AVAYA

IP Office™ Platform

Description of MTCTI-3 API Introduced In
Release 11.1.0.0

Version 1.0

AVAYA

AVAYA SOFTWARE DEVELOPMENT KIT LICENSE AGREEMENT

REVISED: October 14, 2019

READ THIS CAREFULLY BEFORE ELECTRONICALLY ACCESSING OR USING THIS PROPRIETARY
PRODUCT!

THIS IS A LEGAL AGREEMENT (“AGREEMENT”) BETWEEN YOU. INDIVIDUALLY. AND/OR THE
LEGAL ENTITY FOR WHOM YOU ARE OPENING. INSTALLING, DOWNLOADING. COPYING OR
OTHERWISE USING THE AVAYA SOFTWARE DEVELOPMENT KIT (“SDK”) (COLLECTIVELY, AS
REFERENCED HEREIN, “YOU”, “YOUR", OR “LICENSEE”) AND AVAYA INC. OR ANY AVAYA
AFFILIATE (COLLECTIVELY, “AVAYA"). IF YOU ARE ACCEPTING THE TERMS AND CONDITIONS OF
THIS AGREEMENT ON BEHALF OF A LEGAL ENTITY, YOU REPRESENT AND WARRANT THAT YOU
HAVEFULL LEGAL AUTHORITY TO ACCEPT ON BEHALF OF AND BIND SUCHLEGAL ENTITY TO THIS
AGREEMENT. BY OPENING THE MEDIA CONTAINER. BY INSTALLING. DOWNLOADING. COPYING
OR. OTHERWISE USING THE AVAYA SOFTWARE DEVELOPMENT KIT (“SDK”) OR AUTHORIZING
OTHERS TO DO SO, YOU SIGNIFY THAT YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF
THIS AGREEMENT. IF YOU DO NOT HAVE SUCH AUTHORITY OR DO NOT WISH TO BE BOUND BY
THE TERMS OF THIS AGREEMENT, SELECT THE "DECLINE" BUTTON AT THE END OF THE TERMS OF
THIS AGREEMENT OR THE EQUIVALENT OPTION AND YOU SHALL HAVE NO RIGHT TO USE THE
SDK.

1.0 DEFINITIONS.

1.1 “Affiliates™ means any enfity that is directly or mdirectly controlling, controlled by. or under common control with
Avaya Inc. For purposes of this definition, “control” means the power to direct the management and policies of such
party, directly or indirectly, whether through ownership of voting securities, by contract or otherwise; and the terms
“controlling™ and “controlled” have meanings correlative to the foregoing.

1.2 “Avaya Software Development Kit” or “SDK” means Avaya technology, which may include Software, Client
Librarntes, Specification Documents, Software libraries, application programming interfaces (“API”), Software tools,
Sample Application Code and Documentation.

1.3 “Client Libraries” mean any enabler code specifically designated as such and mcluded 1n a SDK. Client Libraries
may also be referred to as “DLLs™, and represent elements of the SDK required at runtime to communicate with Avaya
products or other SDK elements.

1.4 “Change In Conirol” shall be deemed to have occurred if any person. entity or group comes to own or control.
directly or indirectly. beneficially or of record. voting securities (or any other form of controlling interest) which
represent more than fifty percent (50%) of the total voting power of the Licensee.

1.5 “Derivative Work(s)” means any translation (including translation into other computer languages), port. compiling
of Source Cede into object code, combination with a pre-existing work, modification, correction, addition, extension,
upgrade, improvement, compilation, abridgment or other form in which an existing work may be recast. transformed
or adapted or which would otherwise constitute a derivative work under the United States Copyright Act. Pernutted
Modifications will be considered Derivative Works.

Avaya Softwars Development Eit License Terms (10/142019)
& 2016-2019 Avaya Inc. ATl righs reserved. Avaya and the Avaya Logoe are tademarks of Avaya Inc. and may be registered in certain jurisdictions. All trademarks identified by the & or TM are
registered trademarks, ssrvice marks or rademarks, respectively, of Avava Inc. All other trademarks are the property of their respective owners.

1.6 “Documentation” mncludes programmer guides, CDs, manuals, materials, and information appropriate of necessary
for use in connection with the SDK. Documentation may be provided in macline-readable, electronic or hard copy
form.

1.7 “Intellectual Property” means any and all: (1) rights associated with works of authorship throughout the world,
including copyrights. neighboring rights, moral rights, and mask works, (11) trademark and trade name rights and
stmilar rights, (111) trade secret rights, (iv) patents. algorithms, designs and other industrial property rights, (v) all other
intellectual and industrial property rights (of every kind and nature throughout the world and however designated)
whether ansing by operation of law, contract, license, or otherwise, and (vi) all registrations, 1mtial applications,
renewals, extensions. continuations, divisions or reissues thereof now or hereafter in force (including any rights in any
of the foregomg).

1.8 “Pernutted Modification(s)” means Licensee’s modifications of the Sample Application Code as needed to
create applications, interfaces, workflows or processes for use with Avaya products.

1.9 “Specification Document”™ means any notes or stmilar instructions 1 hard copy or machine readable form,
including any technical, interface and/or mteroperability specifications that define the requirements and conditions for
connection to and/or interoperability with Avaya products, systems and solutions.

1.10 “Source Code™ means human readable or high-level statement version of software written in the source language
used by programmers and includes one or more programs. Source Code programs may include one or more files, such
as user interface markup language (mzxml), action script (.as). precompiled Flash code (swc), java script (js).
hypertext markup language (_html), active server pages (.asp), C# or C# Net source code (.cs). java source code
(java), java server pages (jsp). java archives (jar), graphic interchange format (gif), cascading style sheet { css).
audio files (. wav) and extensible markup language (. xml) files.

1.11 “Sample Application Code™ means Software provided for the purposes of demonstrating functionality of an
Awaya product through the Avaya Software Development Kit.

1.12 “Software” means data or mformation constituting one or more computer of apparatus programs, including
Source Code or in machme-readable, compiled object code form.

2.0 LICENSE GEANT.
2.1 SDK License.

A Provided Licensee pavs to Avaya the applicable license fee (if any). Avaya hereby grants Licensee a limited,
non-exclusive, non-transferable license (without the right to sublicense, except as set forth in 2.1B(111)) under
the Intellectual Property of Avaya and, 1f applicable. its licensors and suppliers to (1) use the SDK solely for the
purpose of Licensee's internal development efforts to develop applications. interfaces, value-added services
and/or solutions, workflows or processes to work in conjunction with Avaya products; (i1) to package Client
Libranies for redistribution with Licensee’s complementary applications that have been developed using this
SDK, subject to the terms and conditions set forth herein; (1ii) use Specification Documents solely to enable
Licensee’s products, services and application solutions to exchange messages and signals with Avaya products,
systems and solutions to which the Specification Document(s) apply; (1v) modify and create Denvative Works
of the Sample Application Code, Specification Documents and Documentation solely for internal development
of applications, terfaces, workflows or processes for use with Avaya products, integration of such applications,
interfaces, workflows and processes with Avaya products and interoperability testing of the foregoing with
Avaya products; and (v) compile or otherwise prepare for distribution the Sample Application Code with
Permitted Modifications, into an object code or other machine-readable program format for distribution and
distribute the same subject to the conditions set forth in Section 2.1B.

B. The foregoing license to use Sample Application Code is contingent upon the following: (1) Licensee must

ensure that the modifications made to the Sample Application Code as permitted in clause (1v) of Section 2.1A
Avaya Sofrware Development EKit License Terms (1011420167
© 2016-2019 Awaya Inc. All rights reserved. Avaya and the Avaya Logo are mademarks of Avaya Inc. and may be registersd in certain jurisdictions. All rademarks identified by the ® or TM are
registered trademarks, service marks or orademarks, respectively, of Avaya Inc. All other trademarks are the property of their respective ownsrs.

are compatible and/or interoperable with Avava products and/or integrated therewith, (i1) Licensee may
distribute Licensee’s application that has been created using this SDK, provided that such distribution 1s subject
to an end user pursuant to Licensee’s current end user license agreement (“Licensee EULA™) that 1s consistent
with the terms of this Agreement and, if applicable, any other agreement with Avava (e.g.. the Avaya
DevConnect Program Agreement), and 15 equally as protective as Licensee’s standard software license terms,
but 1n no event shall the standard of care be less than a reasonable degree of care, and (111) Licensee ensures that
each end user who receives Client Libraries or Sample Application Code with Permitted Modifications has all
necessary licenses for all underlying Awvaya products associated with such Client Libraries or Sample
Application Code.

Your Licensee EULA must include terms concerning restrictions on use, protection of proprietary nights,
disclaimer of warranties, and limitations of liability. You must ensure that Your End Users using applications.
interfaces, value-added services and/or solutions, workflows or processes that incorporate the API, Client
Libranes, Sample Code or Penmitted Modifications adhere to these terms, and You agree to notify Avaya
promptly if You become aware of any breach of the terms of Licensee EULA that may impact Avaya. You
will take all reasonable precautions to prevent unauthorized access to or use of the SDK and notify Avaya
promptly of any such unauthornzed access or use.

C. Licensee acknowledges and agrees that it is licensed to use the SDK only in connection with Avavya products
(and if applicable, in connection with services provided by or on behalf of Avaya).

D. With respect to Software that contains elements provided by third party suppliers. Licensee may install and
use the Software i accordance with the terms and conditions of the applicable license agreements, such as
“shrinkwrap™ or “click-through™ licenses, accompanying or applicable to the Software.

2.2 No Standalone Product. Nothing in tlis Agreement authorizes or grants Licensee any rights to distribute or
otherwise make available to a third party the SDK. in whole or in part, or any Derivative Work i source or object
code format on a standalone basis other than the modifications permuitted in Section 2.1B of this Agreement.

2.3 Proprietary Notices. Licensee shall not remove any copyright, trade mark or other proprietary notices incorporated
in the copies of the SDK, Sample Application Code and redistributable files in Licensee’s possession or control or
any modifications thereto. Redistributions in binary form or other suitable program format for distribution, to the
extent expressly permitted. must also reproduce Avaya’s copyright, trademarks or other proprietary notices as
incorporated in the SDK in any associated Documentation or “splash screens™ that display Licensee copyright notices.

2.4 Third-Party Components. You acknowledge certain software programs or portions thereof included in the SDK
may contain sofiware distributed under third party agreements (“Third Party Components™), which may contain terms
that expand or limit nights to use certain portions of the SDK (“Third Party Terms™). Information identifying the
copynight holders of the Third Party Components and the Third Party Terms that apply 1s available in the attached
Schedule 1 (if any). SDK, Documentation, or on Avava's web site at: hitp://support.avava.com/Copvright (or such
successor site as designated by Avaya). The open source software license terms provided as Third Party Terms are
consistent with the license rights granted in this Agreement, and may contain additional rights benefiting You, such
as modification and distribution of the open source software. The Third Party Terms shall take precedence over this
Agreement, solely with respect to the applicable Third Party Components, to the extent that this Agreement imposes
greater restrictions on You than the applicable Third Party Terms. Licensee 1s solely responsible for procuring any
necessary licenses for Third Party Components, including payment of licensing rovalties or other amounts to third
parties. for the use thereof.

2.5 Copies of SDK. Licensee may copy the SDK only as necessary to exercise 1ts rights hereunder.

2.6a No Reverse Engineening. Licensee shall have no rights to any Source Code for any of the software in the SDK.
except for the explicit rights to use the Source Code as provided to Licensee hereunder. Licensee agrees that 1t shall
not cause or permit the disassembly. decompilation or reverse engineering of the Software. Notwithstanding the
foregoing, if the SDK is rightfully located in a member state of the European Union and Licensee needs information

Avaya Software Development K License Terms (10/14/2019)
© 2016-2019 Avaya Inc. Al rights reserved. Avaya and the Avaya Logo are uademarks of Avaya Inc. and may be registered in certain jurisdictions. All rademarks identified by the ® or TM are
registared trademarks, service marks or mademarks, respectively, of Avaya Inc. All other trademarks are the property of their respective ownsrs.

about the Software in the SDK in order to achieve interoperability of an independently created software program with
the Software in the SDK. Licensee will first request such information from Avaya. Avaya may charge Licensee a
reasonable fee for the provision of such information. If Avaya refuses to make such information available, then
Licensee may take steps, such as reverse assembly or reverse compilation. to the extent necessary solely in order to
achieve interoperability of the Software in the SDK with an independently created software program. To the extent
that the Licensee 1s expressly pernutted by applicable mandatory law to undertake any of the activities listed in this
section, Licensee will not exercise those rights until Licensee has given Avaya twenty (20) days written notice of its
intent to exercise any such nights.

2.6.b License Restrictions. To the extent permissible under applicable law, Licensee agrees not to: (1) publish, sell.
sublicense, lease. rent, loan, assign, convey or otherwise transfer the SDK; (i1) distribute, disclose or allow use the
SDK. in any format, through any timesharing service, service bureau, network or by any other means; (11) distribute
or otherwise use the Software 1n the SDK 1n any manner that causes any portion of the Software that 1s not already
subject to an OSS License to become subject to the terms of any 0SS License; (1v) link the Source Code for any of
the software i the SDK with any software licensed under the Affero General Public License (Affero GPL) v.3 or
stmilar licenses; (v) access information that is solely available to root administrators of the Avaya products, systems.
and solutions; (vi) develop applications, interfaces. value-added services and/or solutions, workflows or processes
that causes adverse effects to Avaya and third-party products, services, solutions. such as, but not limited to, poor
performance, software crashes and cessation of their proper functions; and (vii) develop applications, interfaces,
value-added services and/or solutions, workflows or processes that blocks or delays emergency calls; (vin) emulate
an Avaya SIP endpoint by form or user interface design confusingly similar as an Avaya product ; (1x) reverse engineer
Avaya SIP protocol messages: or (x) permit or encourage any third party to do any of (1) through (x). inclusive, above.

2.7 Responsibility for Development Tools Licensee acknowledges that effective utilization of the SDK may require
the use of a development tool, compiler and other software and technology of third parties, which may be incorporated
in the SDK pursuant to Section 2.4. Licensee is solely responsible for procuring such third party software and
technology and the necessary licenses, including payment of licensing royalties or other amounts to third parties. for
the use thereof.

2.8 U.S. Government End Users. The SDK shall be classified as "commercial computer software” and the
Documentation is classified as "commercial computer software documentation” or "commercial items.” pursuant fo
FAR 12212 or DFAR 227.7202, as applicable. Any use, modification, reproduction, release, performance, display or
disclosure of the SDK or Documentation by the Government of the United States shall be governed solely by the terms
of the Agreement and shall be prohibited except to the extent expressly permitted by the terms of the Agreement.

2.9 Linutation of Rights. No right 15 granted to Licensee to sublicense its rights hereunder. All rights not expressly
granted are reserved by Avava or its licensors or suppliers and. except as expressly set forth herein, no license 1s
granted by Avaya or its licensors or suppliers under this Agreement directly, by implication, estoppel or otherwise,
under any Intellectual Property right of Avaya or its licensors or suppliers. Nothing herein shall be deemed to authorize
Licensee to use Avaya's trademarks or trade names in Licensee's advertising, marketing, promotional. sales or related
materials.

2.10 Independent Development.

2.10.1 Licensee understands and agrees that Avaya. Affiliates. or Avaya’s licensees or suppliers may acquire, license,
develop for itself or have others develop for it, and market and/or distribute applications. interfaces, value-added
services and/or solutions, workflows or processes simular to that which Licensee may develop. Nothing in this
Agreement shall restrict or limit the rights of Avaya, Affiliates, or Avaya’s licensees or suppliers to commence or
continue with the development or distbution of such applications, mterfaces. value-added services and/or solutions,
workflows or processes.

2.10.2 Nonassertion by Licensee. Licensee agrees not to assert any Intellectual Property related to the SDK or
applications, interfaces, value-added services and/or solutions, workflows or processes developed using the SDK
agamst Avaya, Affilhates. Avava’s licensors or suppliers, distributors, customers, or other licensees of the SDE.

Avaya Software Development Ki License Terms (101472019
© 2016-2019 Avaya Inc. All righes reserved. Avaya and the Avaya Logo are mademarks of Avaya Inc. and may be registersd in certain jarisdictions. Al trademarks identified by the ® or TM are
registered trademarks, service marks or rademarks, respectively. of Avaya Inc. All other trademarks are the property of their respective owners.

2.11 Feedback and Support. Licensee agrees to provide any information, comments, problem reports. enhancement
requests and suggestions regarding the performance of the SDK (collectively, “Feedback™) via any public or private
support mechanism, forum or process otherwise indicated by Avaya. Avaya monitors applicable mechanisms. forums,
or processes but 1s under no obligation to implement any of Feedback, or be required to respond to any questions
asked via the applicable mechanism, forum, or process. Licensee hereby assigns to Avaya all right, title, and interest
in and to Feedback provided to Avaya.

2.12(a) Fees and Taxes. To the extent that fees are associated with the license of the SDK, Licensee agrees to pay to
Avaya or pay directly to the applicable government or taxing authenty, if requested by Avaya, all taxes and charges,
including without limitation, penalties and interest, which may be imposed by any federal, state or local governmental
or taxing authority arising hereunder excluding, however, all taxes computed upon Avaya’s net income. If You move
any Software, including the SDK, and as a result of such move, a jurisdiction imposes a duty, tax. levy or fee (including
withholding taxes, fees. customs or other duties for the import and export of any such Software), then You are solely
liable for, and agree to pay. any such duty, taxes, levy or other fees.

2.12(b) Audit. Avaya shall have the right, at its cost and expense, to inspect and/or audit (1) by remote polling or other
reasonable electronic means at any time and (11) in person during normal business hours and with reasonable notice
Licensee’s books, records, and accounts, to determine Licensee’s compliance with this Agreement. In the event such
inspection or audit uncovers non-compliance with this Agreement, then without prejudice to Avaya’s termination
rights hereunder, Licensee shall promptly pay Avaya any applicable license fees. Licensee agrees to keep a current
record of the location of the SDK.

2.13 No Endorsement. Neither the name Avaya, Affiliates nor the names of contnibutors may be used to endorse or
promote products dertved from the Avaya SDK without specific prior written permission from Avavya.

2.14 High Risk Activities. The Avaya SDK 1s not fault-tolerant, and 1s not designed, manufactured or intended for
use or resale as on-line control equipment or 1n hazardous environments requiring failsafe performance, such as 1n the
operation of nuclear facilities, aircraft navigation or aireraft communications systems, mass transit, air traffic control,
medical or direct life support machines, dedicated emergency call handling systems or weapons systems, in which the
failure of the Avaya SDK could lead directly to death. personal injury, or severe physical or environmental damage
("high risk activities"). If Licensee uses the Avaya SDK for high risk activities, Licensee does so at Licensee’s own
risk and Licensee assumes all responsibility and liability for such use to the maximum extent such limitation or
exclusion 1s permatted by applicable law. Licensee agrees that Avaya and 1ts suppliers will not be liable for any claims
or damages arising from or related to use of the Avaya SDK for high nisk activities to the maximum extent such
limitation or exclusion 1s permitted by law.

2.15 No Vius. Licensee warrants that (1) the applications, interfaces, value-added services and/or solutions,
workflows or processes Licensee develops using this SDK will not contain any computer program file that includes
time code limitations, disabling devices, or any other mechanism which will prevent the Avaya product (including
other software, firmware, hardware). services and networks from being functional at all times (collectively “Time
Bombs™); and (11) the applications. nterfaces, value-added services and/or solutions, workflows or processes Licensee
develops using this SDK will be free of computer viruses, malicious or other harmful code, black boxes. malware,
trapdoors, and other mechamisms which could: a) damage. destroy or adversely affect Avava product, or services
and/or end users; b) allow remote/hidden attacks or access through unauthorized computerized command and control;
¢) spv (network sniffers, keyloggers). and d) damage or erase such applications, interfaces, value-added services and/or
solutions, workflows or processes developed using this SDK or data. or anv computer files or systems of Avaya,
Affiliates, and/or end users (collectively “Virus™). In addition to any other remedies permitted in the Agreement, if
Licensee breaches its warranties under this Section, Licensee will, at its expense, take remedial action to eliminate
any Time Bombs and/or Viruses and prevent re-occurrence (including implementing appropriate processes to prevent
further occurrences) as well as provide prompt, reasonable assistance to Avaya to materially reduce the effects of the
Time Bomb and/or Virus.

Avaya Software Development K& License Terms (10/1472019)
© 2016-2019 Avaya Inc. All rights reserved. Avaya and the Avaya Logo are trademarks of Avaya Inc. and may be registered in certain jurisdictions. All trademarks identified by the ® or TM are
registered trademarks, service marks or wademarks, respectively, of Avaya Inc. Al other trademarks are the property of their respective owners.

2.16 Disclaimer. Any software security feature is not a guaranty against malicious code. deleterious routines. and other
techniques and tools employed by computer “hackers”™ and other third parties to create secunty exposures.
Compromised passwords represent a major security risk. Avaya encourages You to create strong passwords using
three different character types, change Your password regularly and refrain from using the same password regularly.
You must treat such information as confidential. You agree to notify Avaya immediately upon becoming aware of any
unauthorized use or breach of Your user name, password, account, API Key, or other credentials as provided by Avaya
for use of the SDK. or subscription. You are responsible for ensuning that Your networks and systems are adequately
secured against unauthorized intrusion or attack and regularly back up of Your data and files in accordance with good
computing practices.

2.17 Third Party Licensed Software

A “Commercial Third Party Licensed Software™ 1s software developed by a business with the purpose of
making money from the use of that licensed software. “Freeware Licensed Software™ 1s software which 1s made
available for use, free of charge and for an unlimited time. but is not Open Source Licensed Software. “Open
Source Software” or "OS55" 15 as defined by the Open Source Intiative (“OSI”) https://opensource org/osd and
1s software licensed under an OSI approved license as set forth at hitps://opensource org/licenses/alphabetical
(or such successor site as designated by OSI). These are collectively referred to herein as “Thard Party Licensed
Software™.

B. Licensee represents and warrants that Licensee, including any employee. contractor, subcontractor, or
consultant engaged by Licensee, 1s to the Licensee’s knowledge, in compliance and will continue to comply
with all license obligations for Third Party Licensed Software used in the Licensee application created using the
SDK including providing to end users all information required by such licenses as mav be necessary.
LICENSEE REPRESENTS AND WARRANTS THAT, TO THE LICENSEE'S KNOWLEDGE, THE OPEN
SOURCE LICENSED SOFTWARE EMBEDDED IN OR PROVIDED WITH LICENSEE APPLICATION OR
SERVICES DOES NOT INCLUDE ANY OPEN SOURCE LICENSED SOFTWARE CONTAINING TERMS
REQUIRING ANY INTELLECTUAL PROPERTY OWNED OF. LICENSED BY AVAYA OR END USERS
TO BE (A) DISCLOSED OR DISTRIBUTED IN SOURCE CODE OR OBJECT CODE FORM: (B)
LICENSED FOR THE PURPOSE OF MAKING DERIVATIVE WORKS; OR (C) REDISTRIBUTABLE ON
TERMS AND CONDITION NOT AGREED UPON BY AVAYA OR END USERS.

C. Subject to any confidentiality obligations, trade secret or other rights or claims of Licensee suppliers,
Licensee will respond to requests from Avaya or end users relating to Third Party Licensed Software associated
with Licensee’s use of Third Party Licensed Software. Licensee will cooperate in good faith by furmshing the
relevant information to Avaya or end users and the requester within two (2) weeks from the time Avaya or end
user provided the request to Licensee.

3. OWNERSHIP.

3.1 As between Avaya and Licensee, Avaya or 1ts licensors or suppliers shall own and retain all Intellectual Property
nights, m and to the SDK and any corrections, bug fixes, enhancements, updates, improvements. or modifications
thereto and Licensee hereby wrevocably transfers. conveys and assigns to Avaya, its licensors and its suppliers all of
1ts right, title. and interest therein. Avaya or 1ts licensors or suppliers shall have the exclusive night to apply for or
register any patents. mask work rights, copyrights. and such other proprietary protections with respect thereto.
Licensee acknowledges that the license granted under this Agreement does not provide Licensee with title or
ownership to the SDE, but only a night of linuted use under the terms and conditions of this Agreement.

3.2 Grant Back License to Avayva Licensee hereby grants to Avaya an wrevocable, perpetual, non-exclusive,
sublicensable, rovalty-free, fully paid up. worldwide license under any and all of Licensee's Intellectual Property rights
related to any Permitted Modifications, to (1) use, make. sell, execute, adapt, translate, reproduce, display, perform,
prepare denivative works based upon, distribute (internally and externally) and sublicense the Permitted Modifications
and their derivative works, and (1) sublicense others to do any. some, or all of the foregoing.

Avaya Software Developmens K Licsnse Terms (10/142018)

© 2016-2019 Avaya Inc. Al rights reserved. Avaya and the Avaya Logo are mademarks of Avaya Inc. and may be registersd in cartain jurisdictions. All rademark: identified by the ® or Th are
registered trademarks., service marks or rademarks, respectively, of Avaya Inc. All other trademarks are the property of their respactive owners.

4.0 SUPPORT.

4.1 No Avava Support. Avaya will not provide any support for the SDK provided under this Agreement or for any
Dervative Works. mcluding, without limitation, modifications to the Source Code or applications built by Licensee
using the SDK. Avavya shall have no obligation to provide support for the use of the SDK, or Licensee's application,
services or solutions which may or may not include redistributable Client Libraries or Sample Application Code, to
any third party to whom Licensee delivers such applications, services or solutions. Avaya further will not provide
fixes. patches or repairs for any defects that might exist in the SDK or the Sample Application Code provided under
this Agreement. In the event that Licensee desires support services for the SDK, and, provided that Avavya offers such
support services (in its sole discretion), Licensee will be required to enter into an Avaya DevConnect Program
Agreement or other support agreement with Avava.

4.2 Licensee Obligations. Licensee acknowledges and agrees that it 1s solely responsible for developing and supporting
any applications, interfaces. value-added services and/or solutions, workflows or processes developed under this
Agreement. including but not hmmted to (1) developing, testing and deploying such apphications, interfaces, value-
added services and/or solutions, workflows or processes; (11) configuring such applications. interfaces, value-added
services and/or solutions, workflows or processes to interface and communicate properly with Avava products; and
(111) wpdating and mamtaiming such applications, interfaces, value-added services and/or solutions, workflows or
processes as necessary for continued use with the same or different versions of end user and/or third party licensor
products, and Avaya products.

5.0 CONFIDENTIALITY.

5.1 Protection of Confidential Information Licensee acknowledges and agrees that the SDK and any other Avaya
technical information obtamned by it under this Agreement (collectively, “Confidential Information™) 1s confidential
information of Avaya. Licensee shall take all reasonable measures to maintain the confidentiality of the Confidential
Information. Licensee further agrees at all times to protect and preserve the SDK in strict confidence in perpetuity,
and shall not use such Confidential Information other than as expressly authorized by Avava under this Agreement,
nor shall Licensee disclose any Confidential Information to third parties without Avaya's written consent. Licensee
further agrees to immediately 1) cease all use of all Confidential Information (including copies thereof) in Licensee's
possession. custody, or control; 2) stop reproducing or distributing the Confidential Information; and 3) destroy the
Confidential Information in Licensee’s possession or under its control, including Confidential Information on its
computers, disks, and other digital storage devices upon termination of this Agreement at any time and for any reason.
Upon request, Licensee will certify in writing 1ts compliance with this Section. The obligations of confidentiality shall
not apply to information which (a) has entered the public domain except where such entry 1s the result of Licensee's
breach of this Agreement: (b) prior to disclosure hereunder was already rightfully in Licensee's possession; (c)
subsequent to disclosure hereunder 1s obtained by Licensee on a non-confidential basis from a third party who has the
right to disclose such information to the Licensee; (d) 1s required to be disclosed pursuant to a court order, so long as
Avaya 1s given adequate notice and the ability to challenge such required disclosure.

5.2 Press Releases. Any press release or publication regarding this Agreement 1s subject to prior written approval of
Avava.

6.0 NO WARRANTY.

The SDK and Documentation are provided “AS-IS” without any warranty whatsoever. AVAYA SPECIFICALLY
AND EXPRESSLY DISCLAIMS ANY WARRANTIES OR CONDITIONS, STATUTORY OE OTHERWISE,
INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NONINFRINGEMENT AND SATISFACTORY QUALITY. AVAYA DOES NOT WARRANT THAT
THE SDK AND DOCUMENTATION ARE SUITABLE FOR LICENSEE'S USE. THAT THE SDK OR
DOCUMENTATION ARE WITHOUT DEFECT OR ERROR, THAT OPERATION WILL BE UNINTERRUPTED,
OR THAT DEFECTS WILL BE CORRECTED. FURTHER. AVAYA MAKES NO WARRANTY REGARDING

Avaya Software Development Ei License Terms (10/1272019)

i 2016-2019 Avaya Inc. All rights reserved. Avaya and the Avaya Logo are irademarks of Avaya Inc. and may be registersd in certain jurisdictions. All rademarks identified by the ® or TM are
registered frademarks, service marks or wademarks, respectively, of Avaya Inc. All other trademarks are the property of their respective ownsrs.

THE RESULTS OF THE USE OF THE SDK AND DOCUMENTATION. NEITHER AVAYA NOR ITS
SUPPLIERS MAKE ANY WARRANTY. EXPRESS OR IMPLIED. THAT THE SDK OR DOCUMENTATION IS
SECURE. SECURITY THREATS AND VULNERABILITIES WILL BE DETECTED OR SOFTWARE WILL
RENDER AN END USER’S OR LICENSEE'S NETWORK OR PARTICULAR NETWORK ELEMENTS SAFE
FROM INTRUSIONS AND OTHER SECURITY BREACHES.

7.0 CONSEQUENTIAL DAMAGES WAIVER.

EXCEPT FOR PERSONAL INJURY CLAIMS. AVAYA SHALL NOT BE LIABLE FOR ANY INCIDENTAL.
INDIRECT. SPECIAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH. ARISING OUT OF OR
RELATING TO THIS AGREEMENT OR USE OF THE SDE. OR FOR THE LOSS OR CORRUPTION OF DATA.
INFORMATION OF ANY KIND. BUSINESS. PROFITS, OR OTHER COMMERCIAL LOSS. HOWEVER
CAUSED. AND WHETHER OR NOT AVAYA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

8.0 LIMITATION OF LIABILITY.

EXCEPT FOR PERSONAL INJURY CLAIMS, IN NO EVENT SHALL AVAYA'S TOTAL LIABILITY TO
LICENSEE IN CONNECTION WITH, ARISING OUT OF OR RELATING TO THIS AGREEMENT EXCEED
FIVE HUNDRED DOLLARS ($500). THE PARTIES AGREE THAT THE LIMITATIONS SPECIFIED IN THIS
SECTION WILL APPLY EVEN IF ANY LIMITED REMEDY PROVIDED IN THIS AGREEMENT IS FOUND
TO HAVE FAILED OF ITS ESSENTIAL PURPOSE.

9.0 INDEMNIFICATION.

Licensee shall indemnify and hold harmless Avaya, Affiliates and their respective officers, directors. agents, suppliers,
customers and employees “Indemmnified Parties™) from and agamst all claims, demand. suit. actions or proceedings
(“Claims™) and damages, losses, liabilities, costs. expenses. and fees (including fees of attomeys and other
professionals) (“Damages™) based upon an allegation pertaining to wrongful use, misappropriation, or infringement
of a third party’s Intellectual Property right ansing from or relating to Licensee’s use of the SDK. alone or in
combination with other software, such as operating systems and codecs, and the, direct or mndirect, use_ distribution or
sale of any software, Derivative Works or other products (including but not limited to applications, mterfaces. and
application programming interfaces) developed utilizing the SDE.

Licensee shall defend. indemnify and hold harmless the Indemnified Parties from and against all Claims and Damages
arising out of or related to: (1) personal mjury (including death); (11) damage to any person or tangible property caused,
or alleged to be caused by Licensee or Licensee’s application created by using the SDK; (111) the failure by Licensee
or Licensee’s application created by using the SDK to comply with the terms of this Agreement or any applicable
laws; (iv) the breach of any representation. or warranty made by Licensee herein; or (v) Licensee’s breach of any
obligation under the Licensee EULA.

10.0 TERM AND TERMINATION.

10.1 This Agreement will continue through December 31% of the current calendar year. The Agreement will
automatically renew for one (1) year terms, unless ternunated as specified in Section 10.2 or 10.3 below.

10.2 Either party shall have the right to termunate the Agreement, upon thirty (30) days written notice to the other
party.

10.3 Notwithstanding language to the contrary, Avaya may terminate this Agreement immediately, upon written notice
to Licensee for breach of Section 2 (License Grant). Section 5 (Confidentiality) or Section 12 (Compliance with Laws).
Avaya may also ternunate this Agreement immediately by giving written notice 1f a Change In Control should occur
or if Licensee becomes msolvent, or voluntary or involuntary proceedings by or agamnst Licensee are mstituted in

Avaya Software Development Ki License Terms (10/142019)

© 2016-2019 Avaya Inc. All rights reserved. Avaya and the Avaya Logo are tademarks of Avaya Inc. and may be registered in certain jurisdictons. All trademarks identified by the ® or TM are
registerad trademarks, service marks or rademarks, respectively, of Avaya Inc. All ather frademarks are the property of their respective ownsrs.

bankmuptey or under any wmnsolvency law, or a receiver or custodian 1s appointed for Licensee, or proceedings are
wstituted by or against Licensee for corporate reorganization or the dissolution of Licensee. which proceedmngs. 1f
involuntary, have not been dismissed within thirty (30) days after the date of filing, or Licensee makes an assignment
for the benefit of 1ts creditors. or substantially all of the assets of Licensee are seized or attached and not released
within sixty (60) days thereafter. or 1f Licensee has ceased or threatened to cease to do business in the regular course.

10.4 Upon termination or earlier termunation of this Agreement, Licensee will immediately cease a) all uses of the
Confidential Information; b) Licensee agrees to destroy all adaptations or copies of the Confidential Information stored
in any tangible medium including any document or work containing or derived (in whole or in part) from the
Confidential Information, and certify its destruction to Avaya upon termunation of this License. Licensee will
promptly cease use of. distribution and sales of Licensee products that embody any such Confidential Information,
and destroy all Confidential Information belonging to Avaya as well as any materials that embody any such
Confidential Information. All licenses granted will terminate.

10.5 The rights and obligations of the parties contained in Sections 2.3, 2.6, 2.7, 2.10, 2.11, 2.12, 3, and 5 through 18
shall survive any expiration or termination of this Agreement.

11.0 ASSIGNMENT.

Avaya may assign all or any part of its nights and obligations hereunder. Licensee may not assign this Agreement or
any interest or rights granted hereunder to any third party without the prior written consent of Avaya. The term
"assign" includes, but is not limited to, any transaction in which there 1s a Change In Control or reorganization of
Licensee pursuant to a merger, sale of assets or stock. This Agreement shall ternunate immediately upon occurrence
of any prohibited assignment.

12.0 COMPLIANCE WITH LAWS.

Licensee shall comply with all applicable laws and regulations. including without limitation those applicable to data
privacy, intellectual property, trade secret. fraud, music performance rights and the export or re-export of technology
and will not export or re-export the SDK or any other technical information provided under this Agreement in any
form 1n violation of the export control laws of the United States of America and of any other applicable country. For
more mformation on such export laws and regulations, Licensee may refer to the resources provided m the websites
maintained by the US. Commerce Department, the U S. State Department and the U.S. Office of Foreign Assets
Control.

13.0 WAIVER.

The failure to assert any rights under this Agreement. including, but not limited to. the right to terminate in the event
of breach or default, will not be deemed to constitute a warver of the right to enforce each and every provision of this
Agreement in accordance with their terms.

14.0 SEVERABILITY.

If any provision of this Agreement is determined to be unenforceable or invalid, this Agreement will not be rendered
unenforceable or invalid as a whole, and the provision will be changed and interpreted so as to best accomplish the
objectives of the oniginal provision within the limits of applicable law.

15.0GOVERNING LAW AND DISPUTE RESOLUTION.

15.1 Governing Law. This Agreement and any dispute, claim or confroversy arising out of or relating to this
Agreement (“Dispute”). including without limitation the formation, mterpretation. breach or termination of this
Agreement, or any issue regarding whether a Dispute 1s subject to arbitration under this Agreement, will be governed

Avaya Sofware Development Ei License Terms (10/142019)
© 2016-2019 Avaya Inc. All rights reserved. Avaya and the Avaya Logo are trademarks of Avaya Inc. and may be registered in certain jurisdictions. All rademarks identified by the ® or TM are
registered trademarks, service marks or rademarks, respectively, of Avaya Inc. All other trademarks are the property of their respective owners.

by New York State laws, excluding conflict of law principles, and the United Nations Convention on Contracts for
the International Sale of Goods.

15.2 Dispute Resolution. Any Dispute will be resolved in accordance with the provisions of this Section 15. The
disputing party shall give the other party written notice of the Dispute 1 accordance with the notice provision of this
Agreement. The parties will attempt 1n good faith to resolve each controversy or claim within 30 days, or such other
longer period as the parties may mutually agree, following the delivery of such notice, by negotiations between
designated representatives of the parties who have dispute resolution authority.

15.3 Arbitration of Non-US Disputes. If a Dispute that arose anywhere other than in the Umted States or 1s based upon
an alleged breach committed anywhere other than in the United States cannot be settled under the procedures and
within the timeframe set forth 1 Section 152 1t will be conclusively determuned upon request of etther party by a
final and binding arbitration proceeding to be held m accordance with the Rules of Arbitration of the International
Chamber of Commerce by a single arbitrator appointed by the parties or (failing agreement) by an arbitrator appointed
by the President of the International Chamber of Commerce (from time to time), except that 1f the aggregate claims,
cross claims and counterclaims by any one party against the other party exceed One Million US Dollars at the time all
claims, including cross claims and counterclaims are filed, the proceeding will be held in accordance with the Rules
of Arbitration of the International Chamber of Commerce by a panel of three arbitrator(s) appointed in accordance
with the Rules of Arbitration of the International Chamber of Commerce. The arbitration will be conducted in the
English language, at a location agreed by the parties or (failing agreement) ordered by the arbitrator(s). The
arbitrator(s) will have authority only to award compensatory damages within the scope of the limitations of Section 8
and will not award pumtive or exemplary damages. The arbatrator(s) will not have the authonty to lhmmt, expand or
otherwise modify the terms of this Agreement. The ruling by the arbitrator(s)) will be final and binding on the parties
and may be entered in any court having jurisdiction over the parties or any of their assets. The parties will evenly split
the cost of the arbitrator(s)” fees, but Avaya and Customer will each bear its own attorneys' fees and other costs
associated with the arbitration. The parties, their representatives, other participants and the arbitrator(s) will hold the
existence, content and results of the arbitration in strict confidence to the fullest extent permitted by law. Any
disclosure of the existence, content and results of the arbitration will be as limited and narrowed as required to comply
with the applicable law. By way of illustration, if the applicable law mandates the disclosure of the monetary amount
of an arbitration award only, the underlying opiion or rationale for that award may not be disclosed.

154 Chot1ce of Forum for US Disputes. If a Dispute by one party against the other that arose 1 the United States or 1s
based upon an alleged breach committed 1n the United States cannot be settled under the procedures and within the
timeframe set forth in Section 152 then erther party may bring an action or proceeding solely 1 either the Supreme
Court of the State of New York., New York County, or the United States District Court for the Southern District of
New York. Except as otherwise stated in Section 15 3 each party consents to the exclusive junisdiction of those courts,
including their appellate courts, for the purpose of all actions and proceedings arising out of or relating to this
Agreement.

15.5 Injunctive Relief Nothing 1n this Agreement will be construed to preclude erther party from seeking provisional
remedies, mcluding, but not limited to, temporary restraimng orders and preliminary imunctions from any court of
competent jurisdiction in order to protect its rights, including its rights pending arbitration. at any time. The parties
agree that the arbitration provision in Section 153 may be enforced by mjunction or other equitable order, and no
bond or security of any kind will be required with respect to any such injunction or order.

15.6 Time Limut. Actions on Disputes between the parties must be brought i accordance with this Section within 2
years after the cause of action arises.

16.0 INPORT/EXPORT CONTROL.

Licensee is advised that the SDK is of U.5. origin and subject to the U S. Export Administration Regulations (“"EAR™).
The SDK also may be subject to applicable local country import/export laws and regulations. Diversion contrary to

Avaya Sofiware Development Ei License Terms (10/1472019)
i@ 2016-2019 Avaya Inc. All righes reserved. Avaya and the Avaya Lozoe are mademarks of Avaya Inc. and may be registered in cerfain jarisdictions. Al trademarks identified by the ® or T are
registered trademarks, service marks or wademarks, respectively, of Avaya Inc. All other trademarks are the property of their respective ownsrs.

U.S. and/or applicable local country law and/or regulation 1s prohibited. Licensee agrees not to directly or indirectly
export, re-export, import, download, or transmit the SDK to any country, end user or for anv use that 15 contrary to
applicable U.S. and/or local country regulation or statute (including but not limited to those countries embargoed by
the U.S. government). Licensee represents that any governmental agency has not issued sanctions against Licensee or
otherwise suspended. revoked or denied Licensee's import/export privileges. Licensee agrees not to use or transfer the
SDK for any use relating to nuclear, chemical or biological weapons, or missile technology. unless authorized by the
U.S. and/or any applicable local government by regulation or specific written license. Additionally, Licensee 1s
advised that the SDK may contain encryption algorithm or source code that may not be exported to government or
military end users without a license issued by the US. Bureau of Industry and Securnity and any other country’s
governmental agencies, where applicable.

17.0 AGREEMENT IN ENGLISH.

The parties confirm that it 15 their wish that the Agreement, as well as all other documents relating hereto. including
all notices, have been and shall be drawn up 1n the English language only. Les parties aux présentes confirment leur
volonté que cette convention, de méme que tous les documents, v compris tout avis, qui sy rattachent, solent rédigés
en langue anglaise.

18.0 ENTIRE AGREEMENT.

This Agreement, its exhibits, schedules and other agreements or documents referenced herein. constitute the full and
complete understanding and agreement between the parties and supersede all comtemporaneous and prior
understandings. agreements and representations relating to the subject matter hereof No modifications, alterations or
amendments shall be effective unless in writing signed by both parties to this Agreement.

19. REDISTRIBUTABLE CLIENT FILES.

The list of SDK client files that can be redistributed, if any, are in the SDK 1n a file called Redistributable txt.

Avaya Sofrware Development Eit License Terms (10/142019)
© 2016-2019 Avaya Inc. All righes reserved. Avaya and the Avaya Logo are rademarks of Avaya Inc. and may be registered in certain jarisdictions. A1l trademarks identified by the ® or TM are
registered trademarks, service marks or rademarks, respectively, of Avaya Inc. Al other rademarks are the propenty of their respective owners.

Schedule 1 to Avaya SDK License Agreement
Third Party Notices

1 CODECS: WITH RESPECT TO ANY CODECS IN THE SDK. YOU ACKNOWLEDGE AND AGREE
YOU ARE RESPONSIBLE FOR ANY AND ALL RELATED FEES AND/OR ROYALTIES. IF ANY. ITIS YOUR
RESPONSIBILITY TO CHECK.

THE H.264 (AVC) CODEC IS LICENSED UNDER THE AVC PATENT PORTFOLIO LICENSE FOR THE
PERSONAL USE OF A CONSUMER OR OTHER USES IN WHICH IT DOES NOT RECEIVE
REMUNERATION TO: (I) ENCODE VIDEO IN COMPLIANCE WITH THE AVC STANDARD ("AVC
VIDEO") AND/OR. (IT) DECODE AVC VIDEO THAT WAS ENCODED BY A CONSUMER ENGAGED IN A
PERSONAL ACTIVITY AND/OR WAS OBTAINED FROM A VIDEO PROVIDER LICENSED TO PROVIDE
AVC VIDEO. NO LICENSE IS GRANTED OR SHALL BE IMPLIED FOR. ANY OTHER USE. ADDITIONAL
INFORMATION FOR THE H.264 (AVC) CODEC MAY BE OBTAINED FROM MPEG LA, LL.C. SEE

HITP:/ WWW.MPEGLA COM.

Avaya Software Development Ei License Terms [10/1472019)

© 2018-2019 Avaya Inc. All rights reserved. Avaya and the Avaya Logo are rademarks of Avaya Inc. and may be registered in ceriain jarisdictions. All trademarks identified by the ® or TM are
registerad trademarks, service marks or ademarks, respectively, of Avaya Inc. All ather trademarks are the property of thair respective owners.

Contents

OVEIVIBW ..ttt ittt ettt et e et e s s ab e e e s s eab et e s s b e e e s s b e e e s snba e e s s sabaeesssaraeas 17
{07 01 =) PP PPN 17
LT o= 1 =P TP PPPTTPPPROPPR 18
T (o o [V Tt o] o WU PP U P PSP PP PPVRPOPRRPRO 18
Service User CONFIGUIAtIONeii i et e e et e e e tre e e e eabe e e e e eabae e e eenteeeeenreeas 19
o<1 1 [o= SO TP PP PP PUPPUPPPPPPOPPRE 20
TrANSPOIT OPTIONS ceeiiiiiieiiiieee ettt e e ettt e e e e e e s rab e et eeeee s s s ssbeteeeeeesaasasnbeaaeeeeessannsssaaaeesesssannnrnes 20
o1 doTolo]l B LT ol T] A Te] o HUU SRR 21
YTy V=L T PPNt 21

1Y =TT ¥ - 21

U] o Ty ol T 14 e o PSP 22
SUBDSCIIDO ...ttt ettt e s bt e e s bt e s bt e e sabe e s be e e sabeesabeesbeeesabeeenne 22
REQUESTRESPONSE ... nnnnnnanneas 24

[N o] 41 V2P PR 24

[N o 41 Y7 Yol PSP 25

[0 To IR TR U] o Yol o] A e Yo PSP 26

Y] ool T o 1A oY Y=Y VAT Y PSPPSR 28
SUDSCIIDE fOIr PrESENCE. ...ttt ettt sttt et e b e sbe e saeesareeabeebeenes 28
SUDSCIIDE FOI LINES ..ttt sa e ettt e b e sbe e sate st e sabeebeenes 33

N oy A1 AV YT oo o 1Y ISP 34
SUDSCIIDE USEI ..ttt ettt st st e e e r e e sbeesaeesanesaneeneenes 37
SUDSCIIDE QUUEUE ...ttt ettt s st e e e b e e s seesaeesanesaneeneennes 43

Call CoNtrol NOTIFICATIONS ..cc..eiiiieie ettt st st sttt be e b s aeesaeeeaee s 48
Modifying the SUDSCIIPLIONoiiiiiie e e e e e et e e e e abe e e e e abe e e e eeaneeas 52
CallControl explicitly fOr QUEUE CallSuuiiiiiieiiciie e e e e sree e e 57
AcCtions 0N QUEUEM CallS.......eoriiiiiiieiieeeee et st e 58
BIINATransfer t0 @ CallfloWc.couiiiiiiieeee et s 59
BlindTransfer to @ MeetMe CONFEIENCEoiiiiiiiieeee ettt 60
BlindTransfer to a conference requiring PIN @CCESSuviieeeiiiieeeiiiiee et e ettt et e e eiree e e e 61
BlindTransfer to a functioNal QUEUEcooeeiiiii et 62

Er O COURS ..ttt ettt st sttt et e b e s bt e s bt e s ab e s bt e b e e beesbeesmeesaneenneebeesneenanenas 63
FEATUIES AVAIlabIE...c ittt s b e e s e e ne e re e s ree e saree e 65

(D70 o - | 1 S USR 65

PN g 13TV (=1 | IR 66

[[To [6 | IO PP P RS TPPTPRUPTUPRRPO 67
UNHOIACAI ...ttt et ettt e s e st e e ab e e sabe e e sabeesabeesneeesabeeennes 68
BlINATrANSTOI .ttt e st e st e s bt e e ab e e s be e e sab e s be e e ane e e s reeeneas 68
REOITECE ...ttt ettt st st sttt e s b e e s b e e sbeeeae e et e e beesbeenbeesane e 69
DT | P U OP O PP PPPTUPUPPTPPRUPRO 70
PaTK ettt et e e s b e s be e e s b e e e be e e are e s be e e sabee e beeeanteenbeeenars 71
Y AUl o I = 01 =T PPt 71
Y= AU o] 0o o | PRSPPIt 72
(@0T 0] o] (=N =L I - [0 1 (=] (PRSP 73
(00T 0] o] [N (= @o] 0] =T =T o [l I PSSP 74
AAATOCONTEIENCE ..eeeniiieeiei ettt ettt et e st e s bt e sttt e sabeesabeesbeeesabeeebbeeanteesabaeesaseens 75
MEMDBEIFUNCLION ..teeie ettt et ettt e sab e s be e e sab e e sabeeesabeesabeeenbeesabeeenneas 76
=31 - - SO P OTTPPPPPPPRPRPTPRS 77
SELACCOUNTCOTE ...ttt ettt e e bt e be e sb et sat e st e et e e sbeesbeesaeesanesabeebeennes 77
SEENOTES .. et e st e e s rae e e s snee 78
PUSNTOECS00 ...eeiiitiiieieiiieeeeiieeeeeeitt e e e e itteeeesatteeesataeeessbaeeeesssseeeesssseeeaasseeaesassseeeesnseasssnssenessnnsens 78
LCT=T o [T =Y (=] D =41 £ O PP PP PSP UPPPPROPIOE 79
SNOTTCOIEACTION ...ttt et b e bt sb e st ee e et e e b e sbeesaeesaresabeebeennes 79
F N g E YT =Y <N 79
FOPCECIBAN ...ttt ettt et e b e bt e s he e sat e s ab e et e e bt e sbeesbeesbeesateeateebeenbeesbeesanenas 80
SETAUTNCOME ...ttt et st e et e b e s s e s e e sanesan e ne s 81
CallRECOIINGON/OFf ...ttt e e be e s be e sta e sabesbeebeebeesbaesaeesaseeaseenres 81
PRIVACYON/ O ...ttt et et e e e et e e et e e e te e e eabe e eebeeeetaeeebeeesateeenteeenteeeebeseneas 82
1Y TUR =10 o V4@ L i TR 83
Y] o 4 o] o1 1Y PP PPPPPPPPN 83
FINTSI ettt st st ettt et e r e s e sane e 84
Alternative connection MEhOOSc..cooiiiiiiiie e e e 85
[N To] (=1 0110V = PSP 85
T 0 £ PP OPPTUPPRN 85
Version ComPatibility.......ccuveeiiiiie e et e et e e et e e e e bae e e e e braeeeeares 85
RESHIENT SOIUTIONS ...ttt ettt st sttt et e s be e saeesan e e b e esbeesneesree e 85
What this MEANS ...coeiiee ettt e sb e e sae e sre e snee e sareeeane 85
[T =T a1 o o U 85
D LAVZ=] [T o] 0 0 1= o A o o -3 USSR 85

)71/ o] a1 o] SoU O PP PPPPRPRPTPIRE 86

Getting started With the Proto file.........eei i e 87

C4 aNd VISUAL STUTIO c.neeeiieie ettt st st et be e s s e enee s 87
JAVA e e e s 90
NV ol g1 | S TP PPPT RPN 90
Establishing @ Websocket CONNECTIONccocuiiii ittt e b e e e saaaee e 90
T Ao T= 1] (oY o 1R 91
EQrly releases Of IP OffiCe. ittt e s e e e s saba e e e sanbeeeesnnsneeeens 91

(0 0T o Tl o 11 o o PSPPI 92

Overview

This document details a protocol that will be supported on IP Office Release 11.1.0.0. It is designed
for ContactCenter-type applications (one application per solution, rather than one application per
user), though you can have more than one application connected at a time.

The login credentials are service user credentials rather than telephone user credentials, reflecting
that it is a system service.

This interface allows an application to observe call activity on users and queues. Also, to get
presence activity on the solution.

For users
You can manipulate some user configuration, perform some call control on users.
For queues

You can manage queue membership, change queue service mode and manipulate calls in queues.
Calls in queues can be observed and manipulated even after the call is answered.

This interface is offered by way of Protocol buffers over a websocket. The websocket is rendered
directly by IP Office and does not require any additional components (such as oneX portal) to be
installed.

Context

MTCTI3 is an alternative to 3™ Party TAPI on IP Office. The 3" party TAPI API for IP Office is limited to
Windows only and is not available in secure environments. All functionality that was available on IP
Office 3™ party TAPI should also be available over MTCTI3, and MTCTI3 includes many additional
features.

MTCTI3 is a bit more complex to use, as the Asynchronous nature of the connection to IP Office must
be handled by the application. So, for example if “UnPark” is called on TAPI, the interface returns the
result (SUCCESS with handle)/FAIL. On MTCTI3, you send an UnPark request and must handle the
fact that the result is not available immediately.

In some deployments, it would be possible to have a 3™ party TAPI application and a MTCTI3
application both connected to the same PBX. They are not incompatible, and they would work
cooperatively.

The MTCTI3 interface allows the application to view IP Office users and Queues, to make live
changes to the configuration of Users and Queues related to telephony functionality, and to view
and manipulate telephone calls. The single interface can and is expected to handle multiple calls to
several users at the same time.

The MTCTI3 interface is feature-rich but can be used for very simple functions like monitoring the
Do-not-disturb setting for a user or noting the calling number for incoming calls.

A MTCTI3 application would typically maintain lists of lists. A list of users (and/or queues) and a list
of live calls for each user or queue. The lists must be kept updated by Notify messages received
asynchronously from IP Office.

Each Notify of a call change is a complete snapshot of the call, and the application needs to compare
the new data with the old data to see what, if anything, has changed. This snapshot concept is
important. The application does not necessarily see all the transitions of a call, only the current state
of a call. So an incoming call which is auto-answered or answered quickly may never be seen in the
RINGING state. Applications should not rely on seeing all transient states.

Most calls on IP Office go to/from users or to queues. However, there are some calls that do not —
they may go directly to an Auto-attendant or be routed directly out of another trunk. These calls are
not visible to the MTCTI3 application.

MTCTI3 is authenticated by secure methods and is trusted with powerful controls. There are no
configuration items on IP Office to constrain the MTCTI3 from accessing users or queues, so the
writer of the application needs to provide the constraint where appropriate.

Even though this APl document starts with a description of the Presence subscription, it is expected
that most applications will be using Lines, User and Queue subscriptions, and may not use Presence
at all.

Use cases

A simple use case for MTCTI3 without even subscribing to Call Control is to monitor a set of users on
IP Office to see whether they are in Do Not Disturb, or Available to receive calls.

A more complex use case would be to observe a group of users to see how busy they are, and which
calls they are making and receiving.

A highly functional use case would be for the MTCTI3 application to take control of a Queue and
distribute all calls arriving at that queue to appropriate Agents.

A Contact center application may be in the business of rendering a business-specific desktop Ul to a
set of Agents or Supervisors. If this application connected to IP Office over MTCTI3, it could add
telephony controls to the Agents desktop, to set Available/Not available, Answer calls (by controlling
their desk phone or soft-phone), Make calls.

Introduction

Third party developers would be expected to develop applications using this document as a
reference.

The MTCTI3 interface to IP Office is a protocol definition only. The 1% competence required of the
engineer is to take the protocol definition and make an interface. The work required depends on the
platform, language and environment of the application that wishes to use MTCTI3. For some
languages, and environments (example JavaScript on Angular), the framework has methods to
consume the protocol definition file directly into managed objects. For other languages, the
engineer will want to source a ‘proto’ file compiler, and protobuf encoding and decoding source
code. This is what you would expect to have to do as the MTCTI3 application is expected to be a

server application, not a desktop application. Information on how to do this is provided in later
chapter “Getting started with the proto file”.

Additionally, once you have the encoding and decoding of messages, you need to be able to connect
to IP Office over a secure websocket. Each development environment has a different
implementation of websockets, and the engineer must be able to create a websocket to the IP Office
web service, authenticate, and then send and receive messages over the websocket.

MTCTI3 requires authentication in the websocket handshake, which is not necessarily available on all
HTML5 browser websocket implementations.

The developer needs to have a basic understanding of Users and Queues on IP Office as these are
what are being manipulated.

The protocol will work in stand-alone or in SCN environments.

There are several pre-requisites required on the IP Office for the application to successfully connect
to an IP Office.

- The IP Office must have sufficient CTl-link pro licences installed for the size of the SCN.

- The IP Office must have “Avaya HTTP Clients only” flag disabled.

- For an SCN solution, the queues that the application is to monitor/control should be configured
on the primary PBX, and the application should connect to the primary PBX.

- If connecting to secondary PBX for resilience, the secondary PBX will also require CTI-Link PRO
licences. The MTCTI3 on the secondary will not report calls on the primary queues unless the
primary queues are failed over, but all user calls and user status are fully accessible on either
system.

There needs to be configured a Service user + password, who has access rights to “Enhanced TSPI

Access” service.

Service User Configuration
First configure a Service group, with access rights to the “Enhanced TSPI Access” service:

%" Avaya IP Office Manager - Security Administration - - O X

Eile Edit View Help

E|
Security Settings Rights Groups (19) Rights Group: MTCTI3 Group % <
= F‘j Security MName Group Details Configuration Security Administration System Status Telephony | « [»

e @ General -
=y System (1) Administrator Group |P Office Service Rights

. - Manager Group
Services (7
g sl (7 i Operstor Group Enhanced TSP Access
L itele L [DevLink3

------ & Service Users (10) [LocationAF!

MTCTI3 Group

OK Cancel Help

Ready 1*]

Then create serviceUser account which is a member of this group:

%" Avaya IP Office Manager - Security Administration - — m] X
Eile Edit View Help
=]
Security Settings Service Users (10) Service User: TestApplication bt <
2§ ;m'tv Service User Name Accourt Status | Groups Service User Detalls
General
5 Symem (1) Administrator Enabled Administrator Grol Name [TestAophcaton ‘
£ Services (7)
(Pranard | [= e
{28 Richts Groups (19) TestApplcation Enabled MTCTI3 Group: s | - S
i Service Users (10) Account Status | Enabled v
<None= ~
No Account Expiry
“ Movember 2018 v
Mon Tue Wed Thu Fri Sat Sun
AccourtBepiy || 28 30 31 1 2 3 4
5 6 7 8 9 10 1
2 13 14 15 16 17 18
19 20 2 232 24 5
% 27 28 29 30 1 2
3 4 5 6 7 8 39
[Today: 21/11/2018
Rights Group Membership
[] System Admin ~
3 > oK Cancel Help
Ready 1)

MTCTI3 uses the same licensing as other CTl interfaces on IPOffice:

e The CSTA OpenAPI which can be accessed from oneX portal
e Devlink3 interface
e 3"party TAPI

A fully licensed system allows all these CTl interfaces to work.

Note that there is no partial functionality for a partially licensed system. You need the full set of
licences for your deployment, but that allows the application to monitor all users on the SCN from
the single connection.

Also note that if you are developing a resilient solution with separate MTCTI3 connections to Primary
and Secondary, you need the full set of licences on both Primary and Secondary.

1 x CTILink Pro licence Standalone IP Office

2 X CTILink Pro licence Network of up to 5 IP Offices (including this one)
3 x CTILink Pro licence Network of up to 20 IP Offices (including this one)
4 x CTILink Pro licence Unlimited Network of IP Offices

Transport Options

This protocol is available over web-socket only. This protocol is one of several web services that IP
Office can deliver. You can only connect to this service over HTTPS. The HTTP variant is disabled on
all deployments. This web service is “tpkt/openapi”.

The HTTPS service port for IP Office web services defaults to 443 in most environments. However, it
is configurable on the Security settings and may be different on cloud deployments.

The credentials required to access the web service will be Service User Name and Service User
Password.

These are normally encoded in the Authorization header of the simplified HTTP request
below(shown here with the content masked out)

GET /tpkt/openapi HTTP/1.1
Connection: Upgrade

Authorization: Basic ***xxxsdkkxxxhdx
Upgrade: websocket

Sec-WebSocket-Key:
Sec-WebSocket-Protocol: openapi
Sec-WebSocket-Version: 13

Once connected, the payload carried over the Websocket protocol is framed protocol-buffers in
either direction

4 octets 0x1 = Framed protocol buffer

N octets Protocol buffer payload

Protocol Description

The protocol buffer schema is obtained by compiling the file “ipo_mtcti3.proto”. This file format is
proto3.

For a description of the language, you can search for: “google protocol buffers version 3” on the
internet. It is a google sponsored language and messaging format.

The way to use this protocol is for the client (the application) to subscribe to a number of services,
and the application will the receive notifications on the subscribed services. The client can also send
“SubscribeCmd” messages on subscriptions to execute changes.

Each subscription can optionally time out unless refreshed. This is generally the choice of the client
application, except in the case of presence subscriptions which must have a specified timeout to
refresh.

Message

Message

Message is the base message of the mtcti-3 protocol and all other service level messages are
encapsulated within the Message.

message Message
{
oneof payload
{
RequestResponse response = 1;
GeneralCmd generalcmd = 2;
Subscribe subscribe = 3;
SubscribeCmd subscibecmd = 4;
SubscribeEnd subscribeend = 5;
SubscribeTerminated subscribeterminated = 6;
GeneralData generaldata = 7;
Notify notify = 8;
NotifyAck notifyack = 9;
}
}

One of the payloads should be set in the Message.

Fields Description Direction
response Set the payload for response to the Request IP Office = App
subscribe Set the payload for Subscribe Request App > IP Office
subscribecmd Set the payload for SubscribeCmd Request App > IP Office
subscribeend Set the payload for SubscribeEnd request App > IP Office
subscribeterminated Set the payload for SubscribeTerminated event IP Office > App
notify Set the payload for Notify message IP Office = App
notifyack Set the payload for NotifyAck message App > IP Office
generalcmd App issues a context-less command App > IP Office
generaldata Response to the generalcmd IP Office > App

Subscriptions

This section covers how the client should subscribe for the different services, send updates, receive
notifications in the subscription. Also ending subscription from the client and Server.

This section covers Subscribe, RequestResponse, Notify and NotifyAck messages.

Subscribe
This message enables the client to subscribe for one of the subscriptions.

message Subscribe

{
int32 requestid = 1;
int32 subscribe_id = 2;
int32 timeout = 3;
string label = 4;
oneof payload

{

SubscribePresence presence = 10;
Subscribelines lines = 40;

SubscribeUser user = 41;

SubscribeQueue queue = 42;
SubscribeParkServer parkserver = 43;
SubscribeRefreshWrapper refreshwrapper = 45;

}
}

Fields Description
requestid ID for the particular Request
subscribe_id ID for the particular Subscription
timeout Expiry value for the particular subscription
label Label for the particular subscription

One of the payloads
presence Set the payload for the Presence subscription
lines Set the payload for the lines subscription
user Set the payload for an individual user subscription
queue Set the payload for an individual queue subscription
parkserver Set the payload for the parkserver subscription
refreshwrapper Set the payload for the refreshwrapper subscription
Subscribe_id

Subscription message should contain the “subscribe_id” and one of the subscription payloads.
“subscribe_id” will be used in all messages in either direction related to the subscription. For this
reason, the “subscribe_id” should be chosen by the client to be a unique number in the context of
the connection.

requestid

Messages from the client may contain a “requestid”. If a “requestid” is populated, IP Office will
send a RequestResponse indicating that the message has been received.

label
This is an optional string. It is not used by IP Office.

timeout

“Timeout” value set to zero, or not specified means no expiry. Presence subscriptions should have
explicit “Timeout” value and value should set in seconds between 60 and 86400. Units are seconds.

In order to refresh a Subscribe, the client should send a new Subscribe message with the same
subscribe_id, and only containing a new timeout value:

Message

{

subscribe

{
subscribe_id=98765

timeout=3600
presence

After (eg) 50 minutes, send a refresh....

Message

{

subscribe

{
subscribe_id=98765

timeout=3600

}
}

This will now run another 3600 seconds before terminating.

RequestResponse
“RequestResponse” message used to acknowledge the Request with the results.

message RequestResponse

{
int32 requestid = 1;
int32 result = 2;
string additional = 3;
}

This message is used to acknowledge both Subscribe and General Commands requests.

Fields Description
requestid ID of the received Request
result Success or error code (error codes in Appendix)
additional Additional details, for example, error reason string. Not currently used.

Notify
“Notify” message uses to send notification to a subscriber to inform on the latest change on the
resources on which the Subscriber is interested.

message Notify

{
int32 subscribe_id = 1;
int32 notify_id = 2;
string label = 3;
oneof payload

{

NotifyPresence presence = 10;

NotifyCallControl callcontrol = 14;
NotifyLines lines = 40;

NotifyUser user = 41;

NotifyQueue queue = 42;
NotifyRefreshWrapper refreshwrapper = 45;

}
}
Fields Description
Subscribe_id ID present in the Subscribe Request
Notify_id Notify ID added by the IP Office
label Usually label from Subscribe Request (not currently)
presence Set if Notify is for Presence subscription
callcontrol CallHandling events if subscribe is one of User, Queue, ParkHandler
lines Set if Notify is for lines subscription (add/remove users or queues)
user Set if Notify for User subscription (user status or config)
gueue Set if Notify for Queue subscription (queue status or config)
refreshwrapper Set if Notify for refreshwrapper subscription

Client should acknowledge Notify message by sending NotifyAck, if “notify_id” present in the
received NOTIFY message. Client should ignore NOTIFY message, if one of the payloads is not set,
subscription Id does not exist or payload is not expected with “subscribe_id” mentioned in the
Notify message.

NotifyAck

Client should acknowledge the NOTIFY message by sending NotifyAck message, if “notify_id”
present in the received NOTIFY message. If “notify_id” is included by IP Office in the Notify
message, IP Office does not send next Notify until the last Notify is acknowledged.

message NotifyAck

{
int32 subscribe_id =1;
int32 notify_id = 2;
}
Fields Description
subscribe_id Corresponding Subscription ID
notify_id Notify Id from the NOTIFY message

Subscription message flow

App IP Office
Subscribe Subscribe Payloads
SubscribeLines OR
Requestresponse SubscribeUser
Etc...
Notify

NotifyAck

Figure 1 - Subscribe Message flow

End the Subscription

A subscription can be terminated at any time by the App sending a Subscribe-End request.
Subscribe-End request should contain “subscribe_id” of the subscription that needs to be

terminated.

SubscribeEnd

message SubscribeEnd

{
int32 requestid = 1;
int32 subscribe_id =1;
string reason = 3;

}
Fields Description

request_id Request ID

subscribe_id Subscription 1D (required)

reason Reason string. Not functional, but may be added to a report in IP Office.

Subscribe End message flow

App IP Office

Subscribe o
Subscribe_id

Requestresponse Subscribe Payloads
Notify
NotifyAck Notify Payload

Terminate the Subscription

IP Office can terminate a subscription asynchronously by sending SubscribeTerminated message.
“subscribe_id” indicates the subscription that is terminated by IP Office.

SubscribeTerminated

message SubscribeTerminated

{
int32 subscribe_id =1;
string reason = 2;

}

Fields Description
subscribe_id Subscription 1D

reason Reason string (not currently populated)

Subscription terminated message flow

App IP Office
Subscribe Subscribe_id
Subscribe Payloads
Requestresponse
Notify
Notify Payload

NotifyAck

|

I

|

SubscribeTerminated

J Subscribe_id

Subscription services

Each subscription service is independent and can be unsubscribed individually. You should only
subscribe to the services that you need for your application.

The following services are available:

Service Description Notes

Presence Each presence subscription You can have several
contains a list of presentities to subscriptions at a time, each
watch. containing a different list of

presentities.

Lines This maintains an updated list of | Only one of these is allowed
all the users on the SCN and
queues on the PBX

User This is a subscription for a Choose users out of the lines list.
particular user. It renders
individual user status, and
optionally the telephony calls
presenting on the user.

Queue This is a subscription for an Choose queues out of the lines
individual Queue. It renders list, or if you know the queue
Queue configuration, and name, you can just subscribe by
optionally calls that are being gueue name.
handled on the queue.

ParkServer This subscribes to the activity on | Only one of these is allowed
the ParkServer. That is showing
calls which are currently parked..

RefreshWrapper This is a little utility to help Only one.
group notifications on different
subscriptions into atomic events.
It is not watertight, but it can be
useful.

Subscribe for Presence

Client should set SubscribePresence payload in the Subscribe request message for the presence
subscription, with a table of presentities to monitor. On successful subscription, IP Office sends

RequestResponse for the request.

SubscribePresence may not be of major interest. However, it was the first service to be

implemented.

SubscribePresence

This message is a payload of Subscribe message.

message SubscribePresence

{
repeated Presentity entry = 1;
int32 flags =2
}
Fields Description
entry List of the Presentities
flags Flags is a bitfield of options
0x01: include unread voicemail counter in presentity
0x02: Do not change app presence to ‘Offline” when all apps are disconnected
Presentity

This message is an element of SubscribePresence and carries details of presentity. Presentity can
be a phone number, a SIP address, an Email address or a UniquelD. Each presentity should be
assigned a local reference ID (LREF) to reduce the size of the NOTIFY updates (though this is not
mandatory).

Note that presence subscription is really an alternative to subscribing to all the users individually. If
you subscribe to all the user lines, you get the basic part of the presence information from each
line.

message Presentity

{
string presentity = 1;
int32 Iref = 2;
}
Fields Description
presentity Presentity can be phone number, SIP URI or Email address.
Iref Iref is a local reference ID of the presentity
NotifyPresence

NotifyPresence is a payload of Notify message. From the provided presentity list, set of all IP Office
users will be searched. IP Office will NOTIFY all presentities in the monitor list in NotifyPresence
payload. All new presentities will have their initial state NOTIFY as soon as they are added to the
Subscribe. Afterwards, only changed presentities will be NOTIFIED. This will be indicated in “full”
field.

message NotifyPresence

{
int32 full = 1;
repeated NotifyPresentity entry = 2;
}
Fields Description
full Indicates whether presentities list is full or just changes.
entry Holds the list of Presentity elements
NotifyPresentity

Each Notify will contain all the tracked fields for that presentity. Tracked fields are carried in
NotifyPresentity message, which is an element of NotifyPresence.

message NotifyPresentity
{
string presentity = 1;
int32 Iref = 2;
int32 sac = 3;
int32 phonestate = 4;
Absence absence = 5;
string app = 6;
bool fwdu = 7;
int32 vmunread_messages = 8;
bool noapphandler = 9;

}
Fields Description

presentity Presentity identifier, provided by Client

Iref Iref of Presentity , provided by Client. If this is specified, then the presentity
identifier above will not need to be included.

sac DND telephony status of the presentity

phonestate Phone state of the presentity

absence Absence text set by the presentity

app App presence set by the presentity

fwdu Presentity has forwarding enabled

vmunread_messages Presentity has unread voicemail messages (dependent on subscribe flags =
0x01)

noapphandler There are no applications that can control app presence. (dependent on

subscribe flags = 0x02). If this subscribe flag is *not* set, then when there are
no applications, the “app” string will show “Offline”

e Absence Text maximum length is set to 21.

e Application presence maximum length is set to 34.

e “sac”is set to non-zero, if DND is enabled for the presentity.

Phone state ID State of the phone

0 Idle

Dialling
Ringing

ACW
Connected
Logout

Fault

Recover

8 Unknown state
Table 1 - Phone states

N[O~ IWIN|F-

UpdatePresence

You can add and remove individual presentities from a subscription using an Update message. An
example is below.

1%t subscribe...

Message

{

subscribe
{
subscribe_id=98765
timeout=3600
presence
{
entry
{
presentity=201
[ref=5678
}
entry
{
presentity=202
[ref=5679
!

entry

{
presentity=203

I[ref=5680

Later update...

Message

{

subscribecmd

{
subscribe_id=98765

presence

{
add

{
presentity=204

[ref=5681

add

{
presentity=205

l[ref=5682
}

remove

{
I[ref=5678

}
}
}
}

You will get an immediate notification of the states of the new presentities.

Absence

Absence will only be present if there is an Absence message set. When set, the message has the
following elements:

message Absence

{
int32 msg = 1;
string str = 2;
}
Fields Description
msg Message type.
str Holds the Absence text.

If the msg is set to 11, the whole note will be contained in “str”.

If the Absence text is set on an IP Office desk handset, the following values may be set in msg:
Fields Description

O 0N O OB~ W N -

=
= o

“ON HOLIDAY UNTIL” + str
“WILL BE BACK” + str

“AT LUNCH UNTIL” + str
“MEETING UNTIL” + str
“PLEASE CALL” + str

“DON’T DISTURB UNTIL” + str
“WITH VISITOR UNTIL” + str
“WITH CUSTOMER UNTIL” + str
“BACK SOON”

“BACK TOMORROW”

str

Note that msg=11 and str ="” (or null) is a blank string. This is not the same as Absence not set

and should be avoided.

Subscribe for Lines

The lines subscription gives a list of Users and Queues, and sufficient information to subscribe to the
individual user or queue. You will automatically get updates when a User or Queue is added of

removed from the network.

message LinesUser
{
bytes guid = 1;
string extn = 2;
string name = 3;

}
message LinesQueue
{

bytes guid = 1;

string extn = 2;
string name = 3;

}
message NotifyLines
{

int32 flags = 1;

repeated LinesUser adduser = 2;

repeated LinesQueue addqueue = 3;
repeated LinesUser deleteuser = 4;
repeated LinesQueue deletequeue = 5;
repeated LinesUser changeuser = 6;
repeated LinesQueue changequeue = 7;

message Subscribelines

{
int32 flags = 1;

You can choose whether to just get notification for Users, or just get notification for Queues via the
flags in the Subscribelines. field with is a bit array. You can also see availability for the ParkHandler,
though this is normally always available.

Here is an example sequence:

Message

{

subscribe

{
requestld=1

subscribe_id=5555
timeout=3600
lines
{
flags=7
}
}
}

You get a RequestResponse, because the Subscribe had a requestid

Message

{

requestresponse

{
requestid=1
result=0

}
}

You should have only one Subscription to “Lines”. The IP Office will notify you of all the lines (Users
and Queues), which you subscribe to separately.

Meaning of “Flags”

Bit 0 List all users
Bit 1 List all groups
Bit 2 Report park server availability

Notify Response
The first Notify will contain a list of all the Users and Queues in the system.

Message

Because there was a notify_id in the Notify, the application should send a NotifyAck

Meaning of Notify “Flags”

Bit 0 Park server can be subscribed
Bit 1 Meaning not described here
Bit 2 Meaning not described here.

Then subsequently when an administrator Adds or removes a set of users, there will be another
Notify

If the administrator changes the name or extn number of a user, you will get a changeuser with the
same GUID

Subscribe User
Using the lines subscription, the allocation now has a table of users and queues. From this, you could
just subscribe to Presence, but if you want to perform functions on a user, you need to Subscribe to

each user individually. Typically, the application may start a large number of subscriptions at this
point.

message SubscribeUser
{

bytes guid = 1;

int32 flags = 2;

int32 ccflags = 3;
}

You must use the GUID out of the lines table in the Subscribe:

Message
{
subscribe
{
requestid=2
subscribe_id=7000
user
{
guid=DC51BA0008A311DD80530050569F6EF8
flags=0x1
ccflags=0x19
}
}
}

The subscribe_id must be a new value for each user subscription.

There are effectively two parallel subscriptions being enabled here. (User config) + (User call

control). If you do not need to subscribe to call control, then do not set the ccflags. Then you will just

get the basic user configuration.

Meaning of “flags” in user

Bit 0 (0x01) MAILBOX Include voicemail box message counters

Bit 1 (0x02) FWD Include Forwarding details

Bit 2 (0x04) APP Include Application presence

Bit 3 (0x08) ABSENCE Include Absence (when enabled)

Bit 11(0x800) ACTIVAPP If this is set, then this subscription actively counts as

an application that can edit the app field.

(So Equinox phones will not say ‘Offline’ on this
presentity while this subscription is registered)
This flag can be actively changed using “makelive”
or “makedead” booleans on the UpdateUserApp
payload of an UpdateUser message.

Bits 4..10 and 12..31 Not described here

Meaning of “ccflags” in user. These flags define the level of detail you will get back in callinfo events.

A good setting for regular applications would be 0x99

| Bit 0 (0x01) | Primary callcontrol data

Bit 1 (0x02) Local and remote devices

Bit 2 (0x04) Additional simultaneous targets
Bit 3 (0x08) Conference membership

Bit 4 (0x10) Dial info

Bit 5 (0x20) Extended Trunk detail

Bit 6 (0x40) Extended Queue information
Bit 7 (0x80) Language, privacy

From the User config subscription, you get back a “user” notify.

Message

{
notify

{

subscribe_id=7000

notify_id=1

user

{
extn=2002
name=Bergcamp
email=dbergcamp@denmarklegends.com
language=dan
voicemail=1
mailbox

Fields in User Notify

extn User number in the dial plan
name User name

fullname User full name

katakananame User katakana name (Japan only)
email User email address

featuresavailable

Actions that are allowed

language Locale code

dnd Do not disturb

barred User is barred from making external calls
xdirectory User is ex-directory

voicemail User has voicemail enabled

loggedinextn User is logged in to this extension
extnfault User does not have a working phone
loggedoff User is not logged in anywhere

absence Absence info

mailbox Summary content of the voicemail mailbox
app Application presence string

noapphandler

There is no application registered that can edit the app field

ec500

Mobile twinning enabled

fwdu

Forward Unconditional

fwdb

Forward on busy

fwdna

Forward on no answer

fwdhg Hunt group calls follow fwdu rule

fwdunumber Forward Unconditional destination

fwdbnumber Forward busy destination, if different from fwdunumber.
fwdtovm Forward Unconditional destination is voicemail
offswitch User is allowed to set forward number to off-switch

Featuresavailable
This is a bit-field

Bit 0 (0x00000001) VALID

Means this field is populated (not present in older
versions)

Bit 1 (0x00000002) SAC

Can Set or Unset Do Not Disturb

Bit 2 (0x00000004) ABSENCE

Can change absence text

Bit 3 (0x00000008) EC500

Can change mobile twinning setting

Bit 4 (0x00000010) LOGIN

Can hot-desk to another extension

Bit 5 (0x00000020) SHORTCODE

Allowed to send shortcodes

Bit 6 (0x00000040) MAKECALL

Allowed to MakeCall

Bit 7 (0x00000080) FWDU

Allowed to set Forward Unconditional

Bit 8 (0x00000100) DFOI

(reserved)

Bit 9 (0x00000200) APP

Allowed to change the application presence string

If one of these fields changes, you will get a new notify.user on this same subscription.

If any bits are set in ccflags, you also get a Callcontrol subscription on this same subscribe_id. For

example, an incoming call looks like:

Message
{
notify
{
subscribe_id=7000
callcontrol
{
refreshinstance=1
callinfo
{
callid=1
state=RINGING
direction=INBOUND

gcid =01 CO A8 2A 0B 00 00 03 EC

featuresavailable=0x23 DROP ANSWER REDIRECT

callingparty

{
number=61001

name=Agent 61001
nametype=5

Call Control commands and notifications are described later.

Update User
You can issue commands on the user subscription to change the user’s configuration

message UpdateUser

{
UpdateUserSAC sac = 1;
UpdateUserAbsence absence = 2;
UpdateUserEC500 ec500 = 3;
repeated ShortCodeData shortcodedata = 4;
UpdateUserLoginExtn loginextn = 7;
UpdateUserApp app = 8;
UpdateUserFwdU fwdu = 9;

The commands available are not very complex, but you can also send ShortCodeData which enables
more control.

sac Enable/disable DND

absence Set/clear Absence text

ec500 Set/Unset Mobile twinning.

shortcodedata Other configuration options

loginextn Hot-desk user to a different extension

app Change user’s application presence

fwdu Change users forward uncondional
settings including On/Off, destination

Set DND
Message

{

subscribecmd

{
subscribe_id=7000

user

Set Voicemail-box content
This is a bit of a random thing to include here but is a useful trick for certain applications that want
to offer voicemail services instead of regular VMPro..

If IP Office is providing the voicemail through (eg) VMPro, then the voicemail server will update the
user with message counts: newmessages, oldmessages, savedmessages.

However, if voicemail is being provided by a client application, it is possible for the client application
to show the mailbox content through this interface. Note that the IP Office view of the mailbox
content may occasionally clear the values, and the application should then re-assert the correct
numbers.

This interface is superior to using “DisplayMsg”, as it should show the detail on all interfaces, not just
on the phone display.

You use shortcode 70 to set voicemail content, and the shortcodeval string must be in the format *;’
(semicolon) followed by Snewmessages,Soldmessages,Ssavedmessages

Message
{
subscribecmd
{
requestid=3
subscribe_id=7000
user
{
shortcode
{
shortcode=70
shortcodeval=;3,0,0
}
}
}
}

Results in a notify (provided you set bit 0 in the subscribe):

Message
{
notify
{
subscribe_id=7000
notify id=2
user
{
extn=61000
name=User 61000
language=eng

voicemail=1
mailbox
newmessages=3

}

}
Other shortcodes
Shortcode Parameter string Action
integer
0 Set forward unconditional
1 Unset forward unconditional
2 Set forward on busy
3 Unset forward on busy
4 Set forward no answer
5 Unset forward no answer
6 destination Set forward number
7 Set DND
8 Unset DND
9 exception Set DND exception
10 Clear all DND exceptions
17 Voicemail on
18 Voicemail off
94 Time in seconds Set noAnswer timeout
109 $set,$val, $str SetAbsentText
114 destination Set FwdBusy number
166 Set EC500
167 Unset EC500

Subscribe Queue

Using the lines subscription, the allocation now has a table of users and queues. From this, you could
just subscribe to Presence, but if you want to perform functions on a queue, you need to Subscribe
to each queue individually.

message SubscribeQueue

{
bytes guid = 1;
int32 flags = 2;
int32 ccflags = 3;
string name =4;

You should use the GUID out of the lines table in the Subscribe:

Message

{

subscribe

{
requestid=2

In some applications, where all you want to do is control a single queue whose name you know, you
do not need to subscribe to the lines table to extract the guid. You just subscribe to the queue by

name:

Meaning of “flags” in queue

Bit0

Include voicemail box message counters

Bit1

Include huntgroup members list

Bits 2..31

Not described here

Queue Notify

message NotifyQueue
{
enum ServiceMode
{
Unset = 0;
Active = 1;
NS =2;
00S =3;
}
string extn = 2;
string name =3;
string katakananame = 4;
string email = 5;
int32 ringmode = 6;

int32 noanswertime =7;

bool voicemail =8;

int32 voicemailtime = 9;
ServiceMode servicemode = 10;
QueueMembers queuemembers = 11;
Mailbox mailbox = 12;

}

extn Number in the dial plan

name Queue name

email Queue email

ringmode 0 =ringidle
1 = sequential
2 = group

noanswertime Time in seconds to ring around
agents

voicemail Voicemail enabled

voicemailtime Time in seconds before call goes
to voicemail

servicemode Active, Night service or O0S

gueuemembers Agents in this queue

mailbox Contents of queue’s voicemail
box.

Mailbox is included if flags bit O is set in the subscribe.queue.

message Mailbox

{
int32 newmessages = 1;
int32 oldmessages = 2;
int32 savedmessages = 3;
}

QueueMembers is included if flags bit 1 is set in the subscribe.queue

message QueueMember

{
string extn = 1;
bool disabled = 2;
}

message QueueMembers

{

repeated QueueMember member = 1;

}

This is a list of all agents in the queue, and whether they are currently disabled (not accepting calls)

There are a set of commands for administering the Queue configuration.

message UpdateQueue

{
SetServiceMode setservicemode = 1;
SetVoicemail setvoicemail = 2;
QueueMembers members = 3;
repeated QueueMember addmember = 4;
repeated QueueMember deletemember = 5;

}

You can either specify the entire members list, or you can add or remove members from the list
individually.

You can also use addmember to change a member status from enabled to disabled in the queue.
“addmember” is an update if the member already exists.

Call Control notifications on a Queue
This is covered in more detail in the Call Control section, but here is a very brief description.

If you set bit 0 of “ccflags” in the subscribe.queue you will automatically get Notifications for calls
coming into a Queue. These calls can be tracked and manipulated.

Message
{
notify
{
subscribe_id=7500
callcontrol
{
refreshinstance=1
callinfo
{
callid=1
state=RINGING
direction=INBOUND
featuresavailable=0x6060EOB1 DROP BLINDXFER REDIRECT PARK TAG ACCT FORCECLEAR
AUTH PRIO FINISH
callingparty
{
number=01707123456
name=Avaya Test trunk
nametype=9
}
gueuedetail
{
number=98765
name=Agents
priority=1
}

calldata

{

language=eng

}

targets
{
target
{
partyinfo
{
number=61002
name=Agent 61002
nametype=5
}
}

The “ccflags” you specify defines the level of detail that you see. In general you should only ask for

data that you intend to use.

Meaning of “ccflags” in queue

Bit 0 (0x01) Primary callcontrol data

Bit 1 (0x02) Local and remote devices

Bit 2 (0x04) Additional simultaneous targets
Bit 3 (0x08) Conference membership

Bit 4 (0x10) Dial info

Bit 5 (0x20) Extended Trunk detail

Bit 6 (0x40) Extended Queue information
Bit 7 (0x80) Language, privacy

Bit 8 (0x100)

Conference membership

Bit 9 (0x200) Reserved
Bit 10 (0x400) Reserved
Bit 11 (0x800) Reserved
Bit 12 (0x1000) Reserved
Bit 13 (0x2000) Notes

Bit 14 (0x4000) uUcCiD

Bit 15 (0x8000) P-Intrinsics
Bit 16 (0x10000) Reserved
Bit 17 (0x20000) Reserved
Bit 18 (0x40000) Targets

Bit 30 (0x40000000)

Ephemeral (you only see calls while they are actually
queueing)

For queue calls, the direction is generally INBOUND

Call Control Notifications

User, Queue and ParkHandler can include implicit Call Control subscriptions depending on the
setting of the “ccflags” field in the subscription.

NotifyCallControl
NotifyCallControl is a payload of Notify message.

message NotifyCallControl

{
repeated Callinfo callinfo=2;
repeated CallLost calllost = 3;

}

Notify contains updates of each call appearance (callinfo) until the call appearance is ended, when
a Notify will be generated with calllost.

One Notify can contain multiple callinfo updates, and multiple calllost. A single Notify represents a
single event, so after a Transfer complete you would probably get calllost for both the CallOnHold
and the Assistant call in the same payload.

The table of callinfo does not necessarily contain all the call appearances, only those with
reportable changes.

A NotifyCallControl report represents the current information about a call appearance. You are not
guaranteed to see every transition phase of a call that moves quickly between phases. So, for
example a call that is made and auto-answered may transition instantly to CONNECTED state. You
will not get a Notify for all the intermediate phases.

Callinfo
Callinfo is a payload of NotifyCallControl

message Callinfo

{

enum State

{
UNKNOWN = 0;
DIALTONE =1;
DIALLING = 2;
DIALLED = 3;
RINGING = 4;
RINGBACK = 5;
CONNECTED = 6;

ONHOLD =7;
ONHOLDPENDTRANSFER = 8;
ONHOLDPENDCONF = 9;
DISCONNECTED = 10;
BUSY = 11;
FAILED = 12;
WAITINGFORACCT =13;
WAITINGFORAUTH = 14;
WAITINGFORLINE = 15;
REMINDER=16;
AFTERCALLWORK=17;
RINGINGDIVERT=18;
RINGINVOICEMAIL=19;
ANSWEREDBYVOICEMAIL=20;
LEAVINGVOICEMAILMESSAGE=21;
QUEUEING=22;
RETARGETING=23;

}

enum Direction

{
UNDEFINED =0;
OUTBOUND =1;
INBOUND = 2;
PICKUP = 3;

}

enum FailedCause

{
UNSET = 0;
UNSPECIFIED = 1;
UNALLOCATEDNUMBER = 2;
REJECTED = 3;
NUMBEROQO = 4;
NETWORKOOO =5;
BARRED = 6;
NOCHANNEL =7;
NOACCOUNTCODE = §;
NOAUTHCODE =9;
NOLICENCE = 10;
LOCALRESOURCES = 11;
BANDWIDTH =12;
COMPATIBILITY = 13;
CANTRECORD = 14;
NORESPONSE=15;

}

int32 callid = 2;

int32 referencecallid = 3;

int32 relatedcallid = 4;

State state = 5;

Direction direction = 6;

bool activeheld = 7;

bytes gcid = 8;

int32 featuresavailable = 9;

string calledparty = 10;

PartyInfo callingparty = 11;
Partylnfo connectedparty = 12;
PartyInfo originalcalledparty = 13;
string tag = 14;

string accountcode = 15;

bool mute = 16;

FailedCause failedcause =17;
int32 featuresavailable2 = 18;
bool recording =19;

string parkslot = 20;

Absence absence = 21;

bool recordingpaused = 22;
repeated ConferenceMember conferencemember = 52;
Diallnfo dialinfo = 53;

Trunklnfo trunkinfo = 54;
Queuelnfo queueinfo = 55;
CallData calldata = 56;

Note notes = 62;
Targets targets = 67

Fields
Callid

Referencecallid

Relatedcallid

State
Direction

Activeheld
Gcid
featuresavailable

Calledparty
Callingparty
Connectedparty
originalcalledparty

Tag
Accountcode

Mute

Description

Call identifier, provided by IP Office. It has uniqueness only within this
subscription.

Reference identifier provided by the MTCTI app. If call was made using
MakeCall, this is the reference provided in the MakeCall. MTCTI App may
assert it or change it at any time using an Update.

When a call is an Assistant call (eg during an Assisted Transfer), then this is
the callid of the call on-hold pending transfer

Q.931 style state of the call

If the device receives a call and is ringing, then that is INCOMING. If the
device makes a call and hears RingBack Tone from the far end, that is
OUTGOING. If the call has been established by Call Pickup, Call Steal,
UnPark, that is PICKUP.

If the person you were talking to has put you on hold, so you are listening to
holdmusic, that is activeheld

Global call Identity of this call. When a call is made between two parties, they
will both see the same gcid. It is not unique across reboots.

This is a bitfield of CallFunction Updates that may be effective at this time for
this call. See final section.

Usually for outbound calls, this is the number that was called.

For incoming calls, this describes the caller.

For calls where the other end is defined, this describes the other end

For incoming calls which have not arrived directly at this user (diversion or
huntgroup), this describes the target of the call

This is a text label which has been attached to this call

When an account code is attached to a call, and the account code is not hidden,
it will be presented here.

Mute is not always available. In IP Office it is not normally possible to mute a
call in the PBX. (It has to be muted on the handset / application itself). It is
normally possible to mute a call into a Conference.

Failedcause

featuresavailable2
Recording

parkslot
Absence

recordingpaused

conferencemember
Dialinfo

queuedetail
Calldata

Targets

CallLost

Also if ‘mute’ is set on the handset, this is not going to reflect in this field.
This field will only reflect the ‘mute’ status if it is a controllable scenario.
When trying to make a call, and the call fails, it will report state = FAILED.
The reason why the call failed will be in this field.

Additional bitfield of featuresavailable. None defined

[for user]

If this call is being recorded under the control of the user, then this field will be
set. This does not reflect system recording for which the user does not have
visibility or control.

[for queue]

This indicates whether the call is being recorded by the system.

For ParkHandler only, this identifies the parkslot that the call is occupying.
For calls on a User, this shows the FAR END Absence text. (So the person you
are calling)

This is the paused state of any system call recording. Even though an agent
cannot normally control whether a system call recording is in progress, they
may be able to control the recording-paused state

This is a repeating list of all the other parties in a conference.

When making an outbound call, this contains details of what is being dialled,
what type of call is being made, whether the display should be suppressed
because it contains authorization codes, whether we are withholding our
identity.

If the call is in a queue, this gives the detail about the queue and the priority of
the call in the queue.

This contains a motley set of ancilliary details about the call, like nominal
language of the conversation, whether the call is private etc.

(subscribe.queue call only) This lists the nominal ringing targets for a call
which is in the RINGING, QUEUEING or RETARGETING states.

Note that with IP Office an Agent will pick up the longest waiting call on a
queue, even if apparently on the list of targets for a different call.

CallLost is a payload of NotifyCallControl

message CallLost

{

int32 callid=1;

int32 referencecallid = 2;

int32 reason = 3;

bool thisenddropped = 4;

string description = 5;

Fields
callid

reference_callid

reason

Description

Call identifier, provided by IP Office. It has uniqueness only within this
subscription.

Reference identifier provided by Equinox. If call was made using MakecCall,
this is the reference provided in the MakeCall. Equinox may assert it or change
it at any time using an Update.

If a MakecCall fails instantly, and for some reason there is not a stable FAILED
state, you may never see a Calllnfo for the call, only the CallLost. In this case,
the application will have to match the reference_callid with the failed call
attempt.

Regular reason codes: 16 = Normal

thisenddropped For a mature call, this tells the application which end terminated the call.

description Not suitable for presenting to the phone Ul, as it will not be a localized string.
May contain useful information, or not.

Modifying the Subscription

From the point of view of CallControl subscription, modifying the subscription means exercising call
control — making calls, dropping calls etc.

UpdateCallControl

UpdateCallControl is a payload of SubscribeCmd message. This message carries the commands for
manipulating calls.

message UpdateCallControl

{
int32 callid = 1;
int32 referencecallid = 2;
MakeCall makecall = 3;
CallFunction callfunction = 4;
UnParkCall unparkcall = 6;
}
Fields Description
callid The callid assigned by IP Office to this call
referencecallid The callid assigned by Application to this call. One of referencecallid or callid
must be populated.
makecall Payload description for making a new call. referencecallid must be populated,
and callid must not be populated.
callfunction Commands to manipulate calls already in existence.
unparkcall Payload description for unparking a call. referencecallid must be populated,
and callid must not be populated. When parking and unparking a call, the
callid will not be the same. A different number will be assigned on UnPark.
Makecall

MakeCall is a payload to initiate an outbound call.

message AdvancedMakeCall
{
string accountcode = 1;
string authcode = 2;
string tag = 3;

bool withholdcli=5;
bool privacy = 6;
string madn = 7;

bool allowcli = 8;
string explicitcli = 10;

message MakeCall

{
string target =1,
int32 type =2;
AdvancedMakeCall advanced = 3;
}

Fields Description

target The dialled string. If empty, then call would normally transition to
DIALTONE.
type There are certain values for this field which should be used carefully:
104 = Page Call
105 = Forcefeed
106 = Intrude
108 = Pickup
109 = CampOn (don’t allow call to go to voicemail)
116 = Dial a MeetMe conference
A normal call should not have this specified.
advanced This should only be included if you want to add complex attributes to the call
you are making.
accountcode = Account code to assign to this call
authcode = Authorization code to assign to this call
tag = Text label to attach to the call
withholdcli = make call anonymously
privacy = do not allow others to intrude on this call
madn = Specify call origin for campaign call
allowcli = Reveal CLI on calls from phones which are normally configured as
hide CLI.
explicitcli = change the CLI of the outgoing call.

CallFunction

Call manipulation controls. The call is selected by the callid or reference_callid of the
UpdateCallControl parent payload.

message CallFunction
{
enum Action
{
None =0;
DropCall = 1;
AnswerCall = 2;
HoldCall = 3;

}

UnHoldCall = 4;
BlindTransfer = 5;

Redirect = 6;
Dial =7;
Park = §;

SetupTransfer = 9;
SetupConf = 10;
CompleteTransfer = 11;
CompleteConf =12;
AddToConf =13;
MemberFunction = 14;
SetTag = 15;
SetAccountCode = 16;
Unused16=17;
PushToEC500 = 18;
GenerateDigits = 19;
Unused20 = 20;
Unused21 = 21;
Unused22 =22;
ForceClear = 23;
SetAuthCode = 24;
CallRecordingOn = 25;
CallRecordingOff = 26;
PrivacyOn = 27;
PrivacyOff = 28;
MuteOn = 29;
MuteOff = 30;
Unused31 = 31;

AgentRecordingControl =

Unused33 = 33;
SetPriority = 34;
Finish = 35;

Action action =1;
string argl = 2;
MemberFunctionData memberfunctiondata = 4;
repeated Calllnstance callinst = 5;
AgentRecording agentrecording = 6;

Fields
action
argl
memberfunctiondata

Calllnstance

AgentRecording

32;

Description
Command to perform on the call appearance
Text argument that goes with certain commands, like Dial
Rich data to go with MemberFunction (manipulating conference members)

In the case of CompleteTransfer, you would normally transfer the relatedcallid
call which is ONHOLDPENDXFER. However, you *can* explicitly specify a
different call you want to complete the transfer with.

In CompleteConf, the same thing applies, but you *can* specify a different call
or list of calls you want to conference.

Required sub-message for AgentRecordingControl function.

This allows the call system recording to be paused or unpaused. (Does not
have any effect on user local call recording)

Function Use for argl

BlindTransfer Transfer target
Redirect Redirect target

Dial Digit(s) to dial

Park Parkslot
SetupTransfer Optional target for assisted transfer call.
AddToConf Conference target
SetTag Tag text
GenerateDigits DTMEF digit(s) to play
SetAccountCode Account code

Set Auth code Auth code
SetPriority ‘1,2, 0r ‘3’

Conference Member functions

message MemberFunctionData

{

enum Action

{
None = 0;
DropCall = 1;
MuteOn = 2;
MuteOff = 3;

}
int32 Iref = 1;

Action action = 2;

}

Use these functions to manage individual members of your conference. You will only be able
to perform the action if you have sufficient privilege on the conference to do so.

UnParkCall

UnParkCall is a payload to unpark a call

message UnParkCall

{
string parkid = 1;
}

There is no guaranteed indication that an UnPark was successful, except that if successful, you will
receive a Callinfo notification showing the unparked call (and the referencecallid supplied). You

would not normally expect to call this function unless you knew the parkid was occupied. You should
subscribe to ParkHandler to keep track of parkslot occupancy.

If you specify a RequestID, you may get a useful fail code in the RequestResponse.

RecordingControls

These apply to system recordings only. User can pause or Un-pause a call recording using
RecordingControls.

connectedparty

{
number=0657765

}

recordingpaused €< Recording now paused

}
}
}
}

CallControl explicitly for Queue calls

If you have at least set “ccflags” bit 0 (0x01), you will receive call notifications whenever a call arrives
in the queue, and a notification whenever that call changes. These call notifications will be in the
form of a callinfo message.

You may receive multiple callinfo messages and multiple calllost messages in a single notify (when
there are several calls), but for each call you will receive a maximum of one.

Several MTCTI3 clients can subscribe to the same queue, and they will all receive notifications. Note
that if one client issues the “Finish” command (to end notifications), this will terminate the
notifications on ALL clients.

Also note that before ‘Finish’, a call will only be reported on one Queue. If a call is in Sales, then is
transferred to International, then the call will still be reported in Sales, and not in International,
unless the application sends a Finish to stop the reporting in Sales.

This is because by default, the Queued call is reported through its entire lifetime.

If you only want to monitor the queued calls during the time they are queueing, you need to set
“ccflags” bit 30 (0x40000000)

While the call is being handled by IP Office, the mtcti3 client will receive notifications about the call
whenever the call information changes.

The client will only receive a Call Lost event once the call is completed unless the client explicitly
sends a Finish event.

Additionally, the mtcti3 client has an Update capability to modify the call handling.

Lifetime of a simple call

CALLINFO RINGING

CALLINFO Targeting an agent
CALLINFO Answered by agent
CALLINFO Transferred to new Agent
CALLINFO Agent has put call on hold

| CALLLOST | Caller has hung up

Actions on Queued calls

Actions can be performed on any call. Some actions simply enhance the queueing functionality
which already exists in IP Office, and some actions completely override the default behaviour. For
example, you can change the priority of a call, and the IP Office queueing mechanism will still be
functioning. However, if you Redirect or Transfer the call, the queueing will be replaced.

If all you want to do is report what happens to a call that originally targets a queue, you do not need
to perform any actions at all.

Actions that can be performed on a call are indicated in the featuresavailable bitfield. If you perform
an action that is not available, the Action will be ignored.

Action result
DropCall Clears the call
ForceClear If it is a regular call, it will clear the call. If it is a call
into a meetme conference, it will terminate the
conference.
SetTag Changes the tag label on the call
SetAccountCode Changes the account code of the call
SetPriority Changes the call priority in the queue
1=low
2 = medium
3 =high
Park Parks the call to a parkslot

BlindTransfer

This is the major feature. You can use this to direct
the call at any phase of its life.

CallRecordingOn/Off

Turns on/off call recording

AddToConf

When in a conference:
Invite members to a conference

MemberFunction

When in a conference:
Mute or drop conference members

Mute On/Off When in a conference:
Mute the caller
Finish End the CTI association. The call will not end, but it

will no longer generate Calllnfo events.

Ill

The “powerfu

BlindTransfer

BlindTransfer action

function is:

Normally a BlindTransfer action would be used before the caller talks to an agent. You can use
BlindTransfer to target an explicit agent, or to redirect the call to an explicit Queue, go to a pre-
configured or interactive dialog with VMPro or to connect to an IP Office service like a MeetMe

conference or an FNE.

BlindTransfer takes only one argument, but the “argl” argument can be formatted to provide some
extended functionality.

/Stype/destination
Type can be:

102 = Voicemail

104 = Page

105 = Force autoanswer
106 = intrude

107 = Priority call

109 = CampOn

111 = Whisper

112 = Inclusione

116 = MeetMe conference
120 = FNE

BlindTransfer to a Callflow
So, to route to a particular VMPro callflow

Transfers the call to “CallFlow” on VMPro

BlindTransfer to a MeetMe Conference

You see the call is now connected to the conference.

BlindTransfer to a conference requiring PIN access

Where the PIN is 123456

The character between the 5 and the M is a semi-colon.

BlindTransfer to a functional queue

You can transfer a call from the “owner” queue to another IP Office queue with a simple
BlindTransfer to the new queue. This call will continue to be monitored here as it is handled by the
other queue, and you can abandon the queue at any time by performing another BlindTransfer.

(2502 is a huntgroup)

You will continue to get notify events as the queue changes the agents that are targeted, and after
the call is answered.

Error codes

Error Code Description
MTCTISESS_SUCCESS 0 Success
MTCTISESS_ERRUNKNOWN 1 Unknown error
MTCTISESS_UNPACKERR 2 Message unpack error
MTCTISESS_NOTINSTRUMENTED 3 Not instrumented
MTCTISESS_NOTFOUND 4 Not found
MTCTISESS_TOOMANY 5 Too many
MTCTISESS_TOOBIG 6
MTCTISESS_USERNOTFOUND 7
MTCTISESS_SERVICE_NOT_AVAILABLE 8
MTCTISESS_NOTALLOWED 9
MTCTISESS_SUBSCRIPTION_INVALID 100 Not a recognized subscription
MTCTISESS_SUBSCRIPTION_INVALID_ID 101 Subscription Update with invalid 1D
MTCTISESS_SUBSCRIPTION_TIMEOUT_TOO SMALL 102
MTCTISESS_GENCMD_ERRUNKNOWN 150 General Command Error
MTCTISESS_GENCMD_INVALID PAYLOAD 151 General Command badly formatted
MTCTISESS _GENCMD_REQUIRED_DATA_MISSING 152 General Command with mandatory
element missing
MTCTISESS PRESENCE_ERRUNKNOWN 500 Any error to do with presence
subscription
MTCTISESS REQUESTFAILED 5000 A valid command has failed
MTCTISESS_REQUESTTIMEOUT 5001 A valid command has taken too long to
create a response
MTCTISESS_REQUEST _INVALID_PAYLOAD 5002 Missing or field out of range.
MTCTISESS_REQUEST_INVALID_CONTEXT 5003 Can find context for this action

Specific Error codes for Call Control

In some case IP Office can be more specific about the reason why an Action failed. If it can’t be more
specific, it will return one of the generic Error codes above:

MTCTISESS_CALLCONTROL_NOPHONE 600 Cant make a call, or unpark a call
because the user is not logged in to
any handset

MTCTISESS_CALLCONTROL_EXTNFAULT 601 Cant Make a call because the user’s
phone is not connected

MTCTISESS CALLCONTROL_CALLNOTFOUND 602 Can perform action on this call,
because the call cannot be found

MTCTISESS _CALLCONTROL_MAXCALLS 603 Cant Make a call because the user
has no more call appearances.

MTCTISESS _CALLCONTROL_BADACCT 604 The account code entered is not
valid

MTCTISESS CALLCONTROL BADAUTH 605 The authorization code is not valid

MTCTISESS_CALLCONTROL_TARGETNOTFOUND | 606 Typically for UnPark, or
AddToConference, cannot find the
thing you are targeting.

MTCTISESS_CALLCONTROL_PERMISSION 607 You do not have permission to
perform this action

MTCTISESS_CALLCONTROL_BADFORMATTING 608 One of the fields is missing or string
is too long or number is out of range

MTCTISESS CALLCONTROL INVALIDCALLSTATE | 609 You can’t do this action at this time.

MTCTISESS CALLCONTROL_CANTBEDONE 610 Typically you cannot answer the
call on this phone because you need
to physically pick up the handset.

MTCTISESS_CALLCONTROL_NOCOVERAGE 611

You cant Drop a ringing call if there
is no coverage destination.

MTCTISESS_CALLCONTROL_TRANSFERFAILED 612

The blind transfer target is invalid or
refused the call.

MTCTISESS_CALLCONTROL_PARKFAILED 613

Could not park this call

MTCTISESS_CALLCONTROL_OTHERNOTFOUND 614

Trying to CompleteTransfer or
CompleteConf with invalid related
calls.

MTCTISESS CALLCONTROL_CANTCOMPLETE 615 TransferComplete not allowed,
maybe because of the nature of the
calls you are trying to join.

MTCTISESS _CALLCONTROL_UNSUPPORTED 616 Not a supported function

MTCTISESS CALLCONTROL ALREADYDONE 617 The command would have no effect

Features Available
Meaning of “FeaturesAvailable” in Callinfo

Bit0 Drop

Bitl Answer Call

Bit 2 Hold call

Bit 3 UnHold call

Bit4 Blind Transfer
Bit5 Redirect

Bit 6 Dial

Bit7 Park

Bit 8 SetupTransfer
Bit9 CompleteTransfer
Bit 10 CompleteConf
Bit11 AddToConf

Bit 12 AdminConfMember
Bit 13 SetTag

Bit 14 SetAccountCode
Bit 15 reserved

Bit 16 PushToEC500
Bit 17 GenerateDigits
Bit 18 reserved

Bit 19 reserved

Bit 20 RecordingPauseControl
Bit 21 ForceClear

Bit 22 SetAuthCode

Bit 23 CallRecordingOn
Bit 24 CallRecordingOff
Bit 25 PrivacyOn

Bit 26 PrivacyOff

Bit 27 MuteOn

Bit 28 MuteOff

Bit 29 SetPriority

Bit 30 Finish

Call functions individually described

DropCall
TAPI equivalent: lineDrop()

Control: only try to do this if bitO of “featuresavailable” is set.

Argl

not used

Line types

User or Queue or ParkServer
Action

User: IP Office will try to clear the call from this user. If call is ringing, it will try to send the call to
coverage. If call is answered, the call will be cleared. If connected to a conference, the user will be
dropped out of the conference. This does not necessarily clear the conference.

Queue or Park Server: Call will be dropped.

Errors

DropCall may fail even if bit0 is set.

If it fails, and you have populated the ‘requestid’ field, you will get the error in the RequestResponse:

Unspecified Error: MTCTISESS REQUESTFAILED
Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT
Can’t find CalllD: MTCTISESS_NOTFOUND

If it fails due to (eg) an inability to find a suitable coverage target, you may get MTCTISESS_SUCCESS
but the call will not drop. In this case you will usually get MTCTISESS_CALLCONTROL_NOCOVERAGE.
This is a good example of the rule that the application should only use Notify updates to observe
what is actually going on.

AnswerCall
TAPI equivalent: lineAnswer()

Control: only try to do this if bitl of “featuresavailable” is set.

Argl

not used

Line types

User only
Action

IP Office will try to answer a ringing call at this user. If the user has multiple simultaneous devices
ringing at the same time for the same call, then IP Office will choose the most appropriate device to
answer the call. This is chosen in the order:

Desk phone or teleworker

Soft phone

Mobile Equinox application

It is possible to be more precise by using the ‘devicehint’ in the UpdateCallControl payload. If you
specify SOFTPHONEANY it will only answer the call on a softphone.

For some phone types, like a ringing POTS phone, it is not possible to Answer a call through CTI. (CTI
cannot take the phone off-hook). Generally in this case, bitl of featuresavailable should be unset.

Also, note that if there is already a Connected call, Answering a ringing call may result either in the
Answered call being Answered-to-OnHold, or the previously connected call to be demoted to
OnHold.

Errors
AnswerCall may fail even if bitl is set.
If it fails, and you have populated the ‘requestid’ field, you will get the error in the RequestResponse:

Unspecified Error: MTCTISESS _REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Hard pots phone on hook: MTCTISESS_CALLCONTROL_CANTBEDONE

Unsuitable action (eg if call was already answered manually while the command was in transit):
MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

HoldCall
TAPI equivalent: lineHold()

Control: only try to do this if bit2 of “featuresavailable” is set.

Argl

not used

Line types

User only

Action

IP Office will try to put an active call on Hold. For the person talking to this user, he may expect to
hear HoldMusic.

Note.

When putting a call onHold, the IP Office may initiate a Hold-reminder timer and after the Hold-
reminder expires a deskphone may start ringing. None of this is reflected in CTI3. The OnHold call
stays onHold even while the deskphone is doing Ring-reminder, and can only go back to Connected
using UnHold (not Answer)

Errors

HoldCall may fail even if bit2 is set.

Unspecified Error: MTCTISESS _ REQUESTFAILED

Remote SCN target not responding: MTCTISESS _REQUESTTIMEOUT

Can’t find CalllID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Already on Hold: MTCTISESS_CALLCONTROL_ALREADYDONE

Call not in a state where it can be put on Hold: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

UnHoldCall
TAPI equivalent: lineUnHold()

Control: only try to do this if bit3 of “featuresavailable” is set.

Argl

not used
Line types
User only
Action

IP Office will try to make a previously Held Call to Connected state. This would generally
automatically force any other Connected call into Held.

Errors

UnHoldCall may fail even if bit3 is set.

Some 3™ party SIP handsets cannot be coaxed through CTI to take an OnHold call and UnHold it.
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Already Active: MTCTISESS_CALLCONTROL_ALREADYDONE

Call not in a state where it can be taken OffHold: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
Cant be done on this type of phone: MTCTISESS CALLCONTROL_CANTBEDONE

BlindTransfer
TAPI equivalent: lineBlindTransfer()

Control: only try to do this if bit4 of “featuresavailable” is set.

Argl

The transfer-to destination. In a successful BlindTransfer, the connected or ringing call is
immediately disconnected from the user and is sent to another destination specified by argl.
BlindTransfer frequently fails if the transfer-to destination is not a valid target.

The minimum length of the string is 1, and the maximum length is 78.

Characters in this field would normally be 0-9, ‘#" “*’ but for exotic transfers, other characters may
be expected. Non-ascii characters must be encoded in Utf8.

Line types

User or Queue or ParkServer

Action

IP Office will try transfer the call to the specified destination.

Errors

BlindTransfer may fail even if bit4 is set.

If the transfer does not succeed, the call will stay with the user.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS REQUESTFAILED

Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT

Can’t find CalllID: MTCTISESS _CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS CALLCONTROL_INVALIDCALLSTATE
argl missing or invalid: MTCTISESS CALLCONTROL_BADFORMATTING

cannot redirect the call: MTCTISESS _CALLCONTROL_TRANSFERFAILED

Redirect
TAPI equivalent: lineRedirect()

Control: only try to do this if bit5 of “featuresavailable” is set.

Argl

The transfer-to destination. In a successful Redirect, the ringing call is immediately disconnected
from the user and is sent to another destination specified by argl.

Redirect frequently fails if the transfer-to destination is not a valid target.

The minimum length of the string is 1, and the maximum length is 78.

Characters in this field would normally be 0-9, ‘#’ “*’ but for exotic transfers, other characters may
be expected. Non-ascii characters must be encoded in Utf8.

Action

IP Office will try to redirect the call to the specified destination.

Line types

User or Queue

Errors

Redirect may fail even if bit5 is set.

If the redirect does not succeed, the call will stay with the user.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalliD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
argl missing or invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

cannot redirect the call: MTCTISESS_CALLCONTROL_TRANSFERFAILED

Dial
TAPI equivalent: lineDial()

Control: only try to do this if bit6 of “featuresavailable” is set.

Argl

The minimum length of the string is 1, and the maximum length is 78. But it would be unexpected
for this to be anything other than 1 as this is used primarily for overlap dialling.

Characters in this field would normally be 0-9, ‘#" ‘*’
When dialling a destination, IP Office will append the supplied digits to the dialled string.

Line types

User only

Action

When using overlap dialling, IP Office will progress a call from Dialtone to Dialling to Dialled as the
target number is resolved.

Errors
Dial may fail even if bit6 is set.
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
argl missing or invalid: MTCTISESS _CALLCONTROL_BADFORMATTING

Park
TAPI equivalent: linePark()

Control: only try to do this if bit7 of “featuresavailable” is set.

Argl

The minimum length of the string is 1, and the maximum length is 9.
Characters in this field would normally be 0-9, ‘4" “*’

Line types

User or Queue

Action

There is some risk to trying to park a call if you have no knowledge of the state of the park slot you
are trying to use. For this reason, it would be recommended that a private park slot is used, or the
application has a subscription to the PARKSERVER so it knows which park slots are free.

Errors
Park may fail even if bit7 is set.
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT

Can’t find CalllID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
argl missing or invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

SetupTransfer
TAPI equivalent: lineSetupTransfer()

Control: only try to do this if bit8 of “featuresavailable” is set.

Argl

This field is optional. If you do not include it, the new call created will go into the DIALTONE state. If
it is included, the new call will use this string as the target to dial. This string has to be a complete
number. You will not have the opportunity to dial further.

The minimum length of the string is 0, and the maximum length is 78

Characters in this field would normally be 0-9, ‘#" “*’ but for exotic transfers, other characters may
be expected. Non-ascii characters must be encoded in Utf8.

Line types

User only

Action

When performing SetupTransfer on a call, you are creating a new call (the assistant transfer call)
which is related to the original call. The original call should transition to HOLDFORTRANSFER state
and show “relatedcallid” association with this new call.

You cannot specify the “referencecallid” for this new call.
Errors
SetupTransfer may fail even if bit8 is set.

If a destination is specified and the target is invalid, this function should succeed, and a new call is
created with state == FAILED.

This would fail if the phone is a digital phone with no spare call appearances.
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS _REQUESTFAILED

Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT

Can’t find CalliD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
argl invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

No spare call appearances: MTCTISESS CALLCONTROL_MAXCALLS

SetupConf
TAPI equivalent: lineSetupConference()

Control: only try to do this if bit8 of “featuresavailable” is set (same bit as SetupTransfer).

Argl

This field is optional. If you do not include it, the new call created will go into the DIALTONE state. If
it is included, the new call will use this string as the target to dial. This string has to be a complete
number. You will not have the opportunity to dial further.

The minimum length of the string is 0, and the maximum length is 78

Characters in this field would normally be 0-9, ‘#’ “*’ but for exotic transfers, other characters may
be expected. Non-ascii characters must be encoded in Utf8.

Line types

User only

Action

This function is practically identical to SetupTransfer

When performing SetupConf on a call, you are creating a new call (the assistant transfer call) which
is related to the original call. The original call should transition to HOLDFORCONF state and show
“relatedcallid” association with this new call.

You cannot specify the “referencecallid” for this new call.

Errors
SetupConf may fail even if bit8 is set.

If a destination is specified and the target is invalid, this function should succeed, and a new call is
created with state == FAILED.

This would fail if the phone is a digital phone with no spare call appearances.
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
argl invalid: MTCTISESS _CALLCONTROL_BADFORMATTING

No spare call appearances: MTCTISESS CALLCONTROL_MAXCALLS

CompleteTransfer
TAPI equivalent: lineCompleteTransfer(LINETRANSFERMODE_TRANSFER)

Control: only try to do this if bit9 of “featuresavailable” is set.
Argl

Not used

Callinst

This may be used, in which case is would override any “relatedcallid” relationship and may transfer
together two calls which were previously unrelated. Only 0 or 1 callinst should be specified.

Line types

User only

Action

CompleteTransfer joins two calls together and drops the user out of the call.

CompleteTransfer can be called without callinst, as long as there is a related_callid. If there is no
callinst, and no related_callid, the Completion of the transfer will fail.

Errors
CompleteTransfer may fail even if bit9 is set.

There are several reasons why a CompleteTransfer may fail. There may not be two calls to join
together. The two calls specified may not be allowed to be joined together (eg two public calls may
not be allowed to talk together without an internal party, or joining the two calls together may result
is a call which cannot be cleared).

It is not always possible for the MTCTI3 application to know in advance whether the transfer will
succeed or fail.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
Cant find call inst: MTCTISESS_CALLCONTROL_OTHERNOTFOUND

The transfer targets are incompatible: MTCTISESS_CALLCONTROL_CANTCOMPLETE

CompleteConference
TAPI equivalent: lineCompleteTransfer(LINETRANSFERMODE_CONFERENCE)

Control: only try to do this if bit10 of “featuresavailable” is set.
Argl

Not used

Callinst

This may be used, in which case is would override any “relatedcallid” relationship and may
conference together two calls which were previously unrelated.

There can be several calls listed in the callinst list in which case all the listed calls will by joined to the
conference

Line types

User only

Action

CompleteConference joins two or more calls together into a conference.

CompleteConference can be called without callinst, as long as there is a related_callid. If there is no
callinst, and no related_callid, the Completion of the conference will fail.

When one of the calls is already a conference, the other call will be joined into the conference.

There are many rules about joining parties into a conference. Some parties are not allowed to join
some conferences, or the conference capacity may be reached.

This function either fully succeeds or fully fails. If any party is not allowed into the conference, then
no parties will join.

Errors

CompleteConference may fail even if bit10 is set.

It is not always possible for the MTCTI3 application to know in advance whether the
CompleteConference will succeed or fail. MTCTI3 will not give a useful reason for failing the function
and will not identify any rogue call which is blocking the function completion.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT

Can’t find CalllID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
Cant find call inst: MTCTISESS_CALLCONTROL_OTHERNOTFOUND

The conference targets are incompatible: MTCTISESS_CALLCONTROL_CANTCOMPLETE
There is a privacy issue in making this conference: MTCTISESS CALLCONTROL_PERMISSION

AddToConference
TAPI equivalent: lineAddToConference()

Control: only try to do this if bit11 of “featuresavailable” is set.

Argl

This must be a string of length between 1 and 78 digits. It is the target address of the invited party to
the conference. It must be a complete number

Line types
User or Queue
Action

This is only allowed if the call is already connected to a conference, and the user has privileges in
that conference to invite new conference members.

Errors
AddToConference may fail even if bit11 is set.

If the number which is used to dial the new conference member is invalid, then normally there is a
new ConferenceMember created, with state=FAILED. This member call will then have to be dropped.

The function AddToConference reports SUCCESS in this case.

AddToConference may fail of there are insufficient conference resources, or the conference capacity
is reached, or the user does not have the privilege to perform the function.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS _REQUESTFAILED
Remote SCN target not responding: MTCTISESS_REQUESTTIMEOQUT
Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
There is a permission error: MTCTISESS_CALLCONTROL_PERMISSION

argl missing or invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

Could not target the destination: MTCTISESS_CALLCONTROL_TARGETNOTFOUND

MemberFunction
TAPI equivalent: lineDrop() — for action=Drop, none for mute/unmute

Control: only try to do this if bit12 of “featuresavailable” is set.

Argl

Not used
Line types
User or Queue

Memberfunctiondata

This is required. It specifies which conference member you wish to Mute/UnMute/Drop. It also
specifies which of these three functions is to be performed.

Action

This is only allowed if the user has the privilege to perform these functions in this conference.
Errors

MemberFunction may fail even if bit12 is set.

If the referred to conference member does not exist.

If the user does not have the privilege.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS _REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalliD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS CALLCONTROL_INVALIDCALLSTATE
Can’t find Iref: MTCTISESS_CALLCONTROL_OTHERNOTFOUND

There is a permission error: MTCTISESS _CALLCONTROL_PERMISSION

Unknown command: MTCTISESS_CALLCONTROL_UNSUPPORTED

SetTag
TAPI equivalent: lineSetCallData()

Control: only try to do this if bit13 of “featuresavailable” is set.

Argl

Can be a string of length 0 — 127 Unicode characters after converting from Utf8 to BMP-0. If there
are NULL characters in the callData, the tag is effectively truncated at the NULL.

If empty, this clears the call tag.

Line types

User or Queue or Parkserver

Action
Adds a call label to the call, which is distributed with the call if it is transferred.
Errors

This function does not fail on a valid call. If the string length is more that 127 characters, it will be
truncated.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED
Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT
Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

SetAccountCode
TAPI equivalent: lineCallDevSpecific()

Control: only try to do this if bit14 of “featuresavailable” is set.

Argl

Can be a string of length 0 — 15 Unicode characters after converting from Utf8 to BMP-O0.
If empty, this clears the account code.

Line Types:

User or Queue

Action

Tags the call with the specified account code.

Only pre-configured account codes are allowed to be entered, unless there are wild-card account
codes in the IP Office config.

Note

If the MTCTI3 application wants to know the list of account codes configured on IP Office, there is a
pseudo-file that can be read using the GeneralCmd “GetFile”. The file to read is
“nasystem/AccountCode”

Errors

This function will fail if the account code is not a valid code matching one in the IP Office
configuration.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
argl invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

Not a recognized account code: MTCTISESS CALLCONTROL_BADACCT

SetNotes
Not supported in this release

PushToEC500
TAPI equivalent: none

Control: only try to do this if bit16 of “featuresavailable” is set.

Argl

Not used.
Line Types
User only
Action

This only works for users who have a Mobile Twinning destination configured. This function starts
the process of transferring the call to the mobile twin device, but the transfer only completes if the
call is answered on the mobile. While the mobile is still ringing, the caller can still talk to the user.

Errors

This function will fail if Mobile twinning destination is not set up or cannot be targeted. This function
returns SUCCESS once the push is initiated. It does not wait until the transfer completes before it
reports the result.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED
Remote SCN target not responding: MTCTISESS _REQUESTTIMEOUT
Can’t find CalllID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
Could not target mobile: MTCTISESS CALLCONTROL_TRANSFERFAILED

GenerateDigits
TAPI equivalent: lineGenerateDigits()

Control: only try to do this if bit17 of “featuresavailable” is set.

Argl

Required. The length should be in the range 1 — 32 characters 0-9, ‘*" ‘#’

Line Types

User only

Action

This sends DTMF to the far end of the call. Each character in the string is sent individually.
Errors

This function will succeed if any character in the string is sent. It may be that the call is dropped part
way through the generate digit string, in which case the result is still SUCCESS.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS _REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS CALLCONTROL_INVALIDCALLSTATE
argl missing or invalid: MTCTISESS CALLCONTROL_BADFORMATTING

ShortCodeAction
Not supported in this release

AnswerPage
TAPI equivalent: none

Control: only try to do this if bitO of “featuresavailable2” is set.
Argl

Not used

Line Types

User only
Action

If this call is an inbound Page call (so you are hearing a Page) you can convert this to a 2-way
conversation using this function.

The “pagecall” field in the Callinfo will indicate that it is an incoming page call.

Errors

This function will succeed only if the call is an incoming Page call, and the user is allowed to convert
the call.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS REQUESTTIMEOQUT

Can’t find CalllID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
permission error: MTCTISESS_CALLCONTROL_PERMISSION

ForceClear
TAPI equivalent: none

Control: only try to do this if bit21 of “featuresavailable” is set.

Argl

Not used

Line Types

User or Queue or Parkserver

Action

This is a brutal function and should not normally be offered. If the user is in a conference, the
conference will be terminated.

If the user is receiving an incoming call, the call will be cleared all the way to the source. You should
normally use Drop.

Errors
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED
Remote SCN target not responding: MTCTISESS _REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

SetAuthCode
TAPI equivalent: lineCallDevSpecific()

Control: only try to do this if bit22 of “featuresavailable” is set.

Argl

Can be a string of length 0 — 15 Unicode characters after converting from Utf8 to BMP-O0.
If empty, this clears the auth code.

Line Types

User only

Action

Tags the call with the specified auth code.

Only pre-configured auth codes are allowed to be entered.

Note

Auth codes are permissions, so if you enter a valid auth code, you are allowed to make certain calls.
An Auth code is generally associated with a user, so provides executive users with more permissions.
The user who owns the code is nominally billed for the call.

The MTCTI3 application does not have access to a list of valid auth codes.

Errors

This function will fail if the auth code is not a valid code matching one in the IP Office configuration.
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS CALLCONTROL_INVALIDCALLSTATE
argl invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

Not a recognized auth code: MTCTISESS CALLCONTROL_BADAUTH

CallRecordingOn/Off
TAPI equivalent: lineCallDevSpecific()

Control: only try to do this if bit23/24 of “featuresavailable” is set.

Argl

Not used

Line Types

User only

Action

User: Starts or stops personal call recording of the call (to the user’s mailbox).
Errors

This function will fail if the call is private, or the voicemail does not have the functionality or
capacity.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT

Can’t find CalliD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS CALLCONTROL_INVALIDCALLSTATE
permission error: MTCTISESS_CALLCONTROL_PERMISSION

PrivacyOn/Off
TAPI equivalent: lineCallDevSpecific()

Control: only try to do this if bit25/26 of “featuresavailable” is set.

Argl

Not used
Line Types
User only
Action

Makes a call locally private. This will prevent call recording of the call you are on, as long as you have
enough authority. (If you are a minor delegate in a big conference, you cannot stop the conference
from being recorded)

Making a call not-private only means you have unset your own privacy. If another party to the call
has set their own privacy, you cannot override that.

Errors
Generally succeeds.
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED
Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT
Can’t find CalllID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

MuteOn/Off
TAPI equivalent: none

Control: only try to do this if bit27/28 of “featuresavailable” is set.
Argl

Not used

Line Types

User only

Action

This only applies if this user is in a conference and wishes to manipulate his own mute status in the
conference.

It does not change the Mute setting on his handset/headset. This is just because you cannot control
this using CTl on most phones.

Errors
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS _REQUESTFAILED

Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT

Can’t find CalllID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
Not possible to perform this function: MTCTISESS CALLCONTROL_CANTBEDONE

SetPriority
TAPI equivalent: none

Control: only try to do this if bit29 of “featuresavailable” is set.

Argl

A text string denoting the new priority. 1 = low priority, 2 = medium priority, 3 = high priority.
Line Types

Queue only

Action

This changes the priority of the call in the current queue. It does not persist after a call is answered
and transferred to a new queue.

There are only 3 allowed values of Argl : “1”, “2”, or “3”

In general, calls with a higher priority are answered first in a queueing situation.
Errors
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
argl invalid: MTCTISESS _CALLCONTROL_BADFORMATTING

Not possible to perform this function: MTCTISESS_CALLCONTROL_CANTCOMPLETE

Finish
TAPI equivalent: none

Control: only try to do this if bit30 of “featuresavailable” is set.

Argl

If included, must be “1”.

Line Types

Queue only
Action

This disassociates the call from this Queue. If you do not disassociate the call, it will continue to be
followed on this queue until the call ends. You ‘Finish’ the call if your application has no further
interest in this call.

MTCTI3 only follows a call on one Queue at a time, so if you want to view it on a new Queue, you
need to “Finish” it on the old Queue. Using Argl = “1” means that it will immediately start reporting
on any new queue it is associated with. Otherwise it only starts reporting when it subsequently
arrives at the new Queue.

Errors
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS _REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS _CALLCONTROL_INVALIDCALLSTATE
argl invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

Not possible to perform this function: MTCTISESS_CALLCONTROL_CANTCOMPLETE

Alternative connection methods

Noframing
If you do not want to handle the protocol framing (1%t 4 octets of each message contains {0,0,0,1}
header), you can instead use the websocket protocol “tpkt/openapinoframing”

(that is “noframing” appended to the end of the string)

Then the message stream in both directions will be pure protocol buffers.

Limits
A maximum of 10 x MTCTI3 connections are allowed per IPOffice.

The maximum number of presentites subscribed per MTCTI 3 connection is the same as the user limit
on the system..

Version Compatibility

This will be supported on IPOffice 11.1.0.0 and future versions until such time as it is withdrawn. In
Release 11.0.4.2, there is some support, but some error reporting will be missing.

Resilient solutions

For a resilient solution with an IP Office primary and an IP Office secondary, the client MTCTI3
application can work in a live-live deployment. Connections to either PBX will render more-or-less
identical information for users and commands can be sent down either connection (we do not
commit to a particular level of identicality). For queues, the configuration and command interfaces
are mirrored, but the view of the queued calls differs on each system.

Calls queueing on the primary can be seen and controlled on the primary
Calls queueing on the secondary can be seen and controlled on the secondary.

What this means

In an IP Office failover, you would want the IP Office secondary to act as a resilient backup of the IP
Office primary for groups. Then the queues on the secondary automatically become active when the
primary is down.

Resilient app
As the IP Office allows for up to 10 x MTCTI3 connections, the client application can itself have a
resilient live-live twin.

Development tools
The most important development tool will be SysMonitor. SysMonitor will decode all the messages
that your application sends and receives.

SysMonitor
When using SysMonitor, you should enable the following flags to decode CTI3 connections and
protocols.

For Web sockets
All Settings x
ATM | Cal | DTE | EConf | FrameRelay | GOD | H323 | Inteface |
T | wComp | wPM | wan | cm | son | ssi | Jade |
|

ISDN | Key/Lamp | Diectory | Media | PPP | R2 | Routing |Services | SIP | System

SHMP Events

[~ HReceived Message Processing

[~ Trap Generation

[~ FileSys [~ DHCP [~ SCEP
[~ Memoary Card Commands [~ DNS [Referredauth
[~ TFTP [~ Telnet [~ Firewall
[~ [TFTP Warnings) [~ Time
[~ [TFTP Download) [~ SMTP
| W HTIP [Outdialer

[~ websocket Ping Pong [~ Syslog

For CTI3 protocols

All Settings Pt
ISON | Keyp/Lamp | Directory | Media | PPP | R2 | Routing | Services | SIP | System |

ATM | cal | DTE | EConf | FrageBelay | GOD | H.323 | Inteface |
™ | veomp | VPN | waN | ScN | ssi | Jade |

[CsTa v MTCTITx v Full
AP WV MTCTIRx I Fuil
[~ [TAPI Call Log) ¥ MTCTI Events
[~ [TAPI Line) v cTi
[~ [TAPI Onex Resiliency) ¥ CTI2
[7 (TAPI Raw Tx)

When a line is open, you can perform actions on the line.

Getting started with the proto file

A good starting point is to download the latest protobuf code from github. At time of writing, the
latest version is v3.10.0.

On github, there are protobuf files for: c++, c#, java, js, objective, php, python, and ruby. (example
protobuf-cpp-3.10.0.zip)

There is also a version of the ‘proto’ file compiler called ‘protoc’. You should match the same version
of ‘protoc’ compiler with the protobuf source code for a successful compile.

You need these steps to build and decode messages automatically. Now it is perfectly possible to
write your own code to encode and decode the messaging as the protocol buffer encoding
technique is published by google, but this would not be recommended because of the ready
availability of these tools and implementations.

C++ and visual studio

Note that for C++ the v3.10.0 protobuf code requires a C++ 11 compiler. On visual studio, this is
vs2017 or later. For a version that does not require a C++ 11 compiler, you need to go back to v3.5.0
or earlier. These earlier versions work perfectly well with our ipo_mtcti3.proto file, but there are
speed optimizations that may be available with the later protobuf code.

Converting “ipo_mtcti3.proto” into source code:
R:\google>protoc --cpp_out=R:\google ipo mtcti3.proto

Produces:

Directory of R:\google

24/10/2019 09:20 <DIR>
24/10/2019 09:20 <DIR>

24/10/2019 09:20 1,034,570 ipo mtcti3.pb.cc € generated
24/10/2019 09:20 665,490 ipo mtcti3.pb.h € generated
09/10/2019 11:26 13,726 ipo_mtcti3.proto
22/10/2019 16:22 <DIR> protobuf € unzipped
22/10/2019 15:38 5,281,431 protobuf-cpp-3.5.0.zip € github
22/10/2019 15:38 1,256,007 protoc-3.5.0-win32.zip € github
22/10/2019 15:41 4,029,440 protoc.exe € unzipped

6 File(s) 12,280,664 bytes

4 Dir(s) 45,700,952,064 bytes free

Solution Explorer

@ o-2dn #RA

Search Solution Explorer (Ctrl+;)

P &= Header Files
b & Resource Files
4 & Source Files

b & ctid tester

P & digestauth include the

4 & google F "protobuf”

4 & protobuf files
b & io

b & stubs
B+ any.pb.cc
I+ apipb.cc
b

* arena.cc

Also include

Solution Explorer
® o-28@ ~R

Search Solution Explorer (Ctrl+;)

b = Header Files
b & Resource Files
4 & Source Files
4 & cti3 tester
*+ cti3_call.cpp
*+ cti3_conf.cpp
*+ cti3_conn.cpp
*+ cti3_debug.cpp
*+ cti3_line.cpp
*+ cti3_session.cpp
*+ ti3_tester.cpp
++ cti3_testerDlg.cpp
*+ ipo_mtcti3.pb.cc P
++ stdafw.cpp protoc

& digestauth generated
4 L mmmmla

v v v v v e v v v

When you have connected your application you are ready to send and receive protocol buffers.

They are encoded in C++ like this:

#include <mtcti/ipo_mtcti3.pb.h>
#include <string>
void CTI3Session::FrameAndTransmit(std::string * obuf)

}

int x = obuf->length();

UBYTE * dp = new UBYTE[x+4];
memcpy(dp+4, obuf->data(), x);
dp[0] =0;

dp[1] =0;

dp[2] =0;

dp[3]=1;

TxFramedMessage(&dp[0], x + 4);
delete[] dp;

void CTI3Session::StartCTI3Subscribe(CTI3Lines * Alines)

{

Message msg;

std::string obuf;

Subscribe * s = msg.mutable_subscribe();
s->set_requestid(nextrequestid++);
s->set_subscribe_id(Alines->subscriptionid);
s->set_timeout(Alines->timeout);
Subscribelines * slines = s->mutable_lines();
slines->set_flags(7);

msg.SerializeToString(&obuf);
FrameAndTransmit(&obuf);

And decoding:

void CTI3Session::RxFramedMessage(UBYTE * dp, int len)

{

if(len>4)
{
if((dp[0] == 0) && (dp[1] == 0) && (dp[2] == 0) && (dp[3] ==1))
{
std::string istring(dp + 4, dp + len - 4);
Message m;
m.ParseFromString(istring);
if(m.has_notify())
{
ULONG subscribeid = (ULONG)m.notify().subscribe_id();
ULONG notifyid = (ULONG)m.notify().notify_id();
CTI3GeneralSubscription * ss = FindSubscription(subscribeid);
if(ss)
{
if(ss->0nNotify(m.notify()))
{
NotifyAck(subscribeid, notifyid);
}
}
}

// Add your code here for other payloads
1

Java

You get “protobuf-java-3.10.0.jar” from github
Compiling the proto file using protoc yields “IpoMtcti3.java”

R:\google>protoc --java_ out=R:\google ipo mtcti3.proto
54/10/2019 17:04 2,099,987 IpoMtcti3.java
These two objects (the jar and the java) go together.

The primary object is “IpoMtcti3.Message”

To build an serialize a simple lines subscription, looks something like:

IpoMtcti3.Subscribelines linesSubscribe =
IpoMtcti3.Subscribelines.newBuilder () .setFlags(1l) .build();
IpoMtcti3.Subscribe subscribeMsg =
IpoMtcti3.Subscribe.newBuilder () .setSubscribeld (subscribelId)
.setRequestid(26)
.setTimeout (0)
.setLines (linesSubscribe)

Lbuild() ;

IpoMtcti3.Message Msg =
IpoMtcti3.Message.newBuilder () .setSubscribe (subscribeMsg) .build() ;

target.sendProtoMsg (Msg.toByteArray()); // Need to prepend the framing..

To decode messages from the line:

public void handleMessage (byte[] message) {
byte[] msgBytes = source.afterReceive (message) ;
try {
IpoMtcti3.Message Msg = IpoMtcti3.Message.parseFrom(msgBytes);
clientEndPoint.processMessageFromIPO (Msq) ;

} catch (InvalidProtocolBufferException ipbe) {
System.out.println("Invalid protocol buffer exception");

}

Javascript
R:\google>protoc --js _out=R:\google ipo_mtcti3.proto

This generates a bunch of js files for each defined object, the main one being:

Message.js

This has the functions to serialize and deserialize the binary data into and out of the ‘Message’
object

| don’t have any code for using this.

Establishing a Websocket connection

HTTP: 192.168.42.31(4096)-(443) HTTPSession(Secure) (Total = 2)
HTTP: 192.168.42.31(4096)-(443) HTTPSession: Operational

HTTP: 192.168.42.31(4096)-(443) HTTPSession: TLSOperational Resumed=false
52346mS HTTP: Secure Rx Src: 192.168.42.31(4096)-(443)
GET /tpkt/openapi HTTP/1.1
Connection: Upgrade

Authorization: Basic **++ssnnnnenne €= “TastApplication:password” encoded as Base64
User-Agent: MyUserAgent 1.0

Host: 192.168.42.11 € Try to avoid populating “Host” header. It is un-necessary.
Upgrade: websocket
Sec-WebSocket-Key:
Sec-WebSocket-Protocol: openapi
Sec-WebSocket-Version: 13
HTTP: 192.168.42.31(4096)-(443) HTTPServerSessionlO: stCreationCallback(7)
HTTP: Public IP=192.168.42.31 Private IP=Not set
HTTP: 192.168.42.31(4096)-(443) HTTPServerSession|O: stCreationCallback URI is authenticated
HTTP: ClientSessionsMgr::PopulatePwd(): Enter
HTTP: 192.168.42.31(4096) HTTPWebSocketUpgradeServerSessionlO: stCreationCallback
HTTP: 192.168.42.31(4096) HTTPWebSocketUpgradeServerSessionlO
HTTP: 192.168.42.31(4096) HTTPWebSocketUpgradeServerSessionlO: SetState Schedule
HTTP: 192.168.42.31(4096) HTTPWebSocketUpgradeServerSessionlO: SetState Proceed

52371ms CTI3: session=1 start €& When successful, you see this

52371mS HTTP: Secure Tx Dest: 192.168.42.31(4096)-(443)
HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Server: IPOffice/WebSocketServer/
Upgrade: websocket
Sec-WebSocket-Accept: JU7m3Vkt8i15EzHqOXXGrxInN5I=
Sec-WebSocket-Protocol: openapi
Sec-WebSocket-Version: 13

First payload
This is a typical lines subscription

Message

{

subscribe

{
requestid=1
subscribe_id=1
timeout=3600
lines

flags=7

}

}
}

It should encode as exactly these 14 bytes:

1A0C 080110011890 1C C2 0202 08 07

With framing, it should be:

00000001 1A0OC 080110011890 1C C2 020208 07

If you send it correctly, you will see it decoded on SysMonitor.

Early releases of IP Office

Before Release 11.1.0.0, this interface is under controlled introduction, and may not be fully
functional. Particularly, the error reporting does not really exist.

You need to add a NoUser source number for releases prior to 11.1.0.0

W
L

= NoUser:

| User |‘u‘oicemai| | DMD | ShortCodes | Source Numbers | Telephony | Forwarding | Dial In |‘ur|:r

Source Mumber

OPEMAPLALLOW

Additional features will be added with new releases.

In 11.1.0.0 there is a GeneralCmd called “getversioninfo”, which is a simple way to find out what
release of IP Office you are connected to.

Something like this:

Message

{

generalcmd

requestid=3000
getversioninfo
}
}

Message

{

generaldata
{
responseid=3000
versioninfo=IP Office 11.1.0.0 build 600
}
}

It does not work on versions before 11.1.0.0

Change History

Issue ‘ Date Modified by

1.0 15/4/2020 Initial Creation Lewis Waldron

