY TERMS AND REQUIRE A SERVICE

PROVIDER TO BE INDEPENDENTLY LICENSED DIRECTLY FROM THE THIRD PARTY

SUPPLIER. AN AVAYA CHANNEL PARTNER’S HOSTING OF AVAYA PRODUCTS MUST BE

AUTHORIZED IN WRITING BY AVAYA AND IF THOSE HOSTED PRODUCTS USE OR

EMBED CERTAIN THIRD PARTY SOFTWARE, INCLUDING BUT NOT LIMITED TO

MICROSOFT SOFTWARE OR CODECS, THE AVAYA CHANNEL PARTNER IS REQUIRED

TO INDEPENDENTLY OBTAIN ANY APPLICABLE LICENSE AGREEMENTS, AT THE

AVAYA CHANNEL PARTNER’S EXPENSE, DIRECTLY FROM THE APPLICABLE THIRD

PARTY SUPPLIER.

WITH RESPECT TO CODECS, IF THE AVAYA CHANNEL PARTNER IS HOSTING ANY

PRODUCTS THAT USE OR EMBED THE G.729 CODEC, H.264 CODEC, OR H.265 CODEC,

THE AVAYA CHANNEL PARTNER ACKNOWLEDGES AND AGREES THE AVAYA CHANNEL

PARTNER IS RESPONSIBLE FOR ANY AND ALL RELATED FEES AND/OR ROYALTIES.

THE G.729 CODEC IS LICENSED BY SIPRO LAB TELECOM INC. SEE

WWW.SIPRO.COM/CONTACT.HTML. THE H.264 (AVC) CODEC IS LICENSED UNDER THE

http://support.avaya.com/Copyright
http://www.mpegla.com/

AVC PATENT PORTFOLIO LICENSE FOR THE PERSONAL USE OF A CONSUMER OR

OTHER USES IN WHICH IT DOES NOT RECEIVE REMUNERATION TO: (I) ENCODE

VIDEO IN COMPLIANCE WITH THE AVC STANDARD (“AVC VIDEO”) AND/OR (II)

DECODE AVC VIDEO THAT WAS ENCODED BY A CONSUMER ENGAGED IN A

PERSONAL ACTIVITY AND/OR WAS OBTAINED FROM A VIDEO PROVIDER LICENSED

TO PROVIDE AVC VIDEO. NO LICENSE IS GRANTED OR SHALL BE IMPLIED FOR ANY

OTHER USE. ADDITIONAL INFORMATION FOR H.264 (AVC) AND H.265 (HEVC) CODECS

MAY BE OBTAINED FROM MPEG LA, L.L.C. SEE HTTP:// WWW.MPEGLA.COM.

Compliance with Laws

You acknowledge and agree that it is Your responsibility for complying with any applicable laws

and regulations, including, but not limited to laws and regulations related to call recording, data

privacy, intellectual property, trade secret, fraud, and music performance rights, in the country

or territory where the Avaya product is used.

Preventing Toll Fraud

“Toll Fraud” is the unauthorized use of your telecommunications system by an unauthorized

party (for example, a person who is not a corporate employee, agent, subcontractor, or is not

working on your company's behalf). Be aware that there can be a risk of Toll Fraud associated

with your system and that, if Toll Fraud occurs, it can result in substantial additional charges for

your telecommunications services.

Avaya Toll Fraud intervention

If You suspect that You are being victimized by Toll Fraud and You need technical assistance or

support, call Technical Service Center Toll Fraud Intervention Hotline at +1-800-643-2353 for

the United States and Canada. For additional support telephone numbers, see the Avaya Support

website: https://support.avaya.com or such successor site as designated by Avaya.

Security Vulnerabilities

Information about Avaya’s security support policies can be found in the Security Policies and

Support section of https:// support.avaya.com/security .

Suspected Avaya product security vulnerabilities are handled per the Avaya Product Security

Support Flow (https:// support.avaya.com/css/P8/documents/100161515).

Downloading Documentation

For the most current versions of Documentation, see the Avaya Support website:

https://support.avaya.com , or such successor site as designated by Avaya.

Contact Avaya Support

https://support.avaya.com/
http://support.avaya.com/security
http://support.avaya.com/css/P8/documents/100161515
https://support.avaya.com/

See the Avaya Support website: https://support.avaya.com for product or Hosted Service notices

and articles, or to report a problem with your Avaya product or Hosted Service. For a list of

support telephone numbers and contact addresses, go to the Avaya Support website:

https://support.avaya.com (or such successor site as designated by Avaya), scroll to the bottom

of the page, and select Contact Avaya Support.

Trademarks

The trademarks, logos and service marks (“Marks”) displayed in this site, the Documentation,

Hosted Service(s), and product(s) provided by Avaya are the registered or unregistered Marks of

Avaya, its affiliates, its licensors, its suppliers, or other third parties. Users are not permitted to

use such Marks without prior written consent from Avaya or such third party which may own the

Mark. Nothing contained in this site, the Documentation, Hosted Service(s) and product(s)

should be construed as granting, by implication, estoppel, or otherwise, any license or right in

and to the Marks without the express written permission of Avaya or the applicable third party.

Avaya is a registered trademark of Avaya Inc.

All non-Avaya trademarks are the property of their respective owners. Linux® is the registered

trademark of Linus Torvalds in the U.S. and other countries.

Table of Contents

DOCUMENT PURPOSE

DOCUMENT VERSION

https://support.avaya.com/
https://support.avaya.com/

WHAT'S NEW

OVERVIEW

APPLICATION INTEGRATION

CALL CONTROL CAPABILITY TABLE

WHY JSON?

NAMED PIPE API MODEL

Pipe Discovery

Application Sandboxing for MacOS

Basic Interworking Model
Enhanced Interworking Model

SECURITY MODEL

Authentication

Networking

Named Pipe Connectivity Model
Protocol Framing

Denial of Service

Rate Limiting

Application Identification

Disabling the External Application Interface

Internationalization

BACKWARD AND FORWARD COMPATIBILITY

Versions

External Application API Backward Compatibility

External Application API Forward Compatibility

Current Version

API DEFINITION

Media Types

Pipe Management
Pipe Management Events

Calls

Call Events

Media Devices

CALL FLOWS

Legend

API CONTROL CALL FLOWS

Client SDK Initialization

Register
Unregister
DisconnectRequest

CALL HANDLING

Make Call - Named Pipe

Make Call - Named Pipe

Answer Call
Mute and Unmute call
Hold and Retrieve call
Terminate or End Call

MEDIA DEVICE LISTING

GetActiveAudioDevices

APPLICATION INTERWORKING

Call Created by UC Application

Call Created by Peer External Application

Call Hold by UC Application

Call Hold by Peer External Application

REFERENCES

APPENDIX

WINDOWS C# NAMED PIPE SAMPLE CODE

Document Purpose

The purpose of this document is to define the Unified Communications Application (UCA)

portfolio requirements for external applications to interact with the Avaya Client SDK

communication package and with applications that utilize this package, such as

Avaya Workplace.

This document describes the resources that make up the official External Application Interface

for the Client SDK Communication Services Package v1.1 (API).

Document Version

Version Date Author Comment

187 Oct 02, 2020 11:58 McIntyre, Stephen (Stephen) Clarified platform support.

What's New

External Application APIs were up versioned to v1.1, with the primary difference being that calls

with media routed remotely, such as shared control and telecommuter calls, are clearly

/display/~stevepm

identifiable within the API as calls with remote media. Applications written with to the v1.0 of

the External Application API will continue to work, and be supported.

Overview

The purpose of the APIs is to allow general applications executing locally on the workstation to

send primitive call control requests to Avaya Client SDK. The External API was defined as a

consolidated API to enable application vendors authoring applications for multiple platforms to

leverage a consistent API. This API is supported on Windows and Mac OS X platforms, and is

not applicable to Android or iOS platforms.

The API enables applications to create and control calls, and to discover calls through JSON

messaging over a named pipe. The API is versioned, and is versioned independently of the

Avaya Client SDK version to provide external applications with a stable set of functionality.

Avaya Workplace is the lead Avaya application that is built on the Avaya Client SDK, and is

often referred or used in examples throughout the document. The External Application API may

be enabled by any application that is built on the Avaya Client SDK. It is the choice of the

application to determine if the External Application API is enabled.

Within this document, the Avaya Client SDK will be referenced as either the Client SDK or

CSDK.

Application Integration

When developing an application that uses the External API, Avaya recommends that partners

integrate their applications with the Avaya Workplace (previously known as Avaya Equinox)

application first, treating Avaya Workplace as the reference implementation. The External

API will be available in other Client SDK applications written by Avaya or third party

organizations. Once you have successfully integrated with Workplace, you can begin integrating

with other Client SDK applications.

Call Control Capability Table

Avaya Workplace is the latest Avaya Unified Communications client, and it extends the

capabilities of Avaya Communicator and Avaya one-X® Communicator available for External

Applications. The following table shows the capabilities available to External

Applications, and if the capability is newly introduced with the External Application Interface.

Call Control

Capability

Avaya

Communicator

2.0 Interface

Avaya

Equinox

(3.0 - 3.6)

Avaya

Workplace

3.7+

Notes

Accept

Incoming Call
Y Y Y Existing capability

Add/Remove

video
N Y Y

capability introduced in

Equinox

Block Camera N Y Y
capability introduced in

Equinox

Calling line ID N Y Y
capability introduced in

Equinox

Create call Y Y Y

Existing capability

• Not supported

for HTTPUA

calls.

Hold/Retrieve Y Y Y Existing capability

Ignore Incoming

Call
N Y Y Existing capability

Terminate Call Y Y Y Existing capability

Insert DTMF N Y Y
capability introduced

in Equinox

Mute/Unmute

Call
Y Y Y Existing capability

Media Device

Listings
N Y Y

capability introduced in

Equinox

Why JSON?

The External API uses JSON to exchange data between the External Application and the

External Application Interface API. JSON offers the following advantages:

• JSON is simple, open, and interoperable.

• Data is defined to allow generic tools to manipulate data.

• JSON data is (almost) human readable.

A key aspect of JSON leveraged through the API is that applications consuming the JSON can

easily disregard fields that it is unfamiliar, and the External API can do the same. This allows a

large degree of flexibility between versions of External Applications and the External API, as

long as JSON fields are never removed from the External API. This is critical to External API

versioning, which is described below.

Named Pipe API Model

The External API is an Avaya proprietary API that provides external applications with a basic

interface to influence call handling of the Client SDK. The interface uses JSON encoded

messages over a platform-provided named pipe, with the named pipe connecting the external

application to the Client SDK. The External API provided by the Client SDK is intended to

support two different types of applications, simple click to call and basic call control. Basic

application interoperability allows External Applications to invoke Make Call requests on the

Client SDK.

Pipe Discovery

When the API is enabled, the Client SDK establishes a single public named pipe. The named

pipe is strongly named, to allow applications to find the appropriate pipe. This allows multiple

users to use the same workstation simultaneously, and allows multiple external applications to

direct requests to the intended Client SDK instance. In the case where multiple Client SDK

Applications are executing as the same user, the first Client SDK Application to acquire the

named pipe "wins". If the pipe name is already in use when the Client SDK attempts to create

the named pipe, the operation will fail, and the External Application API will not be available for

the Client SDK instance. An alternative pipe name is not available.

Windows

PipeName = \\.\pipe\AvayaCSDK-%username%

i.e. \\.\\pipe\AvayaCSDK-bob

The name of the Windows pipe can be confirmed using pipelist.exe . Look for a pipe name

starting with "AvayaCSDK".

MacOS X

Unix Domain Socket Name = <User Home Dir>/Application/ Support.com.avaya-%app

name%/AvayaCSDK-%platform user name%

https://technet.microsoft.com/en-us/sysinternals/dd581625.aspx?f=255&MSPPError=-2147217396

i.e. /Users/joeuser/Library/Application Support/com.avaya/Avaya-

Workplace/AvayaCSDK-bob

The name of the MacOS Unix Domain Socket can be confirmed using "netstat -a". Look for a

socket name starting with "AvayaCSDK".

Application Sandboxing for MacOS

Not supported in this release.

Basic Interworking Model

Basic interworking occurs on the public pipe and allows external applications to invoke two

operations:

• create - Enables external applications to request the Client SDK to create a call on

behalf of the Client SDK user.

• register - Enables external applications to request a dedicated pipe in order to register for

call UpdateEvents. It also provides a dedicated pipe for the external application to send or

make advanced requests.

Each request is acknowledged with a response. The "create" response will contain the call object

containing the current state of the call attributes. If the External Application has not registered

for events, no subsequent updates will be provided.

Enhanced Interworking Model

When the External Application registers for call UpdateEvents, mid-call operations are

permitted and UpdateEvents are sent when a call attribute changes. Each External API call

operation request has an associated response, and an operation response will be returned for

each request received. The operation response will always contain the current state of the call

object, with subsequent call attribute changes being provided to the External Application through

the UpdateEvent.

As the External API is not the only mechanism available to control a call, External Applications

must be able to handle UpdateEvents for call operations invoked through another mechanism,

such as the UC client user interface. The External Application can track changes in the call that

are made externally (through the Avaya Client SDK application) because call attribute changes

are sent through an UpdateEvent without a call operation response.

Similarly, the External API can have multiple External Applications connected

simultaneously. External Applications only receive operation responses for requests invoked by

the External Application that sent the request, and call UpdateEvents will be received for all

calls, irrespective of how the call was created.

Security Model

Authentication

All named pipes are created by the Avaya Client SDK. This allows the Client SDK to control

security permissions for the named pipe.

All pipes should be created so that only applications running as the platform user are able to

connect to the pipe.

The platform (OS) is responsible for enforcing authentication, as defined by the application.

Networking

The external Application and the Avaya Client SDK processes must exist on the same

workstation. The External API interface is not available to remote network applications.

Named Pipe Connectivity Model

To allow multiple external applications to send requests on the public pipe, the external

application shall disconnect from the pipe 200ms after the request is made. If a request is not

received within 200ms of connecting, the pipe will be closed by the server.

The pipe name will be consistent for each platform user across Avaya Client SDK restarts.

The pipe is created with visibility local to the workstation. Network access is not permitted.

The named pipe can only be connected by a process with the same login identity as the Client

SDK process owner.

Applications that register for call events can remain connected to the named pipe indefinitely.

Protocol Framing

External API requests and events are JSON-encoded over the pipe. Each message (request or

event) is terminated with a NULL byte to act as a message delimiter. As JSON messages are

syntactically strong, it is possible for either side of the pipe to be aware when a complete request

is received. When the Avaya Client SDK receives a complete request, it will act on the

request. If the JSON request is not properly terminated within 200ms, the Client SDK will

disconnect the external application from the pipe, and purge the pipe buffer. This allows the

pipe to be reset for both parties.

If the external application detects a malformed response or event, it will disconnect from the

pipe and reconnect.

NullByte = \0

Multiple requests can be sent over the main pipe or the private pipe without waiting for the

associated response, as long as the following is true;

• Each request is properly encoded, and terminated with a NullByte.

• The transaction ID for each request is unique.

The External API parser expects complete External API requests to be written at once, not byte

by byte. The parser expects the NullByte to be encoded immediately following the closing

brace of the JSON message.

Transaction Identifiers (TransactionIds)

TransactionIds are used to correlate responses with the intended request. Each request shall

have its own transactionId, and the transactionId should be unique across time and space for all

messages sent by the external application. The transaction IDs need not to be numeric, not

monotonically increasing.

I.E.

a1-47.135.10.14, a2-47.135.10.14,a23-47.135.10.14

41.25.135.158-9bca, 41.25.135.158-9bcb,41.25.135.158-9bcc

Denial of Service

The Avaya Client SDK limits the number of private named pipes to 3.

Rate Limiting

Rate limiting is not implemented.

Application Identification

An Application-ID is used for correlation between external applications and the Avaya Client

SDK. Register requests directed to the Client SDK must have the Application-ID

populated. Register requests without an ApplicationId will be silently discarded. Two external

applications cannot register with the same ApplicationId, and the later registration will supercede

the original application registration.

Disabling the External Application Interface

The External Application Interface may be disabled by Avaya Client SDK. When the External

Application interface is disabled, the public pipe will not be created.

Internationalization

Unicode support

UTF-8 encoding shall be used for data exchange.

Backward and Forward Compatibility

Versions

The External Application API is versioned independently of the Avaya Client SDK version to

provide external applications with a stable set of functionality. The External Application API is

versioned with a major version and a minor version. A critical application requirement is to be

able to safely parse expected and unexpected fields. This allows the External Application API to

add incremental and supporting data to the responses and events without fear of breaking the

external application. The External Application API will behave similarly. The major version is

updated for the following reasons:

• When a change to the API is introduced that is not backward compatible with the

previous version.

o Example: A new parameter is introduced, or a mandatory parameter becomes

optional.

• When a portion of the API is deprecated.

The minor version of the API can change for the following reasons:

• A new capability is added to the API. This is a minor version update because new

functionality will not impact existing applications.

• A new optional parameter is added to an API request, response, or event.

The External Application API implements the following version strategy, which is based on

JSON's extensibility concepts.

If a new optional parameter is added to a media type, the minor version uses a dot increment.

Example: v1 becomes .v1.1, and v1.1 would become 1.2. v1.0 would become 1.1.

If a new mandatory parameter is added to a media type, the major version is incremented by 1

for all media types. .

Example: v1 becomes v2. v9 becomes v10.

If a new capability is added to the External Application API, the new media types associated

with the capability would be versioned as v1.

If the external application registers for events, the External Application API will provide

Event media types based on the version of the RegisterRequest. The versions of the following

media types will be versioned at the same level. If the media type for one of the following

changes, the versioning for all the media types must be updated.

Application Versioning table for Register request, Register Response, and Events

Application Sends API Responds

vnd.avaya.clientresources.call.RegisterRequest.v1

vnd.avaya.clientresources.call.RegisterResponse.v1

vnd.avaya.clientresources.call.RegisterResponse.v1.1

vnd.avaya.clientresources.call.RegisterRequest.v3

vnd.avaya.clientresources.call.RegisterResponse.v3

vnd.avaya.clientresources.call.RegisterResponse.v3.3

The External API will use the latest available minor version of the API based on the version

number of the register request provided by the External Application.

External Application API Backward Compatibility

External Application API backward compatibility is the ability for the API to handle requests

from an older version of the API used by the external application. The External Application

API will support the current major version of the media types, and the previous version of the

External Application API. If the current version of the External Application API is v2, the

External Application API implemention will be capable of returning v1 responses. If the

current version of the External Application API is v3, the External API will be capable of

returning v2 responses, but will not be capable of supporting v1 responses.

If a External Application API change forces the major version of the API to be updated, all

supported media types versions will be updated to the next major version number.

This will occur when the Avaya Client SDK External Application API version is newer than the

version of the External Application API used by the external application.

 Example: Avaya Workplace is newer than the headset application.

External Application API Forward Compatibility

External Application API forward capability is the ability for the external application to send

External Application API versions newer than the External Application API supports. In this

case, the External Application API will reply to the CreateCall or Register request with an

Error, Unsupported Media Type. When this occurs, the external application will reduce the

major version of the API by 1, and attempt the request again. This process may be repeated

until the version becomes v1, or until the version of the External Application API is not

supported by the external application. It is up the external application vendor to decide how

many legacy versions of the External Application API to support.

This will occur when the external application version is newer than the version of the External

Application API used by the Avaya External Application API

Example: Headset Application is newer than the Avaya Workplace.

Current Version

By default, all requests receive the v1 version of the External Application API. The version of

the API is explicitly captured in the messages.

vnd.avaya.clientservices.call.v1.1

Versioning will be supported at an External Application API level, and all media types will use

the same version. The version of an event sent to the application will be based on the major

version of register request received. The External Application API will always provide the

most recent minor version of the External Application API.

API Failures will return the following Accept header in the failure response.

vnd.avaya.clientservices.Error.v1.1

API Definition

Media Types

Applications shall always be prepared to receive a JSON Error response.

Errors

vnd.avaya.clientresources.Error.v1.1

Attribute Type Optional Description

displayMessage string N
A message that contains information that can be displayed

to an end user.

errorMessage string N
A message that contains information necessary for a

developer to correct the problem.

errorCode Enum N
A code associated with a unique error condition on the

server.

transactionId string Y The request associated with the error.

Error (JSON)

{

"vnd.avaya.clientresources.Error.v1.1" : {

"displayMessage" : " displayMessage text ",

"errorMessage" : " error Message text ",

"errorCode" : " error Code text ",

"transactionId": "1"

}

} \0

Failure and Error Codes

Error codes are similar to HTTP, to facilitate ease of use and understanding.

Code Description

400 Bad Request Could not parse request.

404 Not Found Call/Resource not found.

406 Not Acceptable Missing mandatory field.

408 Timeout Timeout processing the request.

409 Conflict applicationid has already registered on this pipe.

410 Gone Desired entity (call) does not exist

415 UnsupportedMediaType Improper media type.

500 Client SDK Error Error processing request.

503 Service Unavailable Client SDK not ready to accept requests.

497 Media Preserved
Call is in the media preserved state. The only

supported operation is Terminate.

Pipe Management

Register

vnd.avaya.clientresources.RegisterRequest.v1.1

vnd.avaya.clientresources.RegisterResponse.v1.1

vnd.avaya.clientresources.Error.v1.1

Register Request (JSON)

{

"vnd.avaya.clientresources.RegisterRequest.v1.1" : {
 "applicationId": "app",
 "transactionId: "1"

 }
}\0

Success Response (JSON)

{

"vnd.avaya.clientresources.RegisterResponse.v1.1" : {
 "transactionId": "1"
 }

}\0

Unregister

vnd.avaya.clientresources.UnregisterRequest.v1.1

vnd.avaya.clientresources.Error.v1.1

Unregister Request (JSON)

{
"vnd.avaya.clientresources.UnregisterRequest.v1.1" : {

 "transactionId": "1"
 }

}\0

An unregister response is not required. The Client SDK will immediately close the connection as

implicit acknowledgement to the request.

Pipe Management Events

DisconnectRequest

vnd.avaya.clientresources.DisconnectRequest.v1

DisconnectRequest (JSON)

{

 "vnd.avaya.clientresources.DisconnectRequest.v1.1" {
 "transactionId": "1"

 }
}\0

A Disconnect response is not required. When a DisconnectRequest is received, the recipient can

immediately close the pipe as acceptance. If the recipient does not close the pipe, the

DisconnectRequest sender will close the pipe after 200ms.

Calls

Call Resource

The following Call attributes are included in all call related responses and call events. Fields

can be left empty or blank intentionally by the External Application API.

vnd.avaya.clientresources.Call.v1.1

Attribute Values Relationship Description

CallId string mandatory Unique call identifier.

remote true,false mandatory

Call is on another device (MDA,

Bridged lines, EC 500). The call is not

being handled by the CSDK

Application. Media is not running

locally.

Headset call control applications

should not act on remote calls.

remotePartyName string mandatory
Name of the remote participant. The

value can be empty or blank.

remotePartyNumber string mandatory
Remote Party CLID. The value can be

empty or blank.

privacy true,false mandatory
Privacy set for Remote Party. The

value can be empty or blank.

https://confluence.forge.avaya.com/pages/createpage.action?spaceKey=UCAPPSSE&title=true%2Cfalse&linkCreation=true&fromPageId=103787376
https://confluence.forge.avaya.com/pages/createpage.action?spaceKey=UCAPPSSE&title=true%2Cfalse&linkCreation=true&fromPageId=103787376

Attribute Values Relationship Description

Subject string mandatory
Call subject. The value can be empty

or blank.

callState

alerting

transferred

ended

ending

established

failed

far-end

renegotiating

Held

Holding

idle

ignored

initiating

remote alerting

renegotiating

transferring

unholding

video updating

mandatory

The call state, which represents:

public enum CallState values.

alerting- Call is alerting locally

(incoming call).

transferred - The call is being

transferred by a remote party on the

call.

ended - Call ended (by far-end, or end

request has been responded to by the

remote party).

ending - Request to end the call has

been sent.

established - Call has been established

and is active (not held).

failed- Failed.

far-end renegotiating- Call

renegotiating (requested by far-end).

held- Held.

holding - Holding.

idle - Uninitialized.

ignored - Call is ignored.

initiating - Call initiated (outgoing

only).

remote alerting- Call is alerting

remotely (outgoing call).

renegotiating - Call is renegotiating

(requested by us).

transferring -Transfer initiated by the

local user (outgoing).

unholding - Retrieving .

Attribute Values Relationship Description

video updating - Video is being added

or removed from the call.

muted true,false mandatory Audio on or off.

videoPossible true,false mandatory

Client informs the API if video

escalation is possible.

Video license is acquired.

Network applicable for video.

If a video device is not available, this

value will not be altered.

videoDirection

Inactive,

Send_Receive,

Send_Only,

Receive_Only

mandatory The direction of the video.

audioDirection

Remote,

Inactive,

Send_Receive,

Send_Only,

Receive_Only

mandatory

The direction of the audio. If audio is

directed to a remote device, the

direction will be remote.

transactionId
TransactionId of

the request.
optional

transactionID is only provided in

response messages, and it not provided

in events.

Call Operations

Call Operations Summary table

https://confluence.forge.avaya.com/pages/createpage.action?spaceKey=UCAPPSSE&title=true%2Cfalse&linkCreation=true&fromPageId=103787376
https://confluence.forge.avaya.com/pages/createpage.action?spaceKey=UCAPPSSE&title=true%2Cfalse&linkCreation=true&fromPageId=103787376

Operation MediaType Description

query vnd.avaya.clientresources.call.GetCallsRequest.v1.1 Discover calls on the client.

create vnd.avaya.clientresources.call.CreateRequest.v1.1 Initiate call.

terminate
vnd.avaya.clientresources.call.

TerminateRequest .v1.1

End call. Terminates the

existing call, irrespective of

call state.

accept vnd.avaya.clientresources.call.AcceptRequest.v1.1

Answer the call. Possible

state for incoming alerting

state.

ignore vnd.avaya.clientresources.call.IgnoreRequest.v1.1

Ignore the call. Possible

state for incoming alerting

state.

Invoking the ignore

operation, the client's ringer

will be muted, and the

incoming call notification

will be suppressed.

The call state does not

change, and the call can still

be answered.

hold vnd.avaya.clientresources.call.HoldRequest.v1.1 Hold call.

mute vnd.avaya.clientresources.call.MuteRequest.v1.1

Mute audio. Local mute

operation supported in

computer mode, and shared

control mode.

Network mute, for

conferencing applications, is

not supported.

Mute in other phone mode

(telecommuter mode) not

supported.

video vnd.avaya.clientresources.call.VideoRequest.v1.1 Add video to the call.

dtmf vnd.avaya.clientresources.call.DTMFRequest.v1.1
Insert DTMF digits during

the call.

Call Operations and Call State Validity Table

Call State Query Terminate Accept Ignore Hold Mute Video DTMF

1 alerting √ √ √ √ X √ X X

Call is

alerting

locally

(incoming

call).

2 initiating √ √ X X X √ X √

Call initiated

(outgoing

only).

3 established √ √ X X √ √ √ √

Call has been

established

and is active

(not held).

4 held √ √ X X √ √ X X

Call has been

established

but is not

active (held).

5 holding √ √ X X X √ X X

Call is in

process of

being held by

us.

6 unholding √ √ X X X √ X X
Unholding or

retrieving.

7 failed √ √ X X X √ X X call Failed.

8 idle √ √ X X X √ √ X
Call

Uninitialized.

9
remote

alerting
√ √ X X X √ X √

Call is

alerting

remotely

(outgoing

call).

10 ignored √ X √ √ X √ X X

Incoming s

ession is

ignored.

11 renegotiating √ √ X X X √ X √

Call

renegotiating

(requested by

us).

12
far-end

renegotiating
√ √ X X X √ X √

Call

renegotiating

(requested by

them).

13 transferring √ √ X X X √ X X

Transfer

initiated by

us

(outgoing).

14 transferred √ √ X X X √ X X

Being

transferred

by them

(incoming).

15 ending √ X X X X √ X X

Request to

end the

session has

been sent.

16 Ended √ X X X X √ X X

Call ended

(by far-end,

or end

request has

been

responded to

by the

remote

party).

17
video

updating
√ √ X X X √ √ √

States reflected in the English present participle (state names that end with " ing") are

ephemeral states, and the application should expect a subsequent state transition to

follow. While a call is in an ephemeral state, it is not possible for the external application to

invoke signalling operations.

The operation response JSON message will always contain the state of the session, which may be

unrelated to the operation requested.

Call State Transitions

Outgoing Call State Transition Table

Pre-Op Call State Operation Post Op Call State

idle <any non-create operation> idle

idle Create initiating

initiating Terminate ending/ended

initiating <any other operation> enitiating

remote alerting Terminate ending/ended

remote alerting DTMF remote alerting

remote alerting <any other operation> remote alerting

Incoming Call State Transition Table

Pre-Op Call State Operation Post Op Call State

alerting No Operation Timeout terminated, null

alerting Ignore ignored

alerting Accepted established

alerting Terminate alerting

ignored Ignore ignored

ignored Accepted established

ignored Terminate ignored

Established Call State Transition Table

Pre-Op Call State Operation Post Op Call State

established Terminate ending/ended

established Join (MDA, from UC Client) established

established DTMF established

established Hold holding/held

transferring Terminate ending/ended

transferring any operation except Terminate transferring

Pre-Op Call State Operation Post Op Call State

transferred Terminate ending/ended

transferred any operation except Terminate transferred

renegotiating Terminate ending/ended

renegotiating any operation except Terminate renegotiating

far-end renegotiating Terminate ending/ended

far-end renegotiating any operation except Terminate far-end renegotiating

Held Call State Transition Table

Pre-Op Call State Operation Post Op Call State

established Hold holding/held

held Unhold unholding/established

held Hold held

held/holding/unholding Terminate ending/ended

holding/unholding <any other operation> holding/unholding/held/established

Failed/Ending/Ended Call State Transition Table

Pre-Op Call State Operation Post Op Call State

ending <any operation> ending/ended

ended <any operation> ended

failed <any operation> failed

 Applications registering for call events when calls are in progress may not receive events to

support the existing state. Call Events are only guaranteed to be sent for call state transitions.

Call Messages

 External Application API documentation below highlights the important elements of the API,

given the context of the request. All call attributes will be returned for call-related requests.

Get Calls

vnd.avaya.clientresources.call.GetCallsRequest.v1.1

vnd.avaya.clientresources.call.GetCallsResponse.v1.1

vnd.avaya.clientresources.Error.v1.1

get Calls Request (JSON)

{

" vnd.avaya.clientresources.call.GetCallsRequest .v1.1": {

"transactionId": "1"

 }

} \0

Success Response -with single call (JSON)

{

"vnd.avaya.clientresources.call.GetCallsResponse.v1.1" : {

"vnd.avaya.clientresources.Call.v1.1" : {

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"callId": "xyz123",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

},

"transactionId": "1"

}

}\0

Success Response -with calls (JSON)

get Calls Request (JSON)

{

"vnd.avaya.clientresources.call.GetCallsResponse.v1.1" : {

"vnd.avaya.clientresources.Call.v1.1" : [{

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

"callId": "xyz123",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

},

{

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

 "callID": "abc124",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

}] ,

"transactionId": "1"

}

}\0

Success Response - without calls (JSON)

{

"vnd.avaya.clientresources.call.GetCallsResponse.v1.1" : {

"transactionId": "1"

}

}\0

get Calls Request (JSON)

Errors Responses (JSON)

{

"vnd.avaya.clientresources.Error.v1.1" : {

"displayMessage" : " displayMessage text ",

"errorMessage" : " error Message text ",

"errorCode" : " error Code text ",

"transactionId": "1"

}

}\0

GetCalls will return, at most, all active calls. The External API shall not constrain the number

of active calls.

Mute Call

vnd.avaya.clientresources.call.MuteRequest.v1.1

vnd.avaya.clientresources.call.MuteResponse.v1.1

vnd.avaya.clientresources.Error.v1.1

Mute Request Payload (JSON)

{

 "vnd.avaya.clientresources.call.MuteRequest.v1.1": {

"callId": "xxx",

"muted": "true",

"transactionId": "1"

}

}\0

Success Response (JSON)

{

 "vnd.avaya.clientresources.call.MuteResponse.v1.1": {

"vnd.avaya.clientresources.Call.v1.1" : {

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

}

"transactionId": "1"

}

} \0

Failure Response

Unmute Call

vnd.avaya.clientresources.call.MuteRequest.v1.1

vnd.avaya.clientresources.call.MuteResponse.v1.1

vnd.avaya.clientresources.Error.v1.1

Unmute Request Payload (JSON)

{

 "vnd.avaya.clientresources.call.MuteRequest.v1.1": {

"callId": "xxx",

"muted": "false",

"transactionID": "1"

}

}\0

Success Response (JSON)

{

 "vnd.avaya.clientresources.call.MuteResponse.v1.1": {

"vnd.avaya.clientresources.Call.v1.1" : {

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

},

"transactionId": "1",

}

} \0

Failure Response

Hold Call

vnd.avaya.clientresources.call.HoldRequest.v1.1

vnd.avaya.clientresources.call.HoldResponse.v1.1

vnd.avaya.clientresources.Error.v1.1

Hold Call Request Payload (JSON)

{

" vnd.avaya.clientresources.call.HoldRequest.v1.1 ": {

"callId": "xxx",

"held": "true",

"transactionId": "1"

}

}\0

Success Response (JSON)

{

 "vnd.avaya.clientresources.call.HoldResponse.v1.1": {

"vnd.avaya.clientresources.Call.v1.1" : {

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"audioDirection" : "Remote,Inactive",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

},

"transactionId": "1",

},

} \0

Failure Response

Retrieve Call (unHold Call)

vnd.avaya.clientresources.call.HoldRequest.v1.1

vnd.avaya.clientresources.call.HoldResponse.v1.1

vnd.avaya.clientresources.Error.v1.1

Retrieve Call Request Payload (JSON)

{

"vnd.avaya.clientresources.call.HoldRequest.v1.1": {

"callId": "xxx",

"held": "false",

"transactionId": "1"

}

} \0

Success Response (JSON)

{

 "vnd.avaya.clientresources.call.HoldResponse.v1.1": {

"vnd.avaya.clientresources.Call.v1.1" : {

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"audioDirection" : "Remote, Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

},

"transactionId": "1"

}

} \0

Failure Response

Terminate Call

vnd.avaya.clientresources.call. TerminateRequest .v1.1

vnd.avaya.clientresources.call. TerminateResponse .v1.1

vnd.avaya.clientresources.Error.v1.1

Terminate Call Request Payload (JSON)

{

"vnd.avaya.clientresources.call. TerminateRequest .v1.1": {

"callId": "xxx",

"transactionId": "1"

}

}\0

Success Response (JSON)

{

 "vnd.avaya.clientresources.call. Terminate Response.v1.1": {

"vnd.avaya.clientresources.Call.v1.1" : {

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

} ,

"transactionId": "1"

}

} \0

Failure Response

Answer Call (Accept Call)

vnd.avaya.clientresources.call.AcceptRequest.v1.1

vnd.avaya.clientresources.call.AcceptResponse.v1.1

vnd.avaya.clientresources.Error.v1.1

Accept Call Request Payload (JSON)

{

"vnd.avaya.clientresources.call.AcceptRequest.v1.1": {

"callId": "xxx",

"transactionId": "1"

}

}\0

Success Response (JSON)

{

 "vnd.avaya.clientresources.call.A cceptResponse.v1.1": {

"vnd.avaya.clientresources.Call.v1.1" : {

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

}

,

"transactionId": "1"

}

} \0

Failure Response

Ignore Call

vnd.avaya.clientresources.call.IgnoreRequest.v1.1

vnd.avaya.clientresources.call.IgnoreResponse.v1.1

vnd.avaya.clientresources.Error.v1.1

Ignore Call Request Payload (JSON)

{

"vnd.avaya.clientresources.call.IgnoreCall.v1.1": {

"callId": "xxx",

"transactionId": "1"

}

}\0

Success Response (JSON)

{

 "vnd.avaya.clientresources.call.IgnoreResponse.v1.1": {

"vnd.avaya.clientresources.Call.v1.1" : {

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"audioDirection" : "remote,inactive",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

},

"transactionId": "1"

}

} \0

Failure Response

CreateCall (MakeCall)

vnd.avaya.clientresources.call.CreateRequest.v1.1

vnd.avaya.clientresources.call.CreateResponse.v1.1

vnd.avaya.clientresources.Error.v1.1

Request Payload (JSON)

{

"vnd.avaya.clientresources.call. CreateRequest.v1.1": {
 "remotePartyNumber" : "Remote Party Number Value" ,

 "video" : "true" ,

 "subject" : "string " ,

 "conferencePasscode" : "0-9,#,*" ,

 "conferenceId" : "0-9",

"lineAppearanceOwner" : "a-z, 0-9",

"lineAppearanceId" : "int",

"transactionId": "1"
}

 }\0

Success Response (JSON)

{

 "vnd.avaya.clientresources.call.CreateResponse.v1.1": {

"vnd.avaya.clientresources.Call.v1.1" : {

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

},

"transactionId": "1"

}

} \0

Failure Response

DTMF

vnd.avaya.clientresources.call.DTMFRequest.v1.1

vnd.avaya.clientresources.call.DTMFResponse.v1.1

vnd.avaya.clientresources.Error.v1.1

DTMF Request Payload (JSON)

{

"vnd.avaya.clientresources.call.DTMFRequest.v1.1": {
 "dtmfstring": "0-9,#,*",

"callId" : "xxx",

"transactionId": "1"
}

}\0

Response (JSON)

{

"vnd.avaya.clientresources.call.DTMFResponse.v1.1": {

"vnd.avaya.clientresources.Call.v1.1" : {

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"audioDirection" : "send_receive",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

},

"transactionId": "1"
}

} \0

Failure Response

Add videoCall (Escalate)

vnd.avaya.clientresources.call.videoRequest.v1.1

vnd.avaya.clientresources.call.videoResponse.v1.1

vnd.avaya.clientresources.Error.v1.1

Add video Request Payload (JSON)

{

"vnd.avaya.clientresources.call.VideoRequest.v1.1": {
 "video": "true" ,

"callID" : "xxx",

"transactionId": "1"
}

} \0

Success Response (JSON)

{

"vnd.avaya.clientresources.call.VideoResponse.v1.1": {

"vnd.avaya.clientresources.Call.v1.1" : {

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"audioDirection" : "remote,send_receive",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

} ,

"transactionId": "1"
}

} \0

Failure Response

Remove video (Deescalate)

vnd.avaya.clientresources.call.videoRequest.v1.1

vnd.avaya.clientresources.call.videoResponse.v1.1

vnd.avaya.clientresources.Error.v1.1

Remove Video Request Payload (JSON)

{

"vnd.avaya.clientresources.call.VideoRequest.v1.1": {
 "video": "false" ,

"callID" : "xxx",

"transactionId": "1"
}

}\0

Success Response (JSON)

Remove Video Request Payload (JSON)

{

"vnd.avaya.clientresources.call.VideoResponse.v1.1": {

"vnd.avaya.clientresources.Call.v1.1" : {

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

}

,

"transactionId": "1"
}

} \0

Failure Response

Block Camera

vnd.avaya.clientresources.call.BlockCameraRequest.v1.1

vnd.avaya.clientresources.call.BlockCameraResponse.v1.1

vnd.avaya.clientresources.Error.v1.1

Block Camera Request Payload (JSON)

{

" vnd.avaya.clientresources.call.BlockCameraRequest.v1.1 ": {

"blockcamera": "true",

"callId": "xxx",

"transactionId": "1"

}

}\0

Success Response (JSON)

{

"vnd.avaya.clientresources.call.BlockCameraResponse.v1.1": {

"vnd.avaya.clientresources.Call.v1.1" : {

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

}

"transactionId": "1"
}

} \0

Failure Response

UnBlock Camera

vnd.avaya.clientresources.call.BlockCameraRequest.v1.1

vnd.avaya.clientresources.call.BlockCameraResponse.v1.1

vnd.avaya.clientresources.Error.v1.1

Unblock Camera Request Payload (JSON)

{

"vnd.avaya.clientresources.call.BlockCameraRequest.v1.1": {

"blockcamera": "false",

"callId": "xxx",

"transactionId": "1"

}

}\0

Success Response (JSON)

{

"vnd.avaya.clientresources.call.BlockCameraResponse.v1.1": {

"vnd.avaya.clientresources.Call.v1.1" : {

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

}

,

"transactionId": "1"
},

}\0

Failure Response

Call Events

vnd.avaya.clientresources.call.UpdatedEvent.v1.1

UpdatedEvent (JSON)

{
"vnd.avaya.clientresources.call.UpdatedEvent.v1.1" :{
 "transactionId": "1",

"vnd.avaya.clientresources.Call.v1.1" : {

"remotePartyName": "Remote Party Name Value",

"remotePartyNumber": "Remote Party Number Value",

"callState": "alerting/originating/established/held/failed",

 "callId": "abc124",

"audioDirection" : "Remote, Inactive,Send_Receive,Send_Only, Receive_Only",

"muted": "true/false",

"videoDirection": "inactive/receive_only/send_only/send_receive",

"videoPossible": "true/false"

}

}
}\0

Call Events will be reported when the call is local to the device (Computer mode), the call media

is routed to the desk phone (Shared Control), and when call media is routed to the PSTN

(Telecommuter or Other Phone mode). Call Events are also reported when the call is acted on

by a remote device, in a MDA (Multiple Device Access, in Avaya Aura®) or Twinning (IP

Office), or in a bridged line appearance call (BLA). Calls being managed by a remote device

are identified with the remote attribute.

Media Devices

The media device API provides the external application with the current audio and video device

that is selected for calls. The external application cannot change the active devices. Active

devices can only be managed with the Client SDK Application.

Media Device

Resource Description

/Resources/MediaDevices/audio Specifies active audio devices.

Media Device Resource

Attribute Description

recordingDevice Specifies the recording device.

playbackDevice Specifies the playback device. This does not apply to video.

deviceName Specifies the name of the device.

Media Device Operations

Operation URI Description

query audio

devices
/Resources/MediaDevices/audio

Returns the active audio input or output

device.

Audio Device

vnd.avaya.clientresources.device.ActiveAudioDeviceRequest.v1.1

vnd.avaya.clientresources.device.ActiveAudioDeviceResponse.v1.1

vnd.avaya.clientresources.Error.v1.1

Audio Request Payload (JSON)

{

"vnd.avaya.clientresources.call. ActiveAudioDeviceRequest.v1.1": {

"transactionId": "14"

}

}\0

Successful Response (JSON)

{

"vnd.avaya.clientresources.device.ActiveAudioDeviceResponse.v1.1": {

 "RecordingDevice.v1.1" : {

 "deviceName" : "string"
 },

 "PlaybackDevice.v1.1" : {

 "deviceName" : "string"
 }

"transactionId": "14"
}

}\0

Call Flows

Legend

API Control Call Flows

Client SDK Initialization

Register

This is sent by the external application when it wants to provide a rich call control experience.

When the application registers again with a different applicationId, it is considered an application

error. The registration is rejected by the Client SDK if the applicationId is different than the

applicationId used in the initial Register request. The pipe is not closed and the original

applicationId remains valid.

Unregister

This is sent by external application when it no longer wants the External Pipe. For example, this

can occur during an application shut down or when the work station is in Sleep mode.

DisconnectRequest

This is sent by the Client SDK when it no longer wants the External Pipe. For example, this can

occur during an application shut down or when the work station is in Sleep mode.

Call Handling

The following sections show the possible call flows for each operation, but the actual

combination of responses and CallUpdatedEvents depend on the state of the call object at the

time the response is fired. Call state transitions vary depending on the remote endpoint, network

latency, and External Application API internal implementation. Examples include the following:

When creating a call to a conference server that answers the call immediately, the

Remote_Alerting call state transition might be skipped and only Established is reported.

Holding and Unholding might not be reported and the more stable Held or Established call state

is returned.

Make Call - Named Pipe

Make Call - Named Pipe

Answer Call

Mute and Unmute call

Hold and Retrieve call

Terminate or End Call

Media Device Listing

GetActiveAudioDevices

Application Interworking

Call Created by UC Application

The above example

shows the external application receiving call updates ahead of the External Application API,

but this is for illustrative purposes and this behaviour is not guaranteed. The order of events or

notifications is an implementation detail.

Call Created by Peer External Application

The above example shows the ExternalApp2 receiving call updates ahead of ExternalApp2, but

this is for illustrative purposes and this behaviour is not guaranteed. The order of events or

notifications is an implementation detail.

Call Hold by UC Application

The above example shows the user holding and resuming the call from the external application.

It is possible that the user can use HoldCall using the external application and resume through

the External Application API, or vice versa.

Call Hold by Peer External Application

In the above example, the sequence shows ExternalApp2 holding the call, and ExternalApp1

retrieving (unholding) the call. In addition, there is a UpdatedEvent containing the same call

state information as the HoldResponse. Since the data is identical, there is minimal impact, but

it is not ideal. The order of events is an implementation detail.

References

Windows NamedPipe Reference: https://msdn.microsoft.com/en-

us/library/windows/desktop/aa365590%28v=vs.85%29.aspx?f=255&MSPPError=- 2147217396

Windows PipeList: https://technet.microsoft.com/en-us/sysinternals/dd581625.aspx

https://msdn.microsoft.com/en-us/library/windows/desktop/aa365590%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365590%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
https://technet.microsoft.com/en-us/sysinternals/dd581625.aspx

Appendix

Windows

C# Named Pipe Sample Code

using System;

using System.IO;
using System.IO.Pipes;

namespace ExternalApplicationConnect
{

 class Program
 {
 static void Main(string[] args)

 {
 NamedPipeClientStream pipeClient = new NamedPipeClientStream(".","AvayaCSDK-

Administrator",PipeDirection.InOut,PipeOptions.None);
 if (pipeClient.IsConnected != true)

 {
 pipeClient.Connect();
 }

 StreamReader sr = new StreamReader(pipeClient);

 StreamWriter sw = new StreamWriter(pipeClient);
 string registerString =
"{ \"vnd.avaya.clientresources.RegisterRequest.v1.1\" : { \"applicationId\" :

\"TestApp\", \"transactionId\" : \"23763992\" } } \0";
 string createCallString =

"{ \"vnd.avaya.clientresources.call.CreateRequest.v1.1\":

{ \"remotePartyNumber\":\"+13035382200,,683042\", \"transactionId\":

\"1765675\" } } \0 ";

 try
 {

 sw.Write(createCallString);
 sw.Flush();
 }

 catch (Exception ex) { throw ex; }
 }

 }
}

