

Avaya Aura® Contact Center
Open Queue Web Services

Release 7.0.0

Issue 3.0

 June 2016

© 2016 Avaya Inc.

All Rights Reserved.

Notice

While reasonable efforts have been made to ensure that the
information in this document is complete and accurate at the
time of printing, Avaya assumes no liability for any errors.
Avaya reserves the right to make changes and corrections to
the information in this document without the obligation to notify
any person or organization of such changes.

Documentation disclaimer

“Documentation” means information published by Avaya in
varying mediums which may include product information,
operating instructions and performance specifications that
Avaya may generally make available to users of its products
and Hosted Services. Documentation does not include
marketing materials. Avaya shall not be responsible for any
modifications, additions, or deletions to the original Published
version of documentation unless such modifications, additions,
or deletions were performed by Avaya. End User agrees to
indemnify and hold harmless Avaya, Avaya's agents, servants
and employees against all claims, lawsuits, demands and
judgments arising out of, or in connection with, subsequent
modifications, additions or deletions to this documentation, to
the extent made by End User.

Link disclaimer

Avaya is not responsible for the contents or reliability of any
linked websites referenced within this site or documentation
provided by Avaya. Avaya is not responsible for the accuracy
of any information, statement or content provided on these
sites and does not necessarily endorse the products, services,
or information described or offered within them. Avaya does not
guarantee that these links will work all the time and has no
control over the availability of the linked pages.

Warranty

Avaya provides a limited warranty on Avaya hardware and
software. Refer to your sales agreement to establish the terms
of the limited warranty. In addition, Avaya’s standard warranty
language, as well as information regarding support for this
product while under warranty is available to Avaya customers
and other parties through the Avaya Support website:
http://support.avaya.com or such successor site as designated
by Avaya. Please note that if you acquired the product(s) from
an authorized Avaya Channel

Partner outside of the United States and Canada, the warranty
is provided to you by said Avaya Channel Partner and not by
Avaya.

Licenses

THE SOFTWARE LICENSE TERMS AVAILABLE ON THE
AVAYA WEBSITE,
HTTP://SUPPORT.AVAYA.COM/LICENSEINFO

OR SUCH SUCCESSOR SITE AS DESIGNATED BY AVAYA,
ARE APPLICABLE TO ANYONE WHO DOWNLOADS, USES
AND/OR INSTALLS AVAYA SOFTWARE, PURCHASED
FROM AVAYA INC., ANY AVAYA AFFILIATE, OR AN AVAYA
CHANNEL PARTNER (AS APPLICABLE) UNDER A
COMMERCIAL AGREEMENT WITH AVAYA OR AN AVAYA
CHANNEL PARTNER. UNLESS OTHERWISE AGREED TO
BY AVAYA IN WRITING, AVAYA DOES NOT EXTEND THIS
LICENSE IF THE SOFTWARE WAS OBTAINED FROM
ANYONE OTHER THAN AVAYA, AN AVAYA AFFILIATE OR
AN AVAYA CHANNEL PARTNER; AVAYA RESERVES THE
RIGHT TO TAKE LEGAL ACTION AGAINST YOU AND
ANYONE ELSE USING OR SELLING THE SOFTWARE

WITHOUT A LICENSE. BY INSTALLING, DOWNLOADING
OR USING THE SOFTWARE, OR AUTHORIZING OTHERS
TO DO SO, YOU, ON BEHALF OF YOURSELF AND THE
ENTITY FOR WHOM YOU ARE INSTALLING,
DOWNLOADING OR USING THE SOFTWARE
(HEREINAFTER REFERRED TO INTERCHANGEABLY AS
“YOU” AND “END USER”), AGREE TO THESE TERMS AND
CONDITIONS AND CREATE A BINDING CONTRACT
BETWEEN YOU AND AVAYA INC. OR THE APPLICABLE

AVAYA AFFILIATE (“AVAYA”).

Avaya grants you a license within the scope of the license
types described below, with the exception of Heritage Nortel
Software, for which the scope of the license is detailed below.
Where the order documentation does not expressly identify a
license type, the applicable license will be a Designated
System License. The applicable number of licenses and units
of capacity for which the license is granted will be one (1),
unless a different number of licenses or units of capacity is
specified in the documentation or other materials available to
you. “Designated Processor” means a single stand-alone
computing device. “Server” means a Designated Processor that
hosts a software application to be accessed by multiple users.

License type(s)

Named User License (NU). You may: (i) install and use the
Software on a single Designated Processor or Server per
authorized Named User (defined below); or (ii) install and use
the Software on a Server so long as only authorized Named
Users access and use the Software. “Named User”, means a
user or device that has been expressly authorized by Avaya to
access and use the Software. At Avaya’s sole discretion, a
“Named User” may be, without limitation, designated by name,
corporate function (e.g., webmaster or helpdesk), an e-mail or
voice mail account in the name of a person or corporate
function, or a directory entry in the administrative database
utilized by the Software that permits one user to interface with
the Software.

Copyright

Except where expressly stated otherwise, no use should be
made of materials on this site, the Documentation, Software,
Hosted Service, or hardware provided by Avaya. All content on
this site, the documentation, Hosted Service, and the Product
provided by Avaya including the selection, arrangement and
design of the content is owned either by Avaya or its licensors
and is protected by copyright and other intellectual property
laws including the sui generis rights relating to the protection of
databases. You may

not modify, copy, reproduce, republish, upload, post, transmit
or distribute in any way any content, in whole or in part,
including any code and software unless expressly authorized
by Avaya. Unauthorized reproduction, transmission,
dissemination, storage, and or use without the express written
consent of Avaya can be a criminal, as well as a civil offense
under the applicable law.

Third Party Components

“Third Party Components” mean certain software programs or
portions thereof included in the Software or Hosted Service
may contain software (including open source software)
distributed under third party agreements (“Third Party
Components”), which contain terms regarding the rights to use
certain portions of the Software (“Third Party Terms”). As
required, information regarding distributed Linux OS source
code (for those Products that have distributed Linux OS source
code) and identifying the copyright holders of the Third Party
Components and the Third Party Terms that apply is available
in the Documentation or on Avaya’s website at:

http://support.avaya.com/
http://support.avaya.com/LICENSEINFO

Open Queue Web Services 3

http://support.avaya.com/Copyright or such successor site as
designated by Avaya. You agree to the Third Party Terms for
any such Third Party Components.

THIS PRODUCT IS LICENSED UNDER THE AVC PATENT
PORTFOLIO LICENSE FOR THE PERSONAL USE OF A
CONSUMER OR OTHER USES IN WHICH IT DOES NOT
RECEIVE REMUNERATION TO (i) ENCODE VIDEO IN
COMPLIANCE WITH THE AVC STANDARD (“AVC VIDEO”)
AND/OR (ii) DECODE AVC VIDEO THAT WAS ENCODED BY
A CONSUMER ENGAGED IN A PERSONAL ACTIVITY
AND/OR WAS OBTAINED FROM A VIDEO PROVIDER
LICENSED TO PROVIDE AVC VIDEO. NO LICENSE IS
GRANTED OR SHALL BE IMPLIED FOR ANY OTHER USE.
ADDITIONAL INFORMATION MAY BE OBTAINED FROM
MPEG LA, L.L.C. SEE HTTP://WWW.MPEGLA.COM.

Note to Service Provider

The Product or Hosted Service may use Third Party
Components subject to Third Party Terms that do not allow
hosting and require a Service Provider to be independently
licensed for such purpose. It is your responsibility to obtain
such licensing.

Preventing Toll Fraud

“Toll Fraud” is the unauthorized use of your
telecommunications system by an unauthorized party (for
example, a person who is not a corporate employee, agent,
subcontractor, or is not working on your company's behalf). Be
aware that there can be a risk of Toll Fraud associated with
your system and that, if Toll Fraud occurs, it can result in
substantial additional charges for your telecommunications
services.

Avaya Toll Fraud intervention

If you suspect that you are being victimized by Toll Fraud and
you need technical assistance or support, call Technical
Service Center Toll Fraud Intervention Hotline at +1-800-643-
2353 for the United States and Canada. For additional support
telephone numbers, see the Avaya Support website:
http://support.avaya.com or such successor site as designated
by Avaya. Suspected security vulnerabilities with Avaya
products should be reported to Avaya by sending mail to:
securityalerts@avaya.com.

Trademarks

The trademarks, logos and service marks (“Marks”) displayed
in this site, the Documentation, Hosted Service(s), and
Product(s) provided by Avaya are the registered or
unregistered Marks of Avaya, its affiliates, or other third parties.
Users are not permitted to use such Marks without prior written
consent from Avaya or such third party which may own the
Mark. Nothing contained in this site, the Documentation,
Hosted Service(s) and Product(s) should be construed as
granting, by implication, estoppel, or otherwise, any license or
right in and to the Marks without the express written permission
of Avaya or the applicable third party.

Avaya is a registered trademark of Avaya Inc.

All non-Avaya trademarks are the property of their respective
owners. Linux® is the registered trademark of Linus Torvalds in
the U.S. and other countries.

All non-Avaya trademarks are the property of their respective
owners, and “Linux” is a registered trademark of Linus
Torvalds.

Downloading Documentation

For the most current versions of Documentation, see the Avaya
Support website: http://support.avaya.com or such successor
site as designated by Avaya.

Contact Avaya Support

See the Avaya Support website: http://support.avaya.com for
Product or Hosted Service notices and articles, or to report a
problem with your Avaya Product or Hosted Service. For a list
of support telephone numbers and contact addresses, go to the
Avaya Support website: http://support.avaya.com (or such
successor site as designated by Avaya), scroll to the bottom of
the page, and select Contact Avaya Support.

http://www.mpegla.com/
http://support.avaya.com/
mailto:securityalerts@avaya.com
http://support.avaya.com/
http://support.avaya.com/
http://support.avaya.com/

Open Queue Web Services 4

Contents

Chapter 1: Revision History ... 6

Chapter 2: Overview .. 7

What is the SDK .. 8

SDK contents .. 8

SDK support .. 8

Related Avaya Aura Contact Center documents .. 8

Chapter 3: Open Queue Introduction .. 9

Some useful definitions.. 9

Intrinsics Limitations .. 10

Login/Logoff ... 10

CreateOQContact .. 10

GetOQContact, DropOQContact ... 11

Adding and Removing event listeners .. 11

Chapter 4: Reference Client ... 12

Programming with the Open Queue Open Interfaces .. 13

Prerequisites ... 13

Open Interfaces Open Queue Eclipse Project ... 13

Chapter 5: Tutorial .. 14

Assumptions about this tutorial: ... 14

Prerequisites ... 14

Tools Used .. 14

Using the SDK reference client sample code ... 15

Creating an Eclipse project for the application ... 16

Creating Web Service Proxy classes ... 17

Create the Application ... 18

Step 1 - Create the Class .. 18

Step 2 - Create the Service ... 19

Step 3 - Authenticate User .. 20

Step 4 – Import the sample intrinsics file .. 21

Step 5 – Add the Contact .. 23

Step 6 – Logout ... 23

Step 7 – Putting it all together ... 24

Chapter 6: Troubleshooting ... 27

Open Queue Web Services 5

Cannot access the Open Queue WSDL .. 27

Troubleshooting the “Max number of logins reached” error message 29

Troubleshooting the “InvalidArgumentException” error message ... 29

Troubleshooting the “User was not found” error message ... 29

Troubleshooting the “invalid RoutePointAddress” error message .. 29

Troubleshooting Open Queue scripts .. 30

Troubleshooting a “HTTP transport error: java.net.UnknownHostException“ message 30

Troubleshooting when agents do not receive queued contacts ... 30

Open Queue Web Services 6

Chapter 1: Revision History

Date Revision # Summary of Changes

December 2015 Version 1.0 Initial Avaya Aura® Contact Center Release 7.0

25 April 2016 Version 2.0 Updates for Avaya Aura® Contact Center 7.0 Release

13 June 2016 Version 3.0 Avaya Aura® Contact Center 7.0 Release version

Open Queue Web Services 7

Chapter 2: Overview

The Open Queue Web Services allow third-party application developers the ability to queue their
own contact-types in the Contact Center to be queued to available agents. Customers can queue
these third-party contact types into the Contact Center to be routed to skilled idle agents using
criteria specified by the application as part of the contact creation or by standard scripting.

This web service is hosted on the CCMS server and requires that the Open Queue and Open
Interface Open Queue feature be enabled on the CCMS server.

This web service can be optionally configured to use TLS, if functionality is enabled the customer
will be required to provide the necessary certificates. Refer to the Avaya Aura Contact Center
documents for details about how to configure Web Services on the CCMS server.

When SOA is configured and enabled on CCMS a list of services can be obtained through the
splash screen at the following location, where the <CCMS HostName> is the host name of the
CCMS server.

http(s)://<CCMS HostName>:9070

Each service is defined by a WSDL. This WSDL (Web Service Definition Language) is a machine
readable description of the functionality being offered by this web service.

Various technologies use this WSDL to interrogate the web service and create the relevant proxies
to send and receive SOAP messages with the web service.

When the service is configured using the default options the WSDL can be found at the following
location, where the <CCMS HostName> is the host name of the CCMS server.

http(s)://<CCMS HostName>:9070/SOAOI/services/OpenQ?wsdl

This WSDL (Web Service Definition Language) is a machine readable description of the
functionality being offered by this web service. Various technologies use this WSDL to interrogate
the web service and create the relevant proxies to send and receive SOAP messages with the web
service.

Open Queue Web Services 8

What is the SDK
The Avaya Aura® Contact Center Open Queue Web Services SDK can be downloaded to your
client machine and contains information about how third-party applications can call the Open Queue
Web Services.

SDK contents
The SDK contains the following elements:

 Introduction and tutorial PDF documentation

 Javadoc API documentation

 Installed client

 Source Java code for reference client implementations

SDK support
Support for the SDK APIs is supplied by through your Developer Partner Program.

Related Avaya Aura Contact Center documents
For more information about configuring Open Queue, https, security and certification, refer to the
following Avaya Aura Contact Center documents:

 Avaya Aura Contact Center Overview and Specification

 Avaya Aura Contact Center Commissioning for Avaya Aura Unified Communications

 Avaya Aura Contact Center Commissioning for Avaya Communication Server 1000

 Avaya Aura Contact Center Server Administration

Open Queue Web Services 9

Chapter 3: Open Queue Introduction

The Open Queue Web Services allow third-party application developers the ability to queue their
own contact-types in the Contact Center to be queued to available agents. Contacts created using
the Open Queue Open Interface can be reported on independently of contacts already in the
Contact Center.

When a contact is created using the Open Queue Open Interface it is anchored to a specific
instance (OpenQRoutePointAddress) of a Route Point Address where it remains until it is ultimately
routed to an idle agent. While the contact is waiting to be routed a component called the Agent
Skillset Manager will attempt to reserve an idle agent using a scripting interface exposed by the
workflow component. When an agent is reserved the routing of the contact from the route point to
the destination is performed by the Task Flow Executor where the Agent is ultimately notified of the
new contact by a screenpop issued by the Communication Control Toolkit.

Before a third-party application will be able to queue a contact within the contact center if must first
follow some steps

1. Login/Logoff – On successfully authentication with the web service the third-party

application receives a token to identify itself

2. CreateOQContact - issue the create open queue contact request.

3. GetOQContact, DropContact, - optionally query or remove existing contacts

4. Adding and Removing event listeners - optionally register interest for related events.

Some useful definitions

Term Definition

Contact Center
contacts

A contact represents a media agnostic session with an agent. A contact
can represent many different contact types such as voice, video, email, im
etc. Before a contact is created a third-party application has the option of
associating their own identifier (externalId) with the contact. This identifier
must be unique with respect to the system and can be used to
identify\retrieve the contact at a later stage.

Intrinsics
Intrinsics are a series of key value pairs that can be associated with a
Contact. Routing of the contact can be influenced at contact creation time
by populating contact intrinsics which can be used by the scripting engine
to make routing decisions. Alternatively these intrinsics can be used to
convey application specific information along with the call such as a
customer specific Id, name, url etc. When the call alerts at the agents
desktop this information can be retrieved from the contact.

Open Queue Web Services 10

Intrinsics Limitations
It is not recommended that intrinsics should be used to store large quantities of data as it may
impact overall performance in the Contact Center.

If these intrinsics are to be accessed using the scripting engine contained in Contact Center then
there are additional limitations to the size and amount of intrinsics that can be associated with a
contact, refer to the scripting documentation for further details.

Login/Logoff
Before the service can be used the developer must first receive a Single Sign On (SSO) token that
will be used for all subsequent calls to the service. To receive this token the developer must supply
the required authentication details;

 Username – OpenWsUser is the fixed user name that is associated with this service. Only
one application at a time is allowed login using this username.

 Password – Password123 is the default password associated with this service.
This password can be changed in the WS Open Interface dialog of the Contact
Center Service Configuration application located on the CCMS server.

 Domain – open_queue this field is used as a qualifier to differentiate this service
from other services that also use the OpenWsUser username.

The Open Queue Open Interface only allows one user to be logged on at any one time, hence there
can only ever be one sso token associated with an active session. If the user tries to log in when
there is currently an active session they will receive an exception detailing that only one user can
login at any one time.

Each session has a time out associated with it. The default for a Session timeout is 2 hours but can
be configured using the WS Open Interface dialog of the Contact Center Service Configuration
application on the CCMS service. Each time the service is accessed this timeout is reset.

When a user\application is exiting the application should logout the Open Queue session to ensure
they do not receive an error the next time they login. If the application crashes and the user is
unable to logout the session then they can use the method logoffSession to logoff the session
without the need for the sso token.

CreateOQContact
The CreateOQConact will issue a request to the Open Interfaces Open Queue web service to
create a contact in the Contact Center.

The createOQContact requires four parameters:

 externalContactId – a unique id for third-party applications to identify and retrieve
the newly created contact using either the getOQContact or the dropOQContact.

 outOfProviderAddressName – the name typically is the address name of the client
originating the contact into the Contact Center.

 intrinsics – an array of key value pairs that are associated with the contact that

Open Queue Web Services 11

can be used to influence the route decision of the call.
 ssoToken – a unique identifier used to validate the current users session.

To prevent the Open Queue Open Interface adversely affecting the Contact Center traffic there is a
non-configurable limit of a maximum of 20 contacts that can be created per second.

GetOQContact, DropOQContact
Using the externalContactId provided in the createOQContact a third-party application
can retrieve the newly create contact or can issue a request for the contact to be removed from the
Contact Center.

Adding and Removing event listeners
Third-party applications will be able to register endpoints with the Open Queue Open Interfaces.
These endpoints allow applications to receive asynchronous events regarding the status of the
Provider. The provider ultimately processes all incoming contact addition and removal request.

Open Queue Web Services 12

Chapter 4: Reference Client

The Open Queue Open Interfaces contains a reference client that can be used to place a sample
contact with the Contact Center.
This reference client can be executed by calling the batch file OIOQ_createContact.bat with the
following parameters.

Parameter Description

External Id A unique identifier that to associated with the Open Queue contact.

Out of Provider
Address

The name of the originating address

WSDL Server IP

(if not using the
default WSDL location)

The IP address of the CCMS server hosting the web service.

Open Queue Web Services 13

Programming with the Open Queue Open Interfaces
The Open Queue Open Interfaces provides a powerful SOAP base web service interface
that allows third-party application developers to integrate their application with Avaya Aura Contact
Center Open Queue.

Prerequisites

The following assumptions are made.
1. That the Open Queue Open Interfaces are configured and running. Refer to

the section Related Documents on how to configure the web services.

2. That the developers are both familiar with their choice of technology and how that
technology integrates with web services.

Open Interfaces Open Queue Eclipse Project
This SDK contains a reference implementation of the Open Queue Open Interfaces. This reference
implementation shows how the Open Queue web services can be called from a java client.

Open Queue Web Services 14

Chapter 5: Tutorial

This tutorial describes how to utilize the features provided by the AACC Open Queue Web
Services. It will show how to generate the necessary proxies to create a simple application that will
authenticate itself with the service and create a new Open Queue contact.

Once the application is launched it will login into the Open Queue web service and create an Open
Queue contact for each row in the intrinsics.csv file.

Assumptions about this tutorial:
 The WSDL for Open Queue is accessible from the client development machine.
 The IDE referenced and the screen shots used were all taken from Eclipse.
 For simplicity, the example does not use secure web services.
 Common programming practices such as controls, events, threading, and exceptions are left

to the individual programmer and are not covered in this tutorial.
 Exception handling is not shown in the code samples for brevity.

Prerequisites
This tutorial assumes that Open Queue is configured and that the user also has a license for Open
Queue web services.

Tools Used
This tutorial was created using

 Avaya Aura Contact Center 7.0
 Apache CXF
 Eclipse IDE

Open Queue Web Services 15

Using the SDK reference client sample code

Follow these steps to use the SDK reference client sample code.

1) Creating an Eclipse project for the application

2) Creating Web Service Proxy classes

3) Create the Application

a. Create the Class

b. Create the Service

c. Authenticate User

d. Import the sample intrinsics file

e. Add the Contact

f. Logout

g. Putting it all together

Open Queue Web Services 16

Creating an Eclipse project for the application
Launch Eclipse and create a new Java Project using the default settings.

1. Open Eclipse IDE.
2. Select File > New > Java Project.
3. Select Next.
4. Enter Project Name Open_Queue_Tutorial and select a desired location
5. Select Next, Next and Finished.
6. Add a new src folder : Right click on the project tab, Select New > Src Folder. Call this new

folder autogen.src. This is where our generated proxies will be stored.

Open Queue Web Services 17

Creating Web Service Proxy classes
Applications can communicate with web services directly using SOAP messaging, for simplicity we
are going to generate proxy classes to abstract us away from the underlying messaging. There are
many different tools available to assist a developer in generating the client proxies but in this
example we are going to use CXF.

For this step we require that CXF is installed on your system and the CXF_HOME is configured.
Please refer to the CXF documentation for more details.

 Open a command window in the newly created autogen.src directory.
 Set the system PATH to the CXF bin directory:

SET Path=%PATH%;%CXF_HOME%\bin;

 To generate the Proxies we use a tool called wsdl2java. This tool will generate the proxies from
the downloaded WSDL or by supplying the service URL. For this application we will supply the
url

http://localhost:9070/SOAOI/services/OpenQ?wsdl

http://localhost:9070/SOAOI/services/OpenQ?wsdl

Open Queue Web Services 18

 When the tool has completed you will see two new packages with a series of java classes. After
refreshing the project these packages can be seen in Eclipse.

Create the Application
Create a main class that will process a comma-separated values file to create a series of contacts
using the Open Queue web service. To call the Open Queue web service you will typically need to
perform the following steps.

 Create the Service – configure the proxies to point to the CCMS server hosting the service.
 Login – Authenticate the application with the Web Service to retrieve an sso (single sign on)

token.
 Add the Contact – call the method to add a new contact
 Logout – logout of the service to conserve resources.

In this project we have added an additional step to process the csv file.

Step 1 - Create the Class

In this step we are going to create a new main class and authenticate ourselves with the user to
receive and an sso token

1. Create a new Java class calledOpenQueueTutorial with a package openq

Open Queue Web Services 19

Step 2 - Create the Service

Before we can call the methods on the service we must first point our application at the WSDL

location. To do this we must supply the hostname of the CCMS server and the port on which the

service is located, default is 9070.

1. Create a global variable with the CCMS host name, web service port and a variable for the

service.

static String host = "localhost:9070";

static OpenQ service = null;

Open Queue Web Services 20

2. Create a new method called createService.

public static void createService() throws MalformedURLException,

GetVersionFault{

String serviceUrl = "http://" + host +

"/SOAOI/services/OpenQ?wsdl";

URL url = new URL(serviceUrl);

service = new SOAOIOpenQ(url).getOpenQ();

System.out.println("createService(): service[" +

(service == null ?"null": service.getVersion(new

GetVersionRequest())) + "]");

}

3. When this method is called successfully it will create a new service point to the configured
URL

Step 3 - Authenticate User

In this step we must authenticate our application with the CCMS service to receive an sso token.
This token is used in all subsequent method calls to keep track of the application session.

1. Create the following global variables. These variables contain the username and password
for the application. The username is always OpenWsUser but the password can be
changed through the CCMS Server Configuration application

static String username = "OpenWsUser";

static String password = "Password123";

static String domain = "open_queue";

static SsoToken sso = null;

Open Queue Web Services 21

2. Create a new method called login

public static void login(){

try{

AuthenticationLevel details = new AuthenticationLevel();

details.setUsername(username);

details.setPassword(password);

details.setDomain(domain);

sso = service.logIn(details);

}catch(LogInFailedFault liex){

System.out.println("A login error has occurred. This may

indicate another application is currently logged in.");

System.out.println("Please try again in a few seconds.");

System.out.println("If the problem persists add the value logout

to forcibly logout the existing session i.e. SalesForceOpenQ '"

+ strFile +"' '" + host + "'logout'");

System.out.println("error[" +liex + "]");

System.exit(0);

}

}

3. When this method is successfully called it supplies the username and password to the
service and receives an sso token in return.

Step 4 – Import the sample intrinsics file

In this step we are going to open a text file called intrinsics.csv. This text file contains an external Id
for the contact that will be created and a series of intrinsics to be associated with this contact.

An intrinsics is a key/value pair. These intrinsics offer application developers a way to associate
business information with a contact. This information can be used in routing decisions or viewed by
the agent when the contact is answered. Each key must have its own unique name and can have
any text value associated with it.

The following sample file will create two contacts with external Ids 1 and 2. Each of these contacts

will contain two intrinsics called intrinsic_name1 and intrinsic_name2

id,intrinsic_name1, intrinsic_name2

1,intrinsic_value1, intrinsic_value2

2,intrinsic_value1, intrinsic_value2

1. In the main method add code to open the file and process each of the rows in the
intrinsics.csv file.

Open Queue Web Services 22

BufferedReader br = new BufferedReader(new FileReader("intrinsics.csv"));

 String strLine = "";

 StringTokenizer st = null;

 IntrinsicArray intrinsicArray = new IntrinsicArray();

 List<Intrinsic> intrinsics = intrinsicArray.getItem();

 int lineNumber = 0, tokenNumber = 0;

 String contactId = null;

 Contact contact = null;

 //read comma separated file line by line

 while((strLine = br.readLine()) != null) {

 lineNumber++;

//break comma separated line using ","

st = new StringTokenizer(strLine, ",");

 while(st.hasMoreTokens()){

 tokenNumber++;

 intrinsics.clear();

 // Process Header

 if(lineNumber == 1){

 headerMap.put(tokenNumber, st.nextToken());

 }else{

 //display csv values

if(tokenNumber == 1){

contactId = st.nextToken();

}else{

Intrinsic intrinsic = new Intrinsic();

intrinsic.setKey((String)headerMap.get(tokenNumber));

intrinsic.setValue(st.nextToken());

intrinsic.setImmutable(true);

intrinsics.add(intrinsic);

}

}

}// end while

//reset token number

tokenNumber = 0;

}

Open Queue Web Services 23

Step 5 – Add the Contact

In this step we will add a new Open Queue contact for each external Id present in the intrinsics.csv
file. If a contact with a matching external Id exists in the Contact Center, an exception will be
thrown, otherwise a new contact will be created.

1. Create a new method called addContact. The parameter OutOfProviderAddressName
indicates the source of where this contact came from, similar to a calling address, this value
is set to “SourceName” here.

public static Contact addContact(String id, IntrinsicArray intrinsics)

throws CreateOQContactFailedFault{

 return service.createOQContact(id, "SourceName", intrinsics, sso);

 }

2. When this method is successfully called it will return the newly created contact.

Step 6 – Logout

Only one active session is allowed to utilize the Open Queue web service so it is important to logout
when the application is complete to free up resources. Applications can logout by either supplying
the sso token or by supplying the login credentials. In this step we are going to logout using login
credentials to allow us to forcibly remove any older sessions.

1. Create a new method logout.

 public static void logout(){

 try {

 AuthenticationLevel details = new AuthenticationLevel();

 details.setUsername(username);

 details.setPassword(password);

 details.setDomain(domain);

com.nortel.soa.oi.openq.types.LogOffSessionRequestType request = new

com.nortel.soa.oi.openq.types.LogOffSessionRequestType();

 request.setAuthenticationLevel(details);

 // log off session

 service.logOffSession(request);

 } catch (LogOffSessionFailedFault e) {

 // TODO Auto-generated catch block

Open Queue Web Services 24

 e.printStackTrace();

 }

 }

2. When this method is successfully called the sso token will be invalidated. If the application
fails to logout the session will timeout after a specified period, the default is 2 hours.

Step 7 – Putting it all together

Now that the methods are created, put them all together.

1. The following is the complete listing for the main method

public static void main(String[] args) {

 try{

 if(args == null || args.length ==0){

System.out.println("default args[1] - host[" + host +"]");

System.out.println("OpenQueue Web Service url[http://" + host +

"]/SOAOI/services/OpenQ?wsdl");

 }else{

 if(args.length >=1){

 host = args[1];

 }

 }

 // STEP 2 - Create the Service

 createService();

 // STEP 3 - Authenticate User

 login();

 // STEP 4 – Import the file

 HashMap headerMap = new HashMap();

 //create BufferedReader to read csv file

 BufferedReader br = new BufferedReader(new FileReader("intrinsics.csv"));

String strLine = "";

StringTokenizer st = null;

IntrinsicArray intrinsicArray = new IntrinsicArray();

List<Intrinsic> intrinsics = intrinsicArray.getItem();

int lineNumber = 0, tokenNumber = 0;

Open Queue Web Services 25

String contactId = null;

Contact contact = null;

//read comma separated file line by line

while((strLine = br.readLine()) != null) {

 lineNumber++;

//break comma separated line using ","

st = new StringTokenizer(strLine, ",");

while(st.hasMoreTokens()){

 tokenNumber++;

intrinsics.clear();

// Process Header

if(lineNumber == 1){

headerMap.put(tokenNumber, st.nextToken());

}else{

display csv values

If(tokenNumber == 1){

contactId = st.nextToken();

}else{

Intrinsic intrinsic = new Intrinsic();

intrinsic.setKey((String)headerMap.get(tokenNumber));

intrinsic.setValue(st.nextToken());

intrinsic.setImmutable(true);

intrinsics.add(intrinsic);

 }

}

}// end while

// STEP 5 – Add the Contact

 try{

// ignore the header

if(lineNumber > 1){

contact = addContact(contactId, intrinsicArray);

}

 }catch(Exception ex){

Open Queue Web Services 26

System.out.println("Error: Unable to Create contact with

externalId[" + contactId +"], error[" + ex.getMessage() + "]");

 }

if(contact != null){

System.out.println("created contact id[" +

contact.getContactId()+ "], externalId[" +

contact.getExternalContactId() + "].");

}

//reset token number

tokenNumber = 0;

}

 }

 catch(Exception ex){

 ex.printStackTrace();

 }finally{

 // STEP 6 – Logout

 logout();

}

}

2. On successful completion of the method, the following output should be seen on the
console.

default args[1] - host[localhost:9070]

OpenQueue Web Service url[http://localhost:9070]/SOAOI/services/OpenQ?wsdl

createService(): service[com.nortel.soa.oi.cct.types.GetVersionResponse@17b4703]

created contact id[4bf8f650-75ef-4fd1-891a-c9f29c2ed0fa], externalId[1].

created contact id[fe71bd4a-ad94-4691-a85d-f9ae3f0a0420], externalId[2].

3. Once the contact is created the contact center will process it like any other contact and

ultimately should forward it on to any agent with the OpenQ contact type.

Open Queue Web Services 27

Chapter 6: Troubleshooting

Cannot access the Open Queue WSDL

1. From the Licensing tab under the Server Configuration dialog on the CCMS server, verify
that OI Open Queue is selected and that there is a valid license for these features.

Open Queue Web Services 28

2. From the WS Open Interface tab under the Server Configuration dialog, ensure that the
SOA service is enabled and if TLS is enabled then ensure that you are using https in the
URL as opposed to http.

3. Ensure that there is not conflict in the ports being used by the web service. The default

range is 9070-9073.

4. If the service is visible on the CCMS server and not remotely, ensure that there is no firewall
restricting access to the CCMS server.

Open Queue Web Services 29

 Troubleshooting the “Max number of logins reached”
error message
If you get the following error message “ERROR com.nortel.soa.oi.openq.OpenQImpl -
logIn(AuthenticationLevel)Max number of logins reached”:

1. Only one application is permitted to access the web service for any one session. Either log
out any other applications or reused the sso token that was used.

Troubleshooting the “InvalidArgumentException” error
message
If you are creating an Open Queue contact and you receive the following error message
“createOpenQContact():Error – InvalidArgumentException providerName[CCMM].
createOpenQContactValidate():Error - contactExternalId[10001] is already in use for an existing
contact. providerName[CCMM]. “

1. A contact with a matching external Id already exists in the system. This id must be unique to
the system.

Troubleshooting the “User was not found” error
message
If you are creating an Open Queue contact and you receive the following error message
“ERROR com.nortel.soa.oi.openq.OpenQImpl - createOQContact() :User was not found”

1. The sso token is either expired or not valid.

Troubleshooting the “invalid RoutePointAddress” error
message

1. When creating OpenQ contacts, it requires that your CCMS system is configured with the
following RoutePointAddress, "OpenQRoutePointAddress".

2. Log into the "Configuration" section on your CCMA web client and check within the CDN
RoutePoint window that this RoutePointAddress exists. If it doesn't, add it.
Note, this should be added on new CCMS installs.

Open Queue Web Services 30

Troubleshooting Open Queue scripts

1. If you want to route open queue contacts to an agent, the agent must be associated with a
skillset that supports the OpenQ contact type.

2. Use this simple script example to test your scripting and contact routing:

Queue to skillset Default_OpenQ

Wait 5

Troubleshooting a “HTTP transport error:
java.net.UnknownHostException“ message

1. The WSDL used to create your application contains a reference to the CCMS host name
and your network environment may not be able to resolve this host name with a supplied IP
address.

2. The solution is either to configure DNS for the CCMS server or add an entry to your hosts
file:
 %SYSTEMDIR%\system32\drivers\etc\hosts

Troubleshooting when agents do not receive queued
contacts

1. The default script that comes with Contact Center routes contacts to Agents with the OpenQ
contact type configured.

2. Verify in CCMA that the agent is configured with the OpenQ contact type.
3. Verify that the script has not been change to inadvertently exclude OpenQ contact types.

Open Queue Web Services 31

LAST PAGE

	Contents
	Chapter 1: Revision History
	Chapter 2: Overview
	What is the SDK
	SDK contents
	SDK support
	Related Avaya Aura Contact Center documents

	Chapter 3: Open Queue Introduction
	Some useful definitions
	Intrinsics Limitations
	Login/Logoff
	CreateOQContact
	GetOQContact, DropOQContact
	Adding and Removing event listeners

	Chapter 4: Reference Client
	Programming with the Open Queue Open Interfaces
	Prerequisites

	Open Interfaces Open Queue Eclipse Project

	Chapter 5: Tutorial
	Assumptions about this tutorial:
	Prerequisites
	Tools Used
	Using the SDK reference client sample code
	Creating an Eclipse project for the application
	Creating Web Service Proxy classes
	Create the Application
	Step 1 - Create the Class
	Step 2 - Create the Service
	Step 3 - Authenticate User
	Step 4 – Import the sample intrinsics file
	Step 5 – Add the Contact
	Step 6 – Logout
	Step 7 – Putting it all together

	Chapter 6: Troubleshooting
	Cannot access the Open Queue WSDL
	Troubleshooting the “Max number of logins reached” error message
	Troubleshooting the “InvalidArgumentException” error message
	Troubleshooting the “User was not found” error message
	Troubleshooting the “invalid RoutePointAddress” error message
	Troubleshooting Open Queue scripts
	Troubleshooting a “HTTP transport error: java.net.UnknownHostException“ message
	Troubleshooting when agents do not receive queued contacts

