

IP Office™ Platform
Description of MTCTI-3 API Introduced in

Release 11.1.0.0

Version 1.0

Contents
Overview ... 17

Context .. 17

Use cases ... 18

Introduction .. 18

Service User Configuration ... 19

Licensing .. 20

Transport Options ... 20

Protocol Description ... 21

Message .. 21

Message .. 21

Subscriptions ... 22

Subscribe ... 22

RequestResponse .. 24

Notify... 24

NotifyAck ... 25

End the Subscription ... 26

Subscription services ... 28

Subscribe for Presence .. 28

Subscribe for Lines .. 33

Notify Response .. 34

Subscribe User .. 37

Subscribe Queue ... 43

Call Control Notifications .. 48

Modifying the Subscription ... 52

CallControl explicitly for Queue calls .. 57

Actions on Queued calls .. 58

BlindTransfer to a Callflow .. 59

BlindTransfer to a MeetMe Conference ... 60

BlindTransfer to a conference requiring PIN access ... 61

BlindTransfer to a functional queue ... 62

Error codes .. 63

Features Available ... 65

DropCall ... 65

AnswerCall .. 66

HoldCall ... 67

UnHoldCall .. 68

BlindTransfer ... 68

Redirect ... 69

Dial .. 70

Park ... 71

SetupTransfer .. 71

SetupConf .. 72

CompleteTransfer ... 73

CompleteConference .. 74

AddToConference ... 75

MemberFunction .. 76

SetTag .. 77

SetAccountCode .. 77

SetNotes .. 78

PushToEC500 .. 78

GenerateDigits .. 79

ShortCodeAction ... 79

AnswerPage .. 79

ForceClear ... 80

SetAuthCode ... 81

CallRecordingOn/Off ... 81

PrivacyOn/Off .. 82

MuteOn/Off .. 83

SetPriority ... 83

Finish ... 84

Alternative connection methods .. 85

Noframing ... 85

Limits ... 85

Version Compatibility .. 85

Resilient solutions ... 85

What this means ... 85

Resilient app .. 85

Development tools .. 85

SysMonitor .. 86

Getting started with the proto file .. 87

C++ and visual studio .. 87

Java .. 90

Javascript ... 90

Establishing a Websocket connection .. 90

First payload .. 91

Early releases of IP Office .. 91

Change History .. 92

Overview
This document details a protocol that will be supported on IP Office Release 11.1.0.0. It is designed

for ContactCenter-type applications (one application per solution, rather than one application per

user), though you can have more than one application connected at a time.

The login credentials are service user credentials rather than telephone user credentials, reflecting

that it is a system service.

This interface allows an application to observe call activity on users and queues. Also, to get

presence activity on the solution.

For users

You can manipulate some user configuration, perform some call control on users.

For queues

You can manage queue membership, change queue service mode and manipulate calls in queues.

Calls in queues can be observed and manipulated even after the call is answered.

This interface is offered by way of Protocol buffers over a websocket. The websocket is rendered

directly by IP Office and does not require any additional components (such as oneX portal) to be

installed.

Context
MTCTI3 is an alternative to 3rd Party TAPI on IP Office. The 3rd party TAPI API for IP Office is limited to

Windows only and is not available in secure environments. All functionality that was available on IP

Office 3rd party TAPI should also be available over MTCTI3, and MTCTI3 includes many additional

features.

MTCTI3 is a bit more complex to use, as the Asynchronous nature of the connection to IP Office must

be handled by the application. So, for example if “UnPark” is called on TAPI, the interface returns the

result (SUCCESS with handle)/FAIL. On MTCTI3, you send an UnPark request and must handle the

fact that the result is not available immediately.

In some deployments, it would be possible to have a 3rd party TAPI application and a MTCTI3

application both connected to the same PBX. They are not incompatible, and they would work

cooperatively.

The MTCTI3 interface allows the application to view IP Office users and Queues, to make live

changes to the configuration of Users and Queues related to telephony functionality, and to view

and manipulate telephone calls. The single interface can and is expected to handle multiple calls to

several users at the same time.

The MTCTI3 interface is feature-rich but can be used for very simple functions like monitoring the

Do-not-disturb setting for a user or noting the calling number for incoming calls.

A MTCTI3 application would typically maintain lists of lists. A list of users (and/or queues) and a list

of live calls for each user or queue. The lists must be kept updated by Notify messages received

asynchronously from IP Office.

Each Notify of a call change is a complete snapshot of the call, and the application needs to compare

the new data with the old data to see what, if anything, has changed. This snapshot concept is

important. The application does not necessarily see all the transitions of a call, only the current state

of a call. So an incoming call which is auto-answered or answered quickly may never be seen in the

RINGING state. Applications should not rely on seeing all transient states.

Most calls on IP Office go to/from users or to queues. However, there are some calls that do not –

they may go directly to an Auto-attendant or be routed directly out of another trunk. These calls are

not visible to the MTCTI3 application.

MTCTI3 is authenticated by secure methods and is trusted with powerful controls. There are no

configuration items on IP Office to constrain the MTCTI3 from accessing users or queues, so the

writer of the application needs to provide the constraint where appropriate.

Even though this API document starts with a description of the Presence subscription, it is expected

that most applications will be using Lines, User and Queue subscriptions, and may not use Presence

at all.

Use cases
A simple use case for MTCTI3 without even subscribing to Call Control is to monitor a set of users on

IP Office to see whether they are in Do Not Disturb, or Available to receive calls.

A more complex use case would be to observe a group of users to see how busy they are, and which

calls they are making and receiving.

A highly functional use case would be for the MTCTI3 application to take control of a Queue and

distribute all calls arriving at that queue to appropriate Agents.

A Contact center application may be in the business of rendering a business-specific desktop UI to a

set of Agents or Supervisors. If this application connected to IP Office over MTCTI3, it could add

telephony controls to the Agents desktop, to set Available/Not available, Answer calls (by controlling

their desk phone or soft-phone), Make calls.

Introduction
Third party developers would be expected to develop applications using this document as a

reference.

The MTCTI3 interface to IP Office is a protocol definition only. The 1st competence required of the

engineer is to take the protocol definition and make an interface. The work required depends on the

platform, language and environment of the application that wishes to use MTCTI3. For some

languages, and environments (example JavaScript on Angular), the framework has methods to

consume the protocol definition file directly into managed objects. For other languages, the

engineer will want to source a ‘proto’ file compiler, and protobuf encoding and decoding source

code. This is what you would expect to have to do as the MTCTI3 application is expected to be a

server application, not a desktop application. Information on how to do this is provided in later

chapter “Getting started with the proto file”.

Additionally, once you have the encoding and decoding of messages, you need to be able to connect

to IP Office over a secure websocket. Each development environment has a different

implementation of websockets, and the engineer must be able to create a websocket to the IP Office

web service, authenticate, and then send and receive messages over the websocket.

MTCTI3 requires authentication in the websocket handshake, which is not necessarily available on all

HTML5 browser websocket implementations.

The developer needs to have a basic understanding of Users and Queues on IP Office as these are

what are being manipulated.

The protocol will work in stand-alone or in SCN environments.

There are several pre-requisites required on the IP Office for the application to successfully connect

to an IP Office.

- The IP Office must have sufficient CTI-link pro licences installed for the size of the SCN.

- The IP Office must have “Avaya HTTP Clients only” flag disabled.

- For an SCN solution, the queues that the application is to monitor/control should be configured

on the primary PBX, and the application should connect to the primary PBX.

- If connecting to secondary PBX for resilience, the secondary PBX will also require CTI-Link PRO

licences. The MTCTI3 on the secondary will not report calls on the primary queues unless the

primary queues are failed over, but all user calls and user status are fully accessible on either

system.

There needs to be configured a Service user + password, who has access rights to “Enhanced TSPI

Access” service.

Service User Configuration
First configure a Service group, with access rights to the “Enhanced TSPI Access” service:

Then create serviceUser account which is a member of this group:

Licensing

MTCTI3 uses the same licensing as other CTI interfaces on IPOffice:

• The CSTA OpenAPI which can be accessed from oneX portal

• Devlink3 interface

• 3rd party TAPI

A fully licensed system allows all these CTI interfaces to work.

Note that there is no partial functionality for a partially licensed system. You need the full set of

licences for your deployment, but that allows the application to monitor all users on the SCN from

the single connection.

Also note that if you are developing a resilient solution with separate MTCTI3 connections to Primary

and Secondary, you need the full set of licences on both Primary and Secondary.

1 x CTILink Pro licence Standalone IP Office

2 x CTILink Pro licence Network of up to 5 IP Offices (including this one)

3 x CTILink Pro licence Network of up to 20 IP Offices (including this one)

4 x CTILink Pro licence Unlimited Network of IP Offices

Transport Options
This protocol is available over web-socket only. This protocol is one of several web services that IP

Office can deliver. You can only connect to this service over HTTPS. The HTTP variant is disabled on

all deployments. This web service is “tpkt/openapi”.

The HTTPS service port for IP Office web services defaults to 443 in most environments. However, it

is configurable on the Security settings and may be different on cloud deployments.

The credentials required to access the web service will be Service User Name and Service User

Password.

These are normally encoded in the Authorization header of the simplified HTTP request

below(shown here with the content masked out)

 GET /tpkt/openapi HTTP/1.1

 Connection: Upgrade

 Authorization: Basic ****************

 Upgrade: websocket

 Sec-WebSocket-Key:

 Sec-WebSocket-Protocol: openapi

 Sec-WebSocket-Version: 13

Once connected, the payload carried over the Websocket protocol is framed protocol-buffers in

either direction

4 octets 0x1 = Framed protocol buffer

N octets Protocol buffer payload

Protocol Description
The protocol buffer schema is obtained by compiling the file “ipo_mtcti3.proto”. This file format is

proto3.

For a description of the language, you can search for: “google protocol buffers version 3” on the

internet. It is a google sponsored language and messaging format.

The way to use this protocol is for the client (the application) to subscribe to a number of services,

and the application will the receive notifications on the subscribed services. The client can also send

“SubscribeCmd” messages on subscriptions to execute changes.

Each subscription can optionally time out unless refreshed. This is generally the choice of the client

application, except in the case of presence subscriptions which must have a specified timeout to

refresh.

Message

Message
Message is the base message of the mtcti-3 protocol and all other service level messages are
encapsulated within the Message.

message Message
{
 oneof payload
 {
 RequestResponse response = 1;
 GeneralCmd generalcmd = 2;
 Subscribe subscribe = 3;
 SubscribeCmd subscibecmd = 4;
 SubscribeEnd subscribeend = 5;
 SubscribeTerminated subscribeterminated = 6;
 GeneralData generaldata = 7;
 Notify notify = 8;
 NotifyAck notifyack = 9;
 }
}

One of the payloads should be set in the Message.

Fields Description Direction

response Set the payload for response to the Request IP Office → App

subscribe Set the payload for Subscribe Request App → IP Office

subscribecmd Set the payload for SubscribeCmd Request App → IP Office

subscribeend Set the payload for SubscribeEnd request App → IP Office

subscribeterminated Set the payload for SubscribeTerminated event IP Office → App

notify Set the payload for Notify message IP Office → App

notifyack Set the payload for NotifyAck message App → IP Office

generalcmd App issues a context-less command App → IP Office

generaldata Response to the generalcmd IP Office → App

Subscriptions

This section covers how the client should subscribe for the different services, send updates, receive
notifications in the subscription. Also ending subscription from the client and Server.

This section covers Subscribe, RequestResponse, Notify and NotifyAck messages.

Subscribe

This message enables the client to subscribe for one of the subscriptions.

message Subscribe
{
 int32 requestid = 1;
 int32 subscribe_id = 2;
 int32 timeout = 3;
 string label = 4;
 oneof payload
 {

 SubscribePresence presence = 10;
 SubscribeLines lines = 40;
 SubscribeUser user = 41;
 SubscribeQueue queue = 42;
 SubscribeParkServer parkserver = 43;
 SubscribeRefreshWrapper refreshwrapper = 45;
 }
}

Fields Description

requestid ID for the particular Request

subscribe_id ID for the particular Subscription

timeout Expiry value for the particular subscription

label Label for the particular subscription

 One of the payloads

presence Set the payload for the Presence subscription

lines Set the payload for the lines subscription

user Set the payload for an individual user subscription

queue Set the payload for an individual queue subscription

parkserver Set the payload for the parkserver subscription

refreshwrapper Set the payload for the refreshwrapper subscription

Subscribe_id

Subscription message should contain the “subscribe_id” and one of the subscription payloads.
“subscribe_id” will be used in all messages in either direction related to the subscription. For this
reason, the “subscribe_id” should be chosen by the client to be a unique number in the context of
the connection.

requestid

Messages from the client may contain a “requestid”. If a “requestid” is populated, IP Office will
send a RequestResponse indicating that the message has been received.

label

This is an optional string. It is not used by IP Office.

timeout

 “Timeout” value set to zero, or not specified means no expiry. Presence subscriptions should have
explicit “Timeout” value and value should set in seconds between 60 and 86400. Units are seconds.

In order to refresh a Subscribe, the client should send a new Subscribe message with the same

subscribe_id, and only containing a new timeout value:

 Message
 {
 subscribe
 {
 subscribe_id=98765
 timeout=3600
 presence

 {
 …..
 }
 }
 }
After (eg) 50 minutes, send a refresh….

 Message
 {
 subscribe
 {
 subscribe_id=98765
 timeout=3600
 }
 }
This will now run another 3600 seconds before terminating.

RequestResponse

“RequestResponse” message used to acknowledge the Request with the results.

message RequestResponse
{
 int32 requestid = 1;
 int32 result = 2;
 string additional = 3;
}

This message is used to acknowledge both Subscribe and General Commands requests.

Fields Description

requestid ID of the received Request

result Success or error code (error codes in Appendix)

additional Additional details, for example, error reason string. Not currently used.

Notify

 “Notify” message uses to send notification to a subscriber to inform on the latest change on the
resources on which the Subscriber is interested.

message Notify
{
 int32 subscribe_id = 1;
 int32 notify_id = 2;
 string label = 3;
 oneof payload
 {
 NotifyPresence presence = 10;

 NotifyCallControl callcontrol = 14;
 NotifyLines lines = 40;
 NotifyUser user = 41;
 NotifyQueue queue = 42;
 NotifyRefreshWrapper refreshwrapper = 45;
 }
}

Fields Description

Subscribe_id ID present in the Subscribe Request

Notify_id Notify ID added by the IP Office

label Usually label from Subscribe Request (not currently)

 One of the payloads

presence Set if Notify is for Presence subscription

callcontrol CallHandling events if subscribe is one of User, Queue, ParkHandler

lines Set if Notify is for lines subscription (add/remove users or queues)

user Set if Notify for User subscription (user status or config)

queue Set if Notify for Queue subscription (queue status or config)

refreshwrapper Set if Notify for refreshwrapper subscription

Client should acknowledge Notify message by sending NotifyAck, if “notify_id” present in the
received NOTIFY message. Client should ignore NOTIFY message, if one of the payloads is not set,
subscription Id does not exist or payload is not expected with “subscribe_id” mentioned in the
Notify message.

NotifyAck

Client should acknowledge the NOTIFY message by sending NotifyAck message, if “notify_id”
present in the received NOTIFY message. If “notify_id” is included by IP Office in the Notify
message, IP Office does not send next Notify until the last Notify is acknowledged.

message NotifyAck
{
 int32 subscribe_id = 1;
 int32 notify_id = 2;
}

Fields Description

subscribe_id Corresponding Subscription ID

notify_id Notify Id from the NOTIFY message

Subscription message flow

Subscribe

Requestresponse

App IP Office

Notify

NotifyAck

Subscribe Payloads

SubscribeLines OR

SubscribeUser

Etc…

End the Subscription
A subscription can be terminated at any time by the App sending a Subscribe-End request.
Subscribe-End request should contain “subscribe_id” of the subscription that needs to be
terminated.

SubscribeEnd

message SubscribeEnd
{
 int32 requestid = 1;
 int32 subscribe_id = 1;
 string reason = 3;
}

Fields Description

request_id Request ID

subscribe_id Subscription ID (required)

reason Reason string. Not functional, but may be added to a report in IP Office.

Subscribe End message flow

Figure 1 - Subscribe Message flow

Subscribe

Requestresponse

App IP Office

Notify

NotifyAck

Subscribe_id

Subscribe Payloads

 Notify Payload

Terminate the Subscription

IP Office can terminate a subscription asynchronously by sending SubscribeTerminated message.
“subscribe_id” indicates the subscription that is terminated by IP Office.

SubscribeTerminated

message SubscribeTerminated
{
 int32 subscribe_id = 1;
 string reason = 2;
}

Fields Description

subscribe_id Subscription ID

reason Reason string (not currently populated)

Subscription terminated message flow

SubscribeTerminated

Subscribe

Requestresponse

App IP Office

Notify

NotifyAck

Subscribe_id

Subscribe Payloads

 Notify Payload

Subscribe_id

Subscription services
Each subscription service is independent and can be unsubscribed individually. You should only

subscribe to the services that you need for your application.

The following services are available:

Service Description Notes

Presence Each presence subscription

contains a list of presentities to

watch.

You can have several

subscriptions at a time, each

containing a different list of

presentities.

Lines This maintains an updated list of

all the users on the SCN and

queues on the PBX

Only one of these is allowed

User This is a subscription for a

particular user. It renders

individual user status, and

optionally the telephony calls

presenting on the user.

Choose users out of the lines list.

Queue This is a subscription for an

individual Queue. It renders

Queue configuration, and

optionally calls that are being

handled on the queue.

Choose queues out of the lines

list, or if you know the queue

name, you can just subscribe by

queue name.

ParkServer This subscribes to the activity on

the ParkServer. That is showing

calls which are currently parked..

Only one of these is allowed

RefreshWrapper This is a little utility to help

group notifications on different

subscriptions into atomic events.

It is not watertight, but it can be

useful.

Only one.

Subscribe for Presence
Client should set SubscribePresence payload in the Subscribe request message for the presence
subscription, with a table of presentities to monitor. On successful subscription, IP Office sends
RequestResponse for the request.
SubscribePresence may not be of major interest. However, it was the first service to be
implemented.

SubscribePresence

This message is a payload of Subscribe message.

message SubscribePresence
{
 repeated Presentity entry = 1;
 int32 flags = 2
 }

Fields Description

entry List of the Presentities

flags Flags is a bitfield of options

0x01: include unread voicemail counter in presentity

0x02: Do not change app presence to ‘Offline’ when all apps are disconnected

Presentity

This message is an element of SubscribePresence and carries details of presentity. Presentity can
be a phone number, a SIP address, an Email address or a UniqueID. Each presentity should be
assigned a local reference ID (LREF) to reduce the size of the NOTIFY updates (though this is not
mandatory).

Note that presence subscription is really an alternative to subscribing to all the users individually. If
you subscribe to all the user lines, you get the basic part of the presence information from each
line.

message Presentity
{
 string presentity = 1;
 int32 lref = 2;
}

Fields Description

presentity Presentity can be phone number, SIP URI or Email address.

lref lref is a local reference ID of the presentity

NotifyPresence

NotifyPresence is a payload of Notify message. From the provided presentity list, set of all IP Office
users will be searched. IP Office will NOTIFY all presentities in the monitor list in NotifyPresence
payload. All new presentities will have their initial state NOTIFY as soon as they are added to the
Subscribe. Afterwards, only changed presentities will be NOTIFIED. This will be indicated in “full”
field.

message NotifyPresence
{
 int32 full = 1;
 repeated NotifyPresentity entry = 2;
}

Fields Description

full Indicates whether presentities list is full or just changes.

entry Holds the list of Presentity elements

NotifyPresentity

Each Notify will contain all the tracked fields for that presentity. Tracked fields are carried in
NotifyPresentity message, which is an element of NotifyPresence.

message NotifyPresentity
{
 string presentity = 1;
 int32 lref = 2;
 int32 sac = 3;
 int32 phonestate = 4;
 Absence absence = 5;
 string app = 6;
 bool fwdu = 7;
 int32 vmunread_messages = 8;
 bool noapphandler = 9;
}

Fields Description

presentity Presentity identifier, provided by Client

lref lref of Presentity , provided by Client. If this is specified, then the presentity

identifier above will not need to be included.

sac DND telephony status of the presentity

phonestate Phone state of the presentity

absence Absence text set by the presentity

app App presence set by the presentity

fwdu Presentity has forwarding enabled

vmunread_messages Presentity has unread voicemail messages (dependent on subscribe flags =

0x01)

noapphandler There are no applications that can control app presence. (dependent on

subscribe flags = 0x02). If this subscribe flag is *not* set, then when there are

no applications, the “app” string will show “Offline”

• Absence Text maximum length is set to 21.

• Application presence maximum length is set to 34.

• “sac” is set to non-zero, if DND is enabled for the presentity.

Phone state ID State of the phone

0 Idle

1 Dialling

2 Ringing

3 ACW

4 Connected

5 Logout

6 Fault

7 Recover

8 Unknown state

 Table 1 - Phone states

UpdatePresence

You can add and remove individual presentities from a subscription using an Update message. An
example is below.

1st subscribe…

 Message
 {
 subscribe
 {
 subscribe_id=98765
 timeout=3600
 presence
 {
 entry
 {
 presentity=201
 lref=5678
 }
 entry
 {
 presentity=202
 lref=5679
 }
 entry
 {
 presentity=203
 lref=5680
 }
 }
 }
 }

Later update…

 Message
 {
 subscribecmd
 {
 subscribe_id=98765
 presence
 {
 add
 {
 presentity=204
 lref=5681
 }
 add
 {
 presentity=205
 lref=5682
 }
 remove
 {
 lref=5678
 }
 }
 }
 }

You will get an immediate notification of the states of the new presentities.

Absence

Absence will only be present if there is an Absence message set. When set, the message has the

following elements:

message Absence
{
 int32 msg = 1;
 string str = 2;
}

Fields Description

msg Message type.

str Holds the Absence text.

If the msg is set to 11, the whole note will be contained in “str”.

If the Absence text is set on an IP Office desk handset, the following values may be set in msg:

Fields Description

1 “ON HOLIDAY UNTIL” + str

2 “WILL BE BACK” + str

3 “AT LUNCH UNTIL” + str

4 “MEETING UNTIL” + str

5 “PLEASE CALL” + str

6 “DON’T DISTURB UNTIL” + str

7 “WITH VISITOR UNTIL” + str

8 “WITH CUSTOMER UNTIL” + str

9 “BACK SOON”

10 “BACK TOMORROW”

11 str

Note that msg=11 and str =”” (or null) is a blank string. This is not the same as Absence not set
and should be avoided.

Subscribe for Lines
The lines subscription gives a list of Users and Queues, and sufficient information to subscribe to the

individual user or queue. You will automatically get updates when a User or Queue is added of

removed from the network.

message LinesUser
{
 bytes guid = 1;
 string extn = 2;
 string name = 3;
}

message LinesQueue
{
 bytes guid = 1;
 string extn = 2;
 string name = 3;
}

message NotifyLines
{
 int32 flags = 1;
 repeated LinesUser adduser = 2;
 repeated LinesQueue addqueue = 3;
 repeated LinesUser deleteuser = 4;
 repeated LinesQueue deletequeue = 5;
 repeated LinesUser changeuser = 6;
 repeated LinesQueue changequeue = 7;
}

message SubscribeLines
{
 int32 flags = 1;

}

You can choose whether to just get notification for Users, or just get notification for Queues via the

flags in the SubscribeLines. field with is a bit array. You can also see availability for the ParkHandler,

though this is normally always available.

Here is an example sequence:

 Message
 {
 subscribe
 {
 requestId=1
 subscribe_id=5555
 timeout=3600
 lines
 {
 flags=7
 }
 }
 }

You get a RequestResponse, because the Subscribe had a requestid

 Message
 {
 requestresponse
 {
 requestid=1
 result=0
 }
 }

You should have only one Subscription to “Lines”. The IP Office will notify you of all the lines (Users

and Queues), which you subscribe to separately.

Meaning of “Flags”

Bit 0 List all users

Bit 1 List all groups

Bit 2 Report park server availability

Notify Response
The first Notify will contain a list of all the Users and Queues in the system.

 Message

 {
 notify
 {
 Subscribe_id=5555
 Notify_id=1
 lines
 {
 flags=3
 adduser
 {
 guid=DC51BA0008A311DD80540050569F6EF8
 extn=2002
 name=Bergcamp
 }
 adduser
 {
 guid=DC51BA0008A311DD80550050569F6EF8
 extn=2003
 name=Viera
 }
 adduser
 {
 guid=DC51BA0008A311DD80560050569F6EF8
 extn=2004
 name=Lampard
 }
 adduser
 {
 guid=DC51BA0008A311DD80570050569F6EF8
 extn=2005
 name=Scholes
 }
 adduser
 {
 guid=DC51BA0008A311DD80580050569F6EF8
 extn=2006
 name=Foster
 }
 addqueue
 {
 guid=21218C000AF711DD80BC0050569F6EF8
 extn=2501
 name=IP Office Sales
 }
 addqueue
 {
 guid=372E6C800AF711DD80BD0050569F6EF8
 extn=2502
 name=Service Queue
 }
 addqueue

 {
 guid=8461A88028D811DD807C0050569F5DC5
 extn=8009
 name=Supervisors
 }
 addqueue
 {
 guid=5E883D8028D911DD817B0050569F5DC5
 extn=8008
 name=Agents
 }
 }
 }
 }

Because there was a notify_id in the Notify, the application should send a NotifyAck

 Message
 {
 notifyack
 {
 subscribe_id=5555
 notify_id=1
 }
 }

Meaning of Notify “Flags”

Bit 0 Park server can be subscribed

Bit 1 Meaning not described here

Bit 2 Meaning not described here.

Then subsequently when an administrator Adds or removes a set of users, there will be another

Notify

 Message
 {
 notify
 {
 subscribe_id=5555
 notify_id=2
 lines
 {
 flags=3
 adduser
 {

 guid=B8E477802F2511DE805A0050569F5DC5
 extn=3500
 name=OJordan
 }
 adduser
 {
 guid=09ED8B803BA111DE805C0050569F5DC5
 extn=3501
 name=NLowe
 }
 adduser
 {
 guid=30125B803BA111DE811F0050569F5DC5
 extn=3502
 name=AVilani
 }
 adduser
 {
 guid=56382B803BA111DE81EB0050569F5DC5
 extn=3503
 name=KRihanoff
 }
 }
 }

If the administrator changes the name or extn number of a user, you will get a changeuser with the

same GUID ….

 Message
 {
 notify
 {
 subscribe_id=5555
 notify_id=2
 lines
 {
 flags=3
 changeuser
 {
 guid=B8E477802F2511DE805A0050569F5DC5
 extn=3550
 name=OJordan
 }
 }
 }

Subscribe User
Using the lines subscription, the allocation now has a table of users and queues. From this, you could

just subscribe to Presence, but if you want to perform functions on a user, you need to Subscribe to

each user individually. Typically, the application may start a large number of subscriptions at this

point.

message SubscribeUser
{
 bytes guid = 1;
 int32 flags = 2;
 int32 ccflags = 3;
}

You must use the GUID out of the lines table in the Subscribe:

 Message
 {
 subscribe
 {
 requestid=2
 subscribe_id=7000
 user
 {
 guid=DC51BA0008A311DD80530050569F6EF8
 flags=0x1
 ccflags=0x19
 }
 }
 }

The subscribe_id must be a new value for each user subscription.

There are effectively two parallel subscriptions being enabled here. (User config) + (User call

control). If you do not need to subscribe to call control, then do not set the ccflags. Then you will just

get the basic user configuration.

Meaning of “flags” in user

Bit 0 (0x01) MAILBOX Include voicemail box message counters

Bit 1 (0x02) FWD Include Forwarding details

Bit 2 (0x04) APP Include Application presence

Bit 3 (0x08) ABSENCE Include Absence (when enabled)

Bit 11(0x800) ACTIVAPP If this is set, then this subscription actively counts as

an application that can edit the app field.

(So Equinox phones will not say ‘Offline’ on this

presentity while this subscription is registered)

This flag can be actively changed using “makelive”

or “makedead” booleans on the UpdateUserApp

payload of an UpdateUser message.

Bits 4..10 and 12..31 Not described here

Meaning of “ccflags” in user. These flags define the level of detail you will get back in callinfo events.

A good setting for regular applications would be 0x99

Bit 0 (0x01) Primary callcontrol data

Bit 1 (0x02) Local and remote devices

Bit 2 (0x04) Additional simultaneous targets

Bit 3 (0x08) Conference membership

Bit 4 (0x10) Dial info

Bit 5 (0x20) Extended Trunk detail

Bit 6 (0x40) Extended Queue information

Bit 7 (0x80) Language, privacy

From the User config subscription, you get back a “user” notify.

 Message
 {
 notify
 {
 subscribe_id=7000
 notify_id=1
 user
 {
 extn=2002
 name=Bergcamp
 email=dbergcamp@denmarklegends.com
 language=dan
 voicemail=1
 mailbox
 {
 }
 }
 }
 }

Fields in User Notify

extn User number in the dial plan

name User name

fullname User full name

katakananame User katakana name (Japan only)

email User email address

featuresavailable Actions that are allowed

language Locale code

dnd Do not disturb

barred User is barred from making external calls

xdirectory User is ex-directory

voicemail User has voicemail enabled

loggedinextn User is logged in to this extension

extnfault User does not have a working phone

loggedoff User is not logged in anywhere

absence Absence info

mailbox Summary content of the voicemail mailbox

app Application presence string

noapphandler There is no application registered that can edit the app field

ec500 Mobile twinning enabled

fwdu Forward Unconditional

fwdb Forward on busy

fwdna Forward on no answer

fwdhg Hunt group calls follow fwdu rule

fwdunumber Forward Unconditional destination

fwdbnumber Forward busy destination, if different from fwdunumber.

fwdtovm Forward Unconditional destination is voicemail

offswitch User is allowed to set forward number to off-switch

Featuresavailable
This is a bit-field

Bit 0 (0x00000001) VALID Means this field is populated (not present in older

versions)

Bit 1 (0x00000002) SAC Can Set or Unset Do Not Disturb

Bit 2 (0x00000004) ABSENCE Can change absence text

Bit 3 (0x00000008) EC500 Can change mobile twinning setting

Bit 4 (0x00000010) LOGIN Can hot-desk to another extension

Bit 5 (0x00000020) SHORTCODE Allowed to send shortcodes

Bit 6 (0x00000040) MAKECALL Allowed to MakeCall

Bit 7 (0x00000080) FWDU Allowed to set Forward Unconditional

Bit 8 (0x00000100) DFOI (reserved)

Bit 9 (0x00000200) APP Allowed to change the application presence string

If one of these fields changes, you will get a new notify.user on this same subscription.

If any bits are set in ccflags, you also get a Callcontrol subscription on this same subscribe_id. For

example, an incoming call looks like:

Message
{
 notify
 {
 subscribe_id=7000
 callcontrol
 {
 refreshinstance=1
 callinfo
 {
 callid=1
 state=RINGING
 direction=INBOUND
 gcid = 01 C0 A8 2A 0B 00 00 03 EC
 featuresavailable=0x23 DROP ANSWER REDIRECT
 callingparty
 {
 number=61001
 name=Agent 61001
 nametype=5
 }
 }
 }
 }
}

Call Control commands and notifications are described later.

Update User

You can issue commands on the user subscription to change the user’s configuration

message UpdateUser
{
 UpdateUserSAC sac = 1;
 UpdateUserAbsence absence = 2;
 UpdateUserEC500 ec500 = 3;
 repeated ShortCodeData shortcodedata = 4;
 UpdateUserLoginExtn loginextn = 7;
 UpdateUserApp app = 8;
 UpdateUserFwdU fwdu = 9;
}

The commands available are not very complex, but you can also send ShortCodeData which enables

more control.

sac Enable/disable DND

absence Set/clear Absence text

ec500 Set/Unset Mobile twinning.

shortcodedata Other configuration options

loginextn Hot-desk user to a different extension

app Change user’s application presence

fwdu Change users forward uncondional

settings including On/Off, destination

Set DND

 Message
 {
 subscribecmd
 {
 subscribe_id=7000
 user
 {
 sac
 {
 set=1
 }
 }
 }
 }

Set Voicemail-box content

This is a bit of a random thing to include here but is a useful trick for certain applications that want

to offer voicemail services instead of regular VMPro..

If IP Office is providing the voicemail through (eg) VMPro, then the voicemail server will update the

user with message counts: newmessages, oldmessages, savedmessages.

However, if voicemail is being provided by a client application, it is possible for the client application

to show the mailbox content through this interface. Note that the IP Office view of the mailbox

content may occasionally clear the values, and the application should then re-assert the correct

numbers.

This interface is superior to using “DisplayMsg”, as it should show the detail on all interfaces, not just

on the phone display.

You use shortcode 70 to set voicemail content, and the shortcodeval string must be in the format ‘;’

(semicolon) followed by $newmessages,$oldmessages,$savedmessages

 Message
 {
 subscribecmd
 {
 requestid=3
 subscribe_id=7000
 user
 {
 shortcode
 {
 shortcode=70
 shortcodeval=;3,0,0
 }
 }
 }
 }

Results in a notify (provided you set bit 0 in the subscribe):

 Message
 {
 notify
 {
 subscribe_id=7000
 notify_id=2
 user
 {
 extn=61000
 name=User 61000
 language=eng
 voicemail=1
 mailbox
 {
 newmessages=3
 }
 }

 }
 }

Other shortcodes
Shortcode

integer

Parameter string Action

0 Set forward unconditional

1 Unset forward unconditional

2 Set forward on busy

3 Unset forward on busy

4 Set forward no answer

5 Unset forward no answer

6 destination Set forward number

7 Set DND

8 Unset DND

9 exception Set DND exception

10 Clear all DND exceptions

17 Voicemail on

18 Voicemail off

94 Time in seconds Set noAnswer timeout

109 $set,$val,$str SetAbsentText

114 destination Set FwdBusy number

166 Set EC500

167 Unset EC500

Subscribe Queue
Using the lines subscription, the allocation now has a table of users and queues. From this, you could

just subscribe to Presence, but if you want to perform functions on a queue, you need to Subscribe

to each queue individually.

message SubscribeQueue
{
 bytes guid = 1;
 int32 flags = 2;
 int32 ccflags = 3;
 string name = 4;
}

You should use the GUID out of the lines table in the Subscribe:

 Message
 {
 subscribe
 {
 requestid=2

 subscribe_id=7500
 queue
 {
 guid=DC51BA0008A311DD80530050569F6EF8
 flags=0x3
 ccflags=0x40039
 }
 }
 }

In some applications, where all you want to do is control a single queue whose name you know, you

do not need to subscribe to the lines table to extract the guid. You just subscribe to the queue by

name:

 Message
 {
 subscribe
 {
 requestid=2
 subscribe_id=7500
 queue
 {
 flags=0x3
 ccflags=0x40039
 name=Sales
 }
 }
 }

Meaning of “flags” in queue

Bit 0 Include voicemail box message counters

Bit 1 Include huntgroup members list

Bits 2..31 Not described here

Queue Notify

message NotifyQueue
{
 enum ServiceMode
 {
 Unset = 0;
 Active = 1;
 NS = 2;
 OOS = 3;
 }
 string extn = 2;
 string name = 3;
 string katakananame = 4;
 string email = 5;
 int32 ringmode = 6;

 int32 noanswertime = 7;
 bool voicemail = 8;
 int32 voicemailtime = 9;
 ServiceMode servicemode = 10;
 QueueMembers queuemembers = 11;
 Mailbox mailbox = 12;
}

extn Number in the dial plan

name Queue name

email Queue email

ringmode 0 = ringidle

1 = sequential

2 = group

noanswertime Time in seconds to ring around

agents

voicemail Voicemail enabled

voicemailtime Time in seconds before call goes

to voicemail

servicemode Active, Night service or OOS

queuemembers Agents in this queue

mailbox Contents of queue’s voicemail

box.

Mailbox is included if flags bit 0 is set in the subscribe.queue.

message Mailbox
{
 int32 newmessages = 1;
 int32 oldmessages = 2;
 int32 savedmessages = 3;
}

QueueMembers is included if flags bit 1 is set in the subscribe.queue

message QueueMember
{
 string extn = 1;
 bool disabled = 2;
}

message QueueMembers
{
 repeated QueueMember member = 1;
}

This is a list of all agents in the queue, and whether they are currently disabled (not accepting calls)

There are a set of commands for administering the Queue configuration.

message UpdateQueue
{
 SetServiceMode setservicemode = 1;
 SetVoicemail setvoicemail = 2;
 QueueMembers members = 3;
 repeated QueueMember addmember = 4;
 repeated QueueMember deletemember = 5;
}

You can either specify the entire members list, or you can add or remove members from the list

individually.

You can also use addmember to change a member status from enabled to disabled in the queue.

“addmember” is an update if the member already exists.

Call Control notifications on a Queue

This is covered in more detail in the Call Control section, but here is a very brief description.

If you set bit 0 of “ccflags” in the subscribe.queue you will automatically get Notifications for calls

coming into a Queue. These calls can be tracked and manipulated.

Message
 {
 notify
 {
 subscribe_id=7500
 callcontrol
 {
 refreshinstance=1
 callinfo
 {
 callid=1
 state=RINGING
 direction=INBOUND
 featuresavailable=0x6060E0B1 DROP BLINDXFER REDIRECT PARK TAG ACCT FORCECLEAR
AUTH PRIO FINISH
 callingparty
 {
 number=01707123456
 name=Avaya Test trunk
 nametype=9
 }
 queuedetail
 {
 number=98765
 name=Agents
 priority=1
 }
 calldata
 {
 language=eng

 }
 targets
 {
 target
 {
 partyinfo
 {
 number=61002
 name=Agent 61002
 nametype=5
 }
 }

 }
 }
 }
 }
 }

The “ccflags” you specify defines the level of detail that you see. In general you should only ask for

data that you intend to use.

Meaning of “ccflags” in queue

Bit 0 (0x01) Primary callcontrol data

Bit 1 (0x02) Local and remote devices

Bit 2 (0x04) Additional simultaneous targets

Bit 3 (0x08) Conference membership

Bit 4 (0x10) Dial info

Bit 5 (0x20) Extended Trunk detail

Bit 6 (0x40) Extended Queue information

Bit 7 (0x80) Language, privacy

Bit 8 (0x100) Conference membership

Bit 9 (0x200) Reserved

Bit 10 (0x400) Reserved

Bit 11 (0x800) Reserved

Bit 12 (0x1000) Reserved

Bit 13 (0x2000) Notes

Bit 14 (0x4000) UCID

Bit 15 (0x8000) P-Intrinsics

Bit 16 (0x10000) Reserved

Bit 17 (0x20000) Reserved

Bit 18 (0x40000) Targets

Bit 30 (0x40000000) Ephemeral (you only see calls while they are actually

queueing)

For queue calls, the direction is generally INBOUND

Call Control Notifications

User, Queue and ParkHandler can include implicit Call Control subscriptions depending on the

setting of the “ccflags” field in the subscription.

NotifyCallControl

NotifyCallControl is a payload of Notify message.

message NotifyCallControl
{
 repeated CallInfo callinfo = 2 ;
 repeated CallLost calllost = 3;
}

Notify contains updates of each call appearance (callinfo) until the call appearance is ended, when
a Notify will be generated with calllost.

One Notify can contain multiple callinfo updates, and multiple calllost. A single Notify represents a
single event, so after a Transfer complete you would probably get calllost for both the CallOnHold
and the Assistant call in the same payload.

The table of callinfo does not necessarily contain all the call appearances, only those with
reportable changes.

A NotifyCallControl report represents the current information about a call appearance. You are not
guaranteed to see every transition phase of a call that moves quickly between phases. So, for
example a call that is made and auto-answered may transition instantly to CONNECTED state. You
will not get a Notify for all the intermediate phases.

CallInfo

CallInfo is a payload of NotifyCallControl

message CallInfo
{
 enum State
 {
 UNKNOWN = 0;
 DIALTONE = 1;
 DIALLING = 2;
 DIALLED = 3;
 RINGING = 4;
 RINGBACK = 5;
 CONNECTED = 6;

 ONHOLD = 7;
 ONHOLDPENDTRANSFER = 8;
 ONHOLDPENDCONF = 9;
 DISCONNECTED = 10;
 BUSY = 11;
 FAILED = 12;
 WAITINGFORACCT = 13;
 WAITINGFORAUTH = 14;
 WAITINGFORLINE = 15;
 REMINDER=16;
 AFTERCALLWORK=17;
 RINGINGDIVERT=18;
 RINGINVOICEMAIL=19;
 ANSWEREDBYVOICEMAIL=20;
 LEAVINGVOICEMAILMESSAGE=21;
 QUEUEING=22;
 RETARGETING=23;
 }
 enum Direction
 {
 UNDEFINED = 0;
 OUTBOUND = 1;
 INBOUND = 2;
 PICKUP = 3;
 }
 enum FailedCause
 {
 UNSET = 0;
 UNSPECIFIED = 1;
 UNALLOCATEDNUMBER = 2;
 REJECTED = 3;
 NUMBEROOO = 4;
 NETWORKOOO = 5;
 BARRED = 6;
 NOCHANNEL = 7;
 NOACCOUNTCODE = 8;
 NOAUTHCODE = 9;
 NOLICENCE = 10;
 LOCALRESOURCES = 11;
 BANDWIDTH = 12;
 COMPATIBILITY = 13;
 CANTRECORD = 14;
 NORESPONSE=15;
 }
 int32 callid = 2;
 int32 referencecallid = 3;
 int32 relatedcallid = 4;
 State state = 5;
 Direction direction = 6;
 bool activeheld = 7;
 bytes gcid = 8;

 int32 featuresavailable = 9;
 string calledparty = 10;
 PartyInfo callingparty = 11;
 PartyInfo connectedparty = 12;
 PartyInfo originalcalledparty = 13;
 string tag = 14;
 string accountcode = 15;
 bool mute = 16;
 FailedCause failedcause = 17;
 int32 featuresavailable2 = 18;
 bool recording = 19;
 string parkslot = 20;
 Absence absence = 21;
 bool recordingpaused = 22;
 repeated ConferenceMember conferencemember = 52;
 DialInfo dialinfo = 53;
 TrunkInfo trunkinfo = 54;
 QueueInfo queueinfo = 55;
 CallData calldata = 56;
 Note notes = 62;
 Targets targets = 67
}

Fields Description

Callid Call identifier, provided by IP Office. It has uniqueness only within this

subscription.

Referencecallid Reference identifier provided by the MTCTI app. If call was made using

MakeCall, this is the reference provided in the MakeCall. MTCTI App may

assert it or change it at any time using an Update.

Relatedcallid When a call is an Assistant call (eg during an Assisted Transfer), then this is

the callid of the call on-hold pending transfer

State Q.931 style state of the call

Direction If the device receives a call and is ringing, then that is INCOMING. If the

device makes a call and hears RingBack Tone from the far end, that is

OUTGOING. If the call has been established by Call Pickup, Call Steal,

UnPark, that is PICKUP.

Activeheld If the person you were talking to has put you on hold, so you are listening to

holdmusic, that is activeheld

Gcid Global call Identity of this call. When a call is made between two parties, they

will both see the same gcid. It is not unique across reboots.

featuresavailable This is a bitfield of CallFunction Updates that may be effective at this time for

this call. See final section.

Calledparty Usually for outbound calls, this is the number that was called.

Callingparty For incoming calls, this describes the caller.

Connectedparty For calls where the other end is defined, this describes the other end

originalcalledparty For incoming calls which have not arrived directly at this user (diversion or

huntgroup), this describes the target of the call

Tag This is a text label which has been attached to this call

Accountcode When an account code is attached to a call, and the account code is not hidden,

it will be presented here.

Mute Mute is not always available. In IP Office it is not normally possible to mute a

call in the PBX. (It has to be muted on the handset / application itself). It is

normally possible to mute a call into a Conference.

Also if ‘mute’ is set on the handset, this is not going to reflect in this field.

This field will only reflect the ‘mute’ status if it is a controllable scenario.

Failedcause When trying to make a call, and the call fails, it will report state = FAILED.

The reason why the call failed will be in this field.

featuresavailable2 Additional bitfield of featuresavailable. None defined

Recording [for user]

If this call is being recorded under the control of the user, then this field will be

set. This does not reflect system recording for which the user does not have

visibility or control.

[for queue]

This indicates whether the call is being recorded by the system.

parkslot For ParkHandler only, this identifies the parkslot that the call is occupying.

Absence For calls on a User, this shows the FAR END Absence text. (So the person you

are calling)

recordingpaused This is the paused state of any system call recording. Even though an agent

cannot normally control whether a system call recording is in progress, they

may be able to control the recording-paused state

conferencemember This is a repeating list of all the other parties in a conference.

Dialinfo When making an outbound call, this contains details of what is being dialled,

what type of call is being made, whether the display should be suppressed

because it contains authorization codes, whether we are withholding our

identity.

queuedetail If the call is in a queue, this gives the detail about the queue and the priority of

the call in the queue.

Calldata This contains a motley set of ancilliary details about the call, like nominal

language of the conversation, whether the call is private etc.

Targets (subscribe.queue call only) This lists the nominal ringing targets for a call

which is in the RINGING, QUEUEING or RETARGETING states.

Note that with IP Office an Agent will pick up the longest waiting call on a

queue, even if apparently on the list of targets for a different call.

CallLost

CallLost is a payload of NotifyCallControl

message CallLost
{
 int32 callid = 1;
 int32 referencecallid = 2;
 int32 reason = 3;
 bool thisenddropped = 4;
 string description = 5;
}

Fields Description

callid Call identifier, provided by IP Office. It has uniqueness only within this

subscription.

reference_callid Reference identifier provided by Equinox. If call was made using MakeCall,

this is the reference provided in the MakeCall. Equinox may assert it or change

it at any time using an Update.

If a MakeCall fails instantly, and for some reason there is not a stable FAILED

state, you may never see a CallInfo for the call, only the CallLost. In this case,

the application will have to match the reference_callid with the failed call

attempt.

reason Regular reason codes: 16 = Normal

thisenddropped For a mature call, this tells the application which end terminated the call.

description Not suitable for presenting to the phone UI, as it will not be a localized string.

May contain useful information, or not.

Modifying the Subscription
From the point of view of CallControl subscription, modifying the subscription means exercising call
control – making calls, dropping calls etc.

UpdateCallControl

UpdateCallControl is a payload of SubscribeCmd message. This message carries the commands for
manipulating calls.

message UpdateCallControl
{
 int32 callid = 1;
 int32 referencecallid = 2;
 MakeCall makecall = 3;
 CallFunction callfunction = 4;
 UnParkCall unparkcall = 6;
}

Fields Description

callid The callid assigned by IP Office to this call

referencecallid The callid assigned by Application to this call. One of referencecallid or callid

must be populated.

makecall Payload description for making a new call. referencecallid must be populated,

and callid must not be populated.

callfunction Commands to manipulate calls already in existence.

unparkcall Payload description for unparking a call. referencecallid must be populated,

and callid must not be populated. When parking and unparking a call, the

callid will not be the same. A different number will be assigned on UnPark.

MakeCall

MakeCall is a payload to initiate an outbound call.

message AdvancedMakeCall
{
 string accountcode = 1;
 string authcode = 2;
 string tag = 3;

 bool withholdcli = 5;
 bool privacy = 6;
 string madn = 7;
 bool allowcli = 8;
 string explicitcli = 10;
}

message MakeCall
{
 string target = 1;
 int32 type = 2;
 AdvancedMakeCall advanced = 3;
}

Fields Description

target The dialled string. If empty, then call would normally transition to

DIALTONE.

type There are certain values for this field which should be used carefully:

104 = Page Call

105 = Forcefeed

106 = Intrude

108 = Pickup

109 = CampOn (don’t allow call to go to voicemail)

116 = Dial a MeetMe conference

A normal call should not have this specified.

advanced This should only be included if you want to add complex attributes to the call

you are making.

accountcode = Account code to assign to this call

authcode = Authorization code to assign to this call

tag = Text label to attach to the call

withholdcli = make call anonymously

privacy = do not allow others to intrude on this call

madn = Specify call origin for campaign call

allowcli = Reveal CLI on calls from phones which are normally configured as

hide CLI.

explicitcli = change the CLI of the outgoing call.

CallFunction

Call manipulation controls. The call is selected by the callid or reference_callid of the
UpdateCallControl parent payload.

message CallFunction
{
 enum Action
 {
 None = 0;
 DropCall = 1;
 AnswerCall = 2;
 HoldCall = 3;

 UnHoldCall = 4;
 BlindTransfer = 5;
 Redirect = 6;
 Dial = 7;
 Park = 8;
 SetupTransfer = 9;
 SetupConf = 10;
 CompleteTransfer = 11;
 CompleteConf = 12;
 AddToConf = 13;
 MemberFunction = 14;
 SetTag = 15;
 SetAccountCode = 16;
 Unused16 = 17;
 PushToEC500 = 18;
 GenerateDigits = 19;
 Unused20 = 20;
 Unused21 = 21;
 Unused22 = 22;
 ForceClear = 23;
 SetAuthCode = 24;
 CallRecordingOn = 25;
 CallRecordingOff = 26;
 PrivacyOn = 27;
 PrivacyOff = 28;
 MuteOn = 29;
 MuteOff = 30;
 Unused31 = 31;
 AgentRecordingControl = 32;
 Unused33 = 33;
 SetPriority = 34;
 Finish = 35;
 }
 Action action = 1;
 string arg1 = 2;
 MemberFunctionData memberfunctiondata = 4;
 repeated CallInstance callinst = 5;
 AgentRecording agentrecording = 6;
}

Fields Description

action Command to perform on the call appearance

arg1 Text argument that goes with certain commands, like Dial

memberfunctiondata Rich data to go with MemberFunction (manipulating conference members)

CallInstance

In the case of CompleteTransfer, you would normally transfer the relatedcallid

call which is ONHOLDPENDXFER. However, you *can* explicitly specify a

different call you want to complete the transfer with.

In CompleteConf, the same thing applies, but you *can* specify a different call

or list of calls you want to conference.

AgentRecording

Required sub-message for AgentRecordingControl function.

This allows the call system recording to be paused or unpaused. (Does not

have any effect on user local call recording)

Function Use for arg1

BlindTransfer Transfer target

Redirect Redirect target

Dial Digit(s) to dial

Park Parkslot

SetupTransfer Optional target for assisted transfer call.

AddToConf Conference target

SetTag Tag text

GenerateDigits DTMF digit(s) to play

SetAccountCode Account code

Set Auth code Auth code

SetPriority ‘1’, ‘2’, or ‘3’

Conference Member functions

message MemberFunctionData
{
 enum Action
 {
 None = 0;
 DropCall = 1;
 MuteOn = 2;
 MuteOff = 3;
 }
 int32 lref = 1;
 Action action = 2;
}

Use these functions to manage individual members of your conference. You will only be able

to perform the action if you have sufficient privilege on the conference to do so.

UnParkCall

UnParkCall is a payload to unpark a call

message UnParkCall
{
 string parkid = 1;
}

There is no guaranteed indication that an UnPark was successful, except that if successful, you will

receive a CallInfo notification showing the unparked call (and the referencecallid supplied). You

would not normally expect to call this function unless you knew the parkid was occupied. You should

subscribe to ParkHandler to keep track of parkslot occupancy.

If you specify a RequestID, you may get a useful fail code in the RequestResponse.

RecordingControls

These apply to system recordings only. User can pause or Un-pause a call recording using

RecordingControls.

Message
{
 subscribecmd
 {
 requestid=6
 subscribe_id=2
 callcontrol
 {
 callid=1
 callfunction
 {
 action=AgentRecordingControl
 agentrecording
 {
 pause  Pause the recording
 }
 }
 }
 }
}

Message
{
 notify
 {
 subscribe_id=2
 callcontrol
 {
 refreshinstance=6
 callinfo
 {
 payload=PayloadFull
 callid=1
 state=CONNECTED
 direction=INBOUND
 gcid = 01 C0 A8 2A 7B 00 00 03 EA
 featuresavailable=0x29F09D DROP …
 callingparty
 {
 number=0657765
 }

 connectedparty
 {
 number=0657765
 }
 recordingpaused  Recording now paused
 }
 }
 }
}

CallControl explicitly for Queue calls

If you have at least set “ccflags” bit 0 (0x01), you will receive call notifications whenever a call arrives

in the queue, and a notification whenever that call changes. These call notifications will be in the

form of a callinfo message.

You may receive multiple callinfo messages and multiple calllost messages in a single notify (when

there are several calls), but for each call you will receive a maximum of one.

Several MTCTI3 clients can subscribe to the same queue, and they will all receive notifications. Note

that if one client issues the “Finish” command (to end notifications), this will terminate the

notifications on ALL clients.

Also note that before ‘Finish’, a call will only be reported on one Queue. If a call is in Sales, then is

transferred to International, then the call will still be reported in Sales, and not in International,

unless the application sends a Finish to stop the reporting in Sales.

This is because by default, the Queued call is reported through its entire lifetime.

If you only want to monitor the queued calls during the time they are queueing, you need to set

“ccflags” bit 30 (0x40000000)

While the call is being handled by IP Office, the mtcti3 client will receive notifications about the call

whenever the call information changes.

The client will only receive a Call Lost event once the call is completed unless the client explicitly

sends a Finish event.

Additionally, the mtcti3 client has an Update capability to modify the call handling.

Lifetime of a simple call

CALLINFO RINGING

CALLINFO Targeting an agent

CALLINFO Answered by agent

CALLINFO Transferred to new Agent

CALLINFO Agent has put call on hold

CALLLOST Caller has hung up

Actions on Queued calls
Actions can be performed on any call. Some actions simply enhance the queueing functionality

which already exists in IP Office, and some actions completely override the default behaviour. For

example, you can change the priority of a call, and the IP Office queueing mechanism will still be

functioning. However, if you Redirect or Transfer the call, the queueing will be replaced.

If all you want to do is report what happens to a call that originally targets a queue, you do not need

to perform any actions at all.

Actions that can be performed on a call are indicated in the featuresavailable bitfield. If you perform

an action that is not available, the Action will be ignored.

Action result

DropCall Clears the call

ForceClear If it is a regular call, it will clear the call. If it is a call

into a meetme conference, it will terminate the

conference.

SetTag Changes the tag label on the call

SetAccountCode Changes the account code of the call

SetPriority Changes the call priority in the queue

1= low

2 = medium

3 = high

Park Parks the call to a parkslot

BlindTransfer This is the major feature. You can use this to direct

the call at any phase of its life.

CallRecordingOn/Off Turns on/off call recording

AddToConf When in a conference:

Invite members to a conference

MemberFunction When in a conference:

Mute or drop conference members

Mute On/Off When in a conference:

Mute the caller

Finish End the CTI association. The call will not end, but it

will no longer generate CallInfo events.

The “powerful” function is:

BlindTransfer

BlindTransfer action

Normally a BlindTransfer action would be used before the caller talks to an agent. You can use

BlindTransfer to target an explicit agent, or to redirect the call to an explicit Queue, go to a pre-

configured or interactive dialog with VMPro or to connect to an IP Office service like a MeetMe

conference or an FNE.

BlindTransfer takes only one argument, but the “arg1” argument can be formatted to provide some

extended functionality.

/$type/destination
Type can be:
102 = Voicemail
104 = Page
105 = Force autoanswer
106 = intrude
107 = Priority call
109 = CampOn
111 = Whisper
112 = Inclusione
116 = MeetMe conference
120 = FNE

BlindTransfer to a Callflow
So, to route to a particular VMPro callflow

 Message
 {
 subscribecmd
 {
 subscribe_id=7500
 callcontrol
 {
 callid=1
 callfunction
 {
 action=BlindTransfer
 arg1=/102/Callflow
 }
 }
 }
 }

Transfers the call to “CallFlow” on VMPro

 Message
 {
 notify
 {
 subscribe_id=7500
 callcontrol
 {
 refreshinstance=2

 callinfo
 {
 callid=1
 state=ANSWEREDBYVOICEMAIL
 direction=INBOUND
 featuresavailable=0xE0E0E091 DROP BLINDXFER PARK TAG ACCT FORCECLEAR AUTH
REC+ PRIO FINISH
 calledparty=8010
 callingparty
 {
 number=03498984598
 nametype=9
 }
 connectedparty
 {
 number=Callflow
 }
 trunkdetail
 {
 trunktype=TrunkISDN
 did=8010
 }
 queuedetail
 {
 priority=1
 }
 }
 }
 }
 }

BlindTransfer to a MeetMe Conference

 Message
 {
 subscribecmd
 {
 subscribe_id=7500
 callcontrol
 {
 callid=1
 callfunction
 {
 action=BlindTransfer
 arg1=/116/20987
 }
 }
 }
 }

Result

 Message
 {
 notify
 {
 subscribe_id=7500
 callcontrol
 {
 refreshinstance=3
 callinfo
 {
 callid=1
 state=CONNECTED
 direction=INBOUND
 featuresavailable=0x60E0F801 DROP ADDTOCONF CONFMEMBER TAG ACCT
FORCECLEAR AUTH REC+ PRIO
 calledparty=8010
 callingparty
 {
 number=03498984598
 nametype=110
 }
 connectedparty
 {
 number=20987
 name=Conf 20987
 nametype=110
 }
 trunkdetail
 {
 trunktype=TrunkISDN
 did=8010
 }
 queuedetail
 {
 priority=1
 }
 }
 }
 }
 }
You see the call is now connected to the conference.

BlindTransfer to a conference requiring PIN access
 Message
 {
 subscribecmd
 {
 subscribe_id=7500

 callcontrol
 {
 callid=1
 callfunction
 {
 action=BlindTransfer
 arg1=/116/2005;MODEFROMPIN(123456)
 }
 }
 }
 }

Where the PIN is 123456

The character between the 5 and the M is a semi-colon.

BlindTransfer to a functional queue
You can transfer a call from the “owner” queue to another IP Office queue with a simple

BlindTransfer to the new queue. This call will continue to be monitored here as it is handled by the

other queue, and you can abandon the queue at any time by performing another BlindTransfer.

 Message
 {
 subscribecmd
 {
 subscribe_id=2
 callcontrol
 {
 callid=2
 callfunction
 {
 action=BlindTransfer
 arg1=2502
 }
 }
 }
 }

(2502 is a huntgroup)

 Message
 {
 notify
 {
 subscribe_id=2
 callcontrol

 {
 callinfo
 {
 callid=3
 state=QUEUEING
 direction=INBOUND
 featuresavailable=0x6060E091 DROP BLINDXFER PARK TAG ACCT FORCECLEAR AUTH
PRIO
 calledparty=8010
 callingparty
 {
 number=03498984598
 nametype=9
 }
 trunkdetail
 {
 trunktype=TrunkISDN
 did=8010
 }
 queuedetail
 {
 priority=1
 overflownumber=2502
 overflowname=Service Queue
 }
 targets
 {
 target
 {
 partyinfo
 {
 number=2005
 name=Bergcamp
 nametype=5
 }
 }
 }
 }
 }
 }
 }

You will continue to get notify events as the queue changes the agents that are targeted, and after

the call is answered.

Error codes

Error Code Description

MTCTISESS_SUCCESS 0 Success

MTCTISESS_ERRUNKNOWN 1 Unknown error

MTCTISESS_UNPACKERR 2 Message unpack error

MTCTISESS_NOTINSTRUMENTED 3 Not instrumented

MTCTISESS_NOTFOUND 4 Not found

MTCTISESS_TOOMANY 5 Too many

MTCTISESS_TOOBIG 6

MTCTISESS_USERNOTFOUND 7

MTCTISESS_SERVICE_NOT_AVAILABLE 8

MTCTISESS_NOTALLOWED 9

MTCTISESS_SUBSCRIPTION_INVALID 100 Not a recognized subscription

MTCTISESS_SUBSCRIPTION_INVALID_ID 101 Subscription Update with invalid ID

MTCTISESS_SUBSCRIPTION_TIMEOUT_TOO_SMALL 102

MTCTISESS_GENCMD_ERRUNKNOWN 150 General Command Error

MTCTISESS_GENCMD_INVALID_PAYLOAD 151 General Command badly formatted

MTCTISESS_GENCMD_REQUIRED_DATA_MISSING 152 General Command with mandatory

element missing

MTCTISESS_PRESENCE_ERRUNKNOWN 500 Any error to do with presence

subscription

MTCTISESS_REQUESTFAILED 5000 A valid command has failed

MTCTISESS_REQUESTTIMEOUT
5001

A valid command has taken too long to

create a response

MTCTISESS_REQUEST_INVALID_PAYLOAD 5002 Missing or field out of range.

MTCTISESS_REQUEST_INVALID_CONTEXT 5003 Can find context for this action

Specific Error codes for Call Control

In some case IP Office can be more specific about the reason why an Action failed. If it can’t be more

specific, it will return one of the generic Error codes above:

MTCTISESS_CALLCONTROL_NOPHONE 600 Cant make a call, or unpark a call

because the user is not logged in to

any handset

MTCTISESS_CALLCONTROL_EXTNFAULT 601 Cant Make a call because the user’s

phone is not connected

MTCTISESS_CALLCONTROL_CALLNOTFOUND 602 Can perform action on this call,

because the call cannot be found

MTCTISESS_CALLCONTROL_MAXCALLS 603 Cant Make a call because the user

has no more call appearances.

MTCTISESS_CALLCONTROL_BADACCT 604 The account code entered is not

valid

MTCTISESS_CALLCONTROL_BADAUTH 605 The authorization code is not valid

MTCTISESS_CALLCONTROL_TARGETNOTFOUND 606 Typically for UnPark, or

AddToConference, cannot find the

thing you are targeting.

MTCTISESS_CALLCONTROL_PERMISSION 607 You do not have permission to

perform this action

MTCTISESS_CALLCONTROL_BADFORMATTING 608 One of the fields is missing or string

is too long or number is out of range

MTCTISESS_CALLCONTROL_INVALIDCALLSTATE 609 You can’t do this action at this time.

MTCTISESS_CALLCONTROL_CANTBEDONE 610 Typically you cannot answer the

call on this phone because you need

to physically pick up the handset.

MTCTISESS_CALLCONTROL_NOCOVERAGE 611 You cant Drop a ringing call if there

is no coverage destination.

MTCTISESS_CALLCONTROL_TRANSFERFAILED 612 The blind transfer target is invalid or

refused the call.

MTCTISESS_CALLCONTROL_PARKFAILED 613 Could not park this call

MTCTISESS_CALLCONTROL_OTHERNOTFOUND 614 Trying to CompleteTransfer or

CompleteConf with invalid related

calls.

MTCTISESS_CALLCONTROL_CANTCOMPLETE 615 TransferComplete not allowed,

maybe because of the nature of the

calls you are trying to join.

MTCTISESS_CALLCONTROL_UNSUPPORTED 616 Not a supported function

MTCTISESS_CALLCONTROL_ALREADYDONE 617 The command would have no effect

Features Available
Meaning of “FeaturesAvailable” in CallInfo

Bit 0 Drop

Bit 1 Answer Call

Bit 2 Hold call

Bit 3 UnHold call

Bit 4 Blind Transfer

Bit 5 Redirect

Bit 6 Dial

Bit 7 Park

Bit 8 SetupTransfer

Bit 9 CompleteTransfer

Bit 10 CompleteConf

Bit 11 AddToConf

Bit 12 AdminConfMember

Bit 13 SetTag

Bit 14 SetAccountCode

Bit 15 reserved

Bit 16 PushToEC500

Bit 17 GenerateDigits

Bit 18 reserved

Bit 19 reserved

Bit 20 RecordingPauseControl

Bit 21 ForceClear

Bit 22 SetAuthCode

Bit 23 CallRecordingOn

Bit 24 CallRecordingOff

Bit 25 PrivacyOn

Bit 26 PrivacyOff

Bit 27 MuteOn

Bit 28 MuteOff

Bit 29 SetPriority

Bit 30 Finish

Call functions individually described

DropCall
TAPI equivalent: lineDrop()

Control: only try to do this if bit0 of “featuresavailable” is set.

Arg1

not used

Line types

User or Queue or ParkServer

Action

User: IP Office will try to clear the call from this user. If call is ringing, it will try to send the call to

coverage. If call is answered, the call will be cleared. If connected to a conference, the user will be

dropped out of the conference. This does not necessarily clear the conference.

Queue or Park Server: Call will be dropped.

Errors

DropCall may fail even if bit0 is set.

If it fails, and you have populated the ‘requestid’ field, you will get the error in the RequestResponse:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_NOTFOUND

If it fails due to (eg) an inability to find a suitable coverage target, you may get MTCTISESS_SUCCESS

but the call will not drop. In this case you will usually get MTCTISESS_CALLCONTROL_NOCOVERAGE.

This is a good example of the rule that the application should only use Notify updates to observe

what is actually going on.

AnswerCall
TAPI equivalent: lineAnswer()

Control: only try to do this if bit1 of “featuresavailable” is set.

Arg1

not used

Line types

User only

Action

IP Office will try to answer a ringing call at this user. If the user has multiple simultaneous devices

ringing at the same time for the same call, then IP Office will choose the most appropriate device to

answer the call. This is chosen in the order:

Desk phone or teleworker

Soft phone

Mobile Equinox application

It is possible to be more precise by using the ‘devicehint’ in the UpdateCallControl payload. If you

specify SOFTPHONEANY it will only answer the call on a softphone.

For some phone types, like a ringing POTS phone, it is not possible to Answer a call through CTI. (CTI

cannot take the phone off-hook). Generally in this case, bit1 of featuresavailable should be unset.

Also, note that if there is already a Connected call, Answering a ringing call may result either in the

Answered call being Answered-to-OnHold, or the previously connected call to be demoted to

OnHold.

Errors

AnswerCall may fail even if bit1 is set.

If it fails, and you have populated the ‘requestid’ field, you will get the error in the RequestResponse:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Hard pots phone on hook: MTCTISESS_CALLCONTROL_CANTBEDONE

Unsuitable action (eg if call was already answered manually while the command was in transit):

MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

HoldCall
TAPI equivalent: lineHold()

Control: only try to do this if bit2 of “featuresavailable” is set.

Arg1

not used

Line types

User only

Action

IP Office will try to put an active call on Hold. For the person talking to this user, he may expect to

hear HoldMusic.

Note.

When putting a call onHold, the IP Office may initiate a Hold-reminder timer and after the Hold-

reminder expires a deskphone may start ringing. None of this is reflected in CTI3. The OnHold call

stays onHold even while the deskphone is doing Ring-reminder, and can only go back to Connected

using UnHold (not Answer)

Errors

HoldCall may fail even if bit2 is set.

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Already on Hold: MTCTISESS_CALLCONTROL_ALREADYDONE

Call not in a state where it can be put on Hold: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

UnHoldCall
TAPI equivalent: lineUnHold()

Control: only try to do this if bit3 of “featuresavailable” is set.

Arg1

not used

Line types

User only

Action

IP Office will try to make a previously Held Call to Connected state. This would generally

automatically force any other Connected call into Held.

Errors

UnHoldCall may fail even if bit3 is set.

Some 3rd party SIP handsets cannot be coaxed through CTI to take an OnHold call and UnHold it.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Already Active: MTCTISESS_CALLCONTROL_ALREADYDONE

Call not in a state where it can be taken OffHold: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

Cant be done on this type of phone: MTCTISESS_CALLCONTROL_CANTBEDONE

BlindTransfer
TAPI equivalent: lineBlindTransfer()

Control: only try to do this if bit4 of “featuresavailable” is set.

Arg1

The transfer-to destination. In a successful BlindTransfer, the connected or ringing call is

immediately disconnected from the user and is sent to another destination specified by arg1.

BlindTransfer frequently fails if the transfer-to destination is not a valid target.

The minimum length of the string is 1, and the maximum length is 78.

Characters in this field would normally be 0-9, ‘#’ ‘*’ but for exotic transfers, other characters may

be expected. Non-ascii characters must be encoded in Utf8.

Line types

User or Queue or ParkServer

Action

IP Office will try transfer the call to the specified destination.

Errors

BlindTransfer may fail even if bit4 is set.

If the transfer does not succeed, the call will stay with the user.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

arg1 missing or invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

cannot redirect the call: MTCTISESS_CALLCONTROL_TRANSFERFAILED

Redirect
TAPI equivalent: lineRedirect()

Control: only try to do this if bit5 of “featuresavailable” is set.

Arg1

The transfer-to destination. In a successful Redirect, the ringing call is immediately disconnected

from the user and is sent to another destination specified by arg1.

Redirect frequently fails if the transfer-to destination is not a valid target.

The minimum length of the string is 1, and the maximum length is 78.

Characters in this field would normally be 0-9, ‘#’ ‘*’ but for exotic transfers, other characters may

be expected. Non-ascii characters must be encoded in Utf8.

Action

IP Office will try to redirect the call to the specified destination.

Line types

User or Queue

Errors

Redirect may fail even if bit5 is set.

If the redirect does not succeed, the call will stay with the user.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

arg1 missing or invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

cannot redirect the call: MTCTISESS_CALLCONTROL_TRANSFERFAILED

Dial
TAPI equivalent: lineDial()

Control: only try to do this if bit6 of “featuresavailable” is set.

Arg1

The minimum length of the string is 1, and the maximum length is 78. But it would be unexpected

for this to be anything other than 1 as this is used primarily for overlap dialling.

Characters in this field would normally be 0-9, ‘#’ ‘*’

When dialling a destination, IP Office will append the supplied digits to the dialled string.

Line types

User only

Action

When using overlap dialling, IP Office will progress a call from Dialtone to Dialling to Dialled as the

target number is resolved.

Errors

Dial may fail even if bit6 is set.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

arg1 missing or invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

Park
TAPI equivalent: linePark()

Control: only try to do this if bit7 of “featuresavailable” is set.

Arg1

The minimum length of the string is 1, and the maximum length is 9.

Characters in this field would normally be 0-9, ‘#’ ‘*’

Line types

User or Queue

Action

There is some risk to trying to park a call if you have no knowledge of the state of the park slot you

are trying to use. For this reason, it would be recommended that a private park slot is used, or the

application has a subscription to the PARKSERVER so it knows which park slots are free.

Errors

Park may fail even if bit7 is set.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

arg1 missing or invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

SetupTransfer
TAPI equivalent: lineSetupTransfer()

Control: only try to do this if bit8 of “featuresavailable” is set.

Arg1

This field is optional. If you do not include it, the new call created will go into the DIALTONE state. If

it is included, the new call will use this string as the target to dial. This string has to be a complete

number. You will not have the opportunity to dial further.

The minimum length of the string is 0, and the maximum length is 78

Characters in this field would normally be 0-9, ‘#’ ‘*’ but for exotic transfers, other characters may

be expected. Non-ascii characters must be encoded in Utf8.

Line types

User only

Action

When performing SetupTransfer on a call, you are creating a new call (the assistant transfer call)

which is related to the original call. The original call should transition to HOLDFORTRANSFER state

and show “relatedcallid” association with this new call.

You cannot specify the “referencecallid” for this new call.

Errors

SetupTransfer may fail even if bit8 is set.

If a destination is specified and the target is invalid, this function should succeed, and a new call is

created with state == FAILED.

This would fail if the phone is a digital phone with no spare call appearances.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

arg1 invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

No spare call appearances: MTCTISESS_CALLCONTROL_MAXCALLS

SetupConf
TAPI equivalent: lineSetupConference()

Control: only try to do this if bit8 of “featuresavailable” is set (same bit as SetupTransfer).

Arg1

This field is optional. If you do not include it, the new call created will go into the DIALTONE state. If

it is included, the new call will use this string as the target to dial. This string has to be a complete

number. You will not have the opportunity to dial further.

The minimum length of the string is 0, and the maximum length is 78

Characters in this field would normally be 0-9, ‘#’ ‘*’ but for exotic transfers, other characters may

be expected. Non-ascii characters must be encoded in Utf8.

Line types

User only

Action

This function is practically identical to SetupTransfer

When performing SetupConf on a call, you are creating a new call (the assistant transfer call) which

is related to the original call. The original call should transition to HOLDFORCONF state and show

“relatedcallid” association with this new call.

You cannot specify the “referencecallid” for this new call.

Errors

SetupConf may fail even if bit8 is set.

If a destination is specified and the target is invalid, this function should succeed, and a new call is

created with state == FAILED.

This would fail if the phone is a digital phone with no spare call appearances.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

arg1 invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

No spare call appearances: MTCTISESS_CALLCONTROL_MAXCALLS

CompleteTransfer
TAPI equivalent: lineCompleteTransfer(LINETRANSFERMODE_TRANSFER)

Control: only try to do this if bit9 of “featuresavailable” is set.

Arg1

Not used

Callinst

This may be used, in which case is would override any “relatedcallid” relationship and may transfer

together two calls which were previously unrelated. Only 0 or 1 callinst should be specified.

Line types

User only

Action

CompleteTransfer joins two calls together and drops the user out of the call.

CompleteTransfer can be called without callinst, as long as there is a related_callid. If there is no

callinst, and no related_callid, the Completion of the transfer will fail.

Errors

CompleteTransfer may fail even if bit9 is set.

There are several reasons why a CompleteTransfer may fail. There may not be two calls to join

together. The two calls specified may not be allowed to be joined together (eg two public calls may

not be allowed to talk together without an internal party, or joining the two calls together may result

is a call which cannot be cleared).

It is not always possible for the MTCTI3 application to know in advance whether the transfer will

succeed or fail.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

Cant find call inst: MTCTISESS_CALLCONTROL_OTHERNOTFOUND

The transfer targets are incompatible: MTCTISESS_CALLCONTROL_CANTCOMPLETE

CompleteConference
TAPI equivalent: lineCompleteTransfer(LINETRANSFERMODE_CONFERENCE)

Control: only try to do this if bit10 of “featuresavailable” is set.

Arg1

Not used

Callinst

This may be used, in which case is would override any “relatedcallid” relationship and may

conference together two calls which were previously unrelated.

There can be several calls listed in the callinst list in which case all the listed calls will by joined to the

conference

Line types

User only

Action

CompleteConference joins two or more calls together into a conference.

CompleteConference can be called without callinst, as long as there is a related_callid. If there is no

callinst, and no related_callid, the Completion of the conference will fail.

When one of the calls is already a conference, the other call will be joined into the conference.

There are many rules about joining parties into a conference. Some parties are not allowed to join

some conferences, or the conference capacity may be reached.

This function either fully succeeds or fully fails. If any party is not allowed into the conference, then

no parties will join.

Errors

CompleteConference may fail even if bit10 is set.

It is not always possible for the MTCTI3 application to know in advance whether the

CompleteConference will succeed or fail. MTCTI3 will not give a useful reason for failing the function

and will not identify any rogue call which is blocking the function completion.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

Cant find call inst: MTCTISESS_CALLCONTROL_OTHERNOTFOUND

The conference targets are incompatible: MTCTISESS_CALLCONTROL_CANTCOMPLETE

There is a privacy issue in making this conference: MTCTISESS_CALLCONTROL_PERMISSION

AddToConference
TAPI equivalent: lineAddToConference()

Control: only try to do this if bit11 of “featuresavailable” is set.

Arg1

This must be a string of length between 1 and 78 digits. It is the target address of the invited party to

the conference. It must be a complete number

Line types

User or Queue

Action

This is only allowed if the call is already connected to a conference, and the user has privileges in

that conference to invite new conference members.

Errors

AddToConference may fail even if bit11 is set.

If the number which is used to dial the new conference member is invalid, then normally there is a

new ConferenceMember created, with state=FAILED. This member call will then have to be dropped.

The function AddToConference reports SUCCESS in this case.

AddToConference may fail of there are insufficient conference resources, or the conference capacity

is reached, or the user does not have the privilege to perform the function.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

There is a permission error: MTCTISESS_CALLCONTROL_PERMISSION

arg1 missing or invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

Could not target the destination: MTCTISESS_CALLCONTROL_TARGETNOTFOUND

MemberFunction
TAPI equivalent: lineDrop() – for action=Drop, none for mute/unmute

Control: only try to do this if bit12 of “featuresavailable” is set.

Arg1

Not used

Line types

User or Queue

Memberfunctiondata

This is required. It specifies which conference member you wish to Mute/UnMute/Drop. It also

specifies which of these three functions is to be performed.

Action

This is only allowed if the user has the privilege to perform these functions in this conference.

Errors

MemberFunction may fail even if bit12 is set.

If the referred to conference member does not exist.

If the user does not have the privilege.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

Can’t find lref: MTCTISESS_CALLCONTROL_OTHERNOTFOUND

There is a permission error: MTCTISESS_CALLCONTROL_PERMISSION

Unknown command: MTCTISESS_CALLCONTROL_UNSUPPORTED

SetTag
TAPI equivalent: lineSetCallData()

Control: only try to do this if bit13 of “featuresavailable” is set.

Arg1

Can be a string of length 0 – 127 Unicode characters after converting from Utf8 to BMP-0. If there

are NULL characters in the callData, the tag is effectively truncated at the NULL.

If empty, this clears the call tag.

Line types

User or Queue or Parkserver

Action

Adds a call label to the call, which is distributed with the call if it is transferred.

Errors

This function does not fail on a valid call. If the string length is more that 127 characters, it will be

truncated.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

SetAccountCode
TAPI equivalent: lineCallDevSpecific()

Control: only try to do this if bit14 of “featuresavailable” is set.

Arg1

Can be a string of length 0 – 15 Unicode characters after converting from Utf8 to BMP-0.

If empty, this clears the account code.

Line Types:

User or Queue

Action

Tags the call with the specified account code.

Only pre-configured account codes are allowed to be entered, unless there are wild-card account

codes in the IP Office config.

Note

If the MTCTI3 application wants to know the list of account codes configured on IP Office, there is a

pseudo-file that can be read using the GeneralCmd “GetFile”. The file to read is

“nasystem/AccountCode”

Errors

This function will fail if the account code is not a valid code matching one in the IP Office

configuration.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

arg1 invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

Not a recognized account code: MTCTISESS_CALLCONTROL_BADACCT

SetNotes
Not supported in this release

PushToEC500
TAPI equivalent: none

Control: only try to do this if bit16 of “featuresavailable” is set.

Arg1

Not used.

Line Types

User only

Action

This only works for users who have a Mobile Twinning destination configured. This function starts

the process of transferring the call to the mobile twin device, but the transfer only completes if the

call is answered on the mobile. While the mobile is still ringing, the caller can still talk to the user.

Errors

This function will fail if Mobile twinning destination is not set up or cannot be targeted. This function

returns SUCCESS once the push is initiated. It does not wait until the transfer completes before it

reports the result.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

Could not target mobile: MTCTISESS_CALLCONTROL_TRANSFERFAILED

GenerateDigits
TAPI equivalent: lineGenerateDigits()

Control: only try to do this if bit17 of “featuresavailable” is set.

Arg1

Required. The length should be in the range 1 – 32 characters 0-9, ‘*’ ‘#’

Line Types

User only

Action

This sends DTMF to the far end of the call. Each character in the string is sent individually.

Errors

This function will succeed if any character in the string is sent. It may be that the call is dropped part

way through the generate digit string, in which case the result is still SUCCESS.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

arg1 missing or invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

ShortCodeAction
Not supported in this release

AnswerPage
TAPI equivalent: none

Control: only try to do this if bit0 of “featuresavailable2” is set.

Arg1

Not used

Line Types

User only

Action

If this call is an inbound Page call (so you are hearing a Page) you can convert this to a 2-way

conversation using this function.

The “pagecall” field in the Callinfo will indicate that it is an incoming page call.

Errors

This function will succeed only if the call is an incoming Page call, and the user is allowed to convert

the call.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

permission error: MTCTISESS_CALLCONTROL_PERMISSION

ForceClear
TAPI equivalent: none

Control: only try to do this if bit21 of “featuresavailable” is set.

Arg1

Not used

Line Types

User or Queue or Parkserver

Action

This is a brutal function and should not normally be offered. If the user is in a conference, the

conference will be terminated.

If the user is receiving an incoming call, the call will be cleared all the way to the source. You should

normally use Drop.

Errors

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

SetAuthCode
TAPI equivalent: lineCallDevSpecific()

Control: only try to do this if bit22 of “featuresavailable” is set.

Arg1

Can be a string of length 0 – 15 Unicode characters after converting from Utf8 to BMP-0.

If empty, this clears the auth code.

Line Types

User only

Action

Tags the call with the specified auth code.

Only pre-configured auth codes are allowed to be entered.

Note

Auth codes are permissions, so if you enter a valid auth code, you are allowed to make certain calls.

An Auth code is generally associated with a user, so provides executive users with more permissions.

The user who owns the code is nominally billed for the call.

The MTCTI3 application does not have access to a list of valid auth codes.

Errors

This function will fail if the auth code is not a valid code matching one in the IP Office configuration.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

arg1 invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

Not a recognized auth code: MTCTISESS_CALLCONTROL_BADAUTH

CallRecordingOn/Off
TAPI equivalent: lineCallDevSpecific()

Control: only try to do this if bit23/24 of “featuresavailable” is set.

Arg1

Not used

Line Types

User only

Action

User: Starts or stops personal call recording of the call (to the user’s mailbox).

Errors

This function will fail if the call is private, or the voicemail does not have the functionality or

capacity.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

permission error: MTCTISESS_CALLCONTROL_PERMISSION

PrivacyOn/Off
TAPI equivalent: lineCallDevSpecific()

Control: only try to do this if bit25/26 of “featuresavailable” is set.

Arg1

Not used

Line Types

User only

Action

Makes a call locally private. This will prevent call recording of the call you are on, as long as you have

enough authority. (If you are a minor delegate in a big conference, you cannot stop the conference

from being recorded)

Making a call not-private only means you have unset your own privacy. If another party to the call

has set their own privacy, you cannot override that.

Errors

Generally succeeds.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

MuteOn/Off
TAPI equivalent: none

Control: only try to do this if bit27/28 of “featuresavailable” is set.

Arg1

Not used

Line Types

User only

Action

This only applies if this user is in a conference and wishes to manipulate his own mute status in the

conference.

It does not change the Mute setting on his handset/headset. This is just because you cannot control

this using CTI on most phones.

Errors

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

Not possible to perform this function: MTCTISESS_CALLCONTROL_CANTBEDONE

SetPriority
TAPI equivalent: none

Control: only try to do this if bit29 of “featuresavailable” is set.

Arg1

A text string denoting the new priority. 1 = low priority, 2 = medium priority, 3 = high priority.

Line Types

Queue only

Action

This changes the priority of the call in the current queue. It does not persist after a call is answered

and transferred to a new queue.

There are only 3 allowed values of Arg1 : “1”, “2”, or “3”

 In general, calls with a higher priority are answered first in a queueing situation.

Errors

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

arg1 invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

Not possible to perform this function: MTCTISESS_CALLCONTROL_CANTCOMPLETE

Finish
TAPI equivalent: none

Control: only try to do this if bit30 of “featuresavailable” is set.

Arg1

If included, must be “1”.

Line Types

Queue only

Action

This disassociates the call from this Queue. If you do not disassociate the call, it will continue to be

followed on this queue until the call ends. You ‘Finish’ the call if your application has no further

interest in this call.

MTCTI3 only follows a call on one Queue at a time, so if you want to view it on a new Queue, you

need to “Finish” it on the old Queue. Using Arg1 = “1” means that it will immediately start reporting

on any new queue it is associated with. Otherwise it only starts reporting when it subsequently

arrives at the new Queue.

Errors

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CallID: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

arg1 invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

Not possible to perform this function: MTCTISESS_CALLCONTROL_CANTCOMPLETE

Alternative connection methods
Noframing
If you do not want to handle the protocol framing (1st 4 octets of each message contains {0,0,0,1}

header), you can instead use the websocket protocol “tpkt/openapinoframing”

(that is “noframing” appended to the end of the string)

Then the message stream in both directions will be pure protocol buffers.

Limits
A maximum of 10 x MTCTI3 connections are allowed per IPOffice.

The maximum number of presentites subscribed per MTCTI 3 connection is the same as the user limit

on the system..

Version Compatibility
This will be supported on IPOffice 11.1.0.0 and future versions until such time as it is withdrawn. In

Release 11.0.4.2, there is some support, but some error reporting will be missing.

Resilient solutions
For a resilient solution with an IP Office primary and an IP Office secondary, the client MTCTI3

application can work in a live-live deployment. Connections to either PBX will render more-or-less

identical information for users and commands can be sent down either connection (we do not

commit to a particular level of identicality). For queues, the configuration and command interfaces

are mirrored, but the view of the queued calls differs on each system.

Calls queueing on the primary can be seen and controlled on the primary

Calls queueing on the secondary can be seen and controlled on the secondary.

What this means
In an IP Office failover, you would want the IP Office secondary to act as a resilient backup of the IP

Office primary for groups. Then the queues on the secondary automatically become active when the

primary is down.

Resilient app
As the IP Office allows for up to 10 x MTCTI3 connections, the client application can itself have a

resilient live-live twin.

Development tools
The most important development tool will be SysMonitor. SysMonitor will decode all the messages

that your application sends and receives.

SysMonitor
When using SysMonitor, you should enable the following flags to decode CTI3 connections and

protocols.

For Web sockets

For CTI3 protocols

When a line is open, you can perform actions on the line.

Getting started with the proto file
A good starting point is to download the latest protobuf code from github. At time of writing, the

latest version is v3.10.0.

On github, there are protobuf files for: c++, c#, java, js, objective, php, python, and ruby. (example

protobuf-cpp-3.10.0.zip)

There is also a version of the ‘proto’ file compiler called ‘protoc’. You should match the same version

of ‘protoc’ compiler with the protobuf source code for a successful compile.

You need these steps to build and decode messages automatically. Now it is perfectly possible to

write your own code to encode and decode the messaging as the protocol buffer encoding

technique is published by google, but this would not be recommended because of the ready

availability of these tools and implementations.

C++ and visual studio
Note that for C++ the v3.10.0 protobuf code requires a C++ 11 compiler. On visual studio, this is

vs2017 or later. For a version that does not require a C++ 11 compiler, you need to go back to v3.5.0

or earlier. These earlier versions work perfectly well with our ipo_mtcti3.proto file, but there are

speed optimizations that may be available with the later protobuf code.

Converting “ipo_mtcti3.proto” into source code:

R:\google>protoc --cpp_out=R:\google ipo_mtcti3.proto

Produces:

Directory of R:\google

24/10/2019 09:20 <DIR> .

24/10/2019 09:20 <DIR> ..

24/10/2019 09:20 1,034,570 ipo_mtcti3.pb.cc  generated

24/10/2019 09:20 665,490 ipo_mtcti3.pb.h  generated

09/10/2019 11:26 13,726 ipo_mtcti3.proto

22/10/2019 16:22 <DIR> protobuf  unzipped

22/10/2019 15:38 5,281,431 protobuf-cpp-3.5.0.zip  github

22/10/2019 15:38 1,256,007 protoc-3.5.0-win32.zip  github

22/10/2019 15:41 4,029,440 protoc.exe  unzipped

 6 File(s) 12,280,664 bytes

 4 Dir(s) 45,700,952,064 bytes free

Also include

When you have connected your application you are ready to send and receive protocol buffers.

They are encoded in C++ like this:

#include <mtcti/ipo_mtcti3.pb.h>
#include <string>
void CTI3Session::FrameAndTransmit(std::string * obuf)

{
 int x = obuf->length();
 UBYTE * dp = new UBYTE[x+4];
 memcpy(dp+4, obuf->data(), x);
 dp[0] = 0;
 dp[1] = 0;
 dp[2] = 0;
 dp[3] = 1;
 TxFramedMessage(&dp[0], x + 4);
 delete[] dp;
}

void CTI3Session::StartCTI3Subscribe(CTI3Lines * Alines)
{
 Message msg;
 std::string obuf;
 Subscribe * s = msg.mutable_subscribe();
 s->set_requestid(nextrequestid++);
 s->set_subscribe_id(Alines->subscriptionid);
 s->set_timeout(Alines->timeout);
 SubscribeLines * slines = s->mutable_lines();
 slines->set_flags(7);
 msg.SerializeToString(&obuf);
 FrameAndTransmit(&obuf);
}

And decoding:

void CTI3Session::RxFramedMessage(UBYTE * dp, int len)
{
 if(len > 4)
 {
 if((dp[0] == 0) && (dp[1] == 0) && (dp[2] == 0) && (dp[3] == 1))
 {
 std::string istring(dp + 4, dp + len - 4);
 Message m;
 m.ParseFromString(istring);
 if(m.has_notify())
 {
 ULONG subscribeid = (ULONG)m.notify().subscribe_id();
 ULONG notifyid = (ULONG)m.notify().notify_id();
 CTI3GeneralSubscription * ss = FindSubscription(subscribeid);
 if(ss)
 {
 if(ss->OnNotify(m.notify()))
 {
 NotifyAck(subscribeid, notifyid);
 }
 }
 }

// Add your code here for other payloads
 }
 }
}

Java
You get “protobuf-java-3.10.0.jar” from github
Compiling the proto file using protoc yields “IpoMtcti3.java”

R:\google>protoc --java_out=R:\google ipo_mtcti3.proto

…

24/10/2019 17:04 2,099,987 IpoMtcti3.java

These two objects (the jar and the java) go together.

The primary object is “IpoMtcti3.Message”

To build an serialize a simple lines subscription, looks something like:

 IpoMtcti3.SubscribeLines linesSubscribe =

IpoMtcti3.SubscribeLines.newBuilder().setFlags(1).build();

 IpoMtcti3.Subscribe subscribeMsg =

IpoMtcti3.Subscribe.newBuilder().setSubscribeId(subscribeId)

 .setRequestid(26)

 .setTimeout(0)

 .setLines(linesSubscribe)

 .build();

 IpoMtcti3.Message Msg =

IpoMtcti3.Message.newBuilder().setSubscribe(subscribeMsg).build();

 target.sendProtoMsg(Msg.toByteArray()); // Need to prepend the framing…

To decode messages from the line:

 public void handleMessage(byte[] message) {

 byte[] msgBytes = source.afterReceive(message);

 try {

 IpoMtcti3.Message Msg = IpoMtcti3.Message.parseFrom(msgBytes);

 clientEndPoint.processMessageFromIPO(Msg);

 } catch (InvalidProtocolBufferException ipbe) {

 System.out.println("Invalid protocol buffer exception");

 }

 }

Javascript
R:\google>protoc --js_out=R:\google ipo_mtcti3.proto

This generates a bunch of js files for each defined object, the main one being:
Message.js
This has the functions to serialize and deserialize the binary data into and out of the ‘Message’
object
I don’t have any code for using this.

Establishing a Websocket connection
HTTP: 192.168.42.31(4096)-(443) HTTPSession(Secure) (Total = 2)
HTTP: 192.168.42.31(4096)-(443) HTTPSession: Operational

HTTP: 192.168.42.31(4096)-(443) HTTPSession: TLSOperational Resumed=false
 52346mS HTTP: Secure Rx Src: 192.168.42.31(4096)-(443)
 GET /tpkt/openapi HTTP/1.1
 Connection: Upgrade
 Authorization: Basic ****************************  “TestApplication:password” encoded as Base64
 User-Agent: MyUserAgent 1.0
 Host: 192.168.42.11  Try to avoid populating “Host” header. It is un-necessary.
 Upgrade: websocket
 Sec-WebSocket-Key:
 Sec-WebSocket-Protocol: openapi
 Sec-WebSocket-Version: 13
HTTP: 192.168.42.31(4096)-(443) HTTPServerSessionIO: stCreationCallback(7)
HTTP: Public IP=192.168.42.31 Private IP=Not set
HTTP: 192.168.42.31(4096)-(443) HTTPServerSessionIO: stCreationCallback URI is authenticated
HTTP: ClientSessionsMgr::PopulatePwd(): Enter
HTTP: 192.168.42.31(4096) HTTPWebSocketUpgradeServerSessionIO: stCreationCallback
HTTP: 192.168.42.31(4096) HTTPWebSocketUpgradeServerSessionIO
HTTP: 192.168.42.31(4096) HTTPWebSocketUpgradeServerSessionIO: SetState Schedule
HTTP: 192.168.42.31(4096) HTTPWebSocketUpgradeServerSessionIO: SetState Proceed
 52371mS CTI3: session=1 Start  When successful, you see this
 52371mS HTTP: Secure Tx Dest: 192.168.42.31(4096)-(443)
 HTTP/1.1 101 Switching Protocols
 Connection: Upgrade
 Server: IPOffice/WebSocketServer/
 Upgrade: websocket
 Sec-WebSocket-Accept: JU7m3Vkt8i15EzHqOXXGrxlnN5I=
 Sec-WebSocket-Protocol: openapi
 Sec-WebSocket-Version: 13

First payload
This is a typical lines subscription

 Message
 {
 subscribe
 {
 requestid=1
 subscribe_id=1
 timeout=3600
 lines
 {
 flags=7
 }
 }
 }

It should encode as exactly these 14 bytes:

1A 0C 08 01 10 01 18 90 1C C2 02 02 08 07

 With framing, it should be:

00 00 00 01 1A 0C 08 01 10 01 18 90 1C C2 02 02 08 07

If you send it correctly, you will see it decoded on SysMonitor.

Early releases of IP Office
Before Release 11.1.0.0, this interface is under controlled introduction, and may not be fully

functional. Particularly, the error reporting does not really exist.

You need to add a NoUser source number for releases prior to 11.1.0.0

Additional features will be added with new releases.

In 11.1.0.0 there is a GeneralCmd called “getversioninfo”, which is a simple way to find out what

release of IP Office you are connected to.

Something like this:

 Message
 {
 generalcmd
 {
 requestid=3000
 getversioninfo
 }
 }

 Message
 {
 generaldata
 {
 responseid=3000
 versioninfo=IP Office 11.1.0.0 build 600
 }
 }

It does not work on versions before 11.1.0.0

Change History

Issue Date Modified by

1.0 15/4/2020 Initial Creation Lewis Waldron

