Open Queue Tutorial Avaya

AVAYA

Avaya Open Interfaces

Open Queue Tutorial

Page 1

Open Queue Tutorial Avaya

Open Queue Tutorial
This tutorial describes how to utilise the features provided by the Open Interfaces Open

Queue Web Services. It will show how to generate the necessary proxies to create a simple
application that will authenticate itself with the service and create a new Open Queue contact.

Once the application is launched it will login into the Open Queue web service and create
Open Queue contact for each row in the intrinsics.csv file.

The main procedures in this tutorial are:
e Action 1 : Create Project
e Action 2 : Create Web Service Proxy classes
e Action 3 : Create the Application

Page 2

Open Queue Tutorial

Tools Used

This tutorial was created using
e Avaya Aura Contact Center 7.0
e Apache CXF 2.2.5
e Eclipse Galileo

Page 3

Avaya

Open Queue Tutorial Avaya

Creating the Application

Action 1 — Create Project

Launch Eclipse and create a new Java Project using the default settings.

Open Eclipse IDE

Select File > New > Java Project

Select Next

Enter Project Name Open_Queue_Tutorial and select a desired location

Select Next, Next and Finished

Add a new src folder : Right click on the project tab, Select New > Src Folder. Call
this new folder autogen.src.This is where our generated proxies will be stored.

oakrwdE

1} New Java Project

Create a Java Project .
Create a Java project in the workspace or in an external location.

Project narne: | Cpen_Dueue_Tukarial |

Cankents

G} Create new project in warkspace

{:} Create project from existing source

JRE

(%) Use an execution environment JRE: Ja'-.-'a'E-E-l =

{:} Ilse a project specific JRE;

() Use default JRE {currently jdk1.5.0_22% Configure JREs. ..

Projeck [ayouk

) Use project Folder as root for sources and class files

(¥} Create separate folders For sources and class files Confiqure default, ..

Working sets

[]Add project bo working sets

@:‘ < Back ” Mext = H Finish H Cancel

Page 4

Open Queue Tutorial Avaya

Action 2 — Create Web Service Proxy classes

Applications can communicate with web service directly using SOAP messaging, for
simplicity we are going to generate proxy classes to abstract us away from the underlying
messaging. There are many different tools available to assist a developer in generating the
client proxies but in this example we are going to use CXF.

For this step we require that CXF is installed on your system and the CXF_HOME is
configured. Please refer to the CXF documentation for more details.

e Open a command window in the newly created autogen.src directory.

e Set the system PATH to the CXF bin directory
a. SET Path=%PATH%;%CXF_HOME%\bin;

¢t Command Prompt

e To generate the Proxies we use a tool called wsdl2java. This tool will generate the
proxies from the downloaded WSDL or by supplying the service URL. For this
application we will supply the url

http://localhost:9080/SOAQI/services/OpenQ?wsdl

¢t Command Prompt

D:~WorkspacesOpen_Queue_Tutorialsautogen.srcrwsdl?2java http:/slocalhost 90885 OFI-
0] 7zervices0penQ?usdl

Page 5

http://localhost:9080/SOAOI/services/OpenQ?wsdl

Open Queue Tutorial Avaya

e When the tool has completed you will see two new packages with a series of java
classes. After refreshing the project these packages can be seen in Eclipse/

{} Java - 0 pen_Queue_Tutorialfautogen.srcfcom/nortelfsoaloilcctitypes/Address. java - Ecli

File Edit Source Refactor Mawvigate Search Project Clearcase Rum MWindow Help

T - OPL H-0-Q- EHFG- ®S

i
-

- ¥ i
% Package Explarer &7 'Eg Hierarchy = |<}:t>| & ~ — O
=E= Cpen_Queus_Tukorial ~

=4 autngen.src
B4 icom. norkel s0a. i, ook, bypes |
J':-E‘ com.norkel so0a.0i.0peng

B} com.nortel soa.0i.openg.types
B} org.oasis_open.docs.wsef, 2004, 06.wstf_ws_basefaults 1 2 draft_01
B org.xmlsoap.schemas.ws, 2003, 03, addressing

. B IRE System Library [JavasE-1.6]

Page 6

Open Queue Tutorial Avaya

Action 3 — Create the Application.

In this Step we are going to create a main class that will process a comma-separated values
file to create a series of contacts using the Open Queue web service. To call the Open Queue
web service you will typically need to perform the following steps.

e Create the Service — configure the proxies to point to the CCMS server hosting the
service.

e Login — Authenticate the application with the Web Service to retrieve an sso (single
sign on) token.

e Add the Contact — call the method to add a new contact

e Logout — logout of the service to conserve resources.

In this project we have added an additional step to process the csv file.

Step 1 - Create the Class
In this step we are going to create a new main class and authenticate ourselves with the user
to receive and sso token

1. Create a new Java class calledOpenQueueTutorial with a package openq

L} New Java Class M=
Java Class —
Create a new Java class, ('! . : D

Source Folder; Open_Queue_Tukarialfsrc

[]Enclosing tvpe:

Marne: CpenCueleTukarial
Modifiers: %) public () default
[]abstract []final

Superclass: java.lang, Ohject Browse, .,

Inkerfaces:

Which method stubs would vou like to create?
public skatic void main(Stringl] args)
[constructors from superclass
[]inherited abstract methods
Do wou want bo add comments? {Configure templates and default value here)

|:| Generate comments

w9

'-f?_,' Finish l [Cancel

Page 7

Open Queue Tutorial Avaya

Step 2 - Create the Service
Before we can call the methods on the service we must first point our application at the

WSDL location. To do this we must supply the hostname of the CCMS server and the port on
which the service is located, default is 9080.

1.

Create a global variable with the CCMS host hame, web service port and a variable
for the service.

static String host = "localhost:9080";
static OpenQ service = null;

Create a new method called createService.

public static void createService() throws
MalformedURLException, GetVersionFault({

String serviceUrl = "http://" + host +
"/SOAOI/services/OpenQ?wsdl";
URL url = new URL(serviceUrl);
service = new SOAOIOpenQ (url) .getOpenQ () ;

System.out.println ("createService () : service[" + (service
== null ?"null": service.getVersion (new GetVersionRequest())) + "1");

}

When this method is called successfully it will create a new service point to the
configured URL

Page 8

Open Queue Tutorial Avaya

Step 3 - Authenticate User
In this step we must authenticate our application with the CCMS service to receive an sso
token. This token is used in all subsequent method calls to keep track of the application
session.
1. Create the following global variables. These variables contain the username and
password for the application. The username is always OpenWsUser but the password
can be changed through the CCMS Server Configuration application

static String username = "OpenWsUser";
static String password = "Passwordl23";
static String domain = "open queue";

static SsoToken sso = null;

2. Create a new method called login

public static void login () {

try({
AuthenticationLevel details = new
AuthenticationLevel () ;

details.setUsername (username) ;
details.setPassword (password) ;
details.setDomain (domain) ;

sso = service.logln(details);

}catch (LogInFailedFault liex) {
System.out.println("A login error has
occured. This may indicate another application is currently
logged in.");

System.out.println("Please try again in a few
seconds.") ;

System.out.println("If the problem persists
add the value logout to forceably logout the existing session
i.e. SalesForceOpenQ '" + strFile +"' '" 4+ host + "'logout'");

System.out.println ("error[" +liex + "]1");

System.exit (0);

}
3. When this method is successfully called it supplies the username and password to the
service and receives an sso token in return.

Page 9

Open Queue Tutorial Avaya

Step 4 - Import the file

In this step we are going to open a text file called intrinsics.csv. This text file contains an
external Id for the contact that will be created and a series of intrinsics to be associated with
this contact.

An intrinsics is a key/value pair. These intrinsics offers application developers a way to
associate business information with a contact. This information can be used in routing
decisions or viewed by the agent when the contact is answered. Each key must have its own
unique name and can have any text value associated with it.

The following sample file will create two contacts with external Ids 1 and 2. Each of these
contacts will contain two intrinsics called intrinsic namel and intrinsic name2

id,intrinsic_namel, intrinsic_name2
1,intrinsic _valuel, intrinsic value2
2,intrinsic valuel, intrinsic_value2

1. In the main method add code to open the file and process each of the rows in the
intrinsics.csv file.

BufferedReader br = new BufferedReader (new
FileReader ("intrinsics.csv"));

String strLine = "";

StringTokenizer st = null;

IntrinsicArray intrinsicArray = new IntrinsicArray();
List<Intrinsic> intrinsics = intrinsicArray.getItem();

int lineNumber = 0, tokenNumber = 0;

String contactId = null;

Contact contact = null;

//read comma separated file line by line

while((strLine = br.readLine()) != null) {
lineNumber++;

//break comma separated line using ","

st = new StringTokenizer (strLine, ",");

while (st.hasMoreTokens ()) {

tokenNumber++;
intrinsics.clear();

// Process Header
if (lineNumber == 1) {
headerMap.put (tokenNumber,

st.nextToken ()) ;

}else/{
//display csv values

Page

10

Open Queue Tutorial Avaya

if (tokenNumber == 1) {

contactId = st.nextToken ()
lelse(

Intrinsic intrinsic = new

Intrinsic();
intrinsic.setKey ((String)headerMap.get (tokenNumber)) ;

intrinsic.setValue (st.nextToken());
intrinsic.setImmutable (true) ;

intrinsics.add(intrinsic);

}

}// end while

//reset token number

tokenNumber = 0;

Page

11

Open Queue Tutorial Avaya

Step 5 - Add the Contact

In this step we will add a new Open Queue contact for each external Id present in the
intrinsics.csv file. If a contact with a matching external Id exists in the Contact Center then
and exception will be thrown, otherwise a new contact will be created.

1.

Create a new method called addContact. The parameter OutOfProviderAddressName
indicates the source of where this contact came from, similar to a calling address, this
value is set to “SourceName” here.

public static Contact addContact (String id, IntrinsicArray
intrinsics) throws CreateOQContactFailedFault{

return service.createOQContact (id, "SourceName",
intrinsics, sso);

}

When this method is successfully called it will return the newly created contact.

Page

12

Open Queue Tutorial Avaya

Step 6 - Logout

Only one active session is allowed to utilize the Open Queue web service so it is important to
logout when the application is complete to free up resources. Applications can logout by
either supplying the sso token or by supplying the login in credentials. In this step we are
going to logout using login credentials to allow us to forcibly remove any older sessions.

1.

Create a new method logout.

public static void logout () {

try {
AuthenticationlLevel details = new
AuthenticationLevel () ;
details.setUsername (username) ;
details.setPassword (password) ;
details.setDomain (domain) ;

com.nortel.soa.oi.openg.types.LogOffSessionRequestType request
= new com.nortel.soa.oil.openg.types.LogOffSessionRequestType () ;
request.setAuthenticationLevel (details) ;
// log off session

service.logOffSession (request) ;

} catch (LogOffSessionFailedFault e) {
// Auto-generated catch block
e.printStackTrace () ;

}

When this method is successfully called the sso token will be invalidated. If the
application fails to logout the session will timeout after a specified period, the default
is 2 hours.

Step 7 - Putting it all together.
So now we have created all the methods we need to put it all together.

1.

The following is the complete listing for the main method

public static void main(String[] args) {
try({

if (args == null || args.length ==0) {
System.out.println ("default args[l] - host(["
+ host +"]1");
System.out.println ("OpenQueue Web Service
url[http://"™ + host + "]/SOAOI/services/OpenQ?wsdl");
}else({

if (args.length >=1) {
host args[1l];

}
}

// STEP 2 - Create the Service
createService() ;

Page

13

Open Queue Tutorial Avaya

// STEP 3 - Authenticate User
login();

// STEP 4 — Import the file
HashMap headerMap = new HashMap () ;

//create BufferedReader to read csv file
BufferedReader br = new BufferedReader (new
FileReader ("intrinsics.csv"));

String strLine = "";
StringTokenizer st = null;
IntrinsicArray intrinsicArray = new
IntrinsicArray () ;
List<Intrinsic> intrinsics = intrinsicArray.getItem();
int lineNumber = 0, tokenNumber = 0;

String contactId = null;
Contact contact = null;

//read comma separated file line by line
while((strLine = br.readLine()) != null) {

lineNumber++;
//break comma separated line using ","

st = new StringTokenizer (strLine, ",");

while (st.hasMoreTokens ()) {

tokenNumber++;
intrinsics.clear();

// Process Header
if (lineNumber == 1) {
headerMap.put (

tokenNumber,

st.nextToken()) ;

lelse{
//display csv values

if (tokenNumber == 1) {
contactId =
st.nextToken () ;
lelse(
Intrinsic intrinsic =
new Intrinsic();

intrinsic.setKey ((String)headerMap.get (tokenNumber)) ;
intrinsic.setValue (st.nextToken());

intrinsic.setImmutable (true) ;

intrinsics.add(intrinsic) ;

Page

14

Open Queue Tutorial Avaya

}

}// end while

// STEP 5 - Add the Contact
try({
// ignore the header
if (lineNumber > 1) {
contact =
addContact (contactId, intrinsicArray);

}

}catch (Exception ex) {
System.out.println ("Error: Unable
to Create contact with externalId[" + contactId +"], error[" +
ex.getMessage () + "]1");

}

if (contact != null) {
System.out.println ("created contact
id[" + contact.getContactId()+ "], externallId[" +
contact.getExternalContactId() + "]1.");
}

//reset token number
tokenNumber = 0;

}

catch (Exception ex) {
ex.printStackTrace () ;

}finally{

// STEP 6 - Logout
logout () ;

}

2. On successful completion of the method the following output should be seen on the

console

default args[l] - host[localhost:9080]

OpenQueue Web Service url[http://localhost:9080]/SOA0I/services/OpenQ?wsdl
createService () : service[com.nortel.soa.oi.cct.types.GetVersionResponse@l7b4703]

created contact i1id[4bf8f650-75ef-4fd1-891a-c9f29c2ed0fa], externallId[1l].
created contact id[fe71lbd4a-ad94-4691-a85d-f9%9ae3f0a0420], externalld[2].

3. Once the contact is created the contact will process it like any other contact and
ultimately should forward it on to any agent with the OpenQ contact type.

Page

15

