Email Open Interfaces — Developing compliant web services

1. Introduction
Format
2.1 WSDL Format
2.2 Method Format
2.3 Flattening .NET Web Services WSDLs
Administration
Timeouts and capacity
Log messages
Sample application
Debugging with SoapUl

No v s w

1. Introduction

You can develop custom web services that the Email Manager can call when an email is processed.
Custom web services can perform tasks such as manipulating the originating email and modifying the
rule routing options. The Email Open Interfaces package in the Email Manager dynamically creates a
Web service client based on the WSDL of your web service.

AACC Email Open Interfaces have been designed to work with any web services that follow the
specifications outlined in this document. Although this document provides some specific information for
developing compliant web services in .NET, this feature is not restricted to using .NET applications and
has also been tested against Java EE and Cache web services.

The web services must follow a set format to make this possible and this format, as well as other
considerations, is outlined below.

2.1 WSDL Format

The web service must produce a single flat file WSDL; the use of imports is not supported. Using imports
essentially causes the WSDL to be split into a number of separate files, the main WSDL and a number of
nested ones, instead of a single file.

The .NET Framework 4.5 provides a single WSDL option of the box, however if you are using an older
version of .NET then it will be necessary to carry out some additional steps to flatten the WSDL. Section
2.3 details these additional steps.

You must use basic HTTP binding. The following example from a .NET Web.Config shows the correct
HTTP binding configuration:

<endpoint address="basic" binding="basicHttpBinding" bindingConfiguration=
contract="EmailManagerService.lEmailFilterService">

<identity>
<dns value="localhost" />
</identity>
</endpoint>

2.2 Method Formatting

The methods on the web service must follow a set format. Non-compliant methods may exist on the
web services but they will not be considered for use by Email Open Interfaces.

e Methods must accept as an input parameter an array of strings (String[])
e Methods must return an array of strings as the return value (String[])

Example of a valid method signature:

public string[] GetTrackingNo(string[] inputParameters)

Example of an invalid method signature:

public int GetTrackingNo(string Customer) — This will not work.

Methods must always use string arrays, even if the method accepts a single string or returns a single
string from the web service.

2.3 Flattening .NET Web Services WSDLs

By default .NET projects generate a WSDL with nested internal WSDLs. When using .NET 4.5, you have
the option of choosing a single WSDL or using one with imports. You must choose the ?singleWsd|I
option. The use of a WSDL with import statements is not supported in Email Open Interfaces.

EmailOpenlInterfacesService Service

You have created a service.

To test this service, you will need to create a client and use it to call the service. You can do this using the svcutil.exe tool from the command line with the following syntax:

svcutil.exe http://localho=st:49932/FmailOpeninterfacesService. svc?wsdl

2.3.1 Single WSDL option

The smgle WSDL link will return a smgle WSDL file, contalnlng all the schemas in it:

tada\:a" xml
125 . xmlsoap.org/wsdl/soapl2/" xmlns:w
T T T

://tempuri.org/">...</
ialization/"™ attributeFormDefaylc="q

lization/Arrays"” elementFormlefault

Mt,pmt,11=aaac
putMessage">.
tpu tllﬂaaac‘ﬂ”) . 7adl :message>
tMessage”>. .. .</wsdl:message>
tputMessage">...</wadl :message>

dl:imessage>

p<wadl: T
p<wsdl:message nam
p <wsdl:message nam
» <wsdl:port
» < »3:‘1,

" type="tns:IEmailOpenInterfacesService"s...</wsdl:bin

ding>
/wadl:zervice>

/wadl:definicions>

2.3.2 Generated single file WSDL

If you are using older versions of .NET then this option is not available. There is however a number of
methods to ‘flatten” a WCF WSDL into a single file, including using a custom WCF service host
(http://blogs.msdn.com/b/dotnetinterop/archive/2008/09/23/flatten-your-wsdl-with-this-custom-
servicehost-for-wcf.aspx) or using WCFExtras (http://wcfextras.codeplex.com/).

WCFExtras is a collection of useful WCF extensions and you can easily add this to your project and use it
to create a single WSDL.

Follow the following steps to do so:

1. Get the recommended download from the WCFExtras web site.

Add a reference to WCFExtras.dll to your project. This DLL will also need to be deployed with the
web service.

3. Update the configuration file to reference the DLL:

Within the <system.serviceModel> </system.serviceModel> tags add a reference to the DLL:

<extensions>

<behaviorExtensions>

<add name="wsdIExtensions" type="WCFExtras.Wsdl.WsdIExtensionsConfig,

WCFExtras, Version=1.0.0.0, Culture=neutral, PublickeyToken=null"/>
</behaviorExtensions>

</extensions>

4. Update the configuration file to set the singlefile flag to true:
This is done by adding a new endpoint behavior within the <behaviors></behaviors> tag:

<endpointBehaviors>
<behavior name="WSDL.SingleFileWsdlEndpointBehavior" address="basic">

<wsdlExtensions singleFile="True"/>
</behavior>
</endpointBehaviors>

5. Update the configuration file to add a reference to this behavior to the endpoint:

<endpoint address="basic" binding="basicHttpBinding" bindingConfiguration=""
behaviorConfiguration="WSDL.SingleFileWsdIEndpointBehavior"
contract="EmailManagerService.lEmailFilterService">
<identity>
<dns value="localhost" />
</identity>
</endpoint>

Note: the address for the basic HTTP binding and the behavior should match, both are set to basic in this
example.

3. Administration

The administration of this feature is done in the CCMM Administration application. For more
information about the Email Open Interfaces Administration see Avaya Aura®Contact Center Server
Administration (44400-610).

You can use the Discover button on this page to find the valid methods on the web service:

A\ CCMM Administration = =

Open Interfaces ﬁ\

AVAyA WSDL URL T

| http://10.134.32.113:8731/Design_Time_Addresses/OpenlnterfacesHostExample/Service1/7wsd|

HHEmal I http://135.60.146,158:8731/Design_Time_Addresses/OpenlnterfacesHostExample/Servicel/7wsdl
) Recipient Addresses I
Outgoing E-mail | http:/lacalnost/EmailServices/Senvicel sve?wsdl
A Ruie Groups | http://lacalhost/ConorWs/GeneralWebServices asmx?wsdl
£3] Keyword Groups |
54 Sender Groups | hitpy//135.60.146.38:8731/Design_Time_Addresses/OpenlnterfacesHostExample/Servicel/Twsdl

@ Prepared Respanses
@ Auto-Suggest Promotion |

€ Open Interfaces | |
c T Page | 1 of 1
(®) supenvisor Approvals i3] | pese - |
System Rules L New Edit Delete
v b
: - N
gi"e[:g SE;‘;”QS i Open Interfaces method discovery —c—
1 view Repo
(WebSenvidl 11 fallowing 17 methods ware retrieved...
n | pWSOLDE | | add ame
E-mail wsDL U [| DeleteCreditCardNumber . e/Servicel/Pwsdl
[T | DetectabusiveMail E
eledscaens: Methods [[PrioritiseBasedOnFromaddress
. DetectAll| | [[GetCustomerd
GetCustyl '] |GetTrackingld
- GetTrac| i = -
Getagen||
Voice Mail s] [i I [Eanec) I
Fax .

Scanned Documents Edit Delete

Text Messaging (SMS)

General Administration

User: User | Server Time: 11:42 | Status:

3.1 Method discovery

4. Timeouts and capacity

The Email Manager includes a client side timeout mechanism. When the Email Manager calls a web
service it will wait a maximum of one minute for a response. If it does not receive a response in that
time then it will abort the call. If AACC is configured to call an open interface web service for a high
percentage of the emails being processed and if these calls are taking a relatively long time to return
then this will have the effect of slowing down the processing of emails on the CCMM server. This
reduces the capacity of Email Manager to process emails from the server. This should be taken into
account for all customer sites but particularly for ones running at a medium to high traffic level.

5. Log messages

The following are the list of relevant log messages that will be logged to the Email Manager log file.

Log level Event ID Log message
DEBUG 14186 | Create open interfaces result set
INFO 14187 | No parameters were returned from the web service
Size mismatch in the number of parameters returned from the web
INFO 14188 | service, expected %1 but received %2
INFO 14189 | Null list returned from the web service
DEBUG 14190 | Parse WSDL
INFO 14191 | Could not get WSDL definition
DEBUG 14192 | Get WSDL definition for %1
INFO 14193 | Exception getting WSDL definition: %1
INFO 14194 | Exception parsing WSDL envelope header: %1
DEBUG 14195 | Method parsed: %1
INFO 14196 | Method could not be parsed: %1
INFO 14197 | All methods were parsed
INFO 14198 | Not all methods were parsed
DEBUG 14199 | Method '%1' could not be matching to any binding operation
DEBUG 14200 | Exception parsing method '%1': %2
DEBUG 14201 | Open Interfaces Engine: %1
DEBUG 14202 | Load data into the open interface engine
DEBUG 14203 | Number of web services retrieved from database: %1
DEBUG 14204 | Load of open interface engine complete, result: %1
DEBUG 14205 | Reload open interface engine
DEBUG 14206 | Call method: %1 (ID: %2)
DEBUG 14207 | This web service method has already been parsed successfully
DEBUG 14208 | This web service has not been parsed, attempt to do so now
DEBUG 14209 | Result of attempted parsing: %1
INFO 14210 | Web service could not be parsed so it cannot be called at this time
INFO 14211 | No web service found for this ID: %1
DEBUG 14212 | Unknown input parameter type, %1

DEBUG 14213 | Web service invoker: create service

DEBUG 14214 | Web service invoker: create dispatch

DEBUG 14215 | Web service invoker: create request

DEBUG 14216 | Web service invoker: add input parameters to request

DEBUG 14217 | Web service invoker: process reply

INFO 14218 | Web service invoker: exception processing reply

DEBUG 14219 | Web service invoker: call method %1

DEBUG 14220 | Call open interface engine with method ID: %1

DEBUG 14221 | Result Set: %1

INFO 14222 | Method not found, cannot call open interfaces

DEBUG 14223 | Map open interfaces result set to mail

DEBUG 14224 | Map output parameter %1 to mail

INFO 14225 | Unknown output parameter type: %1

DEBUG 14226 | Null value returned from web service, make no change

INFO 14227 | Open Interfaces result set is empty

INFO 14228 | Exception reading open interfaces last modified time: %1

DEBUG 14229 | Reload of open interfaces web services needed
Exception reading the open interfaces timeout properties form the

INFO 14285 | mailservice properties file

DEBUG 14286 | Open interfaces timeout value: %1

6. Sample application

The sample application has been developed with Visual Studio 2012 and uses .NET Framework 4.5. It is a
WCEF project which may be hosted in IIS. It contains 4 sample methods. These contain shell
implementations and are intended to be used for illustrative purposes only.

Project Name: EmailOpenlinterfacesSampleWebService
URL of the WSDL: http://localhost:49932/EmailOpeninterfacesService.svc?singleWsdl
Sample methods:

1. PrioritiseBasedOnFromAddress

If an email has a from address containing '@avaya.com' then set the priority level to 1 and
append text to the subject to indicate that the email is of a high priority. If the from address
does not contain ‘@avaya.com’ then set the priority to 5 and append text to the subject to
indicate that the email is of a lower priority.

Input parameters:

e From Address
e Subject

Output parameters:

e Subject
e Priority

2. DeleteCreditCardNumber
Search the body of an email for a credit card number and if found then scrub them and return
the modified email.

Credit card formats that will be detected are:
= 1234-1234-1234-1234
= 1234123412341234
= 1234 123412341234

Input parameters:

e Plain text body of email
e HTML body of email

Output parameters:

e Plain text body of email
e HTML body of email

3. GetTrackingld

Searches the subject for a tracking ID in the format AVAYA1234 and if found returns a custom
field. This custom field can then be used to launch a screen pop.

Input parameters:
e Subject
Output parameters:

e Custom field name
e Custom field value

4. Translate
This method performs a translation of the supplied email by making calls to Microsoft
Translator. You need to sign up to the Microsoft Translator API to receive a valid client ID and
client secret code. These then need to be added to the Translator class for this method to work.

Input parameters:

e Plain text body of email

e HTML body of email

e Subject

Output parameters:

e Plain text body of email

e HTML body of email

e Subject

7. Debugging with SoapUl

SoapUl is a free and open source solution for testing web services. You can use it to help test and debug
the web services you develop for Email Open Interfaces. There is other similar software available which

may also be used.

If the web service you have developed in not working in the way you expected it to then the following

steps can be taken to test it.

1. Test the web service using the WCF Test Client. This only applies if you are using a .NET

application.
F ™
WCF Test Client [E= e
File Tools Help
£ My Service Projects GetTrackingld |
E|@ hitp:/ocalhost:49932/EmailOpeninterac
B "‘3 |Emaildpenintefaces Service (BasicHi| || Request
@ PriortiseBasedOn From Address ()
@ DeleteCrediCardNumber] Name Valug Type
e GetTrackingld() 4 inputParameters length=1 System.String[]
@ Transiate 0] AVAYA1234 System.Sting |
‘D Corfig File
__—) St 3w
MName Value Type
4 (retum) length=2 System.String]
0 "Avaya_Tracking_|D" System. String
["1234" System. String
4 1 | b Formatted |XM|— |

Service invocation completed.

7.1 Test the web service using the WCF Test Client

2. Add the web service to a new project in SoapUlL.

File Tools Desktop Help

ERSEEN DN RS -

Projects
= @l ErmaildpeninterfacesService
= X BasicHttpBinding_IEmailOpeninterfacesService
; ~ 2 DeleteCreditCardMumber
’;-’ GetTrackingld
it
- PrioritiseBasedOnFromAddress
o Translate

Mawigator

7.2 Adding the web service to SoapUI

3. Test the web service using SoapUl.

The application will auto-generate the SOAP envelope that the web service is expecting. You can
then add appropriate values before calling the web service. Note the input array of strings.

a¢ Requestl

P =i O FEa | |http:.-".-"Iu:ucalhust:49932.fEmaiIOpenInterfacesService.svc

[l =zpapenv:Envelope xminz:soapenv="http://schemas. xmizoap.org/soap/envelope xminz:tem="http./tempuri.org’™ xmins:arr= hitt) = | :
=goapenv: Header/=
El =socapenv:Body=
= <tem:GetTrackingld=
=/-Optional—=
= =tem:inputParameters=
<!--Zero or more repetitions:—-=
=arr:string=AVAYA1234</arrstring=
=/teminputParameters=
=/tem:GetTrackingld=
=/zoapenv:Body=
=/zpapenv:Envelope=

Rawe | XML

7.3 Using SOAP envelope generated by SoapU|

The web service should respond with a similar SOAP envelope.

[El «s:Envelope xmins:s="hitp://schemas. xmisoap.org/soap/envelope™
El ==:Body=
= <GetTrackingldResponse xmins="http:Mtempuri.org/=
= =GefTrackingldResult xmins.a="http.//ischemas.microsoft.com/Z2003/10/3erialization/Arrays”™ xmins:i="http.ii
=a:string=~Avaya_Tracking_ID=/a:=tring=
<a:string=1234</a:string=
=/GetTrackingldResult=
=/GetTrackingldRezponze=
=iz Body=
=/z:Envelope=

Rawe | HhAL

7.4 Response from the web service using SOAP envelope generated by SoapUI

At the point if the web service is responding as expected using SoapUI but the call from Email Manager
is not working as expected then take the SOAP envelope that the Email Manager has generated, paste it
into a new request in SoapUl and see if you get a valid response. Email Manager logs the SOAP envelope
it generates to its log file, CCMM_EmailManager.log.

Email Manager log message (event ID 24055):

2013-10-18 10:57:57.485 +0100 EmailManager:MH 5284:1 24055 Debug None

SOAP Envelope: <SOAP-ENV:Envelope xmIns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"><SOAP-ENV:Header/><SOAP-
ENV:Body><ema:GetTrackingld xmIns:ema="http://tempuri.org/"><ema:inputParameters><a:string
xmlins:a="http://schemas.microsoft.com/2003/10/Serialization/Arrays">subject
avayal234</a:string></ema:inputParameters></ema:GetTrackingld></SOAP-ENV:Body></SOAP-
ENV:Envelope>

i? Using EM generated envelope

w

L EODO G . http:/flocalhost:49932/Email Dpenlnterfaces5ervice.sve

El =304AP-ENV:Envelope xmins: S04AP-ENVY="http:schemas xmisoap.org/soap/envelopel™s —
=50AP-ENY Header/=
Bl «S0AP-ENV:Body=
=l <ema:GetTrackingld xmins:ema="http./tempuri.org/=
= <gma:inputParameterg=
=a:string xminz:a="http://zchemas.microsoft. com 20031 0/Serialization/&rrays"=subject avayal1234</a:string=
</ema:inputParameters=
</ema:GetTrackingld=
=/S0OAP-ENY:Body=
=/S0OAP-ENV.Envelope=

Rawy | 3hL

7.5 Using SOAP envelope generated by the Email Manager

Raw | XML

B
=]
B
B

<g.Envelope xminz.2="http://schemas.xmizcap.oro/scap/envelope™=
=2 Body=
=GetTrackingldResponse xminz="http:Mempuri.org/=
<GefTrackingldResult xming:a="http://achemas. microsoft.com2003/10/Serialization/Arrays”™ Zmine:i="http: i
=a:string=Avaya_Tracking_ID=/a:string=
=a:string=1234</a:string=
</GetTrackingldResult-
=/GetTrackingldRezponze=
<i=z:Body=
=/z:Envelope=

7.6 Response from web service using SOAP envelope generated by the Email Manager

