

Avaya Aura® Contact Center / Avaya

Contact Center Select

Real-time Data API Programmer’s Guide

Release 7.1.1

Issue 0.1

 October 2020

© 2020 Avaya Inc.

All Rights Reserved.

Notice

While reasonable efforts have been made to ensure that the
information in this document is complete and accurate at the
time of printing, Avaya assumes no liability for any errors.
Avaya reserves the right to make changes and corrections to
the information in this document without the obligation to notify
any person or organization of such changes.

Documentation disclaimer

“Documentation” means information published by Avaya in
varying mediums which may include product information,
operating instructions and performance specifications that
Avaya may generally make available to users of its products
and Hosted Services. Documentation does not include
marketing materials. Avaya shall not be responsible for any
modifications, additions, or deletions to the original Published
version of documentation unless such modifications, additions,
or deletions were performed by Avaya. End User agrees to
indemnify and hold harmless Avaya, Avaya's agents, servants
and employees against all claims, lawsuits, demands and
judgments arising out of, or in connection with, subsequent
modifications, additions or deletions to this documentation, to
the extent made by End User.

Link disclaimer

Avaya is not responsible for the contents or reliability of any
linked websites referenced within this site or documentation
provided by Avaya. Avaya is not responsible for the accuracy
of any information, statement or content provided on these
sites and does not necessarily endorse the products, services,
or information described or offered within them. Avaya does not
guarantee that these links will work all the time and has no
control over the availability of the linked pages.

Warranty

Avaya provides a limited warranty on Avaya hardware and
software. Refer to your sales agreement to establish the terms
of the limited warranty. In addition, Avaya’s standard warranty
language, as well as information regarding support for this
product while under warranty is available to Avaya customers
and other parties through the Avaya Support website:
http://support.avaya.com or such successor site as designated
by Avaya. Please note that if you acquired the product(s) from
an authorized Avaya Channel

Partner outside of the United States and Canada, the warranty
is provided to you by said Avaya Channel Partner and not by
Avaya.

Licenses

THE SOFTWARE LICENSE TERMS AVAILABLE ON THE
AVAYAWEBSITE,
HTTP://SUPPORT.AVAYA.COM/LICENSEINFO

OR SUCH SUCCESSOR SITE AS DESIGNATED BY AVAYA,
ARE APPLICABLE TO ANYONE WHO DOWNLOADS, USES
AND/OR INSTALLS AVAYA SOFTWARE, PURCHASED
FROM AVAYA INC., ANY AVAYA AFFILIATE, OR AN AVAYA
CHANNEL PARTNER (AS APPLICABLE) UNDER A
COMMERCIAL AGREEMENT WITH AVAYA OR AN AVAYA
CHANNEL PARTNER. UNLESS OTHERWISE AGREED TO
BY AVAYA IN WRITING, AVAYA DOES NOT EXTEND THIS
LICENSE IF THE SOFTWARE WAS OBTAINED FROM
ANYONE OTHER THAN AVAYA, AN AVAYA AFFILIATE OR
AN AVAYA CHANNEL PARTNER; AVAYA RESERVES THE
RIGHT TO TAKE LEGAL ACTION AGAINST YOU AND
ANYONE ELSE USING OR SELLING THE SOFTWARE

WITHOUT A LICENSE. BY INSTALLING, DOWNLOADING
OR USING THE SOFTWARE, OR AUTHORIZING OTHERS
TO DO SO, YOU, ON BEHALF OF YOURSELF AND THE
ENTITY FOR WHOM YOU ARE INSTALLING,
DOWNLOADING OR USING THE SOFTWARE
(HEREINAFTER REFERRED TO INTERCHANGEABLY AS
“YOU” AND “END USER”), AGREE TO THESE TERMS AND
CONDITIONS AND CREATE A BINDING CONTRACT
BETWEEN YOU AND AVAYA INC. OR THE APPLICABLE

AVAYA AFFILIATE (“AVAYA”).

Avaya grants you a license within the scope of the license
types described below, with the exception of Heritage Nortel
Software, for which the scope of the license is detailed below.
Where the order documentation does not expressly identify a
license type, the applicable license will be a Designated
System License. The applicable number of licenses and units
of capacity for which the license is granted will be one (1),
unless a different number of licenses or units of capacity is
specified in the documentation or other materials available to
you. “Designated Processor” means a single stand-alone
computing device. “Server” means a Designated Processor that
hosts a software application to be accessed by multiple users.

License type(s)

Named User License (NU). You may: (i) install and use the
Software on a single Designated Processor or Server per
authorized Named User (defined below); or (ii) install and use
the Software on a Server so long as only authorized Named
Users access and use the Software. “Named User”, means a
user or device that has been expressly authorized by Avaya to
access and use the Software. At Avaya’s sole discretion, a
“Named User” may be, without limitation, designated by name,
corporate function (e.g., webmaster or helpdesk), an e-mail or
voice mail account in the name of a person or corporate
function, or a directory entry in the administrative database
utilized by the Software that permits one user to interface with
the Software.

Copyright

Except where expressly stated otherwise, no use should be
made of materials on this site, the Documentation, Software,
Hosted Service, or hardware provided by Avaya. All content on
this site, the documentation, Hosted Service, and the Product
provided by Avaya including the selection, arrangement and
design of the content is owned either by Avaya or its licensors
and is protected by copyright and other intellectual property
laws including the sui generis rights relating to the protection of
databases. You may

not modify, copy, reproduce, republish, upload, post, transmit
or distribute in any way any content, in whole or in part,
including any code and software unless expressly authorized
by Avaya. Unauthorized reproduction, transmission,
dissemination, storage, and or use without the express written
consent of Avaya can be a criminal, as well as a civil offense
under the applicable law.

Third Party Components

“Third Party Components” mean certain software programs or
portions thereof included in the Software or Hosted Service
may contain software (including open source software)
distributed under third party agreements (“Third Party
Components”), which contain terms regarding the rights to use
certain portions of the Software (“Third Party Terms”). As
required, information regarding distributed Linux OS source
code (for those Products that have distributed Linux OS source
code) and identifying the copyright holders of the Third Party
Components and the Third Party Terms that apply is available
in the Documentation or on Avaya’s website at:

Real-time Data API Programmer’s Guide 3

http://support.avaya.com/Copyright or such successor site as
designated by Avaya. You agree to the Third Party Terms for
any such Third Party Components.

THIS PRODUCT IS LICENSED UNDER THE AVC PATENT
PORTFOLIO LICENSE FOR THE PERSONAL USE OF A
CONSUMER OR OTHER USES IN WHICH IT DOES NOT
RECEIVE REMUNERATION TO (i) ENCODE VIDEO IN
COMPLIANCE WITH THE AVC STANDARD (“AVC VIDEO”)
AND/OR (ii) DECODE AVC VIDEO THAT WAS ENCODED BY
A CONSUMER ENGAGED IN A PERSONAL ACTIVITY
AND/OR WAS OBTAINED FROM A VIDEO PROVIDER
LICENSED TO PROVIDE AVC VIDEO. NO LICENSE IS
GRANTED OR SHALL BE IMPLIED FOR ANY OTHER USE.
ADDITIONAL INFORMATION MAY BE OBTAINED FROM
MPEG LA, L.L.C. SEE HTTP://WWW.MPEGLA.COM.

Note to Service Provider

The Product or Hosted Service may use Third Party
Components subject to Third Party Terms that do not allow
hosting and require a Service Provider to be independently
licensed for such purpose. It is your responsibility to obtain
such licensing.

Preventing Toll Fraud

“Toll Fraud” is the unauthorized use of your
telecommunications system by an unauthorized party (for
example, a person who is not a corporate employee, agent,
subcontractor, or is not working on your company's behalf). Be
aware that there can be a risk of Toll Fraud associated with
your system and that, if Toll Fraud occurs, it can result in
substantial additional charges for your telecommunications
services.

Avaya Toll Fraud intervention

If you suspect that you are being victimized by Toll Fraud and
you need technical assistance or support, call Technical
Service Center Toll Fraud Intervention Hotline at +1-800-643-
2353 for the United States and Canada. For additional support
telephone numbers, see the Avaya Support website:
http://support.avaya.com or such successor site as designated
by Avaya. Suspected security vulnerabilities with Avaya
products should be reported to Avaya by sending mail to:
securityalerts@avaya.com.

Trademarks

The trademarks, logos and service marks (“Marks”) displayed
in this site, the Documentation, Hosted Service(s), and
Product(s) provided by Avaya are the registered or
unregistered Marks of Avaya, its affiliates, or other third parties.
Users are not permitted to use such Marks without prior written
consent from Avaya or such third party which may own the
Mark. Nothing contained in this site, the Documentation,
Hosted Service(s) and Product(s) should be construed as
granting, by implication, estoppel, or otherwise, any license or
right in and to the Marks without the express written permission
of Avaya or the applicable third party.

Avaya is a registered trademark of Avaya Inc.

All non-Avaya trademarks are the property of their respective
owners. Linux® is the registered trademark of Linus Torvalds in
the U.S. and other countries.

All non-Avaya trademarks are the property of their respective
owners, and “Linux” is a registered trademark of Linus
Torvalds.

Downloading Documentation

For the most current versions of Documentation, see the Avaya
Support website: http://support.avaya.com or such successor
site as designated by Avaya.

Contact Avaya Support

See the Avaya Support website: http://support.avaya.com for
Product or Hosted Service notices and articles, or to report a
problem with your Avaya Product or Hosted Service. For a list
of support telephone numbers and contact addresses, go to the
Avaya Support website: http://support.avaya.com (or such
successor site as designated by Avaya), scroll to the bottom of
the page, and select Contact Avaya Support.

Real-time Data API Programmer’s Guide 4

Contents

Chapter 1: Introduction ... 6

Purpose ... 6

Intended audience ... 6

Support .. 6

Chapter 2: Overview .. 7

Real-time statistics .. 7

Obtaining real-time data ... 8

Update values .. 8

API summary ... 8

Data element storage functions .. 9

Query description functions .. 9

Data access functions .. 10

Data request functions ... 10

Preprocessing and postprocessing functions .. 11

Communication failure ... 12

Debug functions ... 12

Chapter 3: Installation ... 13

Development Environment ... 13

Execution Environment .. 13

Unicode / ANSI Flavours .. 13

Installing the RTDSDK ... 14

Migrating Existing RTDAPI Applications ... 14

Chapter 4: Real-time statistics ... 15

Introduction .. 15

Table definitions .. 15

Application statistics... 16

Skillset statistics .. 19

Agent statistics .. 23

Nodal statistics .. 26

IVR statistics .. 27

Route statistics .. 28

Chapter 5: Real-time API definition ... 31

Type definitions ... 31

Data element storage functions ... 31

Value functions .. 31

Name functions .. 32

Real-time Data API Programmer’s Guide 5

Query description functions .. 33

Data access functions .. 40

Data request functions ... 42

Preprocessing and postprocessing functions .. 46

Debug functions ... 51

Error codes .. 51

Chapter 6: Sample Application .. 55

Introduction .. 55

Application design ... 55

Basic skeleton ... 55

Setup query ... 56

Callback function ... 57

Source Code Description ... 58

Programming tips .. 60

Real-time Data API Programmer’s Guide 6

Chapter 1: Introduction

Purpose
This document provides information about the Avaya Aura Contact Center / Avaya Contact Center
Select (AACC/ACCS) Real-time Data API (RTDAPI).

Intended audience
This document is intended for people who want to use the AACC/ACCS RTDAPI. It is primarily
aimed at the software designers and developers responsible for developing RTDAPI applications.

Support
Visit the Avaya Support website at http://support.avaya.com for the most up-to-date AACC/ACCS
documentation, product notices, and knowledge articles. You can also search for release notes,
downloads, and resolutions to issues. Use the online service request system to create a service
request. Chat with live agents to get answers to questions, or request an agent to connect you to a
support team if an issue requires additional expertise.

Real-time Data API Programmer’s
Guide

Chapter 2: Overview

This programmer’s guide describes how to use the Real-time Data (RTD) Application Programming
Interface (API). It documents the functions and data structures that enable software developers to
develop displays and agent desktop applications.

This document is applicable to the RTDAPI available in AACC/ACCS 7.

Real-time statistics
During normal operation, AACC/ACCS generates a variety of real-time statistics. The RTDAPI
provides these statistics to applications using a C programming interface. The Basic Status
Reporting package contains data from the following tables:

1. Application statistics
2. Skillset statistics
3. Agent statistics
4. Nodal statistics
5. IVR statistics
6. Route statistics

Each type of statistic is collected in two different ways—interval-to-date and moving window. The
interval used for interval-to-date calculations is user-configurable in 15-minute increments from 15
minutes to 24 hours. The interval used for moving window calculations is predefined to be 10
minutes.

API architecture

The RTDAPI supports building 32-bit applications that run on Microsoft Windows operating
systems.

- An application built using the API is expected to run on any Windows platform that supports
running 32-bit applications. The Windows platform running the RTD client application is
referred to as the API client.

- The API has been tested using Microsoft Visual Studio 2015 on Windows 10. While the API
is not tested against all releases of Microsoft Visual Studio, it is expected to be compatible
with all recent and future releases of Microsoft Visual Studio.

The API client accesses an AACC/ACCS by way of a TCP/IP connection. The API allows a single
application to connect to a single server. To display a continuous stream of data from multiple
servers, applications must connect to each server through a different process.

On AACC/ACCS, a Real-time Data session appears as a user logon. The server allows for a total of
100 client sessions. For instance, if there are 100 different client applications logged on to the
server, then the next workstation client or application attempting to log on is rejected.

Application programs can obtain real-time data in two different ways:

Real-time Data API Programmer’s Guide 8

 They can make one-time requests for data.
 They can register with a server for a continuous stream of data updates.

Obtaining real-time data

If a continuous stream of updates is requested, you must specify an update rate. Updates do not
occur more frequently than the rate specified. Depending on system load, however, updates may
occur less frequently than requested.

Each data request (one-time or continuous) obtains data from a single table on a single server. To
request data, perform a Real-time Data query (conceptually similar to an SQL select) specifying:

 a table ID
 a list of columns (statistics)
 an optional where clause (selection criteria). If a where clause is not specified, the API

returns the specified columns for all of the rows in the table.

For a one-time request, use the NIrtd_singleDataRequest() function. To start a continuous stream
of data updates, use the NIrtd_startDataStream() function. In either case, the data is returned to
the API client in three formats:

1. newValues—These are new rows of data that should be added to the application’s data
image (new rows of data have been added in the server data image). These rows should be
added to the data menu of the API client.

2. deletedValues—These are rows of data that should be removed from the application’s data
image (rows have been removed from the server data image). Note that the returned values
consist of keys to the data. The API client should take each key value, find its place in the
data menu, and delete the row entry for that key.

3. deltaValues—These are rows of data that already exist in the application’s data image but
whose column data should be updated. In other words, existing rows have been modified in
the server data image. Each key value should be used to locate the row in the application's
data menu and the relevant column data should be updated.

The functions NIrtd_allocateRow() and NIrtd_getCol() allow you to progress through each table.

Update values

The first update from a data request (one-time or continuous) holds only the newValues table,
which contains all of the rows that satisfy the request. Subsequent updates contain table rows that
indicate new, deleted, or changed rows since the last received request. Within each table, key ID
columns are returned to the application. These IDs are used when applying delta information.

Returned internal ID values can be converted to displayable names through a call to
NIrtd_getName(). Examples of displayable names include agent telset login IDs, supervisor user
IDs, skillset IDs, and application IDs. A name cache performs the translation.

API summary
The RTDAPI contains the following functional groups:

Real-time Data API Programmer’s
Guide

1. data element storage functions
2. query description functions
3. data access functions
4. data request functions
5. preprocessing and postprocessing functions
6. debug functions

Data element storage functions

The RTDAPI uses the following data element storage functions:
1. NIrtd_allocateValue()
2. NIrtd_allocateName()
3. NIrtd_freeValue()
4. NIrtd_freeName()
5. NIrtd_cpValue()
6. NIrtd_cpName()

Before calling any of the API functions where NIrtd_stValue or NIrtd_stName are used as
parameters, the string space required by these structures must first be allocated by calling
NIrtd_allocateValue and NIrtd_allocateName.

When you finish with either data element, call NIrtd_freeValue or NIrtd_freeName to deallocate the
space.

NIrtd_cpValue and NIrtd_cpName are provided to make copies of the structures. Values typically
represent data column values and names represent the displayable names for skillsets,
applications, or agents.

Query description functions

The RTDAPI uses the following query description functions:
1. NIrtd_allocateQuery
2. NIrtd_selectColumn
3. NIrtd_allocateConjunction
4. NIrtd_addCondition
5. NIrtd_addConjunction
6. NIrtd_getValue
7. NIrtd_freeConjunction
8. NIrtd_freeQuery

A Real-time Data query consists of:
 a table ID
 a list of columns
 an optional where clause

The command NIrtd_allocateQuery allocates a query structure for the specified table.
The command NIrtd_selectColumn is called to select the desired columns in the query.

Real-time Data API Programmer’s Guide 10

The where clause is built from conjunctions, which are built from conditions. A condition refers to a
logical expression that must be evaluated to be true. A conjunction refers to a list of conditions that
are joined by a logical and operation. The command NIrtd_allocateConjunction allocates a
conjunction to work with, the NIrtd_addCondition function adds a condition to a conjunction, and
the command NIrtd_addConjunction adds a conjunction to the where clause of a query.

When using conditions, the API client must specify a key value to query for. The command
NIrtd_getValue is useful for obtaining a key value for a condition. Given the textual name of the
desired component (for example, an agent with the name John Doe), the routine returns an ID
value that can be passed to the NIrtd_addCondition routine.

When done with a conjunction, issue the NIrtd_freeConjunction function to free memory allocated
to the conjunction.

When you finish with the query (after calling NIrtd_singleDataRequest or NIrtd_startDataStream),
issue the command NIrtd_freeQuery to free memory allocated to the query.

Data access functions

The RTDAPI uses the following functions for data access:
1. NIrtd_allocateRow
2. NIrtd_getCol
3. NIrtd_freeRow
4. NIrtd_freeTableGroup

The server returns data to the API client in a table group structure. The table group structure
consists of three values table structures: a deleted values table, a new values table, and a delta
values table. Each values table structure contains the number of rows and columns present in the
table. When data in the tables are returned from the server, check the return code to verify that
the data was received properly.

The command NIrtd_allocateRow retrieves and allocates access to a row in a values table. Use
the function NIrtd_getCol to obtain the desired column value in a row.

When you finish with a row, issue the command NIrtd_freeRow to free memory allocated to the
row. When you are done with the entire table group structure, issue the command
NIrtd_freeTableGroup to free the memory allocated to the table group.

Data request functions

The RTDAPI uses the following functions to request data:
1. NIrtd_login
2. NIrtd_singleDataRequest
3. NIrtd_startDataStream
4. NIrtd_stopDataStream
5. NIrtd_logout

The command NIrtd_login establishes a session on the server and returns the authorization to the
application program.

Real-time Data API Programmer’s
Guide

The command NIrtd_singleDataRequest is issued for a one-time data request. This function returns
the requested data in the table group structure.
To receive regular updates for the same data fields, the proper command is
NIrtd_startDataStream. This function registers a request for data with the server and returns a
RequestID to the calling program.

Data is returned in a table group structure, which is passed to the callback function. The callback
function is executed when data arrives at the API client. The callback function must be written within
the third-party application and is a parameter passed to NIrtd_startDataStream.

Parameters returned in the callback function (* NIrtd_funCallback) (ULONG return_code,
NIrtd_tRequestId, requestid, NIrtd_stTableGroup * tableGroup, void * yourpointer) include a
return code, the request ID (originally returned from NIrtd_startDataStream), the table group
structure, and the application pointer (originally passed to NIrtd_startDataStream).

Use the function NIrtd_stopDataStream to stop receiving updates. This command cancels the
request that was initiated by a previous call to NIrtd_startDataStream().

Use the command NIrtd_logout to end a session with the server.

Preprocessing and postprocessing functions

The RTDAPI uses the following pre-processing and post-processing functions:
1. NIrtd_getNameCacheforDataColumn
2. NIrtd_getName
3. NIrtd_getFailedName
4. NIrtd_refreshNameCache
5. NIrtd_removeNameCacheforDataColumn
6. NIrtd_interpAgentState
7. NIrtd_setRecovery

To translate agent telset login IDs, supervisor telset login IDs, skillset IDs, or application IDs into
displayable names, the application must first initialize an internal name cache for each column
ID by calling the function NIrtd_getNameCacheforDataColumn.

After the column name cache is initialized, individual ID values can be converted to a name by
calling NIrtd_getName. If the NIrtd_getName routine returns NIrtd_eNotFound, then the
application should indicate visually that the name is in a to be determined state, and then make an
off-node blocking call to obtain the real name using the routine NIrtd_getFailedName.
Names that are changed on the server are not automatically propagated to the name cache of the
third-party client. The name cache must be refreshed manually by calling
NIrtd_refreshNameCache. NIrtd_getName can be called again to update each ID/name
displayed.

When you finish with a name cache, make a call to NIrtd_removeNameCacheforDataColumn to
free the memory used for the cache. Use the function NIrtd_interpAgentState to break down the
multistate agent state value into multiple single state values.

Real-time Data API Programmer’s Guide 12

Communication failure

Communication with the server can fail for many reasons. Some reasons can be detected by
lower level communication software but others have no other symptom than the failure to
propagate data to the application.

You can control a timer-based recovery mechanism. Use the command NIrtd_setRecovery to set
the amount of time to wait before declaring a communication failure (the pullPlugTime plus the
update rate) and the frequency at which the RTDAPI layer wakes up and checks the amount of time
that has passed (wakeupGranularity).
Before a recovery attempt is made, the application’s callback function is called with the return_code
parameter of NIrtd_eSTART_RECOVERY.

After recovery, the application’s callback function is called with a return_code parameter of either
NIrtd_eOK_RECOVERY or NIrtd_eBAD_RECOVERY. If recovery fails, a delay of the pullPlugTime plus the
update time occurs before another recovery attempt is made. The default pullPlugTime is 5 minutes
with a wakeupGranularity of 1 minute.

Note: Communication with the server can fail due to the client’s inability to accept data at the rate
requested. The data propagation component on the server logs this kind of failed communication
event. To remedy this situation, request a less frequent update rate or make performance
enhancement changes to the client.

Debug functions

The RTDAPI uses the following debug functions:
1. NIrtd_getFirstLowError
2. NIrtd_getCnt

NIrtd_getFirstLowError should be called whenever an error code is returned by any API
function. This function retrieves and resets the first lower level return code (that is, internal code
value, which is useful in problem resolution).
NIrtd_getCnt retrieves the number of objects allocated. This is useful when trying to ensure the
application is properly deallocating objects previously allocated.

Real-time Data API Programmer’s
Guide

Chapter 3: Installation

The RTDAPI Software Development Kit (RTDSDK) is required for developing and executing an
RTDAPI application. The RTDSDK is available from Avaya DevConnect
(www.devconnectprogram.com.

Development Environment

The RTDAPI application is developed, compiled and linked in the development environment. The
development environment consistes of a C/C++ compiler/linker and the RTDAPI header and library
files from the RTDSDK. The header files are in the \include folder while the libraries are in the

\lib folder.

The RTDAPI has been tested using Microsoft Visual Studio 2015. While the API is not tested
against all releases of Microsoft Visual Studio, it is expected to be compatible with all recent and
future versions of Microsoft Visual Studio.

Execution Environment

The developed RTDAPI application requires an execution environment to connect to an operational
AACC/ACCS. The execution environment consists of executables and Dynamic Lnk Libraries. The
execution environment is contained in the \bin folder.

An application built using the RTDAPI is expected to run on any Windows platform that supports
running 32-bit application. The RTDAPI has been tested on Windows 10. While the API is not
tested against all Microsoft Windows releases, it is expected to be compatible with the latest
versions of Microsoft Windows.

The execution environment has a dependency on the Microsoft Visual C++ 2015 Redistributable
package. The RTDSDK installer detects if the redistributable is present. The installer can
automatically install the redistributable if required.

Unicode / ANSI Flavours

The RTDAPI supports Unicode and ANSI build flavours. The application developer selects a build
flavour dependent on the execution platform. UNICODE is the preferred flavour. ANSI is
maintained for legacy support.

The library and execution environment are dependent on the build flavour. The default location for
the library and run-time are:
 ANSI UNICODE

Real-time Data API Programmer’s Guide 14

Library C:\Program Files
(x86)\Avaya\RTDSDK\Ansi\lib

C:\Program Files
(x86)\Avaya\RTDSDK\Unicode\lib

Run-time C:\Program Files
(x86)\Avaya\RTDSDK\Ansi\bin

C:\Program Files
(x86)\Avaya\RTDSDK\Unicode\bin

Installing the RTDSDK

The RTD Software Development Kit (SDK) is available from Avaya DevConnect
www.devconnectprogram.com.

How to install the RTDSDK

1. Remove any existing RTD SDK using the instructions in the Programmer’s Guide for the
version of the SDK.

2. Execute RTDSDK.exe and follow the installation wizard instructions.

How to uninstall the RTDSDK

From the Control Panel, select Uninstall or Change a Program. Then, select Avaya RTD SDK to
un-install the SDK

Migrating Existing RTDAPI Applications

RTDAPI has been available since Symposium Call Center Server (SCCS).

An existing RTDAPI application designed for SCCS will require action to work with AACC/ACCS 7.

SCCS Update Execution Environment Rebuild

1.0

1.1 / 1.5 / 3.0 / 4.0 / 5.0 / 6.0

An existing RTDAPI application designed for an earlier release of AACC/ACCS will work with
AACC/ACCS 7. However, it is recommended that the execution environment is updated to take
advantage of software quality improvements.

The environment is updated by removing the existing RTDSDK and installing the latest.

Real-time Data API Programmer’s
Guide

Chapter 4: Real-time statistics

Introduction
The tables in this section describe the statistics that belong to the Basic Status Reporting package.
For each column in the tables, the data type is defined as Cumulative, State, or Admin. Statistics
are available for multimedia contacts when the Open Queue feature is licensed and enabled.
Telephony-specific statistics do not have meaning for multimedia contacts.

 Cumulative—The statistics are accumulated over a specified period of time (for example,
the number of calls answered during an interval).

 State—The instantaneous state of the system (for example, the state of an agent at a given
time).

 Admin—The value is entered by a data administrator and is not affected by call events (for
example, a skillset ID).

For cumulative statistics, data can be collected in two different ways:
 moving window—The data is collected within the fixed size time window of 10 minutes

that moves forward as time progresses. The fixed size time window is divided into a number
of equal data sampling periods. As every sampling period expires, data collected in the
current sampling period is added to the totals of the current time window while the values
from the oldest sampling period within the current time window are subtracted from the
totals. Therefore, the totals always represent the last 10 minutes of activity.

 interval-to-date—The data is collected on an interval basis. The interval is
user-configurable in increments of 15 minutes up to a maximum of 24 hours. When the
interval is complete, all data fields are reset to zero and collection starts for the next interval.
The recommended minimum refresh rate (the rate at which the data is updated) for all
statistics groups is 2 seconds.

Table definitions
The following tables contain the table definitions for interval-to-date and moving window statistics.
Currently, you can configure the time interval used for interval-to-date statistics (15-minute
increments, starting from 15 minutes to 24 hours), whereas the interval used for moving window
calculations is set to 10 minutes.

Description Statistic Definition

Application statistics Interval-to-date NIrtd_INTRVL_APPL

Skillset statistics Interval-to-date NIrtd_INTRVL_SKLST

Agent statistics Interval-to-date NIrtd_INTRVL_AGENT

Nodal statistics Interval-to-date NIrtd_INTRVL_NODAL

Real-time Data API Programmer’s Guide 16

Description Statistic Definition

IVR statistics Interval-to-date NIrtd_INTRVL_IVR

Route statistics Interval-to-date NIrtd_INTRVL_ROUTE

Application statistics Moving window NIrtd_MWIND_APPL

Skillset statistics Moving window NIrtd_MWIND_SKLST

Agent statistics Moving window NIrtd_MWIND_AGENT

Nodal statistics Moving window NIrtd_MWIND_NODAL

IVR statistics Moving window NIrtd_MWIND_IVR

Route statistics Moving window NIrtd_MWIND_ROUTE

Application statistics

Application statistics provide instantaneous state and cumulative performance measurement
information on a per-application basis. An application corresponds to a single primary script (that
provides call processing for a particular type of call) and all of its associated secondary scripts. For
example, a department store’s call center can have a catalog sales application and a credit card
inquiry application.

Column Column ID Data type Description Format

Application
ID

NIrtd_APPL_APPL_ID Admin
A unique number to identify an
application. (Key) (Translatable
using NIrtd_getName and
NIrtd_getValue)

ULONG

Calls
Abandoneda

NIrtd_APPL_CALLS_ABAN Cumulative
The number of local and incoming
CDN calls abandoned.

ULONG

Calls
Abandoned
After
Thresholda

NIrtd_APPL_CALLS_ABAN_A
FT_THRESHOLD

Cumulative
The number of local and incoming
network CDN calls abandoned after
experiencing a delay greater than or
equal to the service level threshold
for the application. The delay is
calculated from the time the call
arrives (for local CDN calls) or from
the time the call is logically queued
(for incoming network CDN calls) to
the time the call is abandoned.

ULONG

Calls
Abandoned
Delaya

NIrtd_APPL_CALLS_ABAN_
DELAY

Cumulative
The total delay experienced by all
abandoned local and incoming
network CDN calls. The delay is
calculated from the time the call
arrives (for local CDN calls) or from
the time the call is logically queued
(for incoming network CDN calls) to
the time the call is abandoned.

ULONG

Real-time Data API Programmer’s
Guide

Column Column ID Data type Description Format

Calls
Answereda

NIrtd_APPL_CALLS_ANS Cumulative
The number of local and incoming
network CDN calls, ACD calls, and
NACD calls answered. This also
includes the number of local calls
that are networked out and
answered at the remote site.

ULONG

Calls
Answered
After
Thresholda

NIrtd_APPL_CALLS_ANS_AF
T_THRESHOLD

Cumulative
The number of local and incoming
network CDN calls answered after
experiencing a delay greater than or
equal to the service level threshold
for the application. The delay is
calculated from the time the call
arrives (for local CDN calls) or from
the time the call is logically queued
(for incoming network CDN calls) to
the time the call is answered.

ULONG

Calls
Answered
Delaya

NIrtd_APPL_CALLS_ANS_D
ELAY

Cumulative
The total delay experienced by all
answered local and incoming
network CDN calls. The delay is
calculated from the time the call
arrives (for local CDN calls) or from
the time the call is logically queued
(for incoming network CDN calls) to
the time the call is answered.

ULONG

Calls
Waitinga

NIrtd_APPL_CALLS_WAITIN
G

State
The number of local and incoming
network CDN calls that are currently
waiting. This also includes local
calls that are logically queued at
remote sites.

ULONG

Max. Waiting
Timea

NIrtd_APPL_MAX_WAITING_
TIME

State
The amount of time that the oldest
unanswered local and incoming
network CDN call has been in the
system.

ULONG

Waiting
Timea

NIrtd_APPL_WAITING_TIME
State

The total time waiting in the system
of all local and incoming network
CDN calls that are currently waiting.

ULONG

Calls
Answered
Delay At
Skillseta

NIrtd_APPL_CALLS_ANS_D
ELAY_AT_SKILLSET

Cumulative
The delay experienced by all local
and incoming network CDN calls
from the time they are queued
against the first skillset to the time
they are answered.

ULONG

Real-time Data API Programmer’s Guide 18

Column Column ID Data type Description Format

Calls Given
Termination
Treatmenta

NIrtd_APPL_CALLS_GIVEN_
TERMINATE

Cumulative
The number of local and incoming
network CDN calls that were
terminated with one of the following
treatments:
1. given Force Busy, Force
Overflow,
Force Disconnect, Route Call, or
Default.
2. reached a non-ISDN trunk while
being routed to a remote site.
(Networking feature)
3. transferred in an IVR session.
(IVR feature)
4. networked out via an NACD
queue. (NACD feature).

ULONG

Calls
Offereda

NIrtd_APPL_CALLS_OFFE

R
Cumulative The number of local and incoming

network CDN calls, ACD calls, and
NACD calls that were offered.

ULONG

Time Before
Interflow

NIrtd_APPL_DELAY_BEF_

INTERFLOW
Cumulative

The amount of time a call spent in
the Master Application before
interflowing to the Primary
Application. For the Master
Application, this value is the total
delay before interflow to all Primary
Applications. For each Primary
Application, this provides a delay
spent in the Master Application or
calls answered at this application.

ULONG

Network Out
Callsb

NIrtd_APPL_NETWRK_OU

T_CALLS
Cumulative

Networking feature
The number of local CDN calls that
were networked out from this
application.

ULONG

Network Out
Calls
Abandonedb

NIrtd_APPL_NETWRK_OU

T_ABAN
Cumulative

Networking feature
The number of outgoing network
CDN calls that were networked out
from this application and
abandoned at destination sites.

ULONG

Network Out
Calls
Abandoned
Delayb

NIrtd_APPL_NETWRK_OU

T_ABAN_DELAY
Cumulative

Networking feature
The total delay experienced by local
CDN calls that were networked out
from this application and
abandoned at destination sites.

ULONG

Real-time Data API Programmer’s
Guide

Column Column ID Data type Description Format

Network Out
Calls
Answeredb

NIrtd_APPL_NETWRK_OU

T_ANS
Cumulative

Networking feature
The number of local CDN calls that
were networked out from this CCMS
application and answered by an
agent or by IVR, or received
termination treatment, music, or
RAN at destination sites.

ULONG

Network Out
Calls
Answered
Delayb

NIrtd_APPL_NETWRK_OU

T_ANS_DELAY
Cumulative

Networking feature
The total delay experienced by all
local CDN calls that were networked
out from this application and
answered by an agent or by IVR, or
received termination treatment,
music, or RAN treatment at
destination sites.

ULONG

Network
OutCalls
Waitingb

NIrtd_APPL_NETWRK_OU

T_CALLS_WAITING
State

Networking feature
The number of local CDN call
requests sent from this application
that are currently waiting at
destination sites.

ULONG

Network Out
Calls
Requested

Nlrtd_APPL_NETWRK_OU

T_CALLS_REQ
State

Networking feature
The number of network calls that
were sent to another site

ULONG

a) This statistic includes calls that originally entered AACC at this site and calls that were
received at this site from the Contact Center network. Delays are calculated from the time
the call enters this site if it is a local CDN call or from the time the call is logically queued to
this site if it is a network call.

b) Network Out statistics refer to calls that originally entered the AACC at this site butt were
sent to another site on the Contact Center network. Delays for Network Out statistics are
calculated from the time the call arrives at the source site to the time the call is treated
(either answered, abandoned, or terminated) at the destination site.

Skillset statistics

Skillset statistics provide instantaneous state and cumulative performance measurement
information on a per-skillset basis. If the agent is not logged on, no statistical data is available for
that particular skillset.

Column Column ID Data type Description Format

Skillset ID
NIrtd_SKLST_SKILLSET_

Admin
A unique number to identify a
skillset. (Key) (Translatable using

ULONG

Real-time Data API Programmer’s Guide 20

Column Column ID Data type Description Format

ID
NIrtd_getName and
NIrtd_getValue)

Agents
Available

NIrtd_SKLST_AGENT_AVAIL
State

The number of agents who are
currently waiting for calls.

ULONG

Agents In
Service

NIrtd_SKLST_AGENT_IN_SE
RVICE

State
The number of agents logged on
for this skillset.

ULONG

Agents on
Skillset
Calls

NIrtd_SKLST_AGENT_ON_IC
CM_CALL

State
The number of agents who are
logged on for this skillset and are
currently handling local and
network CDN calls assigned to
this skillset.

ULONG

Agents Not
Ready

NIrtd_SKLST_AGENT_NOT_R
EADY

State
The number of agents currently in
the Not Ready State who are
logged on for this skillset.

ULONG

Calls
Waiting

NIrtd_SKLST_CALL_WAIT
State

The number of local and incoming
network CDN calls currently
waiting for an agent with this
skillset.

ULONG

Longest
Waiting
Time Since
Last Call

NIrtd_SKLST_LONGEST_WAI
T_TIMES_SINCE_LAST_CAL
L

State
The longest waiting time of all idle
agents who are currently waiting
to answer calls for this skillset.
The time is since last call.

ULONG

Max.
Waiting
Time

NIrtd_SKLST_MAX_WAIT_TI
ME

State
The maximum waiting time spent
by all local and incoming network
CDN calls that are currently
waiting for an agent with this
skillset.

ULONG

Waiting
Time

NIrtd_SKLST_TOT_WAIT_TIM
E

State
The total waiting time spent by all
local and incoming network CDN
calls
that are currently waiting for an
agent

assigned to this skillset.

ULONG

Expected
Wait Time

NIrtd_SKLST_EXPECT_WAIT
_TIME

State
The time that a new call is
expected to wait before being
answered by an agent with this
skillset.

ULONG

Calls
Answered
After

Threshold

NIrtd_SKLST_CALL_ANS_AF
T_THRESHOLD

Cumulative
The number of local and incoming
network CDN calls that were
answered after experiencing a
delay greater than or equal to the
service level threshold for this
skillset. This statistic is not
applicable for ACD and NACD
calls because answering delay

ULONG

Real-time Data API Programmer’s
Guide

Column Column ID Data type Description Format

information is not available for
these types of calls.

Longest
Waiting
Time Since
Login

NIrtd_SKLST_LONGEST_WAI
T_TIMES_SINCE_LOGIN

State
The longest waiting time of all idle
agents who are currently waiting
to
answer calls for this skillset. The
time is calculated since logon.

ULONG

Agents on
DN Calls

NIrtd_SKLST_AGENT_ON_D
N_CALL

State
The number of agents who are
logged on for this skillset but are
currently handling DN calls.

Note: CS1000 reports agent
active on an outgoing DN call only
after the called party answers the
call.

ULONG

Skillset
State

NIrtd_SKLST_SKILLSET_STA
TE

State
The state of the skillset (In
Service or

Out Of Service).

ULONG

Agents
Unavailable

NIrtd_SKLST_AGENT_U

NAVAILABLE
State

The number of agents who are
currently unavailable to take calls.
This value is calculated base on:
(# Agents In Service) - (# Agents
Available)

ULONG

Network
Calls
Waiting

NIrtd_SKLST_NETWRK_CALL
_WAIT

State
Networking feature
The number of incoming network
CDN calls currently waiting at this
skillset.

ULONG

Network
Calls
Answered

NIrtd_SKLST_NETWRK_CALL
_ANS

State
Networking feature
The number of incoming network
CDN calls answered by an agent
assigned to this skillset.

ULONG

Total Calls
Answered
Delay

NIrtd_SKLST_TOT_ANS_DEL
AY

Cumulative
The delay experienced by all local
and incoming network CDN calls
that
were answered by an agent with
this
skillset from the time the calls
were
queued against the skillset until
they
were answered. This statistic is
not

ULONG

Real-time Data API Programmer’s Guide 22

Column Column ID Data type Description Format

applicable for ACD and NACD
calls
because answer delay information
is not available for these types of
calls.

Total Calls
Answered

NIrtd_SKLST_TOT_CALL_AN
S

Cumulative
The number of local and incoming
network CDN calls, ACD calls,
and
NACD calls answered by an
agent

assigned to this skillset.

ULONG

Agent On
Network
Skillset Call

NIrtd_SKLST_AGENT_ON_N
ETWRK_ICCM_CALL

State
Networking feature
The number of agents who are
logged
on for this skillset and are
currently
handling network CDN calls
assigned

to this skillset.

ULONG

Agent On
Other
Skillset Call

NIrtd_SKLST_AGENT_ON_O
THER_ICCM_CALL

State
The number of agents who are
logged
on for this skillset but are active
on
calls for other skillsets. The other
skillset can be a local skillset, a
network skillset, or an Agent
Queue To skillset.

ULONG

Agent On
ACD-DN
Call

NIrtd_SKLST_AGENT_ON_A
CD_CALL

State
The number of agents who are
logged
on for this skillset but are currently
handling ACD-DN calls.

ULONG

Agent On
NACD-DN
Call

NIrtd_SKLST_AGENT_ON_N
ACD_CALL

State
The number of agents who are
logged
on for this skillset but are currently

handling NACD-DN calls.

ULONG

Calls
Offered

NIrtd_SKLST_CALL_OFFERE
D

Cumulative
The number of calls queued to
this
skillset; these calls might or might
not
be answered by this skillset. The
count is not increased if a call is
queued to this skillset more than
once.

ULONG

Real-time Data API Programmer’s
Guide

Column Column ID Data type Description Format

Network
Calls
Offered

Nlrtd_SKLST_NETWRK_CALL
_OFFERED

Cumulative
The number of incoming network
CDN calls queued to this skillset.

ULONG

SkillsetAba
don

NIrtd_SKLST_CALL_ABANDO
N

Cumulative
The number of calls that were
abandoned by callers while being
queued to this skillset.

ULONG

SkillsetAba
ndonDelay

NIrtd_SKLSET_CALL_ABAND
ONDELAY

Cumulative
The amount of delay experienced
by calls that were abandoned by
callers
while being queued to this skillset;
the
delay value is calculated from the
time the call was queued to this
skillset to the time it was
dequeued.

ULONG

SkillsetAba
ndonDelayA
fterhreshold

NIlrtd_SKLSET_CALL_ABAND
ONDELAY_AFTERTHRESHO
LD

Cumulative
The number of calls whose
SkillsetAbandonDelay values
were
greater than or equal to the
service level threshold.

ULONG

Queued
CallAnswer
ed

NIrtd_SKLSET_QUEUED_CA
LL_ANS

Cumulative
The number of queued calls that
were answered for the skillset
within the last interval-to-date or
movingwindow.

ULONG

An agent can log on to more than one skillset at any time. Therefore, if an application sums Agents
Available for each skillset, the value obtained is generally greater than the total number of agents in
the contact center who are available to take calls. The same is true for Agents in Service and
Agents Not Ready. This is not the case for Agents on Skillset Calls, that is, the sum of Agents on
Skillset Calls for each skillset is equal to the total number of agents currently answering skillset calls
in the contact center.

Agent statistics

Agent statistics provide instantaneous state information regarding an agent (call taker). These
statistics provide a supervisor with a means to monitor what their agents are doing at any point in
time. If the agent is not logged on, no statistical data is available for that particular agent.

Column Column ID Data type Description Format

Agent ID NIrtd_AGENT_AGE
NT_ID

Admin
A unique number to identify an agent. (Key)
(Translatable using NIrtd_getName and
NIrtd_getValue)

BYTE(17)
STRING

Real-time Data API Programmer’s Guide 24

Column Column ID Data type Description Format

State NIrtd_AGENT_STA
TE

State
Indicates the state the agent is currently in.
Note that this state can be one single state
or a combination of two or more states. The
following is a list of possible states:

� Undefined—the state of agent is
unknown
� Busy
� Not Ready—Not Ready key activated
� Waiting for CDN call
� Reserved for a call
(NACD/Networking feature)
� Skillset call active
� NACD call active
(NACD feature)
� ACD call active
� DN In/Out call active
� CDN call on hold
� NACD call on hold
(NACD feature)
� ACD call on hold
� DN In/Out call on hold
� DN In/Out call on hold and active
� CDN call active and DN In/Out call on hold
� NACD call active and DN In/Out call on hold
(NACD feature)
� ACD call active and DN In/Out call on hold
� CDN call on hold and DN In/Out call active
� CDN call on hold and DN In/Out call on hold
� CDN call on hold and DN In/Out call active
and on hold
� NACD call on hold and DN In/Out call active
(NACD feature)
� NACD call on hold and DN In/Out call on
hold
(NACD feature)
� NACD call on hold and DN In/Out call active
and on hold
(NACD feature)

� ACD call on hold and DN In/Out call active
� ACD call on hold and DN In/Out call on hold
� ACD call on hold and DN In/Out call active
and on hold
� Not Ready and DN In/Out call active
� Not Ready and DN In/Out call on hold
� Not Ready and DN In/Out call on hold and
active
� Consultation with out caller
� CDN call presented
� Emergency
� Walkaway or Walkaway combination with
other states

ULONG

Real-time Data API Programmer’s
Guide

Column Column ID Data type Description Format

Supervis
or ID

NIrtd_AGENT_SUP
ERVISOR_ID

Admin
Agent’s primary supervisor’s unique identifier. BYTE(17)

STRING

Time In
State

NIrtd_AGENT_TIM
E_IN_ST

ATE

Cumulative The length of time that the agent has been
in this state. The only exception is when the
agent is on a DN call, in which case the agent
state is shown as BUSY.

ULONG

Answerin
g Skillset

NIrtd_AGENT_ANS
_SKILLSET

State
The ID of a skillset for which this agent is
currently answering a skillset call.
(Translatable using NIrtd_getName and
NIrtd_getValue)

ULONG

DN In
Time In
State

Nlrtd_AGENT_DN_
IN_TIME_IN_STAT
E

Cumulative
The length of time an agent has been in the
DN IN state; that is, answering incoming DN
calls.

ULONG

DN Out
Time In
State

Nlrtd_AGENT_DN_
OUT_TIME_IN_ST
ATE

Cumulative
The length of time an agent has been in the
DN OUT state; that is, making outgoing DN
calls.

ULONG

Supervis
or
User ID

NIrtd_AGENT_SUP
ERVISOR_USER_I
D

Admin
Agent’s primary supervisor blue user ID.
(Translatable using NIrtd_getName and
NIrtd_getValue)

BYTE(16)

BUFFER

Position
ID

NIrtd_AGENT_POS
ITION_I

D

Admin A unique identifier of the agent’s position ID. ULONG

Not
Ready
Reason
Code_Hi
gh
and Not
Ready
Reason
Code_Lo
w

Nlrtd_AGENT_NOT
_READY_REASON

State
The Not Ready reason code entered by the
agent.

STRING

DN Out
Call
Number_
Hi
gh and
DN
Out Call
Number_
Low

Nlrtd_AGENT_DN_
OUT_CALL_NUM

State The DN number dialed by an agent. STRING

Skillset
Calls

Nlrtd_AGENT_SKL
ST_CALL_ANS

Cumulative
The number of local and incoming network
CDN calls answered by an agent.

STRING

Real-time Data API Programmer’s Guide 26

Column Column ID Data type Description Format

Answere
d

DN InCall

Answere
d

Nlrtd_AGENT_DN_
IN_CALL_ANS

Cumulative
The number of DN calls answered by an
agent.

STRING

DN
OutCall
Made

Nlrtd_AGENT_DN_
OUT_CALL

State The number of DN calls made by an agent. STRING

Answerin
g
Applicatio
n

Nlrtd_AGENT_ANS
_APP

State A unique number to identify an application. STRING

Answerin
g
CDN_Lo
w
And
Answerin
gCDN_Hi
gh

Nlrtd_AGENT_ANS
_CDN

State
A special directory number that allows
incoming calls to be queued at a CDN when
they arrive at the switch.

STRING

Answerin
g
DNIS_Hi
gh
And
Answerin
g
DNIS_Lo
w

Nlrtd_AGENT_ANS
_DNIS

State
The phone number dialed by the incoming
caller.

STRING

For CS1000 connectivity, an agent can be assigned multiple DN keys. Therefore, an agent can be
in a state that they are answering a DN call as well as placing another DN call on hold.

Nodal statistics

Nodal statistics provide instantaneous state and cumulative accounting information for a next
generation Call Center server. Usually, a call center has a single server and the nodal statistics are
equal to the call center statistics. In the Basic Status Reporting package, only one nodal statistic is
available.

Column Column ID Data type Description Format

Dummy Key NIrtd_NODAL_DUMMY_KEY Admin An artificial key for use by the
application. (This is provided to the
application to make the interface

ULONG

Real-time Data API Programmer’s
Guide

Column Column ID Data type Description Format

consistent, allowing for an easier
application of delta, delete, and
new table values.)

Calls Offereda NIrtd_NODAL_CALL_OFFER Cumulative The number of local CDN calls,
incoming network CDN calls, ACD
calls, and NACD calls that were
offered to this site.

ULONG

Calls Answereda NIrtd_NODAL_CALL_ANS Cumulative The number of local CDN calls,
incoming network CDN calls, ACD
calls, and NACD calls that were
answered at this site.

ULONG

Calls Waitinga NIrtd_NODAL_CALL_WAIT State The number of local CDN calls and
incoming network CDN calls that
are currently waiting to be
answered.

ULONG

Network Calls
Offeredb

Nlrtd_NODAL_NETWRK_CA
LL_OFFER

Cumulative Networking feature
The number of incoming network
CDN calls that were offered to this
site.

ULONG

Network Calls
Answeredb

Nlrtd_NODAL_NETWRK_CA
LL_ANS

State Networking feature
The number of incoming network
CDN calls that were answered at
this site.

ULONG

Network Calls

Waitingb

Nlrtd_NODAL_NETWRK_CA
LL_WAIT

State Networking feature
The number of incoming network
CDN calls that are currently waiting
to be answered.

ULONG

a. This statistic includes calls that originally entered the Contact Center Manager Server at this
site and calls that were received at this site from the Contact Center network.

b. This statistic only includes calls that were received at this site from the Contact Center
network.

IVR statistics

IVR statistics provide state and cumulative performance measurement information on a per-IVR
queue basis. These statistics provide a means to monitor the usage of the port resources of an
IVR queue from a real-time perspective.

Column Column ID Data type Description Format

IVR Queue ID NIrtd_IVR_QUEUE_ID Admin A unique number to identify an IVR
queue.

BYTE (8)
STRING

Calls Waiting NIrtd_IVR_CALL_WAIT State The number of local and incoming
network CDN calls that are currently
waiting at this IVR queue.

ULONG

Real-time Data API Programmer’s Guide 28

Calls Answered NIrtd_IVR_CALL_ANS Cumulative The number of local and incoming
network CDN calls that were
answered by this IVR queue.

ULONG

Calls Answered
Delay

NIrtd_IVR_CALL_ANS_
DELAY

Cumulative The total delay experienced by all
local and incoming network CDN
calls that were answered by this IVR
queue. The delay begins when a call
is queued against this IVR queue.

ULONG

Calls Answered
After Threshold

NIrtd_IVR_CALL_ANS_
AFT_THRESHOLD

Cumulative The number of local and incoming
network CDN calls answered by this
IVR queue that experienced a delay
greater than or equal to the service
level threshold for this IVR queue.
The delay begins when a call is
queued against this IVR queue.

ULONG

Calls Not
Treated

NIrtd_IVR_CALL_NOT_
TREATED

Cumulative The number of local and incoming
network CDN calls that were
abandoned or pulled back while
waiting in this IVR queue.

ULONG

Calls Not Treated
Delay

NIrtd_IVR_CALL_NOT_
TREATED_DELAY

Cumulative The total delay experienced by all
local and incoming network CDN
calls that were abandoned or pulled
back from this IVR queue. The delay
begins when a call is queued against
this IVR queue.

ULONG

Calls Not Treated
After Threshold

NIrtd_IVR_CALL_NOT_
TREATED_AFT_THRE
SHOLD

Cumulative The number of local and incoming
network CDN calls abandoned or
pulled back while waiting in this IVR
queue that experienced a delay
greater than or equal to the service
level threshold for this IVR queue.
The delay begins when a call is
queued against this IVR queue.

ULONG

Route statistics

Route statistics provide instantaneous and cumulative All Trunks Busy (ATB) information on a per-
route basis.
Note: Route statistics are available for the CS1000 only.

Column Column ID Data type Description Format

Route Number NIrtd_ROUTE_ROUTE_NO Admin A unique number to
identify a route.

ULONG

All Trunks Busy NIrtd_ROUTE_ATB_FLAG State Indicates whether all
trunks in this route are
currently busy.

BYTE(8)
STRING

All Trunks Busy NIrtd_ROUTE_ATB_TIME Cumulative The total time this
route has been in the
All Trunks Busy state.

ULONG

Real-time Data API Programmer’s
Guide

Real-time Data API Programmer’s Guide 30

Real-time Data API Programmer’s
Guide

Chapter 5: Real-time API
definition

Type definitions
RTDAPI includes internationalized (MBCS) support.

Structure Arguments Description

_NIrtd_enumType NIrtd_eNumber
NIrtd_eString
NIrtd_eBuffer

St_value type: can be a number,
string, or buffer

_NIrtd_stValue NIrtd_enumType type
ULONGnumber
TCHARstring

Used to hold the contents of the
columns in the statistic stream
(string field size of
NIrtd_cMaxString)

_NIrtd_stName TCHAR*first_name
TCHAR*last_name

Used to hold the first and last
agent names (string field size of
NIrtd_MaxName)

_NIrtd_stTable ULONGnumberofrows
ULONGnumberofcols
NIrtd_tTabletable

Table of statistics

_NIrtd_stTableGroup NIrtd_stTabledeletedValues
NIrtd_stTablenewValues
NIrtd_stTabledeltaValues

Group of statistic tables covering
one data propagation

_NIrtd_cntType QueryCnt /*# of queries */
ConjCnt /*# of conjunctions */
TGCnt /*# of Table Groups */
RowCnt /* # of Rows */
ValueCnt /* # of Values */
CacheCnt /* # of Name Caches */
NameCnt /* # of Names */

Counter types

Data element storage functions

Value functions

Real-time Data API Programmer’s Guide 32

NIrtd_allocateValue()
This function allocates string space within a value structure.

NIrtd_allocateValue(NIrtd_stValue*value);

Parameter Description

*value A pointer to an NIrtd_stValue structure. The string pointer within the structure
is
allocated by this function call.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eALLOC_FAILED 60052 The allocation of memory was not successful.

NIrtd_freeValue()
This function frees string space within a value structure.

VOID NIrtd_freeValue(NIrtd_stValue *value);

Parameter Description

*value A pointer to an NIrtd_stValue structure that has been fully allocated by a
previous call to NIrtd_allocateValue. The string pointer within the structure is
freed by this function call.

NIrtd_cpValue()
This function copies a value structure. The source and destination structures must already be fully
allocated by previous calls to NIrtd_allocateValue.

ULONG NIrtd_cpValue(NIrtd_stValue *destvalue, NIrtd_stValue *srcvalue);

Parameter Description

*destvalue A pointer to the destination value structure.

*srcvalue A pointer to the source value structure.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eVALUE_INIT 60049 Either the source or destination structure is a null
pointer or has a null string pointer.

Name functions

NIrtd_allocateName()

This function allocates string space within a name structure.

Real-time Data API Programmer’s
Guide

ULONG NIrtd_allocateName(NIrtd_stName *name);

Parameter Description

*name A pointer to an NIrtd_stName structure. The first_name and last_name string
pointers within the structure are allocated by this function call.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eALLOC_FAILED 60052 The allocation of memory was not successful.

NIrtd_freeName()

This function frees string space within a name structure.

VOID NIrtd_freeName(NIrtd_stName*name);

Parameter Description

*name A pointer to an NIrtd_stName structure that has been fully allocated by a previous
call to NIrtd_allocateName. The first_name and last_name string pointers within the
structure are freed by this function call.

NIrtd_cpName()

This function copies a name structure. (The source and destination structures must already be fully
allocated by previous calls to NIrtd_allocateName.)

ULONG NIrtd_cpName(NIrtd_stName *destname, NIrtd_stName *srcname);

Parameter Description

*destname A pointer to the destination name structure.

*srcname A pointer to the source name structure.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eNAME_INIT 60049 Either the source or destination structure is a null pointer or
has a null first_name or last_name string pointer.

Query description functions

NIrtd_allocateQuery()

This function allocates a query structure and associates the query with the specified table.

Real-time Data API Programmer’s Guide 34

ULONG NIrtd_allocateQuery(NIrtd_tQuery *query, NIrtd_tTableId table);

Parameter Description

*query A pointer to an NIrtd_tQuery structure.
NIrtd_tQuery is a private data structure. The space required by the query
structure is allocated by this function call.

table The ID of the table to query.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eQUERY_INITPARM 60012 Query parameter was not null on initialization.

NIrtd_eQUERY_INIT 60014 Failed to initialize query.

NIrtd_eTABLE 60003 Invalid table ID passed.

NIrtd_selectColumn()

This function associates a column ID with the query structure. Multiple columns can be associated
with a query. However, the first selected column must be a table key.

ULONG NIrtd_selectColumn (NIrtd_tQuery *query, NIrtd_tColumnId column);

Parameter Description

*query A pointer to an NIrtd_tQuery structure.
NIrtd_tQuery is a private data structure. The space required by the query structure
should already be allocated by a previous call to NIrtd_allocateQuery.

column The ID of a column to be retrieved by the query.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eQUERY_NOINIT 60013 The query structure is null or not initialized properly. The
space required by the query structure should already be
allocated by a previous call to NIrtd_allocateQuery.

NIrtd_eTABLE 60003 The table associated with the query structure is invalid.

NIrtd_eCOLUMN 60004 Invalid column ID selected. (Either not valid for the table
associated with the query or simply invalid.)

NIrtd_eKEY 60028 The first selected column must be a table key.

NIrtd_allocateConjunction()

This function allocates a conjunction structure, This provides a where clause for a query.

ULONG NIrtd_allocateConjunction (NIrtd_tConjunction *conj);

Parameter Description

Real-time Data API Programmer’s
Guide

*conj A pointer to an NIrtd_tConjunction structure.
NIrtd_tConjunction is a private data structure. The space required by the
conjunction structure is allocated by this function call.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eCONJ_INIT 60015 Failed to initialize the conjunction or the passed pointer was
invalid.

NIrtd_addCondition()

This function adds a condition to a conjunction.

ULONG NIrtd_addCondition(NIrtd_tConjunction *conj, NIrtd_tColumnId column,

NIrtd_tOperator oper, NIrtd_stValue *value);

Parameter Description

*conj A pointer to an NIrtd_tConjunction structure to which the condition is added.
NIrtd_tConjunction is a private data structure. The space required by the
conjunction structure should have already been allocated by a previous call to
NIrtd_allocateConjunction.

column The ID of the table column.

oper The operator. The only operatror currently available is NIrtd_EQ.

*value A pointer to the operand value structure.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eCOLUMN 60004 Invalid column ID selected.

NIrtd_eCONJ_NOINIT 60016 The conjunction structure is null or not initialized properly.
The space required by the conjunction structure should
already be allocated by a previous call to
NIrtd_allocateConjunction.

NIrtd_eKEY 60028 A condition can only be applied to a key column. The
passed column was not a key column.

NIrtd_eKEY_MISMATCH 60029 The table referenced by this column/condition does not
match the table referenced by a previous condition added
to this conjunction.

NIrtd_eDATA_INVALID 60023 An internal check of the NIrtd_stValue parameter indicates
that the data type is invalid.

NIrtd_eVALUE_INIT 60049 The value parameter has not been initialized properly.

Conditions can be added together in a list to form a conjunction. Note that all of the conditions in
a conjunction are joined by a logical and operation. Currently, only the equals operator is

Real-time Data API Programmer’s Guide 36

supported in a condition. (A condition takes the form column equals value.)
The following code fragment creates a query that contains one conjunction. The conjunction
contains one condition, which selects skillset statistics for the Sales skillset. Note that SALES
contains the skillset ID for the Sales skillset.

NIrtd_tQuery query = NIrtd_NullQuery;

NIrtd_tConjunction conj = NIrtd_NullConjunction;

lRc = NIrtd_allocateQuery(&query, NIrtd_INTRVL_SKLST);

if (NIrtd_eOK != lRc)

goto quit;

lRc = NIrtd_selectColumn(&query,NIrtd_SKLST_SKILLSET_ID);

if (NIrtd_eOK != lRc)

goto quit;

lRc = NIrtd_selectColumn(&query,NIrtd_SKLST_CALL_WAIT);

if (NIrtd_eOK != lRc)

goto quit;

lRc = NIrtd_allocateConjunction(&conj);

if (NIrtd_eOK != lRc)

goto quit;

NIrtd_stValue value;

lRc = NIrtd_allocateValue(&value);

if (NIrtd_eOK != lRc)

goto quit;

value.type = NIrtd_eNumber;

value.number = SALES;

/* specify skillset with id = SALES */

lRc = NIrtd_addCondition(&conj,

NIrtd_SKLST_SKILLSET_ID,

NIrtd_EQ,

&value);

if (NIrtd_eOK != lRc)

goto quit;

/* add the conjunction to the query */

lRc = NIrtd_addConjunction(&query, &conj);

if (NIrtd_eOK != lRc)

goto quit;

The column selected in a condition must be a table key. Valid table keys are:
 NIrtd_APPL_APPL_ID for the Application table
 NIrtd_SKLST_SKILLSET_ID for the Skillset table
 NIrtd_AGENT_AGENT_ID for the Agent table
 NIrtd_NODAL_DUMMY_KEY for the Nodal table. There are no real keys for the Nodal table;

rather, this key is used to make the interface consistent for the application when dealing with
the application of new, deleted, and delta tabl updates.

 Nlrtd_IVR_QUEUE_ID for the IVR table
 Nlrtd_ROUTE_ROUTE_NO for the Route table column IDs

NIrtd_addConjunction()

This function adds a conjunction to a query.

ULONG NIrtd_addConjunction(NIrtd_tQuery *query, NIrtd_tConjunction *conj);

Parameter Description

*query A pointer to an NIrtd_tQuery structure.
NIrtd_tQuery is a private data structure. The space required by the query structure

Real-time Data API Programmer’s
Guide

should already be allocated by a previous call to NIrtd_allocateQuery.

*conj A pointer to an NIrtd_tConjunction structure to add to the query. NIrtd_tConjunction
is a private data structure. The space required by the conjunction structure should
have already been allocated by a previous call to NIrtd_allocateConjunction.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eCOLUMN 60004 Invalid column ID selected.

NIrtd_eQUERY_NOINIT 60013 The query structure is null or not initialized properly. The
space required by the query structure should already be
allocated by a previous call to NIrtd_allocateQuery.

NIrtd_eCONJ_NOINIT 60016 Conjunction found to be null. The space required by the
conjunction structure should already be allocated and
initialized in a previous call to NIrtd_allocateConjunction.

NIrtd_eTABLE 60003 The table associated with the query structure is invalid.

NIrtd_eKEY_MISMATCH 60029 The table reference associated with the query does not
match the table referenced by the conjunction.

All of the conjunctions in a query are joined by a logical or operation.
The following code fragment creates a query that contains one conjunction. The conjunction
contains one condition, which selects skillset statistics for the Sales skillset.

NIrtd_tQuery query = NIrtd_NullQuery;

NIrtd_tConjunction conj = NIrtd_NullConjunction;

lRc = NIrtd_allocateQuery(&query, NIrtd_INTRVL_SKLST);

if (NIrtd_eOK != lRc)

goto quit;

lRc = NIrtd_selectColumn(&query,NIrtd_SKLST_SKILLSET_ID);

if (NIrtd_eOK != lRc)

goto quit;

lRc = NIrtd_selectColumn(&query,NIrtd_SKLST_CALL_WAIT);

if (NIrtd_eOK != lRc)

goto quit;

lRc = NIrtd_allocateConjunction(&conj);

NIrtd_eOK != lRc;

if (NIrtd_eOK != lRc)

goto quit;

NIrtd_stValue value;

lRc = NIrtd_allocateValue(&value);

if (NIrtd_eOK != lRc)

goto quit;

value.type = NIrtd_eNumber;

value.number = SALES;

/* specify skillset with id = SALES */

lRc = NIrtd_addCondition(&conj,

NIrtd_SKLST_SKILLSET_ID,

NIrtd_EQ,

&value);

if (NIrtd_eOK != lRc)

goto quit;

Real-time Data API Programmer’s Guide 38

/* add the conjunction to the query */

lRc = NIrtd_addConjunction(&query, &conj);

if (NIrtd_eOK != lRc)

goto quit;

The following code fragment creates a query that contains two conjunctions. Each conjunction
contains one condition, which selects a particular skillset based on skillset ID.

NIrtd_tQuery query = NIrtd_NullQuery;

NIrtd_tConjunction conj1 = NIrtd_NullConjunction;

NIrtd_tConjunction conj2 = NIrtd_NullConjunction;

NIrtd_stValue value1;

NIrtd_stValue value2;

/* You can with initialize the value’s unioned number/string

pointer or ensure that NIrtd_allocateValue is call in all cases

where even if it fails, the pointer will be set to null */

lRc = NIrtd_allocateValue(&value1);

careabit = NIrtd_allocateValue(&value2);

if (NIrtd_eOK != lRc)

goto quit;

lRc = careabit;

if (NIrtd_eOK != lRc)

goto quit;

lRc = NIrtd_allocateQuery(&query, NIrtd_INTRVL_SKLST);

if (NIrtd_eOK != lRc)

goto quit;

lRc = NIrtd_selectColumn(&query,NIrtd_SKLST_SKILLSET_ID);

if (NIrtd_eOK != lRc)

goto quit;

lRc = NIrtd_selectColumn(&query,NIrtd_SKLST_CALL_WAIT);

if (NIrtd_eOK != lRc)

goto quit;

lRc = NIrtd_allocateConjunction(&conj1);

if (NIrtd_eOK != lRc)

goto quit;

lRc = NIrtd_allocateConjunction(&conj2);

if (NIrtd_eOK != lRc)

goto quit;

value1.type = NIrtd_eNumber;

value1.number = SALES;

value2.type = NIrtd_eNumber;

value2.number = SUPPORT;

/* specify skillset with id = SALES */

lRc = NIrtd_addCondition(&conj1,

NIrtd_SKLST_SKILLSET_ID,

NIrtd_EQ,

&value1);

if (NIrtd_eOK != lRc)

goto quit;

/* specify skillset with id = SUPPORT */

lRc = NIrtd_addCondition(&conj2,

NIrtd_SKLST_SKILLSET_ID,

NIrtd_EQ,

&value2);

if (NIrtd_eOK != lRc)

goto quit;

/* add the conjunction to the query */

lRc = NIrtd_addConjunction(&query, &conj1);

if (NIrtd_eOK != lRc)

goto quit;

/* add the conjunction to the query */

lRc = NIrtd_addConjunction(&query, &conj2);

Real-time Data API Programmer’s
Guide

if (NIrtd_eOK != lRc)

goto quit;

NIrtd_getValue()

This function takes string name values (agent names, application names, and skillset names) and
looks up the corresponding ID values (agent telset login IDs, application IDs, and skillset IDs) so
that they can then be passed to the NIrtd_addCondition function.

ULONG NIrtd_getValue(NIrtd_tAPIauth *authorization, NIrtd_stName *name, NIrtd_tColumnId

column, NIrtd_stValue *value);

Parameter Description

*authorization A pointer to an NIrtd_tAPIauth structure.
NIrtd_tAPIauth is a semi-private data structure holding authorization information.
The authorization structure is obtained in the call to NIrtd_login.

*name A pointer to a structure that contains the first_name and last_name of the value
requested. For applications and skillsets, the first_name should be set to a null
string.

column The ID of the table column.

*value A pointer to a structure to contain the string or numeric value required.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eINVALID_AUTH 60019 Failed to validate preauthorization. Ensure NIrtd_login
has been
called.

NIrtd_eCOLUMN 60004 Invalid column ID selected.

NIrtd_eVALUE_INIT 60049 The passed value parameter was null.

NIrtd_eTABLE 60036 The passed name parameter was null.

NIrtd_eCOL_NOT_FOUND 60050 The passed column ID value was valid but not stored in
the name
cache.

NIrtd_freeConjunction()

This function frees memory associated with a conjunction.

ULONG NIrtd_freeConjunction (NIrtd_tConjunction *conj);

Parameter Description

*conj A pointer to a conjunction structure that has been fully allocated by a previous call
to NIrtd_allocateConjunction. The conjunction structure is freed by this function
call.

Real-time Data API Programmer’s Guide 40

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_freeQuery()

This function frees memory associated with a query.

ULONG NIrtd_freeQuery (NIrtd_tQuery *query);

Parameter Description

*query A pointer to a query structure that has been fully allocated by a previous call to
NIrtd_allocateQuery. The query structure is freed by this function call.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

Data access functions

NIrtd_allocateRow()

This function allocates a row structure and then retrieves the column data from row <index> of
table <table> and copies the data into the allocated row.

ULONG NIrtd_allocateRow(NIrtd_stTable *table, NIrtd_tRow *row, ULONG index);

Parameter Description

*row A pointer to an NIrtd_tRow structure.
NIrtd_tRow is a private data structure. The space required by the row structure is
allocated by this function call.

*table A pointer to an NIrtd_stTable structure.
NIrtd_stTable is a semi-private data structure holding statistical data information
returned from the server.

index The row in the table to be copied into the allocated row structure.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eROW_INIT 60002 Allocation and initialization of row failed.

NIrtd_eROW_INVALID 60021 The row indicated does not exist.

NIrtd_eTABLE 60003 The passed table was found to be null.

NIrtd_getCol()

This function retrieves one column of data from the passed row structure and returns it in the value
structure.

Real-time Data API Programmer’s
Guide

ULONG NIrtd_getCol (NIrtd_stValue *value, ULONG index);

Parameter Description

*value A pointer to an NIrtd_tValue structure in which to return the retrieved value. The
space required by the value structure should already be allocated by a previous
call to NIrtd_allocateValue.

*row A pointer to an NIrtd_tRow structure from which to retrieve data. The space
required by the NIrtd_tRow structure should already be allocated by a previous call
to NIrtd_allocateRow.

index The column in the row to retrieve. (Range = 0 .. number of columns selected)

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eCOL_INVALID 60022 The column selected does not exist.

NIrtd_eDATA_INVALID 60023 The data, from the row at the index indicated, is an invalid
value
type.

NIrtd_eVALUE_INIT 60049 The passed value parameter is invalid. The space required
by the
value structure should already be allocated by a previous
call to
NIrtd_allocateValue.

NIrtd_eROW_INIT 60002 The passed row is invalid. The space required by the
NIrtd_tRow
structure should already be allocated by a previous call to
NIrtd_allocateRow.

NIrtd_freeRow()

This function frees the memory associated with a row structure.

ULONG NIrtd_freeRow (NIrtd_tRow *row);

Parameter Description

*row A pointer to a row structure that has been fully allocated by a previous call to
NIrtd_allocateRow. The row structure is freed by this function call.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_freeTableGroup()

This function frees the storage for the group of table values returned by NIrtd_singleDataRequest()
or NIrtd_StartDataStream(). Data received from the server is stored in a table group by the API.

Real-time Data API Programmer’s Guide 42

Each time data is received, the API allocates memory for a new table group. The application must
free the table group memory.

ULONG NIrtd_freeTableGroup (NIrtd_stTableGroup *table);

Parameter Description

*table A pointer to an NIrtd_stTableGroup structure. NIrtd_stTableGroup is a semi-private
data structure holding statistical data information returned from the server. The
subtables and overall structure will be deallocated by this function call.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

Data request functions

NIrtd_login()

This function is used to log on to a server and to obtain authorization from the AACC/ACCS security
server. The NIrtd_login user is set up using Contact Center Server Utility. The newly created user
must have Real-time Display privileges to receive the RTD data. The new user’s details are used
for the registration process when logging on.

ULONG NIrtd_login(NIrtd_tAPIauth *authorization, TCHAR *userID, TCHAR *passWord);

Parameter Description

*authorization A pointer to an NIrtd_tAPIauth structure.
NIrtd_tAPIauth is a semi-private data structure holding authorization information.
Memory for the private structure is allocated at logon and deallocated at logoff.

*servname A string containing the IP address of the server.

*userId A user ID set up on the server to receive Nlrtd requests.

*password The password for the user ID.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eSERVER 60001 Invalid server name.

NIrtd_eUSERID 60006 Invalid user ID.

NIrtd_ePASSWORD 60007 Invalid password.

NIrtd_eUSERS 60008 Too many users logged on.

NIrtd_eAUTH_INIT 60017 Failed to initialize authorization structure.

NIrtd_eINVALID_AUTH 60019 The authorization parameter was found to be null.

NIrtd_eLISTENER_INIT 60026 Failed to initialize a listener for data propagation.

NIrtd_eLOGIN_FAIL 60009 Communication failure during logon attempt.

Real-time Data API Programmer’s
Guide

NIrtd_eSERV_INIT 60018 Unable to create the indicated server entry. Either a
memory limit was reached or a limit on the number of
server connections was reached.

NIrtd_eLOGIN 60031 PC user logon notification.

NIrtd_eLOGIN_ERR 60032 PC user logon error.

NIrtd_eLOGIN_NO 60033 No PC user logged on yet.

NIrtd_eLOGIN_ALREADY 60034 PC user logged on already.

NIrtd_eDIDNOTBUY 60042 Failed to log on to the server because the real-time
access feature was not purchased.

NIrtd_eREMOTE_SYSREC
_FAIL

60043 Failed to log on due to a failure to read the system record
at the remote site.

NIrtd_singleDataRequest()

This function obtains real-time data from the server and puts it into a table group structure.
Before calling NIrtd_singleDataRequest, the application must log on to a server using
NIrtd_login().

ULONG NIrtd_singleDataRequest(NIrtd_stTableGroup **tableGroup, NIrtd_tAPIauth

*authorization, NIrtd_tQuery *query);

Parameter Description

**tableGroup A pointer to an NIrtd_stTableGroup structure.
NIrtd_stTableGroup is a semi-private data structure holding statistical data
information returned from the server.

*authorization A pointer to an NIrtd_tAPIauth structure.
NIrtd_tAPIauth is a semi-private data structure holding authorization information.
The authorization structure is obtained in the call to NIrtd_login.

*query A pointer to an NIrtd_tQuery structure.
NIrtd_tQuery is a private data structure. The space required by the query structure
should already be allocated and initialized by previous API function calls.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eINVALID_AUTH 60019 Failed to validate preauthorization. Ensure NIrtd_login
has been called.

NIrtd_eREG_INIT 60020 Failed to allocate registration.

NIrtd_eNOT_AVAIL 60005 The query asks for a statistic that is not currently being
collected by the server.

NIrtd_eQUERY_NOINIT 60013 The query parameter was found to be invalid.

NIrtd_eINVALID_TABLE 60025 The passed table group variable was null.

NIrtd_eALLOC_FAILED 60052 Storage for an internal component failed..

Real-time Data API Programmer’s Guide 44

NIrtd_eCOMM 60055 Communication with the server failed.

NIrtd_eINVALID_REG 60044 The single request registration ID is invalid with the
server.

NIrtd_startDataStream()

This function is used to request a stream of regular data updates from a server.

ULONG NIrtd_startDataStream(NIrtd_tAPIauth *authorization, NIrtd_tQuery *query, ULONG

updateRate, NIrtd_funCallback callback, NIrtd_tRequestId *requestId);

Parameter Description

*authorization A pointer to an NIrtd_tAPIauth structure.
NIrtd_tAPIauth is a semi-private data structure holding authorization information.
The authorization structure is obtained in the call to NIrtd_login.

*query A pointer to an NIrtd_tQuery structure.
NIrtd_tQuery is a private data structure. The space required by the query structure
should already be allocated and initialized by previous API function calls.

updateRate The minimum frequency (in milliseconds) with which data is updated.

callback The function to be executed when data is retrieved. (*NIrtd_funCallback) (ULONG
return_code, NIrtd_tRequestIdrequestid, NIrtd_stTableGroup *tableGroup, void *
yourpointer)

*yourpointer An application pointer that is passed back to the application when the callback
function is called.

*requestId A value returned by the API so that this request can be canceled by
NIrtd_stopDataStream().

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eINVALID_AUTH 60019 Failed to validate preauthorization. Ensure NIrtd_login
has been called.

NIrtd_eREG_INIT 60020 Failed to allocate registration.

NIrtd_eUPDATE 60011 Invalid update rate.

NIrtd_eNOT_AVAIL 60005 The query asks for a statistic that is not currently being
collectedby the server.

NIrtd_eNOT_FOUND 60030 The query was not successfully registered with the data
collection part of the server. See the server event logs for
further details.

NIrtd_eQUERY_NOINIT 60013 The query parameter was found to be invalid.

NIrtd_eINVALID_REG 60044 The requestId parameter was found to be null.

NIrtd_eLIMIT_REACHED 60051 The update rate indicated is past the limit defined for this
interface.

NIrtd_eNULL_CALLBACK 60053 The callback function parameter was found to be null.

Real-time Data API Programmer’s
Guide

Return code Error no. Description

NIrtd_eALLOC_FAILED 60052 Storage for an internal component failed.

NIrtd_eCOMM 60055 Communication with the server failed.

The server is informed that the requested data should be provided at regular time intervals as
specified by the updateRate (in milliseconds). The minimum update rate is 2000 milliseconds.
The exception to this is a request for Agent statistics. The update rate is a minimum of 1000 ms.
The server does not send updates more frequently than updateRate; however, updates can take
longer than the specified rate depending on the load on the server.

The requestId returned by this function is required by NIrtd_stopDataStream() to cancel this
request.

The callback function is invoked whenever new data arrives from the server.

NIrdt_stopDataStream()

This function is used to cancel the flow of data updates previously initiated by
NIrtd_startDataStream().

ULONG NIrtd_stopDataStream(NIrtd_tAPIauth *authorization, NIrtd_tRequestId requestId);

Parameter Description

*authorization A pointer to an NIrtd_tAPIauth structure.
NIrtd_tAPIauth is a semi-private data structure holding authorization information.
The authorization structure is obtained in the call to NIrtd_login.

*requestId The requestId that was obtained from NIrtd_startDataStream().

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eINVALID_AUTH 60019 Failed to validate preauthorization. Ensure NIrtd_login
has been called.

NIrtd_eINVALID_REG 60044 The requestId parameter was found to be null.

NIrtd_eALLOC_FAILED 60052 Storage for an internal component failed.

NIrtd_eCOMM 60055 Communication with the server failed.

NIrtd_logout()

This function is used to log off from the server.

ULONG NIrtd_logout(NIrtd_tAPIauth *authorization)

Parameter Description

*authorization A pointer to an NIrtd_tAPIauth structure.
NIrtd_tAPIauth is a semi-private data structure holding authorization information.

Real-time Data API Programmer’s Guide 46

The authorization structure is obtained in the call to NIrtd_login.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eINVALID_AUTH 60019 Failed to validate preauthorization. Ensure NIrtd_login
has been called.

NIrtd_eMUST_DEREG_FIRST 60024 Attempt to log off before deregistration failed.

NIrtd_eLOGOUT_FAIL 60010 Failed to log off from the security server.

Preprocessing and postprocessing functions

NIrtd_getNameCacheforDataColumn()

This function obtains the current list of names and IDs for the given column and places them into
a cache structure for quick access using the NIrtd_getName function.

ULONG NIrtd_getNameCacheforDataColumn(NIrtd_tAPIauth* authorization, NIrtd_tColumnId

column);

Parameter Description

*authorization A pointer to an NIrtd_tAPIauth structure.
NIrtd_tAPIauth is a semi-private data structure holding authorization information.
The authorization structure is obtained in the call to NIrtd_login.

column The ID of the table column.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eINVALID_AUTH 60019 Failed to validate preauthorization. Ensure NIrtd_login
has been called.

NIrtd_eCOLUMN 60004 Invalid column ID selected.

NIrtd_eALLOC_FAILED 60052 An internal memory allocation failed.

NIrtd_eCOLUMN_INIT 60035 Allocation failed for a column database object.

NIrtd_eNAME_INIT 60036 Allocation failure for a name database object or name list
structure.

NIrtd_eAGENTLIST_GET 60039 Failed to obtain the list of agent names from the server.

NIrtd_eSSLIST_GET 60037 Failed to obtain the list of skillset names from the server.

NIrtd_eAPPLIST_GET 60038 Failed to obtain the list of application names from the
server.

NIrtd_getName()

This function translates a column ID and value into a name. The name structure is allocated by

Real-time Data API Programmer’s
Guide

the calling application and is updated to contain the first and last name of the value. Where only
one name is appropriate (such as application and skillset names), the last name contains the name
and the first name is set to a null string.

ULONG NIrtd_getName(NIrtd_tAPIauth *authorization, NIrtd_tColumnId column, NIrtd_stValue

*value, NIrtd_stName *name);

Parameter Description

*authorization A pointer to an NIrtd_tAPIauth structure.
NIrtd_tAPIauth is a semi-private data structure holding authorization information.
The authorization structure is obtained in the call to NIrtd_login.

column The ID of the table column.

*value A pointer to an NIrtd_tValue structure that contains the value to retrieve the name
for. (For example, the value of the column as retrieved from NIrtd_getCol.)

*name A pointer to a structure to contain the name retrieved.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eINVALID_AUTH 60019 Failed to validate preauthorization. Ensure NIrtd_login has
been called.

NIrtd_eNOT_FOUND 60030 The indicated column ID value was not found in the cache.

NIrtd_eCOLUMN 60004 Invalid column ID selection passed.

NIrtd_eCOL_NOT_FOUND 60035 The indicated column was not found to be loaded in the
cache.

NIrtd_eCOLUMN_INIT 60035 The indicated column has not been loaded into cache.

NIrtd_eVALUE_INIT 60049 The passed value parameter was found to be null.

NIrtd_eNAME_INIT 60036 The passed name parameter was found to be null.

NIrtd_eDATA_INVALID 60023 The type of the passed value parameter was found to be
invalid.

NIrtd_getFailedName()

When getting the name from the name cache has failed in the call to NIrtd_getName(), this function
translates a column ID and value into a name. The name structure is allocated by the calling
application and is updated to contain the first and last name of the value. Where only one name is
appropriate (such as application and skillset names), the last name contains the name and the first
name is set to a null string.

ULONG NIrtd_getFailedName(NIrtd_tAPIauth *authorization, NIrtd_tColumnId column,

NIrtd_stValue *value, NIrtd_stName *name);

Parameter Description

*authorization A pointer to an NIrtd_tAPIauth structure.

Real-time Data API Programmer’s Guide 48

NIrtd_tAPIauth is a semi-private data structure holding authorization information.
The authorization structure is obtained in the call to NIrtd_login.

column The ID of the table column.

*value A pointer to an NIrtd_tValue structure that contains the value to retrieve the name
for. (For example, the value of the column as retrieved from NIrtd_getCol.)

*name A pointer to a structure to contain the name retrieved.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eINVALID_AUTH 60019 Failed to validate preauthorization. Ensure NIrtd_login has
been called.

NIrtd_eNAME_INIT 60036 Allocation failure for individual name or list structure; or the
= passed name parameter was found to be null.

NIrtd_eAGENTLIST_GET 60039 Failed to obtain the list of agent names from the server.

NIrtd_eSSLIST_GET 60037 Failed to obtain the list of skillset names from the server.

NIrtd_eAPPLIST_GET 60038 Failed to obtain the list of application names from the server.

NIrtd_eCOLUMN 60004 Invalid column ID selection passed.

NIrtd_eVALUE_INIT 60049 The passed value parameter was found to be null.

NIrtd_eDATA_INVALID 60023 The type of the passed value parameter was found to be
invalid.

NIrtd_eID_NAME_MISMATCH 60041 Value content mismatch as compared to the indicated
column.

NIrtd_eNOT_FOUND 60030 The indicated column ID value was not found in the cache.

NIrtd_eCOL_NOT_FOUND 60050 The indicated column was not found to be loaded in the
cache.

NIrtd_refreshNameCache()
This function refreshes the name cache. An image of the current name values is retrieved from the
server and is available for all future calls to NIrtd_getName(). This routine is useful when a number
of name changes occurred on the server but are not reflected in the current cache of names on the
API client. An application can make the call to NIrtd_refreshNameCache and thenusing a
background thread, go through all the IDs and names currently displayed and update them if
necessary.

ULONG NIrtd_refreshNameCache(NIrtd_tAPIauth *authorization);

Parameter Description

*authorization A pointer to an NIrtd_tAPIauth structure.
NIrtd_tAPIauth is a semi-private data structure holding authorization information.
The authorization structure is obtained in the call to NIrtd_login.

Real-time Data API Programmer’s
Guide

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eINVALID_AUTH 60019 Failed to validate preauthorization. Ensure NIrtd_login has
been called.

NIrtd_eNAME_INIT 60036 Allocation failure for individual name or list structure; or the
= passed name parameter was found to be null.

NIrtd_eAGENTLIST_GET 60039 Failed to obtain the list of agent names from the server.

NIrtd_eSSLIST_GET 60037 Failed to obtain the list of skillset names from the server.

NIrtd_eAPPLIST_GET 60038 Failed to obtain the list of application names from the server.

NIrtd_eCOLUMN 60004 Invalid column ID selection passed.

NIrtd_eVALUE_INIT 60049 The passed value parameter was found to be null.

NIrtd_eDATA_INVALID 60023 The type of the passed value parameter was found to be
invalid.

NIrtd_removeNameCacheforDataColumn()

This function removes a name cache from memory that is no longer going to be used. When
NIrtd_logout is called, it removes all name caches associated with the server being logged off. The
NIrtd_removeNameCacheforDataColumn routine should be used when a cache is no longer
needed but the application will remain logged on to the server.

ULONG NIrtd_removeNameCacheforDataColumn(NIrtd_tAPIauth *authorization, NIrtd_tColumnId

column);

Parameter Description

*authorization A pointer to an NIrtd_tAPIauth structure.
NIrtd_tAPIauth is a semi-private data structure holding authorization information.
The authorization structure is obtained in the call to NIrtd_login.

column The ID of the table column.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eINVALID_AUTH 60019 Failed to validate preauthorization. Ensure NIrtd_login has
been called.

NIrtd_eCOLUMN 60004 Invalid column ID selected..

NIrtd_eCOL_NOT_FOUND 60050 The indicated column was not found to be loaded in the
cache.

NIrtd_eCACHE_REMOVAL 60040 A failure occurred when trying to remove a column of data
from the cache database.

NIrtd_interpAgentState()

Real-time Data API Programmer’s Guide 50

This function breaks the multistate agent state value into multiple single state values. The
AgtState.h file contains constants for comparison against multistate values and for single state
values. Use this routine and the returned single state values for comparison with the AgtState.h
single state constants.

void NIrtd_interpAgentState(ULONG returnedAgentState, ULONG *ngccCallState, ULONG

*dnOutCallState, ULONG *dnInCallState, ULONG *nacdCallState, ULONG *acdCallState, ULONG

*walkawayState);

Parameter Description

returnedAgentState The multi-state agent state value returned by the RTDAPI.

*ngccCallState The Contact Center call state:
eNGCC_ACTIVE = 0X00000100,
eNGCC_ONHOLD= 0X00000080,
eNGCC_NOTRDY= 0X00000040,
eNGCC_BRK= 0X00000020,
eNGCC_IDLE= 0X00000010,
eNGCC_RESERVE= 0X00000008,
eNGCC_CALL_PRESENT= 0X00000004,
eNGCC_CONSULTATION= 0X00000002,
eNGCC_EMERGENCY= 0X00000001

*dnOutCallState The DN Out call state:
eDN_OUT_ACTIVE= 0X00000400,
eDN_OUT_ONHOLD= 0X00000200,
eDN_OUT_ACTIVE_ONHOLD= 0X00000600

*dnInCallState The DN In call state:
eDN_IN_ACTIVE= 0X00001000,
eDN_IN_ONHOLD= 0X00000800,

*nacdCallState The NACD call state:
eNACD_ACTIVE = 0X00004000,
eNACD_ONHOLD = 0X00002000

*acdCallState he ACD call state:
eACD_ACTIVE = 0X00010000,
eACD_ONHOLD = 0X00008000

*walkawayState The Walkaway call state:
eNGCC_WALKAWAY= 0x10000000

NIrtd_setRecovery()

This function changes the amount of time to wait before declaring communication failure. The
full pull plug time is equal to the pullPlugTime plus the update rate. The wakeupGranularity
parameter is the frequency at which the RTDAPI layer wakes up and checks the
amount of time that has passed. The default is a pullPlugTime of 5 minutes with a
wakeupGranularity of 1 minute.

ULONG NIrtd_setRecovery(ULONG pullPlugTime, ULONG wakeupGranularity);

Parameter Description

ullPlugTime This time plus the update rate to wait before declaring communication failure with
the server and starting recovery actions.

Real-time Data API Programmer’s
Guide

wakeupGranularity The amount of time to wait before waking up to check pull plug timers on the
system.

Return code Error no. Description

NIrtd_eOK 0 Operation successful.

NIrtd_eSET_ONLY_ON_INIT 60045 The operation can only occur prior to calling NIrtd_login.

Debug functions

NIrtd_getFirstLowError()

This function retrieves and resets the first lower level return code. This should be called whenever
an error code is returned by any API function. This internal lower level return code value is useful
for Avaya Technology in problem resolution. The third-party application should make this code
value available in some form. Note that this value is subject to being reset or updated in parallel
when dealing with a multithreaded, third-party application that makes calls with multiple threads to
the NIrtd API.

ULONG NIrtd_getFirstLowError ();

NIrtd_getCnt()

This function retrieves the number of objects allocated. This is primarily of use when trying to
ensure the RTD client is properly deallocating objects previously allocated.

int NIrtd_getCnt (NIrtd_cntType i);

Parameter Description

i The type of counter to be retrieved

/* Counter types */

typedef enum _NIrtd_cntType

{

QueryCnt, /* Number of queries */

ConjCnt, /* Number of conjunctions */

TGCnt, /* Number of Table Groups */

RowCnt, /* Number of Rows */

ValueCnt, /* Number of Values */

CacheCnt, /* Number of Name Caches */

NameCnt /* Number of Names */

} NIrtd_cntType;

Error codes

Real-time Data API Programmer’s Guide 52

The following table lists the error numbers and their corresponding events (for debugging
purposes):

Error no. Definition Description

0 NIrtd_eOK Operation successful.

60001 NIrtd_eSERVER Invalid server ID passed.

60002 NIrtd_eROW_INIT Allocation and initialization of row failed.

60003 NIrtd_eTABLE Invalid table ID (query) passed

60004 NIrtd_eCOLUMN Invalid column selection (query) passed

60005 NIrtd_eNOT_AVAIL The query asked for a statistic that is not currently being
collected by the server

60006 NIrtd_eUSERID Invalid user ID passed

60007 NIrtd_ePASSWORD Invalid password passed

60008 NIrtd_eUSERS Too many users logged on to the server

60009 NIrtd_eLOGIN_FAIL General logon failure

60010 NIrtd_eLOGOUT_FAIL General logoff failure

60011 NIrtd_eUPDATE Invalid update rate passed

60012 NIrtd_eQUERY_INITPARM Query parm found not to be null on initialization

60013 NIrtd_eQUERY_NOINIT Query found to be null. Should be initialized in call to
NIrtd_allocateQuery

60014 NIrtd_eQUERY_INIT Failed to initialize query

60015 NIrtd_eCONJ_INIT Failed to initialize conjunction

60016 NIrtd_eCONJ_NOINIT Conjunction found to be null. Should be initialized in call
to NIrtd_allocateConjunction

60017 NIrtd_eAUTH_INIT Failed to initialize authorization structure

60018 NIrtd_eSERV_INIT Failed to initialize the server structure

60019 NIrtd_eINVALID_AUTH Failed to validate preauthorization. Ensure NIrtd_Login
has been called.

60020 NIrtd_eREG_INIT Failed to allocate registration

60021 NIrtd_eROW_INVALID The row indicated does not exist

60022 NIrtd_eCOL_INVALID The column indicated does not exist

60023 NIrtd_eDATA_INVALID The data returned from the remote server was invalid

60024 NIrtd_eMUST_DEREG_FIRST Attempt to log off before deregistration failed

60025 NIrtd_eINVALID_TABLE Attempt to free an unallocated group table

60026 NIrtd_eLISTENER_INIT Failed to initialize a listener for data propagation

60027 NIrtd_eTABLE_GROUP_INIT Failed to allocate and initialize the group table being
returned

60028 NIrtd_eKEY Passed value is not a key or is not a key for this table

Real-time Data API Programmer’s
Guide

Error no. Definition Description

60029 NIrtd_eKEY_MISMATCH Keys in this conjunction are from different tables

60030 NIrtd_eNOT_FOUND The requested name was not found

60031 NIrtd_eLOGIN PC user logon notification

60032 NIrtd_eLOGIN_ERR PC user logon error

60033 NIrtd_eLOGIN_NO No PC user logon yet

60034 NIrtd_eLOGIN_ALREADY PC user logged on already

60035 NIrtd_eCOLUMN_INIT Need to initialize the name/column cache

60036 NIrtd_eNAME_INIT Failed to allocate name

60037 NIrtd_eSSLIST_GET Failed to get skillset name cache

60038 NIrtd_eAPPLIST_GET Failed to get application name cache

60039 NIrtd_eAGENTLIST_GET Failed to get agent name cache

60040 NIrtd_eCACHE_REMOVAL Failed to remove a name a cache

60041 NIrtd_eID_NAME_MISMATCH Value content mismatch as compared to the indicated
column

60042 NIrtd_eDIDNOTBUY Failed to log on to the server because the real-time
access feature was not purchased

60043 NIrtd_eREMOTE_SYSREC_FAIL Failed to log on due to a failure to read the system
record at the remote site

60044 NIrtd_eINVALID_REG Invalid registration identifier passed

60045 NIrtd_eSET_ONLY_ON_INIT The setRecovery routine can only be called prior to calls
for real-time data propagation

60046 NIrtd_eSTART_RECOVERY A deregistration / reregistration attempt is being made

60047 NIrtd_eOK_RECOVERY The deregistration / reregistration attempt was
successful

60048 NIrtd_eBAD_RECOVERY The deregistration / reregistration attempt was not
successful and a retry has been scheduled

60049 NIrtd_eVALUE_INIT The passed value is invalid

60050 NIrtd_eCOL_NOT_FOUND Column not loaded into name cache

60051 NIrtd_eLIMIT_REACHED A passed parameter exceeds the defined limit

60052 NIrtd_eALLOC_FAILED A required memory allocation failed

60053 NIrtd_eNULL_CALLBACK A null callback function was passed

60054 NIrtd_eWORKER_INIT Failed to initialize a worker for registration recovery

60055 NIrtd_eCOMM A communications failure occurred

Real-time Data API Programmer’s Guide 54

Error no. Definition Description

60056 NIrtd_eRDC_FAILURE Failure in DP communication with RDC or a failure of
the defined query when being processed by RDC. See
the server logs.

60057 NIrtd_eIVRLIST_GET Failed to get IVR name cache

60058 NIrtd_eROUTELIST_GET Failed to get Route name cache

60059 NIrtd_eDP_FAILURE Failed in DP

60060 NIrtd_eLOGIN_NO_EULA No End-User License Agreement (that is, no user
selected the “yes” box after the agreement is displayed)

60061 NIrtd_eLOGIN_NO_SERVER_VE
RSION

Failure to obtain the server version

60062 NIrtd_eLOGIN_FAILED_SERVER
_VERSI
ON

Wrong version number

Real-time Data API Programmer’s
Guide

Chapter 6: Sample
Application

Introduction
This chapter goes through the basic skeleton of a RTDAPI application. It presents diagrams
showing the primary process flows. The source code for the sample is available from the SDK.

Application design

Basic skeleton

The following chart illustrates the basic skeleton of an RTDAPI application. The followingchart
illustrates the basic skeleton of an RTDAPI application.

Real-time Data API Programmer’s Guide 56

The following sections illustrate how to set up the queries and the callback function.

Setup query

A query is a selection criterion consisting of a statistic table, columns to select, and the selection
condition.

Real-time Data API Programmer’s
Guide

Callback function

The registered callback function is invoked every time a new statistic data stream comes in. The
TableGroup input parameter contains delta information about the changes to the statistics. A return
code is also passed to the application for error handling.

Real-time Data API Programmer’s Guide 58

Source Code Description

This basic RTDAPI application is a console program that displays skillset statistics
on-screen. This application asks for the skillset ID and the number of agents available for that
particular skillset from the server.

A global skillset statistic cache (stat_list) is maintained within the application. The cache is
updated (add rows, delete rows, and update rows) based on the delta data stream from the server.
The cache content is sent to the console every time a data stream comes in from the server. This
program runs until the sleep_time (input argument) expires.

Other than the main function and the data stream callback function, four utility functions
(newRows, deleteRows, updateRows, and displayCache) are implemented. The following
sections describe each of the application functions, including the list of API functions used.

 Purpose RTDAPI methods used

Real-time Data API Programmer’s
Guide

Main

 perform logon to the
server

 setup name cache
 setup query
 register the callback

function and start the
data stream operation

 wait for the sleep timer
to expire

 clean up all resources
before exit

 NIrtd_login
 NIrtd_allocateQuery
 NIrtd_allocateDataColumnforNameCache
 NIrtd_selectColumn
 NIrtd_startDataStream
 NIrtd_stopDataStream
 NIrtd_removeNameCacheforDataColumn
 NIrtd_freeQuery
 NIrtd_logout

Callback_function

 check the passed in
return code

 if return code is OK,
update the global
statistic cache. Then
deallocate the passed in
TableGroup pointer.

 if not OK, print out the
error code

 NIrtd_freeTableGroup

NewRows

 new statistic records are
added into the global
cache.

 For each new statistic
record:

– find the last
record in the
global cache list

– append the
record

 NIrtd_allocateRow
 NIrtd_allocateValue
 NIrtd_getCol
 NIrtd_freeRow
 NIrtd_freeValue

DeleteRows

 Delete records from the
global statistic cache.

 For each record that is
removed:

o find the
corresponding
record

o free all allocated
resources

o join the broken
link list

 NIrtd_allocateRow
 NIrtd_allocateValue
 NIrtd_getCol
 NIrtd_freeRow
 NIrtd_freeValue

UpdateRows

 update the global
statistic cache content

 For each updated
record:

 NIrtd_allocateRow
 NIrtd_allocateValue
 NIrtd_getCol
 NIrtd_cpValue

Real-time Data API Programmer’s Guide 60

o find the record
from the global
cache

o copy the
updated data
record into the
cache

 NIrtd_freeValue
 NIrtd_freeRow

DisplayCache

 display the content of
the global cache on the
console

 For each item in the
global skillset statistic
cache:

o translate the
skillset ID to
skillset name

o display the
skillset name
and the number
of agents
available on-
screen

 NIrtd_allocateName
 NIrtd_getName
 NIrtd_getFailedName
 NIrtd_freeName

Programming tips
The RTDAPI is internally one thread that listens for data and calls the application’s callback
function. Two critical sections are used in the API code: one for the name database and one for the
database or real-time data registrations. This means that:

 Only one thread can add, delete, change, or lookup real-time data registrations at any point
in time. This also means that the registration database is locked during the execution of the
application callback function.

 Only one thread can add, delete, change, or lookup names at any point in time.
The following is the development advice, based on the preceding information:

 Take the TableGroup data passed to the application callback function, place it in a queue,
and signal another thread to handle the displaying of the update.

 You can refresh the name cache database using the same display thread as the one that
normally displays the data updates. Once refreshed, you can use a background thread to
re-display all the names on the screen. This means that the update thread and background
re-display thread alternate in being able to access the name database.

 Be aware of how you use your own pointer, which you can pass and have passed back to
your application in the callback function. Think of the concurrence of its use. This means
ensuring that the data associated is read only so that when these API functions are later
upgraded to have multiple listening and callback threads, the callbacks can be executed
concurrently.

 When the TableGroup information is passed to the application, most likely yourapplication
will want to maintain a list of items for display and will want to apply the new, deleted, and
delta items to this list. Keep in mind that the way to do this is to use the keys (agent telset

Real-time Data API Programmer’s
Guide

login ID, application ID, and skillset ID) to index into the display list that you are
maintaining. Note that the agent telset login ID is really a string where as the others are
ULONGs.

Real-time Data API Programmer’s Guide 62

 Last Page

