

Avaya Aura® Contact Center / Avaya

Contact Center Select

Host Data Exchange Programmer’s Guide

Release 7.1.1

Issue 0.1

 October 2020

© 2020 Avaya Inc.

All Rights Reserved.

Notice

While reasonable efforts have been made to ensure that the
information in this document is complete and accurate at the
time of printing, Avaya assumes no liability for any errors.
Avaya reserves the right to make changes and corrections to
the information in this document without the obligation to notify
any person or organization of such changes.

Documentation disclaimer

“Documentation” means information published by Avaya in
varying mediums which may include product information,
operating instructions and performance specifications that
Avaya may generally make available to users of its products
and Hosted Services. Documentation does not include
marketing materials. Avaya shall not be responsible for any
modifications, additions, or deletions to the original Published
version of documentation unless such modifications, additions,
or deletions were performed by Avaya. End User agrees to
indemnify and hold harmless Avaya, Avaya's agents, servants
and employees against all claims, lawsuits, demands and
judgments arising out of, or in connection with, subsequent
modifications, additions or deletions to this documentation, to
the extent made by End User.

Link disclaimer

Avaya is not responsible for the contents or reliability of any
linked websites referenced within this site or documentation
provided by Avaya. Avaya is not responsible for the accuracy
of any information, statement or content provided on these
sites and does not necessarily endorse the products, services,
or information described or offered within them. Avaya does not
guarantee that these links will work all the time and has no
control over the availability of the linked pages.

Warranty

Avaya provides a limited warranty on Avaya hardware and
software. Refer to your sales agreement to establish the terms
of the limited warranty. In addition, Avaya’s standard warranty
language, as well as information regarding support for this
product while under warranty is available to Avaya customers
and other parties through the Avaya Support website:
http://support.avaya.com or such successor site as designated
by Avaya. Please note that if you acquired the product(s) from
an authorized Avaya Channel

Partner outside of the United States and Canada, the warranty
is provided to you by said Avaya Channel Partner and not by
Avaya.

Licenses

THE SOFTWARE LICENSE TERMS AVAILABLE ON THE
AVAYAWEBSITE,
HTTP://SUPPORT.AVAYA.COM/LICENSEINFO

OR SUCH SUCCESSOR SITE AS DESIGNATED BY AVAYA,
ARE APPLICABLE TO ANYONE WHO DOWNLOADS, USES
AND/OR INSTALLS AVAYA SOFTWARE, PURCHASED
FROM AVAYA INC., ANY AVAYA AFFILIATE, OR AN AVAYA
CHANNEL PARTNER (AS APPLICABLE) UNDER A
COMMERCIAL AGREEMENT WITH AVAYA OR AN AVAYA
CHANNEL PARTNER. UNLESS OTHERWISE AGREED TO
BY AVAYA IN WRITING, AVAYA DOES NOT EXTEND THIS
LICENSE IF THE SOFTWARE WAS OBTAINED FROM
ANYONE OTHER THAN AVAYA, AN AVAYA AFFILIATE OR
AN AVAYA CHANNEL PARTNER; AVAYA RESERVES THE
RIGHT TO TAKE LEGAL ACTION AGAINST YOU AND
ANYONE ELSE USING OR SELLING THE SOFTWARE

WITHOUT A LICENSE. BY INSTALLING, DOWNLOADING
OR USING THE SOFTWARE, OR AUTHORIZING OTHERS
TO DO SO, YOU, ON BEHALF OF YOURSELF AND THE
ENTITY FOR WHOM YOU ARE INSTALLING,
DOWNLOADING OR USING THE SOFTWARE
(HEREINAFTER REFERRED TO INTERCHANGEABLY AS
“YOU” AND “END USER”), AGREE TO THESE TERMS AND
CONDITIONS AND CREATE A BINDING CONTRACT
BETWEEN YOU AND AVAYA INC. OR THE APPLICABLE

AVAYA AFFILIATE (“AVAYA”).

Avaya grants you a license within the scope of the license
types described below, with the exception of Heritage Nortel
Software, for which the scope of the license is detailed below.
Where the order documentation does not expressly identify a
license type, the applicable license will be a Designated
System License. The applicable number of licenses and units
of capacity for which the license is granted will be one (1),
unless a different number of licenses or units of capacity is
specified in the documentation or other materials available to
you. “Designated Processor” means a single stand-alone
computing device. “Server” means a Designated Processor that
hosts a software application to be accessed by multiple users.

License type(s)

Named User License (NU). You may: (i) install and use the
Software on a single Designated Processor or Server per
authorized Named User (defined below); or (ii) install and use
the Software on a Server so long as only authorized Named
Users access and use the Software. “Named User”, means a
user or device that has been expressly authorized by Avaya to
access and use the Software. At Avaya’s sole discretion, a
“Named User” may be, without limitation, designated by name,
corporate function (e.g., webmaster or helpdesk), an e-mail or
voice mail account in the name of a person or corporate
function, or a directory entry in the administrative database
utilized by the Software that permits one user to interface with
the Software.

Copyright

Except where expressly stated otherwise, no use should be
made of materials on this site, the Documentation, Software,
Hosted Service, or hardware provided by Avaya. All content on
this site, the documentation, Hosted Service, and the Product
provided by Avaya including the selection, arrangement and
design of the content is owned either by Avaya or its licensors
and is protected by copyright and other intellectual property
laws including the sui generis rights relating to the protection of
databases. You may

not modify, copy, reproduce, republish, upload, post, transmit
or distribute in any way any content, in whole or in part,
including any code and software unless expressly authorized
by Avaya. Unauthorized reproduction, transmission,
dissemination, storage, and or use without the express written
consent of Avaya can be a criminal, as well as a civil offense
under the applicable law.

Third Party Components

“Third Party Components” mean certain software programs or
portions thereof included in the Software or Hosted Service
may contain software (including open source software)
distributed under third party agreements (“Third Party
Components”), which contain terms regarding the rights to use
certain portions of the Software (“Third Party Terms”). As
required, information regarding distributed Linux OS source
code (for those Products that have distributed Linux OS source
code) and identifying the copyright holders of the Third Party
Components and the Third Party Terms that apply is available
in the Documentation or on Avaya’s website at:

Host Data Exchange Programmer’s Guide 3

http://support.avaya.com/Copyright or such successor site as
designated by Avaya. You agree to the Third Party Terms for
any such Third Party Components.

THIS PRODUCT IS LICENSED UNDER THE AVC PATENT
PORTFOLIO LICENSE FOR THE PERSONAL USE OF A
CONSUMER OR OTHER USES IN WHICH IT DOES NOT
RECEIVE REMUNERATION TO (i) ENCODE VIDEO IN
COMPLIANCE WITH THE AVC STANDARD (“AVC VIDEO”)
AND/OR (ii) DECODE AVC VIDEO THAT WAS ENCODED BY
A CONSUMER ENGAGED IN A PERSONAL ACTIVITY
AND/OR WAS OBTAINED FROM A VIDEO PROVIDER
LICENSED TO PROVIDE AVC VIDEO. NO LICENSE IS
GRANTED OR SHALL BE IMPLIED FOR ANY OTHER USE.
ADDITIONAL INFORMATION MAY BE OBTAINED FROM
MPEG LA, L.L.C. SEE HTTP://WWW.MPEGLA.COM.

Note to Service Provider

The Product or Hosted Service may use Third Party
Components subject to Third Party Terms that do not allow
hosting and require a Service Provider to be independently
licensed for such purpose. It is your responsibility to obtain
such licensing.

Preventing Toll Fraud

“Toll Fraud” is the unauthorized use of your
telecommunications system by an unauthorized party (for
example, a person who is not a corporate employee, agent,
subcontractor, or is not working on your company's behalf). Be
aware that there can be a risk of Toll Fraud associated with
your system and that, if Toll Fraud occurs, it can result in
substantial additional charges for your telecommunications
services.

Avaya Toll Fraud intervention

If you suspect that you are being victimized by Toll Fraud and
you need technical assistance or support, call Technical
Service Center Toll Fraud Intervention Hotline at +1-800-643-
2353 for the United States and Canada. For additional support
telephone numbers, see the Avaya Support website:
http://support.avaya.com or such successor site as designated
by Avaya. Suspected security vulnerabilities with Avaya
products should be reported to Avaya by sending mail to:
securityalerts@avaya.com.

Trademarks

The trademarks, logos and service marks (“Marks”) displayed
in this site, the Documentation, Hosted Service(s), and
Product(s) provided by Avaya are the registered or
unregistered Marks of Avaya, its affiliates, or other third parties.
Users are not permitted to use such Marks without prior written
consent from Avaya or such third party which may own the
Mark. Nothing contained in this site, the Documentation,
Hosted Service(s) and Product(s) should be construed as
granting, by implication, estoppel, or otherwise, any license or
right in and to the Marks without the express written permission
of Avaya or the applicable third party.

Avaya is a registered trademark of Avaya Inc.

All non-Avaya trademarks are the property of their respective
owners. Linux® is the registered trademark of Linus Torvalds in
the U.S. and other countries.

All non-Avaya trademarks are the property of their respective
owners, and “Linux” is a registered trademark of Linus
Torvalds.

Downloading Documentation

For the most current versions of Documentation, see the Avaya
Support website: http://support.avaya.com or such successor
site as designated by Avaya.

Contact Avaya Support

See the Avaya Support website: http://support.avaya.com for
Product or Hosted Service notices and articles, or to report a
problem with your Avaya Product or Hosted Service. For a list
of support telephone numbers and contact addresses, go to the
Avaya Support website: http://support.avaya.com (or such
successor site as designated by Avaya), scroll to the bottom of
the page, and select Contact Avaya Support.

Host Data Exchange Programmer’s Guide Host Data Exchange Programmer's Guide 4

Contents

Chapter 1: Introduction ... 7

Purpose ... 7

Intended audience ... 7

Support .. 7

Chapter 2: Overview .. 8

Introduction .. 8

Typical Usage Scenario ... 9

ProviderID ... 10

Timing ... 10

Providing services within a script ... 10

Limitations ... 11

Chapter 3: HDX SDK Installation.. 13

Introduction .. 13

HDX Run-time Environment .. 13

Obtaining the HDX SDK .. 13

Migrating older HDX API applications .. 13

Chapter 4: Scripting support for HDX ... 15

Introduction .. 15

Variables ... 15

Intrinsics .. 15

HDX script commands ... 15

SEND INFO ... 16

SEND REQUEST .. 16

GET RESPONSE .. 17

Chapter 5: Creating a CORBA service-providing application 19

Introduction .. 19

TLS support ... 19

Unicode ... 19

Interface Definition Language file .. 19

Logon .. 20

HDX Messaging... 20

CORBA development environment .. 20

Dedicating a listener port ... 20

Host Data Exchange Programmer’s Guide 5

To create the provider application .. 21

A typical provider application scenario ... 21

Chapter 6: Creating a Win32 Service-Provider ... 23

To create a Win32 application ... 23

Chapter 7: HDX API library ... 24

Data Exchange API ... 24

Data types and structures .. 24

clDX_Message_Data ... 24

DX_DATA_HANDLE_ TYPE .. 24

DX_MESSAGE_TYPE ... 24

DX_STATUS_TYPE .. 25

DX_OPERATION_ MODE_TYPE .. 25

Session Termination .. 25

HDX API Definitions .. 26

DX_createData Container() .. 26

DX_destroyData Container() .. 26

DX_getMessageType() .. 27

DX_setMessageType() .. 27

DX_getStatus() .. 28

DX_setStatus() .. 28

DX_getServerID() .. 29

DX_setServerID() .. 29

DX_getFirstItem() .. 30

DX_setFirstItem() ... 30

DX_getNextItem() .. 31

DX_setNextItem() .. 31

DX_getCallID() .. 32

DX_getHeldCalIID() ... 32

DX_getNetwork CallID() ... 32

DX_getNodeID() .. 33

DX_ProviderInit() ... 33

DX_RegisterProvider() ... 34

DX_GetEvent() .. 34

DX_Response Received() .. 35

DX_InfoReceived() .. 36

DX_SendService Complete() ... 36

DX_DeRegister Provider() ... 37

DX_ProviderDeInit() ... 37

Data formats .. 37

Chapter 8: Service Provider Example .. 39

Compiling and Linking a Service Provider ... 39

General Structure of a Service Provider .. 39

How to locate the HDX service .. 40

Host Data Exchange Programmer's Guide 6

Chapter 9: Building a CORBA Application using TAO ... 42

Introduction to CORBA .. 42

Introduction to TAO ... 42

Introduction to TAO Security .. 42

Basic ORB operation and communication.. 43

Basic CORBA client operation ... 43

Obtaining TAO ... 43

Using the TAO IDL compiler to generate source code from the IDL 43

IOR (Interoperable Object Reference) ... 44

Naming Service ... 44

Reference persistence ... 44

TAO utilities ... 45

Properties file .. 45

Client-side settings for TAO ... 46

Chapter 10: CORBA Interface Definition ... 47

NIDXMessage.idl ... 47

NIDXProvider.idl .. 48

Chapter 11: Performance and Engineering ... 50

Chapter 12: Testing HDX functionality .. 51

Overview ... 51

To run the Provider application .. 51

To send data to Provider ... 51

To return data manually ... 52

Host Data Exchange Programmer’s Guide 7

Chapter 1: Introduction

Purpose
This document provides information for developing applications that use the Host Data Exchange
(HDX) Application Programming Interface (API). The HDX API provides both a Common Object
Request Broker Architecture (CORBA) and a C-API type programming interface.

The document provides information on the HDX Software Development Kit (SDK). The HDX SDK
distributes the development and deployments environment.

Intended audience
This document is intended for people who want to develop applications that use the HDX API.

Support
Visit the Avaya Support website at http://support.avaya.com for the most up-to-date documentation,
product notices, and knowledge articles. You can also search for release notes, downloads, and
resolutions to issues. Use the online service request system to create a service request. Chat with
live agents to get answers to questions, or request an agent to connect you to a support team if an
issue requires additional expertise.

Host Data Exchange Programmer’s Guide 8

Chapter 2: Overview

Introduction
The HDX Programmer’s Guide provides information for developing applications that use the HDX
API. The HDX API allows the exchange of data between AACC/ACCS flow/script and a third-party
host application.

Using HDX, third-party applications can implement additional contact center services. The guide
describes procedures for using the HDX API to develop third-party host applications. It documents
the functions and data structures available from the library to communicate with a contact center
script.

The AACC/ACCS HDX server runs on AACC/ACCS and facilitates communication between scripts
and provider applications. After the application registers with the server, the system routes SEND
INFO and SEND REQUEST commands to the provider application. The HDX server uses specific
communication services to connect and exchange messages with a third-party application. Under
the HDX API functions, a communications layer establishes and maintains the communications
connection with the HDX server.

When security is enabled in AACC/ACCS, the HDX CORBA interface supports secure
communication with client applications. Security is enabled in AACC/ACCS using Security
Manager. Consult AACC/ACCS documentation for information related to security in AACC/ACCS.

Host Data Exchange Programmer’s Guide 9

When security is enabled, the HDX CORBA interface supports both secure and unsecured
communication. Existing unsecured HDX CORBA client applications continue to work even when
security is enabled in AACC/ACCS. When security has been enabled, secure and unsecured HDX
CORBA client applications can connect simultaneously to AACC/ACCS.

AACC/ACCS HDX CORBA uses mutual TLS to authenticate the identity of CORBA client
applications. AACC/ACCS HDX CORBA is configured to use TLS v1.2.

HDX was originally designed for the voice contact type but is applicable to all contact types
including multimedia contacts. The scripting commands for HDX are fully applicable for multimedia
contacts.
HDX provides support for Common Object Request Broker Architecture (CORBA). CORBA offers
programming language, network, and platform independence. Client provider applications can use
the language of choice (such as C++ or Java) and the deployment platform of choice (such as Linux
or Windows) to implement the solution.

The HDX server implementation is fully CORBA 2.0 compliant. Third-party HDX client applications
that are not fully CORBA 2.0 compliant, or that use proprietary Object Request Broker (ORB)
extensions, may not work correctly when connected to the HDX server.

Typical Usage Scenario
With the HDX API, third-party applications can provide services to callers through a script/flow. You
can use the script commands SEND INFO, SEND REQUEST / GET RESPONSE to influence the
script operation.

The following example uses a voice session to retrieve an account number from the caller. A HDX
session sends the account number to the third-party application and retrieves the customer’s
account type. The call is then routed to a skillset appropriate to the account type. AACC/ACCS
provides a set of API functions that an application can use to provide services. HDX supports
multiple applications residing on one or more client hosts.

OPEN VOICE SESSION

PLAY PROMPT Enter_Your_Acct_Num

COLLECT DIGITS 10 INTO Caller_Acct_Num

END VOICE SESSION

ASSIGN 2 to Acct_Type

SEND REQUEST ProviderID Caller_Acct_Num

GET RESPONSE ProviderID Acct_Type

WHERE Acct_Type EQUALS

 VALUE 1: QUEUE TO SKILLSET MOST IDLE AGENT

 VALUE 2: QUEUE TO SKILLSET Standard_Group

 VALUE 3: QUEUE TO SKILLSET Overdue_Accts

END WHERE

Host Data Exchange Programmer’s Guide 10

Scripts can send data, as well as query and receive responses from a provider application. Data
passes between the script and the provider application by including variables as parameters in the
script commands.

Call ID is an important concept when building a Contact Center applications. The Call ID is the
reference number that uniquely identifies a call or contact over the lifetime of that call or contact.
For telephony calls, the switch generates the Call ID. For multimedia contacts, the Call ID is the
external ID assigned by the multimedia provider when the contact is created.

The Call ID is sent automatically with every SEND INFO or SEND REQUEST command. You can
use this Call ID so that information about the call (such as skillset or caller-entered data) can be
used subsequently in a screen pop on the agent’s desktop, if available.

Held Call ID is the Call ID of the call currently being transferred or conferenced. Held Call ID is
populated for telephony calls only.

ProviderID
You must use an ID to uniquely identify an application. The value of the ProviderID must be
available to both the provider application and the script writer. You must, therefore, be able to
configure the ProviderID that is used by the provider application software, so that the ID is unique to
a AACC/ACCS site.

In AACC/ACCS, applications can log in using the ProviderID of an already registered application.
To use this feature, the Windows Registry location AllowProviderReRegister must be set to1. To
turn off, set AllowProviderReRegister to 0.

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Nortel\ICCM\HDX\AllowProviderReRegister

Timing
Each request that is sent from a script to a service provider is time-stamped. If a completion
message is not received from a service provider within the timeout period the HDX server discards
the request and notifies the executing script of the timeout. The script continues without the
expected data. You can specify the amount of time to wait for a response from the host to a
maximum of 20 seconds.

Providing services within a script
You must perform the following two major activities for a third-party application to interact with an
executing script:

1. Use HDX commands in your scripts.
2. Create the provider application.

The provider application has three options:

WIN32 API - Support only WIN32 environment.

Host Data Exchange Programmer’s Guide 11

- Delivered as a DLL that allows for client provider
applications to be built in ANSI or Unicode and connects
to the HDX server using RPC.

- Goes through an internal proxy bridge to translate the
Win32 RPC communications into CORBA.No TLS
support

- Unsecured communication only.

CORBA API - Supports only WIN32 environment.
- Delivered as a DLL that contains the same interface as

the WIN32 API but connects to the HDX server using
CORBA.

- Only available for Unicode builds.
- Unsecured communication only.

CORBA (recommended) - Supports both non-Win32 and Win32 environments.
- Develop a CORBA-based program using the provided

IDL files, which can be compiled from the SDK using the
TAO runtime and used to connect directly to the HDX
server.

- Supports secure communication. The client can use a
secure connection to interact with the server.

API functions are used to register the application, send data, and retrieve data.

If you plan to release a Win32 provider application that does not include any of the HDX DLLs, then
choose the CORBA implementation.

The CORBA interface is the native interface for the HDX implementation. The Win32 C interface
goes through an internal proxy bridge to translate the Win32 C interface into the CORBA interface.

Both the WIN32 and CORBA provided DLLs share the same API interface and are
interchangeable if the client provider application is built under Unicode. The WIN32 version
uses remote procedure call (RPC), which is connected to the HDX server by way of a proxy, while
the CORBA version is a direct connection to the HDX server.

Limitations
Limitations associated with the HDX interface.

1. You can specify a maximum of 10 parameters in the HDX commands. Each parameter is
limited to 80 characters.

2. All data is transmitted in a character representation.
3. Parameters in the HDX commands must be variables or intrinsics. For the GET RESPONSE

command, the parameters must be call variables. Constant values are not accepted.
4. Parameters must be single items. Sets and ranges are not accepted.
5. Variable types for parameters must be DN Digit, AGENTID, CLID, ACD, CDN, DNIS, LOC,

NPA, NXX, NPANXX, SKILLSET, integer, or string type. Other types are not accepted.
6. Intrinsics for parameters must be CDN, CLID, DIALED DN, DNIS, or CALL DATA 1 through

CALL DATA 10. Other types are not accepted.

Host Data Exchange Programmer’s Guide 12

7. HDX supports a maximum of 10 provider applications. Each of the provider applications can
be running on any machine.

Host Data Exchange Programmer’s Guide 13

Chapter 3: HDX SDK Installation

Introduction
Use the HDX SDK to write, build, and execute a provider application developed in accordance with
the HDX API. The setup program provides the header files, IDL files, libraries and binaries that you
need to develop and deploy a HDX provider application.

In addition, the HDX SDK includes a TAO development and deployment environment that the
developer can use to quickly and easily develop third-party CORBA client provider applications.

The HDX SDK installs WIN32 and a CORBA-based sample provider application along with sample
source code to develop client provider applications using WIN32 or CORBA.

HDX Run-time Environment
The HDX run-time environment allows for the execution of prebuild sample applications. A WIN32
ANSI, WIN32 Unicode, and CORBA runtime are supplied for testing.

To successfully execute an application, you need a connection to an operational AACC/ACCS.

Obtaining the HDX SDK
The HDX SDK is available on the Avaya developer’s Web site www.avaya.com/devconnect.

To install the HDX SDK

1. Remove any existing HDX SDKs installed on your system using the instructions in the
Programmer’s Guide for the version of the SDK.

2. Download the HDX SDK from the developer’s Web site onto the development server.
3. Run the setup program to install the HDX SDK.

Notes:
1. The HDX SDK utilites and applications require write access to the install location. Ensure

the logged in user has sufficient privilege to allow write access.
2. The HDX SDK utilites and applications require the Visual Studio 2017 redistributable. The

installer allows the user to automatically install the redistributable.

To uninstall the HDX SDK

From the Control Panel, remove Avaya HDX SDK.

Migrating older HDX API applications

Host Data Exchange Programmer’s Guide 14

An existing application compiled against the Win32 Symposium HDX API can be run against an
AACC/ACCS without recompiling. However, the run-time environment from the current HDX SDK
must be used by the application.

Host Data Exchange Programmer’s Guide 15

Chapter 4: Scripting support for HDX

Introduction
HDX script commands have a generic format that allows data type and number of parameters to
vary. This flexibility allows you to define a format to suit the needs of the specific application
service.

Variables
You must use variables for the parameters whenever HDX commands are used in a script.
Variables, as defined in many programming languages, are containers for data. Variables can be
one of several different data types, such as an integer, string, CDN, DN, CLID, DNIS, ACD, LOC,
NPA, NAPNXX, NXX, AGENTID, and SKILLSET. The type of data contained within the variable
must agree with the variable type.

Scripts can contain two classes of variables: global variables and call variables. Global variables
are read-only and cannot be modified by the executing script. They are shared among calls and
scripts. Each call has its own set of call variables, the contents of which can be changed by the
execution of a script.

Intrinsics
Intrinsic variable types are read-only and cannot be modified by the executing script. They are
created and maintained automatically by the server and can be accessed throughout the system in
any scripts. Intrinsics can be one of several different variable types, such as a CDN, CLID, Dialed
DN, or DNIS.

HDX script commands
AACC/ACCS Orchestration Designer provides commands for communicating with a HDX
application. Consult the AACC/ACCS document Using Contact Center Orchestration Designer.

SEND INFO Sends data to the application. No response from the application is
expected.

SEND REQUEST Requests service from the application. A response is expected from the
application and is retrieved through the Get Response command.

GET RESPONSE Retrieves a response from the application, which is initiated by the
SEND REQUEST command.

Host Data Exchange Programmer’s Guide 16

SEND INFO

SEND INFO <ProviderID> <P1>, <P2>, ..., <Pmax>

The system uses the SEND INFO command to send data to the host application. The data is stored
in one or more parameters, which can be call variables, global variables, or intrinsics. Constant
values are not allowed. The script does not expect a response from this command. The maximum
number of parameters allowed in a single statement is 10.

Example: Sending a student record query
Each student record contains fields for student name, student ID, subject, and final grade.
// comments - variables:

// ProviderID = 12345

// type = student record

// name = Joe Smith;

// ID = 8515;

// subject = Math;

// grade = A

....

SEND INFO ProviderID type, name, ID, subject, grade

....

Note: Parameters following ProviderID are separated by commas.

The ProviderID identifies the service-providing application to which information is being sent. The
ProviderID must have the same value that the application specifies when it registers with the HDX
server.

Individual data parameters are converted to their character representation and inserted into a data
container for shipment to the application. When received, the application extracts the individual
items and converts them to their proper data type. The HDX API library provides methods to insert
and extract data items from the data container.

When the host application receives the data, it interprets Joe Smith as the student name, 8515 as
the student ID, Math as the subject, and A as Joe’s grade for Math.

You must specify the exact use of this script command so that it can interwork with the provider
application. The number of parameters, the content, and the order of the parameters determine how
data is presented to the provider application.

Note: If a provider application has more than one service to provide, then one of the parameters
can be a command that indicates the type of service requested.

SEND REQUEST

SEND REQUEST <ProviderID> <P1>, <P2>,..., <Pmax>

The system uses the SEND REQUEST command to request specific data from the application.
Parameters are used in this command to identify the data of interest. Parameters can include call
variables, global variables, or intrinsics. Constant values are not allowed. A script expects a Get
Response to follow a SEND REQUEST. The maximum number of parameters allowed in a single
statement is 10.

Host Data Exchange Programmer’s Guide 17

Example: Sending a student record query

Send the student name to identify the record.

// comments - variables:

// ProviderID = 12345

// type = student record

// name = Joe Smith;

...

SEND REQUEST ProviderID type, name

GET RESPONSE......

...

The ProviderID identifies the service-providing application to which the request is being sent.
Individual data parameters are converted to their character representation and inserted into the
data container for shipment to the application. When received, the provider application extracts the
individual items from the data container and converts them to their proper data type.

When the application receives data, it interprets Joe Smith as the student name, and returns Joe’s
student record in the response.

You must specify the exact use of this command so that it interworks with the provider application.
The ProviderID must have the same value that the provider application specifies when it registers
with the HDX server.

The number of parameters, the content, and the order of the parameters determine how the data is
presented to the application when it receives the SEND REQUEST.

Note: If a provider application has more than one service to provide, then one of the parameters
can be a command that indicates the type of service requested.

GET RESPONSE

GET RESPONSE <ProviderID> <P1>, <P2>,..., <Pmax>

The system uses the GET RESPONSE command to obtain a response that pertains to the SEND
REQUEST command sent to the provider application. A script’s validation fails unless the SEND
REQUEST command precedes the GET RESPONSE command.

You can set the timer setting parameter to control the time to wait for a response. At run time, if
there is no response within the time specified by a default timer in the script, then the command
fails and is aborted. The script continues to execute the next line, and leaves the call variable
values unchanged in the GET RESPONSE statement. The default timer in the script program is
currently set at 10 seconds.

You can specify one or more parameters to hold data in the response message; the parameters
must be call variables separated by commas. The maximum number of parameters allowed in a
single statement is 10.

Note: For more information about the timer setting parameter, see the Scripting Guide.

Example: Receiving a student record

Receive a student record from the host.

// comments - variables as data holders:

// ProviderID: 12345

// name: to hold the student’s name

// ID: to hold the student’s ID

Host Data Exchange Programmer’s Guide 18

// subject: to hold the subject that the student has taken

// score: to hold the student’s score for the above subject

...

SEND REQUEST ProviderID type, name

GET RESPONSE ProviderID name, ID, subject, score

...

WHERE score EQUALS

...

You must also specify the exact use of this command so that it can interwork with the provider
application.

The ProviderID identifies the service-providing application from which information is being retrieved.
The ProviderID parameter must have the same value that the application specifies when it registers
with the HDX server.

The number of parameters, the content, and the order of the parameters must correspond to the
format of the information that the provider application returns to the script after it services the
request.

Individual data items must be converted to their character representation and inserted into the data
container for shipment to the HDX server application. When received, the parameters are extracted
and converted to their proper data types for assignment to the call variables representing that
parameter in the GET RESPONSE command.

If no response is received, then the GET RESPONSE command times out, the script continues to
execute, and the parameters remain unchanged by the call. You must provide default values for
variables used in the GET RESPONSE command so that appropriate action can be taken within the
script for a failed command.

Host Data Exchange Programmer’s Guide 19

Chapter 5: Creating a CORBA service-
providing application

Introduction
CORBA based interfaces are provided by AACC/ACCS. CORBA offers programming language and
platform independence. Client provider applications can use the language of choice (such as C++
or Java), and the platform of choice (such as Linux or Windows) to implement the solution.

Secure Communcations
When security is enabled in AACC/ACCS, the HDX CORBA interface supports secure
communication with client applications. Security is enabled in AACC/ACCS using Security
Manager. When HDX CORBA is starting with security enabled, the security certificates are
automatically extracted from the keystore which has been populated by Security Manager.

In AACC/ACCS, the security configuration needed for HDX CORBA is specified in the file
D:\Avaya\Contact Center\Manager Server\TAO17\conf\hdx.conf.

Unicode
The character set supported by the CORBA interfaces is Unicode. Unicode is a character set
defined by the international standard ISO 10646. The set of characters defined by the standard
represents almost all known languages, including mathematical and scientific symbols. The
standard relies on 16-bit character encoding (instead of the 8-bit encoding defined by ASCII).

The character set in the AACC/ACCS CORBA interface is defined as type unsigned short (or
wchar_t in a Linux or Win32 environment). Do not use the type char (8-bit) when programming to
the CORBA interface.

As an example, development under the Linux system requires you to use the C type wchar_t for
Unicode support. Library functions (in Linux) like wctomb and mbtowc can be used to translate
between Unicode and the 8-bit character char (see the Linux manual page on Unicode for details).

Interface Definition Language file
Interface Definition Language (IDL) provides a standardized representation of an object—and its
methods and attributes—that remains consistent regardless of language or operating system
platform. The SDK includes IDL files that you can use in developing your CORBA applications.

When you run the IDL files through the IDL compiler for your target language, it generates stub
code that is usable in your HDX SDK.

Host Data Exchange Programmer’s Guide 20

Logon
As part of the registration process, the client specifies a Unicode user name and password. The
user name and password must be validated against allowable users. Validation failure, due to
incorrect user name, incorrect password, or both, generates an authentication-failed exception.

HDX is version-controlled. The provider application must include the version as part of the logon
procedure. The version information has a major and minor release number; both values are
included in the IDL file. The provider application should use the major and minor release number
found in the IDL file for the provider application to use the correct interface. If the HDX service
version is compatible with the provider application version, the provider application can log on to the
HDX service. Incorrect versions are raised with incompatible version exceptions that the provider
application can catch.

HDX Messaging
A HDX message contains the message payload and information identifying the message. The
payload is a two-dimensional array of wide characters. The size of the array is set to 10 by 80. The
payload can contain 10 strings of 80 wide characters each. The identifying information contains
information such as reference ID and call ID.

For more information, see the CORBA Interface Definition.

CORBA development environment
CORBA is an open standard specification that allows compatible ORBs to communicate with each
other. Avaya uses TAO 2.5.1 for ORB communication. The ORB is configured to use the Internet
Inter-ORB Protocol (IIOP) for communication.

The HDX CORBA interface adheres to Object Management Group’s (OMG) CORBA 2
specification. Any ORB compliant with the CORBA 2 specification can interoperate with the HDX.

The HDX SDK samples were implemented and tested with TAO 2.5.1 running on Windows 10 using
Visual Studio 2017.

The assignment of the TCP/IP port for the TAO Naming Server is controlled properties files located
on the server at the following location:

D:\Avaya\Contact Center\Manager Server\TAO17\properties\hdx.ini

Note: This runtime and libraries are supplied as part of the HDX Software Development Kit.

Dedicating a listener port
The default operation for HDX is to allow TAO to randomly pick a listener port number. If you have
security concerns, you may want to prevent the random assignment of the port number by
dedicating a port number.

Host Data Exchange Programmer’s Guide 21

1. Edit the file D:\Avaya\Contact Center\Manager

Server\TAO17\properties\hdx.ini. The dedicated port is written to the HDX_Port

entry. A value 0 indicates a random port. Save.
2. Using SCMU, stop and AACC/ACCS.

To create the provider application
HDX SDK provides C++ and Java examples for both secure and non-secure connection to the
server, but can be adapted for other languages. The example is based on a TAO 2.5.1
implementation. It requires access to TAO/ACE include files, libraries, and binaries.

1. Use the TAO IDL compiler to compile the IDL files into source code.

2. Write the main C++ program to retrieve a reference (using the Naming Service or IOR) to
the HDX object and access the operations defined by the IDL interface.

3. Compile and link the provider application.
a. For compilation, define the preprocessor options and include directories.
b. For linking, define the dependent libraries.

4. Run the provider application. Ensure the client application has access to the run-time

environment.

A typical provider application scenario
A provider application is required to interact with the AACC/ACCS flow/script. Typically, the provider
application must perform the following steps:

1. Register with the ORB. For a multithreaded client application create threads for handling
incoming requests sent by the HDX server.

2. The provider application registers itself with the HDX service DX_RegisterProvider(). As part
of the registration request, it passes the user name, password, version, and provider ID.

3. The HDX service acknowledges the request by passing back the HDX message object (see
“HDX message”).

4. By using the HDX message object, the provider application can request a message in either
a block (sync) or non-blocking (async) mode, DX_GetMessage(). The non-blocking mode is
essentially a polling mechanism.

5. A message is sent using the Contact Center Manager script. The message arrives at the
provider application, and the provider application acts on the information. In addition, the
provider application should check to determine whether this message requires a response in
which case the MsgType in the message is DXMT_ReqRespMsg.

Host Data Exchange Programmer’s Guide 22

6. If a response message is necessary, the provider application sends the response message,
DX_MessageResponse(). The MsgReferenceID in the new message must be set to the
MsgReferenceID of the received message.

7. The HDX service acknowledges the message response request.

8. The provider application shuts down by requesting a termination of service,
DX_DeRegisterProvider(). The HDX message object is passed in.

Provider application—HDX interaction

Host Data Exchange Programmer’s Guide 23

Chapter 6: Creating a Win32 Service-
Provider

To create a Win32 application
1. Use the DX_ProviderInit() function to initialize the HDX API library.

2. Use DX_RegisterProvider() to register the application as a service provider. The system

sends a DXM_REGISTER_PROVIDER message to the HDX server. The message contains
the provider ID and flag, which indicates a register operation.

3. Call DX_GetEvent() to retrieve incoming DXM_SERVICE_REQUEST,

DXM_SERVICE_INFO, and DXM_RESPONSE messages.

4. With each retrieved message, extract the message type from the message data container
and determine the type of action required:

a. If the message is a response to a function call, such as DX_RegisterProvider(), then
retrieve the result value from the message data to determine the status of the call.

b. If the message is a DXM_SERVICE_REQUEST or DXM_SERVICE_INFO message,
then the message data container contains the information sent with the message.

c. If the message is a DXM_SERVICE_REQUEST, then retrieve the server ID from the
request message. The server ID is a unique number assigned to the request by the
HDX server and should be set into a service completion message.

5. If the message is a DXM_SERVICE REQUEST, after a service is completed, insert the
results in the message data container and set the server ID obtained from the corresponding
request. Then use the DX_SendServiceComplete() function to return the results to the
caller. If the message is a DXM_SERVICE_INFO or DXM_RESPONSE message, then you
do not need to perform this step. Skip to step 6. This function causes a
DXM_SERVICE_COMPLETE message to be sent to the HDX server. The HDX server
forwards the message to the originator of the request.

6. At shutdown, use the DX_DeRegisterProvider() function to deregister the application. This

function sends a DXM_REGISTER_PROVIDER message with a flag set to deregister the
application. When the application shuts down, it must call the DX_ProviderDeInit() function
to allow the library to close its connections and free any held resources.

WIN32 DLL is used for ANSI and Unicode builds.

CORBA DLL may only be used for Unicode builds but provides a CORBA direct connection without
internal proxies.

The API interfaces for the DLLs are all the same so the development of a client provider application
is identical.

Host Data Exchange Programmer’s Guide 24

Chapter 7: HDX API library

Data Exchange API

Data types and structures

API functions use several different data types and structures as parameters and return values. The
data is defined in the file HDXSDK\WIN32\include\dx_types.h.

clDX_Message_Data

clDX_Message_Data is a container for the information stored within a Data Exchange message.
Almost all of the API functions require a handle to a clDX_Message_Data container as an
argument. The definition of this data type is not provided to users of the library. You can access the
clDX_Message_Data container through the API set provided by the HDX library.

DX_DATA_HANDLE_ TYPE

DX_DATA_HANDLE_TYPE serves as a handle to an object of the clDX_Message_Data type. You

need an object of DX_DATA_HANDLE_TYPE for most of the API functions available in the Data
Exchange library, including functions to insert and retrieve information from within the referenced
clDX_Message_Data container.

DX_MESSAGE_TYPE

DX_MESSAGE_TYPE is an enumerated type used in the clDX_Message_Data container to specify the
type of message.

typedef enum

{

DXM_SERVICE_REQUEST,

DXM_SERVICE_INFO,

DXM_SERVICE_COMPLETE,

DXM_RESPONSE,

DXM_REGISTER_PROVIDER,

DXM_ERROR,

DXM_QUERY_STATUS,

DXM_INVALID_MESSAGE

DXM_SERVER_SHUTDOWN

}DX_MESSAGE_TYPE;

The enumeration contains all the message types used in the Data Exchange system. Not all of
these messages are presented to an application that uses the API.

Host Data Exchange Programmer’s Guide 25

An application can expect to receive DXM_SERVICE_REQUEST, DXM_SERVICE_INFO,
DXM_SERVER_SHUTDOWN, and DXM_RESPONSE messages through a call to the
DX_GetEvent() function. DXM_SERVICE_COMPLETE and DXM_REGISTER_PROVIDER
messages are sent to the HDX server when the API functions DX_SendServiceComplete(),
DX_RegisterProvider(), and DX_DeRegisterProvider() are invoked.

DX_STATUS_TYPE

DX_STATUS_TYPE is an enumerated type used as the return value to specify the status of a particular
call.

typedef enum

{

DXS_UNKNOWNERR,

DXS_SUCCESS,

DXS_NO_EVENT,

DXS_TIMEOUT,

DXS_DLL_INIT_FAILS,

DXS_COMM_INIT_FAILS,

DXS_DATA_AVAILABLE,

DXS_INCOMPATIBLE_VERSIONS,

DXS_BAD_HANDLE,

DXS_BAD_PARAM,

DXS_QUERY_OK,

DXS_REG_PROVIDER_EXISTS,

DXS_NO_REG_PROVIDER_EXISTS,

DXS_INVALID_PROVIDER_ID,

DXS_PROVIDER_REGISTERED,

DXS_PROVIDER_DEREGISTERED,

DXS_PROVIDER_ID_EXISTS,

DXS_PROVIDER_ID_NOT_FOUND,

DXS_REGISTRATION_FAILED,

DXS_ROGUE_WAVE_FAIL,

DXS_DATA_SIZE_TOO_LONG,

DXS_COMM_SEND_FAILS

}DX_STATUS_TYPE ;

DX_OPERATION_ MODE_TYPE

DX_OPERATION_MODE_TYPE is an enumerated type used in the DX_GetEvent() function to
specify the blocking/non-blocking behavior of the call.

typedef enum

{

DXO_SYNC,

DXO_ASYNC

}DX_OPERATION_MODE_TYPE ;

Session Termination

If the connection between the HDX server application and the service-providing application is
terminated, then the DXM_SERVER_SHUTDOWN message is generated and stored in the

Host Data Exchange Programmer’s Guide 26

message queue. When the service-providing application retrieves this shutdown message through
the API functions, the service-providing application should take the appropriate actions, such as
reestablishing the connection to the server.

HDX API Definitions
The HDX API defines data structures and API definitions to represent the interface. To be a
Service Provider, an application must link with the HDX API library. This library encapsulates all of
the communication software and procedures into a Dynamic Link Library (DLL) with a standard C
functional interface. The following section describes the API functions and data types provided by
this library.

The following API functions access message data in a clDX_Message_Data container with a
DX_DATA_HANDLE_TYPE handle. The API is defined in the file
HDXSDK\WIN32\include\dxprovid.h.

DX_createData Container()

DX_DATA_HANDLE_TYPE DX_createDataContainer();

This function creates a data container and returns its handle. The data container stores message
information to be sent to the HDX server. After the message is sent, the data container is destroyed
using API DX_destroyDataContainer() to free up its allocated memory.

Type Value Description

DX_DATA_HANDLE_TYPE some memory address
Handle to the message data container
created.

DX_DATA_HANDLE_TYPE NULL Failed to create a container.

DX_destroyData Container()

DX_STATUS_TYPE DX_destroyDataContainer (DX_DATA_HANDLE_TYPE

MessageDataHandle);

This function destroys the data container to which the parameter points. The function also frees the
memory used by the data container.

Parameter Value Description

MessageDataHandle DX_DATA_HANDLE_TYPE Handle to a message data container.

Type Value Description

Host Data Exchange Programmer’s Guide 27

DX_STATUS_TYPE DXS_SUCCESS Destroyed the data container.

DX_STATUS_TYPE DXS_BAD_HANDLE Invalid data container handle.

DX_getMessageType()

DX_MESSAGE_TYPE

DX_getMessageType(DX_DATA_HANDLE_TYPE MessageDataHandle);

This function returns the message type that corresponds to the handle passed as a parameter.

Parameter Value Description

MessageDataHandle DX_DATA_HANDLE_TYPE Handle to a message data handle.

Type Value Description

DX_MESSAGE_TYPE DXM_SERVICE_INFO Informational message.

DX_MESSAGE_TYPE DXM_SERVICE_REQUEST A service request message.

DX_MESSAGE_TYPE DXM_SERVICE_COMPLETE A service completion message.

DX_MESSAGE_TYPE DXM_RESPONSE A response message.

DX_MESSAGE_TYPE
DXM_INVALID_MESSAGE

Problem extracting message type from
container.

DX_MESSAGE_TYPE DXM_SERVER_SHUTDOWN Session termination message.

DX_setMessageType()

DX_STATUS_TYPE DX_setMessageType (DX_DATA_HANDLE_TYPE

MessageDataHandle, DX_MESSAGE_TYPE MessageType);

This function sets a message type into the message that is sent to the HDX server.

Parameter Value Description

MessageDataHandle DX_DATA_HANDLE_TYPE Handle to a message data container.

MessageType DX_MESSAGE_TYPE A message type.

Type Value Description

Host Data Exchange Programmer’s Guide 28

DX_STATUS_TYPE DXS_SUCCESS Successfully set message type.

DX_STATUS_TYPE DXS_BAD_HANDLE
Invalid message data handle passed
in.

DX_getStatus()

DX_STATUS_TYPE DX_getStatus (DX_DATA_HANDLE_TYPE MessageDataHandle);

This function returns the result value in a data container whose message type is
DXM_RESPONSE.

Parameter Value Description

MessageDataHandle DX_DATA_HANDLE_TYPE Handle to message data.

Type Value Description

DX_STATUS_TYPE DXS_PROVIDER_REGISTERED Successfully registered.

DX_STATUS_TYPE DXS_PROVIDER_ID_ EXISTS The provider ID is already in use.

DX_STATUS_TYPE DXS_REGISTRATION_FAILED A general failure in registration.

DX_STATUS_TYPE DXS_PROVIDER_DEREGISTERED Successfully deregistered.

DX_STATUS_TYPE DXS_PROVIDER_ID_NOT_FOUND The provider ID is invalid.

DX_STATUS_TYPE
DXS_BAD_HANDLE

Invalid message data handle passed
in.

DX_setStatus()

DX_STATUS_TYPE DX_setStatus (DX_DATA_HANDLE_TYPE MessageDataHandle,

DX_STATUS_TYPE MessageStatus);

This function sets result status into the message data container.

Parameter Value Description

MessageDataHandle DX_DATA_HANDLE_TYPE Handle to a message data container.

MessageStatus DX_MESSAGE_TYPE Status

Host Data Exchange Programmer’s Guide 29

Type Value Description

DX_STATUS_TYPE DXS_SUCCESS Successfully set status into message.

DX_STATUS_TYPE DXS_BAD_HANDLE
Invalid data container handle passed
in.

DX_getServerID()

UINT32 DX_getServerID (DX_DATA_HANDLE_TYPE MessageDataHandle);

This function retrieves the HDX server-assigned unique ID for the service request message. The
function must set this unique ID into a return message, and send it to the HDX server so that the
server can match the response with the request.

Parameter Value Description

MessageDataHandle DX_DATA_HANDLE_TYPE Handle to a message data container.

Type Value Description

UINT32 Some unsigned 32-bit integer
The unique ID of the service request
message.

DX_setServerID()

DX_STATUS_TYPE DX_setServerID (DX_DATA_HANDLE_TYPE MessageDataHandle,

UINT32 nRefID);

This function sets a unique ID into a ServiceComplete message to be sent to the HDX server. The
function must obtain this unique ID from the ServiceRequest message sent from the HDX server
using API DX_getServerID().

The HDX server uses this ID to match the response with the request. It is critical that a
ServiceComplete message has this ID set before it is sent to the HDX server.

Parameter Value Description

MessageDataHandle DX_DATA_HANDLE_TYPE Handle to a message data container.

nRefID UINT32
Unique ID (within the DX_Server) of a
request.

Type Value Description

Host Data Exchange Programmer’s Guide 30

DX_STATUS_TYPE DXS_SUCCESS Successfully set ID into message.

DX_STATUS_TYPE DXS_BAD_HANDLE
Invalid data container handle passed
in.

DX_getFirstItem()

TCHAR * DX_getFirstItem (DX_DATA_HANDLE_TYPE MessageDataHandle);

This function returns the first parameter contained within the message.

Parameter Value Description

MessageDataHandle DX_DATA_HANDLE_TYPE Handle to a message data container.

Type Value Description

TCHAR * -
String containing parameter or NULL if
no parameters.

DX_setFirstItem()

DX_STATUS_TYPE DX_setFirstItem(DX_DATA_HANDLE_TYPE MessageDataHandle,

TCHAR * Parameter);

This function prepares the message to insert data one parameter at a time. The function also
inserts the first parameter into the message. This function is only used when the message type is
DXM_SERVICE_COMPLETE.

Parameter Value Description

MessageDataHandle DX_DATA_HANDLE_TYPE Handle to a message data container.

Parameter TCHAR *
String containing the item to be
inserted.

Type Value Description

DX_STATUS_TYPE DXS_SUCCESS Successfully set status into message.

DX_STATUS_TYPE
DXS_BAD_HANDLE

Invalid data container handle passed
in.

DX_STATUS_TYPE DXS_UNKNOWNERR Undefined error.

Host Data Exchange Programmer’s Guide 31

DX_STATUS_TYPE DXS_DATA_SIZE_TOO_LONG Data size exceeds the allowable limit.

DX_getNextItem()

TCHAR * DX_getNextItem (DX_DATA_HANDLE_TYPE MessageDataHandle);

This function returns the next parameter contained within the message. The DX_getFirstItem()
function must be called prior to using this function.

Parameter Value Description

MessageDataHandle DX_DATA_HANDLE_TYPE Handle to a message data container.

Type Value Description

TCHAR * -
String containing parameter or NULL if
no parameters.

DX_setNextItem()

DX_STATUS_TYPE DX_setNextItem (DX_DATA_HANDLE_TYPE MessageDataHandle,

TCHAR * Parameter);

This function inserts the next parameter into the message. The DX_setFirstItem() function must be
called before this function can be invoked.

Parameter Value Description

MessageDataHandle DX_DATA_HANDLE_TYPE Handle to a message data container.

Parameter TCHAR *
String containing the item to be
inserted.

Type Value Description

DX_STATUS_TYPE DXS_SUCCESS Successfully set status into message.

DX_STATUS_TYPE
DXS_BAD_HANDLE

Invalid data container handle passed
in.

DX_STATUS_TYPE DXS_UNKNOWNERR Undefined error.

DX_STATUS_TYPE DXS_DATA_SIZE_TOO_LONG Data size exceeds the allowable limit.

Host Data Exchange Programmer’s Guide 32

DX_getCallID()

UINT32 DX_getCallID (DX_DATA_HANDLE_TYPE MessageDataHandle);

This function retrieves the Call ID from the message. The Call ID identifies the call being processed
by the script.

Parameter Value Description

MessageDataHandle DX_DATA_HANDLE_TYPE Handle to a message data container.

Type Value Description

UINT32 Some unsigned 32-bit integer Call ID of the call requesting service.

DX_getHeldCalIID()

UINT32 DX_getHeldCallID (DX_DATA_HANDLE_TYPE MessageDataHandle);

This function retrieves the HeldCall ID from the message. The HeldCall ID is relevant to a call
arriving in the call center and receiving script commands. The HeldCall ID applies only to telephony
calls.

Parameter Value Description

MessageDataHandle DX_DATA_HANDLE_TYPE Handle to a message data container.

Type Value Description

UINT32 Some unsigned 32-bit integer
HeldCall ID relating to the call
requesting service.

DX_getNetwork CallID()

UINT32 DX_getNetworkCallID (DX_DATA_HANDLE_TYPE MessageDataHandle);

This function retrieves the NetworkCall ID from the message. The NetworkCall ID is relevant to
a call arriving in the call center and receiving script commands. The NetworkCall ID applies only
to telephony calls.

Parameter Value Description

Host Data Exchange Programmer’s Guide 33

MessageDataHandle DX_DATA_HANDLE_TYPE Handle to a message data container.

Type Value Description

UINT32 Some unsigned 32-bit integer
Network call ID relating to the call
requesting service.

DX_getNodeID()

UINT32 DX_getNodeID (DX_DATA_HANDLE_TYPE MessageDataHandle);

This function retrieves the Node ID from the message. The Node ID is relevant to a call arriving
in the call center and receiving script commands. The Node ID applies only to telephony calls.

Parameter Value Description

MessageDataHandle DX_DATA_HANDLE_TYPE Handle to a message data container.

Type Value Description

UINT32 Some unsigned 32-bit integer
Node ID relating to the call requesting
service.

DX_ProviderInit()

DX_STATUS_TYPE DX_ProviderInit (const unsigned long versionNum, const

TCHAR *providerSiteIP, const TCHAR *serverSiteIP, const TCHAR *Instance)

This function initializes the DLL for operation and establishes a communication connection with the
HDX server.

Parameter Value Description

versionNum const unsigned long Version number that the API DLL uses.

providerSiteIP const TCHAR *
IP address of the application service
provider.

serverSiteIP
const TCHAR *

IP address of the HDX server.

Instance
const TCHAR *

Instance string of the provider.

Host Data Exchange Programmer’s Guide 34

Type Value Description

DX_STATUS_TYPE DXS_SUCCESS The API DLL is initialized.

DX_STATUS_TYPE DXS_DLL_INIT_FAILS API DLL initialization failed.

DX_STATUS_TYPE DXS_INCOMPATIBLE_VERSIONS Invalid version number.

DX_RegisterProvider()

DX_STATUS_TYPE DX_RegisterProvider (DX_PROVIDER_ID_TYPE ProviderID);

This function registers the caller as a service provider. The ProviderID parameter is the ID of this
provider if registration is successful.

Parameter Value Description

ProviderID DX_PROVIDER_ID_TYPE Unique ID of the service provider.

Type Value Description

DX_STATUS_TYPE DXS_UNKNOWNERR Undefined error.

DX_STATUS_TYPE DXS_DLL_INIT_FAILS Initialization failed.

DX_STATUS_TYPE
DXS_SUCCESS

The registration message was sent
(does not mean registered).

DX_STATUS_TYPE DXS_REG_PROVIDER_EXISTS The provider already registered.

DX_STATUS_TYPE DXS_INVALID_PROVIDER_ID Invalid provider ID.

DX_GetEvent()

DX_STATUS_TYPE DX_GetEvent (DX_OPERATION_MODE_TYPE mode, DX_DATA_HANDLE_TYPE * hdata);

This function fills in the data container with the information stored in the received message.
Themode parameter specifies whether this function blocks.

A value of DXO_SYNC indicates that the call should block while it waits for a message. A value
of DXO_ASYNC indicates that the call should return immediately, even if no messages are waiting.

The function retrieves one message (if one is available) from the queue of messages. The
message data is inserted into the data container whose handle is passed in as a parameter.

The DXPROVID.DLL queues all received messages. At any given time, there can be several

Host Data Exchange Programmer’s Guide 35

messages waiting in the queue. If the calling application can process several messages at one
time (for example, multithreaded), then it can call DX_GetEvent() multiple times to retrieve the

waiting messages.

Parameter Value Description

mode DX_OPERATION_MODE_TYPE
The mode of this operation (DXO_SYNC,
DXO_ASYNC).

hdata DX_DATA_HANDLE_TYPE *
Address of the handle to the message
data container.

Type Value Description

DX_STATUS_TYPE DXS_SUCCESS Retrieved an event into hdata.

DX_STATUS_TYPE DXS_DLL_INIT_FAILS No message waiting.

DX_STATUS_TYPE DXS_DLL_INIT_FAILS Initialization failed.

DX_Response Received()

DX_STATUS_TYPE DX_ResponseReceived (DX_DATA_HANDLE_TYPE * hdata);

An application calls this function when it has completed processing a DXM_RESPONSE message
from a DX_GetEvent(). For example, this can be a response to the DX_RegisterProvider() function
invoked earlier. The application uses this function simply to delete the data container.

The hdata parameter must refer to the same data handle used in the DX_GetEvent() function that
retrieved the Response message. This function frees the resources of the message data container.

Parameter Value Description

hdata DX_DATA_HANDLE_TYPE *

Address of the handle to the message
data container (it must be the same
handle used in the DX_GetEvent()
function).

Type Value Description

DX_STATUS_TYPE DXS_SUCCESS
Node ID relating to the call requesting
service.

DX_STATUS_TYPE DXS_BAD_HANDLE The input data handle was invalid.

Host Data Exchange Programmer’s Guide 36

DX_InfoReceived()

DX_STATUS_TYPE DX_InfoReceived (DX_DATA_HANDLE_TYPE * hdata);

An application calls this function when it completes processing a DXM_SERVICE_INFO message
received from DX_GetEvent(). This function is used to delete the data container.

The data parameter must be the same handle obtained from the DX_GetEvent() function that
retrieved the DXM_SERVICE_INFO message. This function frees the resources of the message
data container.

Parameter Value Description

hdata DX_DATA_HANDLE_TYPE *

Address of the handle to the message
data container. It must be the same
handle used in the DX_GetEvent()
function.

Type Value Description

DX_STATUS_TYPE DXS_SUCCESS The data container was deleted.

DX_STATUS_TYPE DXS_BAD_HANDLE The input data handle was invalid.

DX_SendService Complete()

DX_STATUS_TYPE DX_SendServiceComplete (DX_DATA_HANDLE_TYPE * hdata);

An application calls this function when it completes processing a request and wants to send a
ServiceComplete message with appropriate data loaded back to the HDX server. The results must
be packaged into the data container referenced by the hdata parameter. This function sends the
message to the HDX server.

The HDX server forwards the service completion data to the originator of the service request.

Parameter Value Description

hdata DX_DATA_HANDLE_TYPE *
Address of the handle to the message
data container.

Type Value Description

DX_STATUS_TYPE DXS_SUCCESS The message was sent.

DX_STATUS_TYPE DXS_BAD_HANDLE The input data handle was invalid.

DX_STATUS_TYPE DXS_UNKNOWNERR Undefined error.

DX_STATUS_TYPE DXS_DLL_INIT_FAILS Initialization failed.

DX_STATUS_TYPE DXS_DATA_SIZE_TOO_LONG
One of the items in the data container
exceeds the allowable limit.

Host Data Exchange Programmer’s Guide 37

DX_STATUS_TYPE DXS_COMM_SEND_FAILS
Failed to send the message data to
the server.

DX_DeRegister Provider()

DX_STATUS_TYPE DX_DeRegisterProvider();

This function deregisters the application as a service provider. No parameter is passed to this
function.

Type Value Description

DX_STATUS_TYPE DXS_SUCCESS
The message was sent (this does
not mean deregistration).

DX_STATUS_TYPE
DXS_NO_REG_
PROVIDER_EXISTS

The provider is not registered.

DX_STATUS_TYPE DXS_UNKNOWNERR Undefined error.

DX_STATUS_TYPE DXS_DLL_INIT_FAILS Initialization failed.

DX_ProviderDeInit()

DX_STATUS_TYPE DX_ProviderDeInit();

This function frees all the resources held by the DLL and disconnects the communicationconnection
with the HDX server.

Parameters are unnecessary for this function. The function should be called when the
serviceprovider application ends operation.

Type Value Description

DX_STATUS_TYPE DXS_SUCCESS Successful cleanup.

Data formats
When data is sent from a script command to an application, the parameters for the command are
converted to their character representation. The parameters are then packed into a
clDX_Message_Data container pointed to by a DX_DATA_HANDLE_TYPE data handle for
transmission. Parameters are placed in the container in the order in which they appear in the SEND
INFO or SEND REQUEST command.

Note: The Call ID is an important concept when building a CTI application. It is used to tie data
associated with the call to the voice call. The Call ID is sent automatically with every SEND INFO or
SEND REQUEST command. You can use this Call ID so that information about the call (such as
skillset or caller-entered data) can be used subsequently in a screen pop on the agent’s desktop.

Host Data Exchange Programmer’s Guide 38

When the application uses the DX_GetEvent() function to retrieve the message, the container fills
with message data that contains information about the request. The container’s data handle is
DX_DATA_HANDLE_TYPE and is passed in as a parameter to the function.

The parsing routines DX_getFirstItem() and DX_getNextItem() extract each parameter, still in
character representation. The application later converts each parameter back into its appropriate
type.

Before an application returns data using the DX_SendServiceComplete() function, the return data
must be converted into character representation and packaged into a clDX_Message_Data
container.

The order of the parameters in the clDX_Message_Data container and the types of data
represented must agree with the format of the parameters of the GET RESPONSE script command.
You must appropriately document the format of the parameters.

The functions DX_setFirstItem() and DX_setNextItem() are provided to load the
clDX_Message_Data container with data through its data handle DX_DATA_HANDLE_TYPE.

Host Data Exchange Programmer’s Guide 39

Chapter 8: Service Provider Example

The samples installed as part of the HDX SDK installation show how an application uses the HDX
API DLL. The examples are for guidance only. Customers should develop their own applications
based on their specific needs.

Compiling and Linking a Service Provider
A service provided must be built to include HDX API header and library files. These are managed
as compiler and linker options.

Compiler Preprocessor None

Include
Directories

Required include files:

1. DX_Types.h
2. DXProvid.h

Linker Libraries Required library:

1. DXProvid.lib

The library is located in the lib folder for the particular build
flavour.

General Structure of a Service Provider
The general structure of a Service Provider application is initialization, processing and de-
initialization.

Initialization / Registration An application must first initialize the HDX API DLL and register
with the HDX server as a service provider.

Receiving messages After the initialization and registration, the HDX server sends a
message to the application whenever a request for service is
made by a script.

When a message is received by calling the DX_GetEvent()
function, the clDX_Message_Data container stores the message
data. The clDX_Message_Data container’s data handle,
DX_DATA_HANDLE_TYPE, is passed as a parameter to the
DX_GetEvent() function.

Most applications call DX_GetEvent() periodically (through
interrupts, WM_TIMER messages, polling, and so on) to check

Host Data Exchange Programmer’s Guide 40

for messages and perform other duties when no message is
pending.

When a service request is received, the clDX_Message_Data
container stores the data associated with the service request.
This data is the information specified by the application software
vendors in documentation for the services provided.

Individual elements are in the order of their appearance in the
script SEND REQUEST command.

Note: Parameters are separated by commas in a script.
ProviderID is not considered to be a parameter, but it is a
necessary part of the command. The same is true for the script
commands GET RESPONSE and SEND INFO.

Inserting data When a service is performed and the results of the service are
returned to the caller, those results must be inserted into the
clDX_Message_Data container.

This data is the information specified by the application software
vendor’s documentation. Individual elements must be in the
order of their appearance in the script GET RESPONSE function.

Deregistration / De-
initialization

When an application finishes providing services, it must
deregister itself with the HDX server. This stops messages from
being sent to the application.

To complete the halt process, the HDX API DLL must also be
deinitialized to allow the DLL to free any resources it may have
acquired.

How to locate the HDX service
The HDX server attempts to register the following default CORBA compound name with the
CORBA Naming service:

NortelNetworks\SymposiumCallCenterServer\HDX

In addition to the default CORBA compound name, each HDX server registers its Contact Center
Manager Server site name with the Name Service in the manner shown:

NortelNetworks\SymposiumCallCenterServer\<Contact Center Manager server name>\HDX

By default, all HDX servers attempt to create and log the default CORBA name. In a network
situation, only one HDX server can successfully register with the default CORBA compound name
(the first); the other HDX server must register its Contact Center Manger site name. In a non-
network environment, the client application can find the HDX server with the default CORBA
compound name. Use the following procedure to locate the Naming Service.

Note: The utility D:\Avaya\Contact Center\Manager Server\TAO17\bin\tao_nslist.exe in
AACC/ACCS lists the services registered with the Name Service.

The CORBA Naming Service location consisting of an IP address and port number is defined in the
AACC/ACCS HDX.ini configuration file. The file is located

Host Data Exchange Programmer’s Guide 41

D:\Avaya\Contact Center\Manager Server\TAO17\properties\hdx.ini

The following is a sample HDX.ini file:

[TAO_Setup]

NameServerPort=4422

HDX_Port=0

ORBDebug=true

ORBDebugLevel=0

ORBSvcConf=

IORFile=

The AACC/ACCS HDX service automatically generates a new persistent IOR file when the service
starts. The IOR file is called C:\NIDXServer_ior.ref

Host Data Exchange Programmer’s Guide 42

Chapter 9: Building a CORBA
Application using TAO

Introduction to CORBA
CORBA (http://www.corba.org) is an architecture and specification for creating, distributing, and
managing distributed program objects in a network. It allows programs located in different locations
and developed by different vendors to communicate in a network through an interface broker.
CORBA was developed under the auspices of the Object Management Group (OMG). It was
designed to provide platform- and language-independent, object-oriented distributed computing.

The character set supported by the CORBA interfaces is Unicode (ISO 10646). The standard relies
on 16-bit character encoding (instead of the 8-bit encoding defined by ASCII). The character set in
the AACC/ACCS CORBA interfaces is defined as type unsigned short (or wchar_t in a Linux or
Win32 environment). The type char (8-bit) is not supported on the CORBA interfaces.

Introduction to TAO
TAO (The ACE ORB, http://www.cs.wustl.edu/~schmidt/TAO.html) is an open source, CORBA-
compliant, C++ Object Request Broker (ORB). TAO supports IIOP 1.2 enabling a high degree of
interoperability with other conforming ORBs. It is implemented on top of ACE, which is infrastructure
middleware that implements the core concurrency and distribution patterns for communication
software. ACE is a highly portable, multiplatform framework that spans both real-time and general
purpose operating systems. TAO uses ACE’s high-performance, small footprint operating system
adaptation layer for all operating system access, rather than invoking non-portable system calls
directly. This allows TAO to be platform independent and easily ported to different operating
systems.

Introduction to TAO Security
TAO provides an IIOP over SSL implementation called SSLIOP. SSLIOP can be used to enforce
integrity, confidentiality and secure invocation when issuing client requests. Furthermore, it also
provides the hooks by which X.509 certificate-based request authorization can be implemented in
application code.

TAO's SSLIOP pluggable protocol implementation supports both the standard IIOP transport
protocol and the secure IIOP over SSL transport protocol. As SSLIOP is implemeneted as a
pluggable protocol, it is dynamically loaded into the ORB.

Host Data Exchange Programmer’s Guide 43

Basic ORB operation and communication
A client ORB communicates with a server ORB to deliver client request messages to the server and
return responses from the server (if any) to the client. On the server, the ORB core delivers the
requests to the appropriate Object Adapter and returns a reply message to the client-side ORB. The
ORB also actively manages the transport-level communications that are used to transmit the
requests and reply messages. As part of the OMG standards, a General Inter ORB Protocol (GIOP)
is defined for enabling interoperable communications among disparate ORB implementations.

Basic CORBA client operation
A CORBA client application can access remote objects. To do this, it must obtain object references
to the CORBA objects that it wants to access. The client can use a CORBA Naming Service or an
IOR to obtain a reference to an object on the server. With a valid reference, the client can invoke
operations on the object references. The CORBA client is unaware of how the CORBA object is
implemented, and the only operations that are available to the client object are those defined in the
objects interface, the IDL file. Note that each CORBA object has a unique identity and interface
defined in the IDL.

Obtaining TAO
TAO can be downloaded from: http://download.dre.vanderbilt.edu/previous_versions/

The downloaded source must be built for the target platform. Build instructions are located at:

http://www.dre.vanderbilt.edu/~schmidt/DOC_ROOT/TAO/TAO-INSTALL.html

Alternatively, you can obtain supported distribution of TAO from vendors. The current vendor

list is located at: http://www.cs.wustl.edu/~schmidt/commercial-support.html

Using the TAO IDL compiler to generate source code
from the IDL
To use IDL interfaces, the IDL compiler is used to generate skeleton and stub code so requests can
traverse from the client to the server. The code generated by the compiler maps is in accordance to
standards set by OMG. The generated output files are not interchangeable between ORB
implementations—files generated by the TAO ORB cannot be used by another ORB. The files must
be compiled with the IDL compiler for the other ORB. However, the server and client can have two
different ORB implementations. Therefore, while AACC/ACCS uses the TAO ORB, a third-party
application can be built and deployed with an ORB from another open source or commercial
vendor.

The third-party developer uses the TAO IDL compiler to generate source code from the IDL file. The
source is compiled and linked to the third-party application.

Host Data Exchange Programmer’s Guide 44

IOR (Interoperable Object Reference)
Each of the AACC/ACCS services that implements a CORBA interface produces an IOR file. An
IOR is a stringified object reference that is written to a file and allows objects to communicate
across process boundaries. The IOR file is a data structure specified in the OMG CORBA 2.0
Interoperability specification. The IOR provides platform-independent and vendor-independent
object references. The IOR is accessed by the client applications to obtain a reference to the server
object. The IOR is useful in shared file systems; for example, the client application has access to
the location of the IOR generated by the server.

The IOR files for AACC/ACCS are located at the root of the C: drive.

Naming Service
The Naming Service is a CORBA service that runs on the server. It allows CORBA objects to be
named by means of binding a name to an object reference. The name binding is stored in the
Naming Service. The client supplies the name to the Naming Service to obtain the reference to the
desired object.

When security is enabled in AACC/ACCS, the HDX CORBA interface supports secure
communication with client applications. However, the Naming Service is not secured. HDX
CORBA client applications must connect unsecured to the Naming Service. See the sample code
SampleClientTLS in the HDX SDK.

The TAO Naming Service in AACC/ACCS is configured with the following options:
m1 Multicast enabled.

Clients can use IP multicast to query for a Naming
Service, and this instance will respond.
TAO Naming Server is listening for client multicast
requests on a specified port.
On the client side, <resolve_initial_references> sends
out a multicast request on the network, trying to locate a
Naming Service.
When a Naming Server receives a multicast request
from a client, it replies. The default multicast port is
used.

ORBEndPoint iiop://[host]:4422 Specifies that the IIOP protocol is being used. The
Naming Service is located on the host and listening on
port 4422.

o tao_name_service.ior Identifies the name of the file used to store the IOR of
the root Naming Service context.

Reference persistence
All AACC/ACCS services using CORBA as the underlying architecture provide persistent
references. The persistent reference allows the client to continue using a server reference even if
the server is restarted.

Host Data Exchange Programmer’s Guide 45

The TAO Naming Service IOR is stored in the file.
C:\Windows\SysWOW64\tao_name_service.ior

This enables the client program running on another machine (not the local host) to copy the file to a
directory (for example, D:\Name\) and can thus connect to the name service without searching for it
using the connection reference

-ORBInitRef NameService=file:///D:\Name\tao_name_service.ior

TAO utilities
A number of TAO utilities is provided on AACC/ACCS to allow configuration and viewing of the
Name Service. The utilities are located in D:\Avaya\Contact Center\Manager
Server\TAO17\bin

The utilities are:
tao_nslist Console Naming Service entries viewer.
NamingViewer GUI Naming Service entries viewer.
tao_catior Console IOR viewer.

Properties file
The ORB initialization options are configurable via the properties files
D:\Avaya\Contact Center\Manager Server\TAO17\properties\hdx.ini.

The properties file settings (default values shown) are:
NameService=iioploc://<ipaddress>:<NameServerPort>/NameService

NameServerPort=4422

iiop://<ipaddress>:<HDX_Port>

HDX_Port=0

ORBDebug=true

ORBDebugLevel=0

ORBSvcConf=

IORFile=

NameServerPort allows for the changing of the Naming Service port. It specifies the location of
the Name Service; port is 4422 on the local machine. For more information about HDX.ini file
details, see “To locate the CORBA Naming Service”.

When ORBDebug is set to true and the ORBDebugLevel is greater than 0 (max of 10), the TAO
logging feature is activated. The log file is located in
D:\Avaya\Logs\CCMS*_OrbLog*.log

The ORBSvcConf option allows the use of default configurations for the services.

TAO configures itself using the ACE Service Configurator framework. Thus, options are specified in
the familiar svc.conf file (if you want to use a different file name, use the - ORBSvcConf option).

The IORFile option allows you to change the name of the default *.ior file produced by the
service. Read the *.ini file to see what other services will be affected by this change.

Host Data Exchange Programmer’s Guide 46

Client-side settings for TAO
A TAO client is a CORBA application that actively establishes connections, submits requests, and
receives responses from a TAO server. You must be careful when specifying the behavior of clients
for multithreaded applications.

In particular, it is important to direct the Service Configurator behavior to provide exclusive
access to the Transport so that requests are not multiplexed on a connection. You can use
-ORBSvcConfDirective statis client-strategy-Factory
“-ORBTransportMuxStrategyEXCLUSIVE” to prevent a multithreaded application from blocking. The
default operation is to send and receive information on the same connection.

Note: A new ORB is created only for each thread. If a single-threaded application creates more than
one ORB (using ORB_init()), it always references to the first ORB created for that particular thread.

For secure communication, the client must provide a service configurator file client.conf file with the
configuration for SSLIOP pluggable protocol.

client.conf

dynamic SSLIOP_Factory Service_Object * TAO_SSLIOP:_make_TAO_SSLIOP_Protocol_Factory()

 "-SSLAuthenticate SERVER_AND_CLIENT -SSLPrivateKey PEM:client_key.pem -

SSLCertificate PEM:client_cert.pem -SSLCAfile PEM:cacert.pem -SSLVersionList TLSv1.2"

static Resource_Factory "-ORBProtocolFactory SSLIOP_Factory"

Host Data Exchange Programmer’s Guide 47

Chapter 10: CORBA Interface
Definition

The HDX SDK provides two interface definition files NIDXMessage.idl and NIDXProvider.idl.
NIDXMessage.idl defines the structure of the message and NIDXProvider.idl defines the transport
mechanism for the message.

NIDXMessage.idl
The message is composed of the following fields:

Message Definition

Call ID
The Call ID identifies the call being processed by the script. For
multimedia contacts, this field contains the contact ID of the multimedia
contact.

Node ID
The Node ID is the ID of the DMS switch system. The field applies only
to telephony calls..

Held Call ID
The Held Call ID is the Call ID of the call currently being transferred or
conferenced. The field applies only to telephony calls.

Reserved Call Reference The internal HDX reference.

Msg Reference ID
The HDX service assigns a unique ID for the service request message.

This unique ID must be set into a return message and sent to the HDX
service so that the service can match the response with the request.

Msg Provider ID
The provider ID that the message is destined for, or the provider of the
response message.

Msg Application ID The application sending the message.

Msg Type (the type of message sent):

Info Msg Information message. A response to this message is not required.
Req Resp Msg A request/response message.
Resp Msg A response message.

Message Definition

Timeout

A timeout message. This message is sent when the provider
application does not respond in time when a request/response
message is sent. Provider applications do not receive this type of
message.

Time

The time when the message was created and sent. The time is
represented in UNIX format (the number of seconds elapsed since
midnight (00:00:00), January 1, 1970.

Host Data Exchange Programmer’s Guide 48

Info List
Contains the message information. The message information is limited
to 80 characters with, at most, 10 unique messages.

NIDXProvider.idl
NIDXProvider.idl defines the functions required by the provider applications to connect and
communicate with the HDX service. The IDL file defines the following functions:

Provider object

NIDXProvider::DX_RegisterProvider()

This function registers the caller as a provider application. The providerID parameter is the ID of this
provider if registration is successful. This function returns the HDX provider message object.

Parameter Description

providerID The unique ID of the provider application.

UserID The Unicode logon user name and password.

Version
The provider application member function version of the HDX
interface. The version is provided in the IDL file.

NIDXProvider::DX_DeRegisterProvider()

This function deregisters the application as a provider application.

Parameter Description

MsgObject The HDX provider message object to be deregistered.

Provider object exceptions
In addition to the standard exception-generated signals (such as Communication Failure), the
following signals are Avaya-specific:

 IncompatibleVersion—This exception is raised when a provider application has a version
that is not supported by the HDX service.

 TooManyConnections—This exception is raised during registration when the HDX service’s
maximum provider applications limit has been reached.

 CurrentlyRegistered—This exception is raised during registration when a registered provider
application attempts to reregister.

 AuthenticationFailed—This exception is raised when a provider application attempts an
illegal logon (invalid user name, password, or both).

 InvalidObject—This exception is raised when a provider application attempts to deregister
an invalid object.

Message Provider object

NIDXProviderMessaging::DX_GetMessage()

This function is called to retrieve the message sent by the service application (for example, the

Host Data Exchange Programmer’s Guide 49

script). A value of DXOM_SYNC indicates that the call should block, waiting for a message. A
value of DXOM_ASYNC indicates that the call should return immediately, even if no messages
are waiting. The function retrieves one message (if one is available) from the queue of messages.

Parameter Type Description

OpMode DXOM_SYNC
Synchronous mode. The call is blocked until a message
arrives.

OpMode DXOM_ASYNC
Asynchronous mode. The call returns immediately even if no
messages are waiting.

message N/A The message as defined in NIDXMessage.idl.

NIDXProviderMessaging::DX_MessageResponse()

This function is called by a provider application when it completes processing a request/response
message from DX_GetMessage() and is sending the response message.

Parameter Description

message The message as defined in NIDXMessage.idl.

Host Data Exchange Programmer’s Guide 50

Chapter 11: Performance and
Engineering

Because a script/flow is executed for each call, the performance of the service provider affects the
performance of an executing script. For example, if the provider application can only handle one
request at a time, and a request takes 4 seconds to complete, then AACC/ACCS only handles a
maximum of 900 calls per hour.

You may want to provide applications with multiple request capabilities, or limit the services
provided to shorten the time required to complete a single service.

Host Data Exchange Programmer’s Guide 51

Chapter 12: Testing HDX functionality

Overview
You can test the functionality of your HDX program by using the Provider tool. Provider uses the
DXProvid.dll to communicate with HDX running in platform. You can use Provider to view the
variable parameters sent from the HDX script functions, such as SEND INFO and SEND
REQUEST. You can also use Provider to return the message data back to HDX as requested by
the script function, such as GET RESPONSE.

Provider is included as part of AACC/ACCS and is located:

D:\Avaya\Contact Center\Manager Server\iccm\bin

The HDX SDK supplies MBCS and Unicode versions of the Provider application. Select the version
to suit your operating systems. Most users will select Unicode.

To run the Provider application
1. Type Provider to start the application from the appropriate directory.

Result: The Provider program main window appears.

2. Enter the appropriate IP addresses of the Provider and server locations in dotted format.
Result: The default IP address is initialized to 127.0.0.1.

3. After you have entered the IP address, select Connect to Server.
Result: You are connected to the server. An error dialog box appears if you type the IP
addresses incorrectly.

4. In the Register ID box, enter a value. You must ensure that the value you enter in this box
matches the application ID defined in the HDX script variable.

5. Click Register to register with the server.
Result: After you click Register, the Register button changes to UnRegister if the
registration is successful.

6. To unregister the application, click UnRegister.

To send data to Provider
1. Configure the script to send the message data to Provider using the HDX script commands.

The providerid defined in the script variable must be the same value you entered in the
Register ID box on the Provider screen. Sample script commands are:
SEND REQUEST providerid g_dnis1

GET RESPONSE providerid c_dnis1

Host Data Exchange Programmer’s Guide 52

SEND INFO providerid c_dnis1

2. Because the example requires Provider to return data back to the script, you

must select the Return parameter 1 option, and then enter the response digit numbers in
the first completion data box. You should also select the Automatic response option so
that Provider returns the message data immediately when receiving a request.
Note: Click Manual Response when you want to return the message data manually. To use
this feature, you must deselect the Automatic response option.

3. Make a call to execute the script. The Request data boxes are updated after the call is
presented to an agent.

To return data manually
1. Configure the script to send the message data to Provider using the HDX script commands.

The providerid defined in the script variable must be the same value you entered in the
Register ID box on the Provider screen. Sample script commands are:

SEND REQUEST providerid TIMER 20 g_dnis1

GET RESPONSE providerid c_dnis1

SEND INFO providerid c_dnis1

2. Select the Return parameter 1 option, and then enter the response digit numbers in the first

completion data box. Ensure that the Automatic response option is not selected.
Note: The timer setting allows the script to wait 20 seconds for the HDX
application to reply.

3. Make a call to execute the script.

4. When the information is received, click Manual Response to return data that is stored in the
first completion data box to the server.

Host Data Exchange Programmer’s Guide 53

LAST PAGE

