
Open Queue Tutorial Avaya

Page 1

Avaya Open Interfaces
Open Queue Tutorial

Open Queue Tutorial Avaya

Page 2

Open Queue Tutorial
This tutorial describes how to utilise the features provided by the Open Interfaces Open

Queue Web Services. It will show how to generate the necessary proxies to create a simple

application that will authenticate itself with the service and create a new Open Queue contact.

Once the application is launched it will login into the Open Queue web service and create

Open Queue contact for each row in the intrinsics.csv file.

The main procedures in this tutorial are:

 Action 1 : Create Project

 Action 2 : Create Web Service Proxy classes

 Action 3 : Create the Application

Open Queue Tutorial Avaya

Page 3

Tools Used
This tutorial was created using

 Avaya Aura Contact Center 7.0

 Apache CXF 2.2.5

 Eclipse Galileo

Open Queue Tutorial Avaya

Page 4

Creating the Application

Action 1 – Create Project

Launch Eclipse and create a new Java Project using the default settings.

1. Open Eclipse IDE

2. Select File > New > Java Project

3. Select Next

4. Enter Project Name Open_Queue_Tutorial and select a desired location

5. Select Next, Next and Finished

6. Add a new src folder : Right click on the project tab, Select New > Src Folder. Call

this new folder autogen.src.This is where our generated proxies will be stored.

Open Queue Tutorial Avaya

Page 5

Action 2 – Create Web Service Proxy classes

Applications can communicate with web service directly using SOAP messaging, for

simplicity we are going to generate proxy classes to abstract us away from the underlying

messaging. There are many different tools available to assist a developer in generating the

client proxies but in this example we are going to use CXF.

For this step we require that CXF is installed on your system and the CXF_HOME is

configured. Please refer to the CXF documentation for more details.

 Open a command window in the newly created autogen.src directory.

 Set the system PATH to the CXF bin directory

a. SET Path=%PATH%;%CXF_HOME%\bin;

 To generate the Proxies we use a tool called wsdl2java. This tool will generate the

proxies from the downloaded WSDL or by supplying the service URL. For this

application we will supply the url

http://localhost:9080/SOAOI/services/OpenQ?wsdl

http://localhost:9080/SOAOI/services/OpenQ?wsdl

Open Queue Tutorial Avaya

Page 6

 When the tool has completed you will see two new packages with a series of java

classes. After refreshing the project these packages can be seen in Eclipse/

Open Queue Tutorial Avaya

Page 7

Action 3 – Create the Application.

In this Step we are going to create a main class that will process a comma-separated values

file to create a series of contacts using the Open Queue web service. To call the Open Queue

web service you will typically need to perform the following steps.

 Create the Service – configure the proxies to point to the CCMS server hosting the

service.

 Login – Authenticate the application with the Web Service to retrieve an sso (single

sign on) token.

 Add the Contact – call the method to add a new contact

 Logout – logout of the service to conserve resources.

In this project we have added an additional step to process the csv file.

Step 1 - Create the Class
In this step we are going to create a new main class and authenticate ourselves with the user

to receive and sso token

1. Create a new Java class calledOpenQueueTutorial with a package openq

Open Queue Tutorial Avaya

Page 8

Step 2 - Create the Service
Before we can call the methods on the service we must first point our application at the

WSDL location. To do this we must supply the hostname of the CCMS server and the port on

which the service is located, default is 9080.

1. Create a global variable with the CCMS host name, web service port and a variable

for the service.

static String host = "localhost:9080";

 static OpenQ service = null;

2. Create a new method called createService.

 public static void createService() throws

MalformedURLException, GetVersionFault{

 String serviceUrl = "http://" + host +

"/SOAOI/services/OpenQ?wsdl";

 URL url = new URL(serviceUrl);

 service = new SOAOIOpenQ(url).getOpenQ();

 System.out.println("createService(): service[" + (service

== null ?"null": service.getVersion(new GetVersionRequest())) + "]");

 }

3. When this method is called successfully it will create a new service point to the

configured URL

Open Queue Tutorial Avaya

Page 9

Step 3 - Authenticate User
In this step we must authenticate our application with the CCMS service to receive an sso

token. This token is used in all subsequent method calls to keep track of the application

session.

1. Create the following global variables. These variables contain the username and

password for the application. The username is always OpenWsUser but the password

can be changed through the CCMS Server Configuration application
 static String username = "OpenWsUser";

 static String password = "Password123";

 static String domain = "open_queue";

 static SsoToken sso = null;

2. Create a new method called login
 public static void login(){

 try{

 AuthenticationLevel details = new

AuthenticationLevel();

 details.setUsername(username);

 details.setPassword(password);

 details.setDomain(domain);

 sso = service.logIn(details);

 }catch(LogInFailedFault liex){

 System.out.println("A login error has

occured. This may indicate another application is currently

logged in.");

 System.out.println("Please try again in a few

seconds.");

 System.out.println("If the problem persists

add the value logout to forceably logout the existing session

i.e. SalesForceOpenQ '" + strFile +"' '" + host + "'logout'");

 System.out.println("error[" +liex + "]");

 System.exit(0);

 }

 }

3. When this method is successfully called it supplies the username and password to the

service and receives an sso token in return.

Open Queue Tutorial Avaya

 Page
10

Step 4 – Import the file
In this step we are going to open a text file called intrinsics.csv. This text file contains an

external Id for the contact that will be created and a series of intrinsics to be associated with

this contact.

An intrinsics is a key/value pair. These intrinsics offers application developers a way to

associate business information with a contact. This information can be used in routing

decisions or viewed by the agent when the contact is answered. Each key must have its own

unique name and can have any text value associated with it.

The following sample file will create two contacts with external Ids 1 and 2. Each of these

contacts will contain two intrinsics called intrinsic_name1 and intrinsic_name2

id,intrinsic_name1, intrinsic_name2

1,intrinsic_value1, intrinsic_value2

2,intrinsic_value1, intrinsic_value2

1. In the main method add code to open the file and process each of the rows in the

intrinsics.csv file.
 BufferedReader br = new BufferedReader(new

FileReader("intrinsics.csv"));

 String strLine = "";

 StringTokenizer st = null;

 IntrinsicArray intrinsicArray = new IntrinsicArray();

 List<Intrinsic> intrinsics = intrinsicArray.getItem();

 int lineNumber = 0, tokenNumber = 0;

 String contactId = null;

 Contact contact = null;

 //read comma separated file line by line

 while((strLine = br.readLine()) != null) {

 lineNumber++;

 //break comma separated line using ","

 st = new StringTokenizer(strLine, ",");

 while(st.hasMoreTokens()){

 tokenNumber++;

 intrinsics.clear();

 // Process Header

 if(lineNumber == 1){

 headerMap.put(tokenNumber,

st.nextToken());

 }else{

 //display csv values

Open Queue Tutorial Avaya

 Page
11

 if(tokenNumber == 1){

 contactId = st.nextToken();

 }else{

 Intrinsic intrinsic = new

Intrinsic();

intrinsic.setKey((String)headerMap.get(tokenNumber));

intrinsic.setValue(st.nextToken());

 intrinsic.setImmutable(true);

 intrinsics.add(intrinsic);

 }

 }

 }// end while

 //reset token number

 tokenNumber = 0;

 }

Open Queue Tutorial Avaya

 Page
12

Step 5 – Add the Contact
In this step we will add a new Open Queue contact for each external Id present in the

intrinsics.csv file. If a contact with a matching external Id exists in the Contact Center then

and exception will be thrown, otherwise a new contact will be created.

1. Create a new method called addContact. The parameter OutOfProviderAddressName

indicates the source of where this contact came from, similar to a calling address, this

value is set to “SourceName” here.
 public static Contact addContact(String id, IntrinsicArray

intrinsics) throws CreateOQContactFailedFault{

 return service.createOQContact(id, "SourceName",

intrinsics, sso);

 }

2. When this method is successfully called it will return the newly created contact.

Open Queue Tutorial Avaya

 Page
13

Step 6 – Logout
Only one active session is allowed to utilize the Open Queue web service so it is important to

logout when the application is complete to free up resources. Applications can logout by

either supplying the sso token or by supplying the login in credentials. In this step we are

going to logout using login credentials to allow us to forcibly remove any older sessions.

1. Create a new method logout.
 public static void logout(){

 try {

 AuthenticationLevel details = new

AuthenticationLevel();

 details.setUsername(username);

 details.setPassword(password);

 details.setDomain(domain);

 com.nortel.soa.oi.openq.types.LogOffSessionRequestType request

= new com.nortel.soa.oi.openq.types.LogOffSessionRequestType();

 request.setAuthenticationLevel(details);

 // log off session

 service.logOffSession(request);

 } catch (LogOffSessionFailedFault e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

2. When this method is successfully called the sso token will be invalidated. If the

application fails to logout the session will timeout after a specified period, the default

is 2 hours.

Step 7 – Putting it all together.
So now we have created all the methods we need to put it all together.

1. The following is the complete listing for the main method
public static void main(String[] args) {

 try{

 if(args == null || args.length ==0){

 System.out.println("default args[1] - host["

+ host +"]");

 System.out.println("OpenQueue Web Service

url[http://" + host + "]/SOAOI/services/OpenQ?wsdl");

 }else{

 if(args.length >=1){

 host = args[1];

 }

 }

 // STEP 2 - Create the Service

 createService();

Open Queue Tutorial Avaya

 Page
14

 // STEP 3 - Authenticate User

 login();

 // STEP 4 – Import the file

 HashMap headerMap = new HashMap();

 //create BufferedReader to read csv file

 BufferedReader br = new BufferedReader(new

FileReader("intrinsics.csv"));

 String strLine = "";

 StringTokenizer st = null;

 IntrinsicArray intrinsicArray = new

IntrinsicArray();

 List<Intrinsic> intrinsics = intrinsicArray.getItem();

 int lineNumber = 0, tokenNumber = 0;

 String contactId = null;

 Contact contact = null;

 //read comma separated file line by line

 while((strLine = br.readLine()) != null) {

 lineNumber++;

 //break comma separated line using ","

 st = new StringTokenizer(strLine, ",");

 while(st.hasMoreTokens()){

 tokenNumber++;

 intrinsics.clear();

 // Process Header

 if(lineNumber == 1){

 headerMap.put(tokenNumber,

st.nextToken());

 }else{

 //display csv values

 if(tokenNumber == 1){

 contactId =

st.nextToken();

 }else{

 Intrinsic intrinsic =

new Intrinsic();

intrinsic.setKey((String)headerMap.get(tokenNumber));

intrinsic.setValue(st.nextToken());

intrinsic.setImmutable(true);

intrinsics.add(intrinsic);

Open Queue Tutorial Avaya

 Page
15

 }

 }

 }// end while

 // STEP 5 – Add the Contact

 try{

 // ignore the header

 if(lineNumber > 1){

 contact =

addContact(contactId, intrinsicArray);

 }

 }catch(Exception ex){

 System.out.println("Error: Unable

to Create contact with externalId[" + contactId +"], error[" +

ex.getMessage() + "]");

 }

 if(contact != null){

 System.out.println("created contact

id[" + contact.getContactId()+ "], externalId[" +

contact.getExternalContactId() + "].");

 }

 //reset token number

 tokenNumber = 0;

 }

 }

 catch(Exception ex){

 ex.printStackTrace();

 }finally{

 // STEP 6 – Logout

 logout();

 }

 }

2. On successful completion of the method the following output should be seen on the

console
default args[1] - host[localhost:9080]

OpenQueue Web Service url[http://localhost:9080]/SOAOI/services/OpenQ?wsdl

createService(): service[com.nortel.soa.oi.cct.types.GetVersionResponse@17b4703]

created contact id[4bf8f650-75ef-4fd1-891a-c9f29c2ed0fa], externalId[1].

created contact id[fe71bd4a-ad94-4691-a85d-f9ae3f0a0420], externalId[2].

3. Once the contact is created the contact will process it like any other contact and

ultimately should forward it on to any agent with the OpenQ contact type.

