
 IP Office™ Platform
Description of WebRTC SDK API

Description of IP Office WebRTC SDK API
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

© 2020 Avaya Inc. All Rights Reserved.
Notice
While reasonable efforts have been made to ensure that the information in this document is complete and accurate at the time of
printing, Avaya assumes no liability for any errors. Avaya reserves the right to make changes and corrections to the information in
this document without the obligation to notify any person or organization of such changes.

Documentation disclaimer
“Documentation” means information published by Avaya in varying mediums which may include product information, operating
instructions and performance specifications that Avaya may generally make available to users of its products and Hosted Services.
Documentation does not include marketing materials. Avaya shall not be responsible for any modifications, additions, or deletions to
the original published version of documentation unless such modifications, additions, or deletions were performed by Avaya. End
User agrees to indemnify and hold harmless Avaya, Avaya's agents, servants and employees against all claims, lawsuits, demands
and judgments arising out of, or in connection with, subsequent modifications, additions or deletions to this documentation, to the
extent made by End User.

Link disclaimer
Avaya is not responsible for the contents or reliability of any linked websites referenced within this site or documentation provided by
Avaya. Avaya is not responsible for the accuracy of any information, statement or content provided on these sites and does not
necessarily endorse the products, services, or information described or offered within them. Avaya does not guarantee that these
links will work all the time and has no control over the availability of the linked pages.

Warranty
Avaya provides a limited warranty on Avaya hardware and software. Refer to your sales agreement to establish the terms of the
limited warranty. In addition, Avaya’s standard warranty language, as well as information regarding support for this product while
under warranty is available to Avaya customers and other parties through the Avaya Support website:
https://support.avaya.com/helpcenter/getGenericDetails?detailId=C20091120112456651010 under the link “Warranty & Product
Lifecycle” or such successor site as designated by Avaya. Please note that if You acquired the product(s) from an authorized Avaya
Channel Partner outside of the United States and Canada, the warranty is provided to You by said Avaya Channel Partner and not
by Avaya.
“Hosted Service” means a hosted service subscription that You acquire from either Avaya or an authorized Avaya Channel Partner
(as applicable) and which is described further in Hosted SAS or other service description documentation regarding the applicable
hosted service. If You purchase a Hosted Service subscription, the foregoing limited warranty may not apply but You may be entitled
to support services in connection with the Hosted Service as described further in your service description documents for the
applicable Hosted Service. Contact Avaya or Avaya Channel Partner (as applicable) for more information.

Hosted Service
THE FOLLOWING APPLIES IF YOU PURCHASE A HOSTED SERVICE SUBSCRIPTION FROM AVAYA OR AN AVAYA
CHANNEL PARTNER (AS APPLICABLE), THE TERMS OF USE FOR HOSTED SERVICES ARE AVAILABLE ON THE AVAYA
WEBSITE, HTTPS://SUPPORT.AVAYA.COM/LICENSEINFO UNDER THE LINK “Avaya Terms of Use for Hosted Services” OR
SUCH SUCCESSOR SITE AS DESIGNATED BY AVAYA, AND ARE APPLICABLE TO ANYONE WHO ACCESSES OR USES
THE HOSTED SERVICE. BY ACCESSING OR USING THE HOSTED SERVICE, OR AUTHORIZING OTHERS TO DO SO, YOU,
ON BEHALF OF YOURSELF AND THE ENTITY FOR WHOM YOU ARE DOING SO (HEREINAFTER REFERRED TO
INTERCHANGEABLY AS “YOU” AND “END USER”), AGREE TO THE TERMS OF USE. IF YOU ARE ACCEPTING THE TERMS
OF USE ON BEHALF A COMPANY OR OTHER LEGAL ENTITY, YOU REPRESENT THAT YOU HAVE THE AUTHORITY TO
BIND SUCH ENTITY TO THESE TERMS OF USE. IF YOU DO NOT HAVE SUCH AUTHORITY, OR IF YOU DO NOT WISH TO
ACCEPT THESE TERMS OF USE, YOU MUST NOT ACCESS OR USE THE HOSTED SERVICE OR AUTHORIZE ANYONE TO
ACCESS OR USE THE HOSTED SERVICE. YOUR USE OF THE HOSTED SERVICE SHALL BE LIMITED BY THE NUMBER
AND TYPE OF LICENSES PURCHASED UNDER YOUR CONTRACT FOR THE HOSTED SERVICE, PROVIDED, HOWEVER,
THAT FOR CERTAIN HOSTED SERVICES IF APPLICABLE, YOU MAY HAVE THE OPPORTUNITY TO USE FLEX LICENSES,
WHICH WILL BE INVOICED ACCORDING TO ACTUAL USAGE ABOVE THE CONTRACT LICENSE LEVEL. CONTACT AVAYA
OR AVAYA’S CHANNEL PARTNER FOR MORE INFORMATION ABOUT THE LICENSES FOR THE APPLICABLE HOSTED
SERVICE, THE AVAILABILITY OF ANY FLEX LICENSES (IF APPLICABLE), PRICING AND BILLING INFORMATION, AND
OTHER IMPORTANT INFORMATION REGARDING THE HOSTED SERVICE.

Licenses
THE SOFTWARE LICENSE TERMS AVAILABLE ON THE AVAYA WEBSITE, HTTPS://SUPPORT.AVAYA.COM/LICENSEINFO,
UNDER THE LINK “AVAYA SOFTWARE LICENSE TERMS (Avaya Products)” OR SUCH SUCCESSOR SITE AS DESIGNATED
BY AVAYA, ARE APPLICABLE TO ANYONE WHO DOWNLOADS, USES AND/OR INSTALLS AVAYA SOFTWARE,
PURCHASED FROM AVAYA INC., ANY AVAYA AFFILIATE, OR AN AVAYA CHANNEL PARTNER (AS APPLICABLE) UNDER A
COMMERCIAL AGREEMENT WITH AVAYA OR AN AVAYA CHANNEL PARTNER. UNLESS OTHERWISE AGREED TO BY
AVAYA IN WRITING, AVAYA DOES NOT EXTEND THIS LICENSE IF THE SOFTWARE WAS OBTAINED FROM ANYONE
OTHER THAN AVAYA, AN AVAYA AFFILIATE OR AN AVAYA CHANNEL PARTNER; AVAYA RESERVES THE RIGHT TO TAKE
LEGAL ACTION AGAINST YOU AND ANYONE ELSE USING OR SELLING THE SOFTWARE WITHOUT A LICENSE. BY
INSTALLING, DOWNLOADING OR USING THE SOFTWARE, OR AUTHORIZING OTHERS TO DO SO, YOU, ON BEHALF OF
YOURSELF AND THE ENTITY FOR WHOM YOU ARE INSTALLING, DOWNLOADING OR USING THE SOFTWARE
(HEREINAFTER REFERRED TO INTERCHANGEABLY AS “YOU” AND “END USER”), AGREE TO THESE TERMS AND
CONDITIONS AND CREATE A BINDING CONTRACT BETWEEN YOU AND AVAYA INC. OR THE APPLICABLE AVAYA
AFFILIATE (“AVAYA”).

Description of IP Office WebRTC SDK API Page 2
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

https://support.avaya.com/helpcenter/getGenericDetails?detailId=C20091120112456651010%20
https://SUPPORT.AVAYA.COM/LICENSEINFO
https://SUPPORT.AVAYA.COM/LICENSEINFO%20

Avaya grants You a license within the scope of the license types described below, with the exception of Heritage Nortel Software,
for which the scope of the license is detailed below. Where the order documentation does not expressly identify a license type, the
applicable license will be a Designated System License. The applicable number of licenses and units of capacity for which the
license is granted will be one (1), unless a different number of licenses or units of capacity is specified in the documentation or other
materials available to You. “Software” means computer programs in object code, provided by Avaya or an Avaya Channel Partner,
whether as stand-alone products, pre-installed on hardware products, and any upgrades, updates, patches, bug fixes, or modified
versions thereto. “Designated Processor” means a single stand-alone computing device. “Server” means a Designated Processor
that hosts a software application to be accessed by multiple users. “Instance” means a single copy of the Software executing at a
particular time: (i) on one physical machine; or (ii) on one deployed software virtual machine (“VM”) or similar deployment.

License type(s)
Designated System(s) License (DS). End User may install and use each copy or an Instance of the Software only on a number of
Designated Processors up to the number indicated in the order. Avaya may require the Designated Processor(s) to be identified in
the order by type, serial number, feature key, Instance, location or other specific designation, or to be provided by End User to
Avaya through electronic means established by Avaya specifically for this purpose.

Concurrent User License (CU). End User may install and use the Software on multiple Designated Processors or one or more
Servers, so long as only the licensed number of Units are accessing and using the Software at any given time. A “Unit” means the
unit on which Avaya, at its sole discretion, bases the pricing of its licenses and can be, without limitation, an agent, port or user, an
e-mail or voice mail account in the name of a person or corporate function (e.g., webmaster or helpdesk), or a directory entry in the
administrative database utilized by the Software that permits one user to interface with the Software. Units may be linked to a
specific, identified Server or an Instance of the Software.

Database License (DL). End User may install and use each copy or an Instance of the Software on one Server or on multiple
Servers provided that each of the Servers on which the Software is installed communicates with no more than one Instance of the
same database.

CPU License (CP). End User may install and use each copy or Instance of the Software on a number of Servers up to the number
indicated in the order provided that the performance capacity of the Server(s) does not exceed the performance capacity specified
for the Software. End User may not re-install or operate the Software on Server(s) with a larger performance capacity without
Avaya’s prior consent and payment of an upgrade fee.

Named User License (NU). You may: (i) install and use each copy or Instance of the Software on a single Designated Processor or
Server per authorized Named User (defined below); or (ii) install and use each copy or Instance of the Software on a Server so long
as only authorized Named Users access and use the Software. “Named User”, means a user or device that has been expressly
authorized by Avaya to access and use the Software. At Avaya’s sole discretion, a “Named User” may be, without limitation,
designated by name, corporate function (e.g., webmaster or helpdesk), an e-mail or voice mail account in the name of a person or
corporate function, or a directory entry in the administrative database utilized by the Software that permits one user to interface with
the Software.

Shrinkwrap License (SR). You may install and use the Software in accordance with the terms and conditions of the applicable
license agreements, such as “shrinkwrap” or “clickthrough” license accompanying or applicable to the Software (“Shrinkwrap
License”).

Heritage Nortel Software
“Heritage Nortel Software” means the software that was acquired by Avaya as part of its purchase of the Nortel Enterprise Solutions
Business in December 2009. The Heritage Nortel Software is the software contained within the list of Heritage Nortel Products
located at https://support.avaya.com/LicenseInfo under the link “Heritage Nortel Products” or such successor site as designated by
Avaya. For Heritage Nortel Software, Avaya grants Customer a license to use Heritage Nortel Software provided hereunder solely to
the extent of the authorized activation or authorized usage level, solely for the purpose specified in the Documentation, and solely
as embedded in, for execution on, or for communication with Avaya equipment. Charges for Heritage Nortel Software may be based
on extent of activation or use authorized as specified in an order or invoice.

Copyright
Except where expressly stated otherwise, no use should be made of materials on this site, the Documentation, Software, Hosted
Service, or hardware provided by Avaya. All content on this site, the documentation, Hosted Service, and the product provided by
Avaya including the selection, arrangement and design of the content is owned either by Avaya or its licensors and is protected by
copyright and other intellectual property laws including the sui generis rights relating to the protection of databases. You may not
modify, copy, reproduce, republish, upload, post, transmit or distribute in any way any content, in whole or in part, including any
code and software unless expressly authorized by Avaya. Unauthorized reproduction, transmission, dissemination, storage, and or
use without the express written consent of Avaya can be a criminal, as well as a civil offense under the applicable law.

Virtualization
The following applies if the product is deployed on a virtual machine. Each product has its own ordering code and license types.
Note that each Instance of a product must be separately licensed and ordered. For example, if the end user customer or Avaya
Channel Partner would like to install two Instances of the same type of products, then two products of that type must be ordered.

Third Party Components
“Third Party Components” mean certain software programs or portions thereof included in the Software or Hosted Service may
contain software (including open source software) distributed under third party agreements (“Third Party Components”), which

Description of IP Office WebRTC SDK API Page 3
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

https://support.avaya.com/LicenseInfo

contain terms regarding the rights to use certain portions of the Software (“Third Party Terms”). As required, information regarding
distributed Linux OS source code (for those products that have distributed Linux OS source code) and identifying the copyright
holders of the Third Party Components and the Third Party Terms that apply is available in the products, Documentation or on
Avaya’s website at: https://support.avaya.com/Copyright or such successor site as designated by Avaya. The open source software
license terms provided as Third Party Terms are consistent with the license rights granted in these Software License Terms, and
may contain additional rights benefiting You, such as modification and distribution of the open source software. The Third Party
Terms shall take precedence over these Software License Terms, solely with respect to the applicable Third Party Components to
the extent that these Software License Terms impose greater restrictions on You than the applicable Third Party Terms.

The following applies if the H.264 (AVC) codec is distributed with the product. THIS PRODUCT IS LICENSED UNDER THE AVC
PATENT PORTFOLIO LICENSE FOR THE PERSONAL USE OF A CONSUMER OR OTHER USES IN WHICH IT DOES
NOT RECEIVE REMUNERATION TO (i) ENCODE VIDEO IN COMPLIANCE WITH THE AVC STANDARD (“AVC VIDEO”)
AND/OR (ii) DECODE AVC VIDEO THAT WAS ENCODED BY A CONSUMER ENGAGED IN A PERSONAL ACTIVITY AND/OR
WAS OBTAINED FROM A VIDEO PROVIDER LICENSED TO PROVIDE AVC VIDEO. NO LICENSE IS GRANTED OR SHALL BE
IMPLIED FOR ANY OTHER USE. ADDITIONAL INFORMATION MAY BE OBTAINED FROM MPEG LA, L.L.C. SEE
HTTP://WWW.MPEGLA.COM.

Service Provider
THE FOLLOWING APPLIES TO AVAYA CHANNEL PARTNER’S HOSTING OF AVAYA PRODUCTS OR SERVICES. THE
PRODUCT OR HOSTED SERVICE MAY USE THIRD PARTY COMPONENTS SUBJECT TO THIRD PARTY TERMS AND
REQUIRE A SERVICE PROVIDER TO BE INDEPENDENTLY LICENSED DIRECTLY FROM THE THIRD PARTY SUPPLIER. AN
AVAYA CHANNEL PARTNER’S HOSTING OF AVAYA PRODUCTS MUST BE AUTHORIZED IN WRITING BY AVAYA AND IF
THOSE HOSTED PRODUCTS USE OR EMBED CERTAIN THIRD PARTY SOFTWARE, INCLUDING BUT NOT LIMITED TO
MICROSOFT SOFTWARE OR CODECS, THE AVAYA CHANNEL PARTNER IS REQUIRED TO INDEPENDENTLY OBTAIN ANY
APPLICABLE LICENSE AGREEMENTS, AT THE AVAYA CHANNEL PARTNER’S EXPENSE, DIRECTLY FROM THE
APPLICABLE THIRD PARTY SUPPLIER.

WITH RESPECT TO CODECS, IF THE AVAYA CHANNEL PARTNER IS HOSTING ANY PRODUCTS THAT USE OR EMBED
THE G.729 CODEC, H.264 CODEC, OR H.265 CODEC, THE AVAYA CHANNEL PARTNER ACKNOWLEDGES AND AGREES
THE AVAYA CHANNEL PARTNER IS RESPONSIBLE FOR ANY AND ALL RELATED FEES AND/OR ROYALTIES. THE G.729
CODEC IS LICENSED BY SIPRO LAB TELECOM INC. SEE WWW.SIPRO.COM/CONTACT.HTML. THE H.264 (AVC) CODEC IS
LICENSED UNDER THE AVC PATENT PORTFOLIO LICENSE FOR THE PERSONAL USE OF A CONSUMER OR OTHER USES
IN WHICH IT DOES NOT RECEIVE REMUNERATION TO: (I) ENCODE VIDEO IN COMPLIANCE WITH THE AVC STANDARD
(“AVC VIDEO”) AND/OR (II) DECODE AVC VIDEO THAT WAS ENCODED BY A CONSUMER ENGAGED IN A PERSONAL
ACTIVITY AND/OR WAS OBTAINED FROM A VIDEO PROVIDER LICENSED TO PROVIDE AVC VIDEO. NO LICENSE IS
GRANTED OR SHALL BE IMPLIED FOR ANY OTHER USE. ADDITIONAL INFORMATION FOR H.264 (AVC) AND H.265 (HEVC)
CODECS MAY BE OBTAINED FROM MPEG LA, L.L.C. SEE HTTP://WWW.MPEGLA.COM.

Compliance with Laws
Customer acknowledges and agrees that it is responsible for complying with any applicable laws and regulations, including, but not
limited to laws and regulations related to call recording, data privacy, intellectual property, trade secret, fraud, and music
performance rights, in the country or territory where the Avaya product is used.

Preventing Toll Fraud
“Toll Fraud” is the unauthorized use of your telecommunications system by an unauthorized party (for example, a person who is not
a corporate employee, agent, subcontractor, or is not working on your company's behalf). Be aware that there can be a risk of Toll
Fraud associated with your system and that, if Toll Fraud occurs, it can result in substantial additional charges for your
telecommunications services.

Avaya Toll Fraud intervention
If You suspect that You are being victimized by Toll Fraud and You need technical assistance or support, call Technical Service
Center Toll Fraud Intervention Hotline at +1-800-643-2353 for the United States and Canada. For additional support telephone
numbers, see the Avaya Support website: https://support.avaya.com or such successor site as designated by Avaya.

Security Vulnerabilities
Information about Avaya’s security support policies can be found in the Security Policies and Support section of
https://support.avaya.com/security. Suspected Avaya product security vulnerabilities are handled per the Avaya Product Security
Support Flow (https://support.avaya.com/css/P8/documents/100161515).

Downloading Documentation
For the most current versions of Documentation, see the Avaya Support website: https://support.avaya.com or such successor site
as designated by Avaya.

Contact Avaya Support
See the Avaya Support website: https://support.avaya.com for product or Hosted Service notices and articles, or to report a problem
with your Avaya product or Hosted Service. For a list of support telephone numbers and contact addresses, go to the Avaya Support
website: https://support.avaya.com (or such successor site as designated by Avaya), scroll to the bottom of the page, and select
Contact Avaya Support.

Description of IP Office WebRTC SDK API Page 4
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

file:///C:%5CUsers%5Camv%5CDocuments%5CDevConnect%5C:%20https:%5Csupport.avaya.com
https://support.avaya.com/css/P8/documents/100161515
https://support.avaya.com/security
http://WWW.MPEGLA.COM/
http://WWW.MPEGLA.COM/
https://support.avaya.com/Copyright%20

Contents

Description of IP Office WebRTC SDK API Page 5
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

1 Introduction

Purpose
This document forms part of the SDK for the WebRTC API. An example application is
included in the SDK to demonstrate/exercise the interface detailed here. This document
provides detailed information about the WebRTC SDK API for IP Office Release 11.1

Intended Audience
This document is for Dev Connect partners developing or integrating web portals or
apps to have IP Office based WebRTC functionality integrated in it.

Document Changes

Issu e Date Descr ip t io n

1.0 July 19, 2015 Initial draft

1.1 Dec 22, 2016

Addition of new optional APIs to get the media devices ,
select the media devices and attach the video media
stream s to video media elemen t s .

Addition of new optional events to indicate video
stream availability and media device list availability.

1.2 Jan 4, 2017

Addition of new API to get Far- end’s full-name

Addition of new optional event to indicate audio stream
availability.

1.3 March 9, 2017
Addition of new API to get the subject of the call or
subject of the meeting if any

1.4 May 25, 2017
Changes in the param e t e r s passed to onCallTermina t e
function

1.5 June 21, 2017
Addition of new API to get altern a t e server details and
changes in setConfigur a t ion API and an optional event
to indicat e authen tica t ion token renewal resul t.

1.6 July 11, 2017

Addition of a section on Resiliency, new proper t ies
passed via callback_onRegis t r a t ionS t a t eC h a n g e d
event, changes in return object of make call API during
resiliency

1.7 August 11, 2017

Modification in the param e t e r s passed to
onRegist ra t ionS ta t eC h a n g e d and
onAuthTokenRen ew e d callback functions. Addition of
new API to enable login via resiliency token.

1.8 Septem b e r 14, 2017 Added Certifica te Requirem e n t s for Resiliency.

Added requirem e n t of hosting Example web page on

Description of IP Office WebRTC SDK API Page 6
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

Web Server.

1.9 October 13, 2017
Addition of new API to gener a t e new applica tion
instance ID. Modification in the configura tion object
passed as first param e t e r to setConfigura t ion API.

1.10 October 31, 2017 Update Client references

1.11 November 15, 2017
Added new APIs to get and set stun settings any- time
after the call to login()

1.12 Decemb er 28,2017
User licensing informat ion included in Licensing
(1.5.2).

Additional informat ion included for addVideo (4.2.13).

1.13 July 13, 2018

Clarify that lack of Safari browser suppor t in WebRTC
SDK means no suppor t for iOS at this time (1.4, 2.1)

Updated behavior of ICE candida t e gathering during
makeCall (4.2.1)

1.14 November 19, 2018

SDK zip file updated to resolve two issues below.

 Hold Unhold at Called par ty end fails from Chrome
version 69 or later

 In some cases of video call the called party is not
getting audio- video stream events

Call out that WebRTC Gateway resiliency is suppor t ed
from R11 and later only (1.8).

1.15 January 3, 2019 Update suppor ted releases for each API in section 4

1.16 Februa ry 27, 2019
Chrome 72 WebRTC implemen t a t ion changes upda ted
in SDK

1.17 April 22, 2019
Removed rest r ic t ion of 6 charac t e r s of TLD in FQDN

Playing of message provided by remote end in ring
back stage

1.18 May 23, 2019 Fix Missing Video Window after resum e from hold

1.19 Aug 21, 2019 Updated known issues on Firefox

1.20 Dec 20, 2019
Suppor t three concur r en t calls to allow consul ta t ive
transfe r of second call.

1.21 Oct 21, 2020
Suppor t for unified SDP

Suppor t for DTLS1.2.

Background
WebRTC is a set of open standards that enables Real-Time Communications (RTC) for
web browsers without any plugins.
WebRTC provides an opportunity to enable rich, high quality, RTC applications to be
developed for the browser, mobile platforms and allow them all to communicate via a
common set of protocols.
WebRTC Gateway for IP Office 11.1 provides capability for IP Office users to have
voice, video calling capabilities via WebRTC supported browsers (Chrome and Firefox
only – not Internet Explorer, Edge or Safari) across multiple platforms.

Description of IP Office WebRTC SDK API Page 7
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

Note that Apple requires use of Safari browser for WebRTC support on iOS; the
WebRTC SDK does not yet include Safari support – so there is no support for iOS with
the WebRTC SDK at this time. Also note that DTMF is only supported with Chrome
browser – not with Firefox.
Avaya WebRTC library SDK (AWL SDK) for IP Office is simple JavaScript SDK for
adding Softphone functionality for Web based applications, with built in documentation

Description of IP Office WebRTC SDK API Page 8
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

API

Availability
Avaya IP Office WebRTC SDK API is available for IP Office Release 11.1 with

 IP Office Server Edition
 IP Office Select and
 IP Office Preferred Edition
 Powered By Avaya 3.0 (partner hosted IP Office)

and requires that the WebRTC Gateway be deployed.
WebRTC gateway is bundled with Primary and Linux Application server of IP Office,
with the following dependencies

 Server Edition and Select contains application server along with IP Office, so no
need to install the application server.

 IP500v2 (only on Preferred Edition) – need to install Linux Application Server
separately.

Note
Avaya IP Office WebRTC SDK API Functionality is not supported with (Avaya hosted)
Avaya IP Office Cloud releases.

Licensing
There is no license required for WebRTC API.
The associated IP Office users must have Power User or Office Worker profiles to use
WebRTC.

What’s New in this release
The reference document is updated with details of supported IP Office releases for each
API in section 4.

Description of IP Office WebRTC SDK API Page 9
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

Connectivity
Avaya IP Office WebRTC SDK communicates with WebRTC Gateway ONLY over

 HTTPS Web Socket channels for signaling over port 9443
 DTLS-SRTP channels for Media on 56000-58000 (default)

The WebRTC gateway runs as a service at the HTTPS Web Socket port 9443.

Note
The one-X server and WebRTC gateway must be running to use WebRTC
functionalities.

WebRTC Gateway Signalling Port
The following TCP ports need to be opened in the firewall /corporate router, in case if
web clients reside in public internet.

Release Port Network/Application Protocol Description

11.1 9443 TCP/HTTPS/Web Socket WebRTC Signaling

The above-mentioned port is fixed and there is no provision to change. The URLs are
Web Socket Secure URLs (wss) and are active only when one-X server is running.

Description of IP Office WebRTC SDK API Page 10
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

WebRTC Gateway Media Port
The below UDP ports need to be opened in the firewall/corporate router in case of
clients resides in public internet.

Release Port Network/Application
Protocol

Description

11.1 56000-
58000(default)

(Configurable-not to be
overlapped with IP Office
media endpoint range)

UDP/DTLS-SRTP WebRTC Media

Certificate Requirements
To improve the security of the WebRTC Gateway link, users should perform the
following steps prior to using the client application.

Step 1: Obtain the CA certificate that signed the identity certificate of the WebRTC Gateway
server.
Step 2: Install the obtained certificate into Browser’s Certificate store and trust the
certificate.
Note

1) If certificate is not installed, Web Client will not be able to connect to gateway
2) The gateway does not support mutual authentication and hence, does not require

client’s certificate
3) The gateway uses the same certificate which one-X portal uses
4) The CA certificate can be obtained from Web Control Portal
5) See Avaya IP Office™ Platform Security Guidelines for more information
6) Browser required to install and trust CA Certificates of both Primary and

Secondary one-X for Resiliency

Description of IP Office WebRTC SDK API Page 11
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

WebRTC Resilience
WebRTC Gateway resiliency has a dependency on one-X Portal Resiliency, which is an
IP Office Select feature – so WebRTC Gateway resiliency is supported on Select only
and from IP Office R11 and later only. The backup WebRTC Gateway is installed by
default on the Server Edition Secondary server, providing resiliency for WebRTC
clients.
When the Primary WebRTC Gateway service is not available, failover occurs and the
Backup WebRTC Gateway becomes active. Clients automatically recognize that the
primary WebRTC Gateway is not available and log in to the backup WebRTC Gateway.
Logged in users are automatically logged in to the backup WebRTC Gateway.
When the primary WebRTC Gateway is once again available, WebRTC users are
automatically failed back to Primary WebRTC Gateway. The backup WebRTC Gateway
redirects login requests to the primary WebRTC Gateway.

Resiliency API

disableResiliency
In a WebRTC Resiliency enabled deployment, the Client application shall
enable or disable automatic failover and failback by setting parameter

Description of IP Office WebRTC SDK API Page 12
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

“disableResiliency” as “false” or “true”. Refer section setConfiguration (arg1,
callback_onConfigChanged, callback_onRegistrationStateChanged,
callback_onCallStateChanged) for more details.

 getAlternateServerConfig()
In a WebRTC Resiliency enabled deployment, the Client application can query
the Alternate Server details, to manually carry out failover and failback options.
Refer section getAlternateServerConfig() for more details.

Resiliency Events
In a WebRTC Resiliency enabled deployment, the Client application shall
display or act on appropriate resiliency events. Refer sections
callback_onRegistrationStateChanged and callback_onAuthTokenRenewed for
details.

Description of IP Office WebRTC SDK API Page 13
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

2 Getting Started
The WebRTC SDK is a collection of JavaScript application programming interfaces
(APIs), sample applications and documentation that enable developers to build
JavaScript (ECMAScript) based web client/applications.

 Avaya distributes the SDK as a zip file, namely “awl.zip”. Unzip the
downloaded “awl.zip” file to a local drive. The directory structure and the
contents will appear as below once unzip is complete.

 The "Doc" directory contains AWL SDK API usage guide (help
documentation) in html format, namely “index.html”. The “index.html” is the
start page to get started using AWL SDK API. This file is best viewed with
Google chrome browser and when launched the webpage shows the
summary of the WebRTC SDK module, pre-requisite and mandatory steps to
follow when using this AWL SDK file and the list of telephony and non-
telephony API’s. Detailed explanation with examples is available when clicked
on the respective API. The same is available in pdf format which is titled as
“Avaya_WebRTCSDK_Reference.pdf”.

 The “Example” directory has contents of a sample web page implementing
the AWL SDK API in it and shall be referred in addition to the documentation
part. The “Example” directory contains “sdk-testpage” folder. The “sdk-
testpage” directory contains “js” folder and index.html. The file “index.html” is
best viewed with Google chrome browser and is required to be hosted on
Web Server. Include the third-party JQuery library using the HTML <script>
tag in “index.html” as follows:

Description of IP Office WebRTC SDK API Page 14
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

The “js” folder contains the SDK and the “sdktest.js”. The example client code
defines a configuration object. The developer shall modify the Gateway IP
address and add the port (if necessary) as follows.
var cfg = {

serviceType: "phone",
enableVideo: true,
Gateway: {ip: "192.0.2.0", port: “9443”},
Stunserver: {ip: "", port: "3478"},
Turnserver: {ip: "", port: "3478", user: "", pwd: ""},
AppData: {applicationID: "",applicationUA: "", appInstanceID:””},
disableResiliency: false
};

The application calls the logIn and logOut APIs allowing the user to register and de-
register to Avaya IP Office, respectively. After successful registration, it allows the user
to make two calls in succession by calling the makeCall API. The developer shall modify
the arguments passed to this API as per the requirement. The application requires to be
hosted on local or external web server (for example “Apache Tomcat”). The application
allows the user to hold, unhold, pauseVideo, resumeVideo, mute, unmute and dropCall
by calling the respective Telephony APIs.

 File “awl.min.js” represents the complete AWL SDK and developers shall
keep this in their web client/application to avail Avaya IP Office WebRTC
functionalities.

Supported Browsers
Latest versions of Google Chrome and Firefox browsers are enabled with built-in
WebRTC support by default.
Note that Apple requires use of Safari browser for WebRTC support on iOS; the
WebRTC SDK does not yet include Safari support – so there is no support for iOS with
the WebRTC SDK at this time. Hold and Resume of Video Calls using Firefox browsers
result in Audio Call.
Note: Make sure that browsers have permission to access media devices, mic and
camera

Tools
Developers shall use JS/HTML5 editors like the ones listed below to view or develop a
web client/application with AWL SDK.

 Eclipse IDE for JavaScript
 Brackets
 Sublime Text

Avaya IP Office WebRTC SDK Overview
Avaya IP Office WebRTC SDK Open API is provided for web client application
integration using JavaScript language and this API can be used to develop or integrate
web pages for consuming the telephony features provided by Avaya IP Office.
Avaya IP Office WebRTC SDK is a JavaScript based minified SDK ("awl.min.js") which
takes care of WebRTC functionalities for different WebRTC enabled browsers (latest

Description of IP Office WebRTC SDK API Page 15
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

versions of Chrome and Firefox) as well handles signaling between the WebRTC
Gateway and the web browser client using a secure web socket connection.
The SDK provides Avaya IP Office WebRTC SDK Open API interface, which upon
instantiation can be used to invoke the following APIs listed below in order to consume
the telephony features provided by Avaya IP Office. The details about these APIs and
the parameters passed in them are best described in below sections.

Non Telephony API
1. isWebRTCSupported()
2. getSdkVersion()
3. setConfiguration (arg1, callback_onConfigChanged,

callback_onRegistrationStateChanged, callback_onCallStateChanged)
4. setConfiguration (arg1, callback_onConfigChanged,

callback_onRegistrationStateChanged, callback_onCallStateChanged,
onAuthTokenRenewed)

5. enableLogging()
6. setDomElements(arg1)
7. getDeviceList(callback_onDeviceListRequested)
8. setDeviceIds(arg1)
9. logIn(arg1, arg2, arg3, arg4)
10. logOut()
11. isloggedIn()
12.setLogObject (arg1)
13.disableLogging()
14.playVideo(arg1)
15.pauseVideo(arg1)
16.getAlternateServerConfig()
17. tokenLogIn(arg1, arg2, arg3, arg4)
18.generateAppInstanceID ()
19.getStunConfiguration ()
20.setStunConfiguration (arg1)

Telephony API
1. makeCall (arg1, arg2)
2. answerCall (arg1)
3. rejectCall (arg1)
4. dropCall (arg1)
5. cancelCall (arg1)
6. doHold (arg1)
7. doUnHold (arg1)
8. doMute (arg1)
9. doUnMute (arg1)
10.sendDTMF (arg1 , arg2)
11. transferCall (arg1 , arg2 , arg3)
12.getStats (arg1)
13.addVideo (arg1)
14. removeVideo (arg1)

Description of IP Office WebRTC SDK API Page 16
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

15.setMediaStream (arg1 , arg2 , arg3 , arg4)

Network Test API
1. createLoopBackConnection ()
2. endLoopBackConnection ()
3. getLoopBackStats ()

Description of IP Office WebRTC SDK API Page 17
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

1 Guidelines for using the SDK API
To experience Avaya IP Office WebRTC audio/video calls, following mandatory
guidelines have to be met first, before using any other non-Telephony or Telephony
API.

Pre-requisites
WebRTC is available with IP Office Server Edition, IP Office Select and IP Office
Preferred Edition and to access WebRTC, the associated users must have Power User
or Office Worker profiles.
The WebRTC Gateway IP address should be reachable from the web application which
is integrated with the SDK.

Mandatory steps
1. Include Avaya IP Office WebRTC SDK file “awl.min.js” in the JavaScript include

list

2. Create an AWL.Client instance as this will be used to access all the non-telephony and
telephony SDK API in section Detailed Description of API.
Example:

 var myWebRTC = new AWL . client();

3. Set all the configuration (i.e., Populate serviceType("phone" or "agent"), enableVideo,
Gateway IP address(Mandatory), Stun/Turn(Optional) server details, application data
and disableResiliency details as in the following object literal notation template('cfg'))
element(arg1) along with the four callback functions arg2, arg3, arg4 and arg5 which
would be triggered upon any configuration changes, registration/un-registration state
changes, call state changes and token renewal(if resiliency is not disabled)
respectively.
All these except arg5 are mandatory arguments to be passed while invoking
setConfiguration API. Out of all these fields in arg1 template, mandatory data to be filled
is Gateway IP address or FQDN in order to setup communication with the Avaya IP
Office WebRTC Gateway.
If the serviceType property is set as Phone service (i.e., "phone"), it provides client to be
used as Avaya IP Office extension, with its own UI, whereas if set as Agent service (i.e.,
"agent") it is better suited for scenarios where the telephony operations are controlled by
CTI application, for example in Avaya IP Office Contact Center agent extensions

For the AppData, appInstanceID is the instance Id of the application and should be
unique for each instantiation of application or AWL SDK. The appInstanceID can be
obtained from AWL SDK utility API, generateAppInstanceID().The appInstanceID is a
mandatory configuration and should be done by every AWL SDK based applications.

The applicationID and applicationUA are optional configurations to be used by third-party
application developers using AWL SDK. The applicationUA represents application name

Description of IP Office WebRTC SDK API Page 18
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

file:///E:%5CJHendrix%5CRTC%5CDocs%5CDevConnect%5Cawl-10.0.0-137%5CDoc%5Cclasses%5CAWL.client.html

registered with Avaya and applicationID represents the application identity key obtained
from Avaya after the application registered with Avaya.

Note:

1. Client Application must set the remembered/persisted appInstanceID again,
when AWL SDK is re-instantiated during Fail-over or Fail-back.

2. applicationID and applicationUA are reserved for future usage.

By default, resiliency is supported at SDK. To disable resiliency support at SDK,
applications have to set the disableResiliency property to true while passing the
configuration parameter to setConfiguration API. If disableResiliency is set true, then
AWL SDK will not renew the authentication token before it expires. Also, autologin using
token during failover and failback will not be supported and the applications have to go
for manual login during failover and failback.

Example:
 var cfg = {
 serviceType: "phone",
 enableVideo: false,
 Gateway: {ip: "192.0.2.0", port: "9443"},
 Stunserver: {ip: "", port: "3478"},
 Turnserver: {ip: "", port: "3478", user: "", pwd: ""},
 AppData: {applicationID : "", applicationUA : "",appInstanceID : ""
},
 disableResiliency : false
 };

 myWebRTC.setConfiguration(cfg, onConfigChanged,
onRegistrationStateChanged, onCallListener, onAuthTokenRenewed);

/*
Where,

 cfg: arg1
 onConfigChanged: callback_onConfigChanged
 onRegistrationStateChanged: callback_onRegistrationStateChanged
 onCallListener: callback_onCallStateChanged
 onAuthTokenRenewed: callback_onAuthTokenRenewed
*/

The above API call invokes the configuration change callback function which was
passed as 'callback_onConfigChan g e d ' earlier with the result and reason
associated with it.

4. Invoke login API with the Avaya IP Office SIP username and password as the WebRTC
client's username and password in the logIn API.

Example:

 myWebRTC.logIn('6501', '********');

 arg1 arg2

Description of IP Office WebRTC SDK API Page 19
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

The above API call invokes the registration state change callback function which was
passed as 'callback_onRegis t r a t ionS t a t eC h a n g e d ' earlier with the result and
reason associated with it.

5. Once the login (i.e., Registration) is reported successful, all the telephony API can be
invoked to make or receive calls and other on call relevant features. During call state
changes or for an incoming call 'callback_onCallStateChanged' will get triggered.

6. After successful login, if resiliency support at SDK is not disabled by the client, then the
authentication token received from the gateway will be used for autologin to alternate
server during failover and failback. Also, the authentication token will be renewed by the
SDK before its expiry.

Description of IP Office WebRTC SDK API Page 20
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

2 Detailed description of API

Non-Telephony API

isWebRTCSupported()
This API returns a Boolean result indicating whether the browser (on which this API is called)
has WebRTC capability support or not.

Arguments Passed and their description: None
Return type: Boolean

True indicates that the browser supports WebRTC API.
False indicates that the browser does not support WebRTC API.

IP Office Releases 10.1 11.0 11.1
API Support

 getSdkVersion()
This API returns the Avaya IP Office WebRTC SDK version number being used

Arguments Passed and their description: None
Return type: String
IP Office Releases 10.1 11.0 11.1
API Support

setConfiguration (arg1, callback_onConfigChanged,
callback_onRegistrationStateChanged, callback_onCallStateChanged)

This API is used to set configuration parameters in an object literal notation pattern ('cfg'
parameter as in below example) and three callback functions which would triggered
upon any configuration changes, registration/un-registration state changes and call
state changes. This API should be called before doing logIn API call. ALL THE
ARGUMENTS TO BE PASSED ARE MANDATORY while invoking setConfiguration
API. For the first argument to be passed, the serviceType ("phone" or "agent"),
enableVideo (true or false), Gateway IP address or FQDN (Mandatory), Stun/Turn
(Optional) server details are to be filled as in the following object literal notation template
('cfg'), along with the three callback functions callback_onConfigChanged,
callback_onRegistrationStateChanged and callback_onCallStateChanged which would
be triggered upon any configuration changes, registration/un-registration state changes
and call state changes respectively. Out of all these fields in arg1 template, mandatory
data to be filled is the Gateway IP address in order to setup communication with the
Avaya IP Office WebRTC Gateway.
If the serviceType property is set as Phone service (i.e., "phone"), it provides client to be
used as Avaya IP Office extension, with its own UI whereas, if set as Agent service (i.e.,
"agent") it is better suited for scenarios where the telephony operations are controlled
by CTI application.

Example:
var cfg = {

Description of IP Office WebRTC SDK API Page 21
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

 serviceType: "phone",
 enableVideo: false,
 Gateway: {ip: "192.0.2.0", port: "9443"},
 Stunserver: {ip: "", port: "3478"},
 Turnserver: {ip: "", port: "3478", user: "", pwd: ""}
 };

myWebRTC.setConfiguration(cfg, onConfigChanged, onRegistrationStateChanged,
onCallListener);

/*
cfg: arg1
onConfigChanged: callback_onConfigChanged
onRegistrationStateChanged: callback_onRegistrationStateChanged
onCallListener: callback_onCallStateChanged

*/

Example of 'callback_onCallStateChanged' class template:
 var onCallListener = function(){
 var _onNewIncomingCall = function(callId, callObj, autoAnswer){
 // application logic here
 }
 var _onCallStateChange = function(callId, callObj, event){
 // application logic here
 }
 var _onCallTerminate = function(callId, reason){
 // application logic here
 }
 var _onLoopBackNotification = function(notification){

 }
var _onVideoStreamsAvailable = function(callId, localStream,

remoteStream){
 // application logic here
 }
 var _onAudioStreamsAvailable = function(callId, localStream,
remoteStream){
 // application logic here
 }
 return{
 onNewIncomingCall: _onNewIncomingCall,
 onCallStateChange: _onCallStateChange,
 onCallTerminate: _onCallTerminate,
 onLoopBackNotification: _onLoopBackNotification,
 onVideoStreamsAvailable: _onVideoStreamsAvailable,
 onAudioStreamsAvailable: _onAudioStreamsAvailable
 };
 }

 var callback_onCallStateChanged= new _onNewIncomingCall();

Note: The setConfigura t ion API call invokes the configuration change callback function

which was passed as 'callback_onConfigChan g e d ' earlier with the result and reason
associated with it.

Description of IP Office WebRTC SDK API Page 22
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

Arguments Passed and their description:
 arg1 - object literal notation pattern as in above example 'cfg' var.
 callback_onConfigChanged - callback function that would get triggered
whenever configurations are modified (In above example, 'onConfigChanged'
represents this parameter)
 callback_onRegistrationStateChanged - callback function that would get
triggered whenever there's a change in the registration state (In above example,
'onRegistrationStateChanged' represents this parameter)
 callback_onCallStateChanged - callback function object that would trigger
'onCallStateChange' function (when a call state occurs) or 'onNewIncomingCall'
function (when there is a new incoming call arrives) or 'onCallTerminate' function(to
indicate the call terminate reason, when an established call terminates) or
'onLoopBackNotification' function(notifications and alarms to be handle at
application logic) or ‘onVideoStreamsAvailable’ function (when both local and
remote video streams are available) or ‘onAudioStreamsAvailable’ function (when
both local and remote audio streams are available) and this requires a module
reveal pattern template to be used as in above example showing
'callback_onCallStateChanged's class template.

Return type: None
 IP Office Releases 10.1 11.0 11.1
API Support

setConfiguration (arg1, callback_onConfigChanged,
callback_onRegistrationStateChanged, callback_onCallStateChanged,
onAuthTokenRenewed)

This API is used to set configuration parameters in an object literal notation pattern ('cfg'
parameter as in below example) and four callback functions which would triggered upon
any configuration changes, registration/un-registration state changes, call state changes
and authentication token renewal. This API should be called before doing logIn API
call. FIRST FOUR ARGUMENTS TO BE PASSED ARE MANDATORY while invoking
setConfiguration API. For the first argument to be passed, the serviceType ("phone" or
"agent"), enableVideo (true or false), Gateway IP address or FQDN (Mandatory),
Stun/Turn (Optional) server details, Application data and disableResiliency details are to
be filled as in the following object literal notation template ('cfg'), along with the four
callback functions callback_onConfigChanged, callback_onRegistrationStateChanged,
callback_onCallStateChanged and onAuthTokenRenewed which would be triggered
upon any configuration changes, registration/un-registration state changes, call state
changes and token renewal respectively. Out of all these fields in arg1 template,
mandatory data to be filled is the Gateway IP address in order to setup communication
with the Avaya IP Office WebRTC Gateway.

If the serviceType property is set as Phone service (i.e., "phone"), it provides client to be
used as Avaya IP Office extension, with its own UI whereas, if set as Agent service (i.e.,
"agent") it is better suited for scenarios where the telephony operations are controlled
by CTI application.

Description of IP Office WebRTC SDK API Page 23
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

For the AppData, appInstanceID is the instance Id of the application and should be
unique for each instantiation of application or AWL SDK. The appInstanceID can be
obtained from AWL SDK utility API generateAppInstanceID(). The appInstanceID is a
mandatory configuration and should be done by every AWL SDK based applications.

The applicationID and applicationUA are optional configurations to be used by third-
party application developers using AWL SDK. The applicationUA represents application
name registered with Avaya and applicationID represents the application identity key
obtained from Avaya after the application registered with Avaya.

Note:

1. Client application must set the remembered/persisted appInstanceID again,
when AWL SDK is re-instantiated during Fail-over or Fail-back

2. applicationID and applicationUA are reserved for future usage.

Example:
 var cfg = {
 serviceType: "phone",
 enableVideo: false,
 Gateway: {ip: "192.0.2.0", port: "9443"},
 Stunserver: {ip: "", port: "3478"},
 Turnserver: {ip: "", port: "3478", user: "", pwd: ""},
 AppData: {applicationID : "", applicationUA : "", appInstanceID : "" },
 disableResiliency : false
 };

myWebRTC.setConfiguration(cfg, onConfigChanged, onRegistrationStateChanged,
onCallListener, onAuthTokenRenewed);

/*

cfg: arg1
onConfigChanged: callback_onConfigChanged
onRegistrationStateChanged: callback_onRegistrationStateChanged
onCallListener: callback_onCallStateChanged
onAuthTokenRenewed: callback_onAuthTokenRenewed

*/

Example of 'callback_onCallStateChanged' class template:
 var onCallListener = function(){
 var _onNewIncomingCall = function(callId, callObj, autoAnswer){
 // application logic here
 }
 var _onCallStateChange = function(callId, callObj, event){
 // application logic here
 }
 var _onCallTerminate = function(callId, reason){
 // application logic here
 }
 var _onLoopBackNotification = function(notification){

 }

Description of IP Office WebRTC SDK API Page 24
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

var _onVideoStreamsAvailable = function(callId, localStream,
remoteStream){
 // application logic here
 }
 var _onAudioStreamsAvailable = function(callId, localStream,
remoteStream){
 // application logic here
 }
 return{
 onNewIncomingCall: _onNewIncomingCall,
 onCallStateChange: _onCallStateChange,
 onCallTerminate: _onCallTerminate,
 onLoopBackNotification: _onLoopBackNotification,
 onVideoStreamsAvailable: _onVideoStreamsAvailable,
 onAudioStreamsAvailable: _onAudioStreamsAvailable
 };
 }

 var callback_onCallStateChanged= new _onNewIncomingCall();

Note: The setConfigura t ion API call invokes the configuration change callback function

which was passed as 'callback_onConfigChan g e d ' earlier with the result and reason
associated with it.

Arguments Passed and their description:
 arg1 - object literal notation pattern as in above example 'cfg' var.
 callback_onConfigChanged - callback function that would get triggered
whenever configurations are modified (In above example, 'onConfigChanged'
represents this parameter)
 callback_onRegistrationStateChanged - callback function that would get
triggered whenever there's a change in the registration state (In above example,
'onRegistrationStateChanged' represents this parameter)
 callback_onCallStateChanged - callback function object that would trigger
'onCallStateChange' function (when a call state occurs) or 'onNewIncomingCall'
function (when there is a new incoming call arrives) or 'onCallTerminate' function(to
indicate the call terminate reason, when an established call terminates) or
'onLoopBackNotification' function(notifications and alarms to be handle at
application logic) or ‘onVideoStreamsAvailable’ function (when both local and
remote video streams are available) or ‘onAudioStreamsAvailable’ function (when
both local and remote audio streams are available) and this requires a module
reveal pattern template to be used as in above example showing
'callback_onCallStateChanged's class template.
 callback_onAuthTokenRenewed - callback function that would get triggered
whenever authentication token renewal succeeds or fails (In above example,
'onAuthTokenRenewed’ represents this parameter)

Return type: None
 IP Office Releases 10.1 11.0 11.1
API Support

Description of IP Office WebRTC SDK API Page 25
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

enableLogging()
This API enables browser console logging for displaying SDK API logs
Arguments Passed and their description: None
Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

 setDomElements(arg1)

This API used to set HTML5 video media DOM elements (i.e., video tag IDs passed in arg1)
which would be used to attach WebRTC video streams of local and remote video by the SDK

during a video call. ALL THE PARAMETERS TO BE PASSED ARE MANDATORY. This API
should be used only when a pair of DOM elements (local & remote) is fixed across multiple calls
to show local & remote video stream in it, i.e. DOM elements should be set before any call
happens. At any point of call, the active call's stream will be attached to the DOM element and it
will be re-used if the active call session changes. If the application requires dynamic video
stream control to attach it to the DOM element on fly, "onVideoStreamsAvailable" callback
approach should be used which works per call basis.

Example:

 var cfg = {
 localVideo : "", /*should pass the video tag's id value here and
this tag would be used to attach the local video stream to the user
interface*/
 remoteVideo : "" /*should pass the video tag's id value here and
this tag would be used to attach the remote video stream to the user
interface*/
 };

 myWebRTC.setDomElements(cfg);

 arg1

Note: The setDomElements API call invokes the configuration change callback function which
was passed as 'callback_onConfigChanged' earlier in setConfigura t ion API with the result
and reason associated with it.
Arguments Passed and their description:

 arg1 Object - object literal notation pattern as in above example 'cfg' var.
Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

getDeviceList(callback_onDeviceListRequested)
This API used to get all the available media devices attached to the system.

Description of IP Office WebRTC SDK API Page 26
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

Note: The getDeviceList API call would invoke the callback function which is passed as
mandatory parameter of this API.

Arguments Passed and their description:
 callback_onDeviceListRequested Object - callBack function which will be invoked once
all the devices information is found.
Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

setDeviceIds(arg1)
This API used to set Media Devices obtained by getDeviceList API call.

Example:

 var dIds = {
 audioInputID : "", - should pass the audio input device id value here
 videoInputID: "", - should pass the video input device id value here
 audioOutputID: "", - should pass the audio output device id value here and
this tag would be used to attach the remote audio stream to the user interface
 defaultId : true
 };
 myWebRTC.setDeviceIds(dIds);

 arg1

Arguments Passed and their description:
arg1 Object - object literal notation pattern as in above example 'dIds' var.
Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

logIn(arg1, arg2, arg3, arg4)
WebRTC gateway expects IP Office user name or extension and user’s password from
the AWL SDK. The gateway sends authentication request to IP Office with the client
provided credentials. The client will be notified about the result of the authentication
request once it gets the response from IP Office. WebRTC gateway acts as proxy for
the client and initiates IP Office user authentication request on-behalf of client.
Notes:

1) The IP Office user name refers to Name field in IP Office Manager
2) The IP Office extension refers to Extension field under User section in IP Office

Manager
3) The Password refers to User’s password. Not Login Code.

This API registers the WebRTC client as SIP user with the supplied arguments to IP
Office and it takes the user extension (arg1) and password (arg2) as input arguments
for internal authentication.
Note: The logIn API call invokes the registration state change callback function which
was passed as 'callback_onRegistrationStateChanged' earlier in setConfiguration API

Description of IP Office WebRTC SDK API Page 27
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

with the result and reason associated with it. If resiliency is supported and enabled, then
after successful login, authentication token will be passed to registration state change
callback function.
Arguments Passed and their description:

 arg1 String - SIP user extension
 arg2 String - Respective user(i.e., arg1) password
 arg3 String – (Optional)Flag to instruct the Gateway that allow SIP login even if

extension is taken over by other client of same service type. The value must be
either "true" or "false".

There cannot be two clients of same service type logged into the same extension
simultaneously. When an extension is logged into by a client and another client
of the same service type attempts to take the same extension, then the latter
client can instruct the Gateway to either allow the SIP login by logging out the
former client. To do this, client should pass 'true' or 'false' for the parameter arg3
in logIn.
If "true", Gateway proceeds for SIP login even if there is any logged in client for
the same extension.
If "false", Gateway checks if any client has already logged into the same
extension (arg1), proceeds for SIP login only if there is no already logged in
client. If there is any already logged in client, Gateway returns error code and
reason string containing the already logged in client's user agent.

 arg4 String – (Optional)Flag to instruct the gateway that the 'password'(arg2) is a
'token' not password.
If this argument is 'true', Gateway treats the 'arg2' as token.
If this argument is 'false', Gateway treats the 'arg2' as password.
Default setting for arg4 is ‘false’.

Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

logOut()

This API unregisters the WebRTC client (which is registered earlier as SIP user using
logIn API) from Avaya IP Office
Note: The logIn API call invokes the registration state change callback function which
was passed as 'callback_onRegistrationStateChanged' earlier in setConfiguration API
with the result and reason associated with it
Arguments Passed and their description: Non e
Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

isloggedIn()
This API is used to check if the client is currently registered or not

Description of IP Office WebRTC SDK API Page 28
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

Arguments Passed and their description: None

Return type: Boolean
True indicates that the WebRTC user extension is already registered to Avaya IP Office
False indicates that the WebRTC user extension is not registered to Avaya IP Office.

IP Office Releases 10.1 11.0 11.1
API Support

setLogObject (arg1)

This API enables SDK logging to use any JS framework provided logging object instead of
console logging unless this API is used; default logging will be console logging.

Example: myWebRTC.setLogObject($log);

 arg1

Arguments Passed and their description:
 arg1 Object - Logging Object

Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

disableLogging()

This API disables browser console logging for displaying SDK API logs
Arguments Passed and their description: Non e
Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

playVideo(arg1)
This API is to play the previously paused local video stream.

 Caution: Playing local video stream will have video played effect on all the video calls only on
9.1 version where-as from 10.0 version the local video stream shall be controllable against each
call param arg1 is mandatory if used with 10.0 and later build versions

Arguments Passed and their description:
 arg1 String - call ID parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: Boolean
True indicates the API call is successful.
False indicates the API call failed.

Description of IP Office WebRTC SDK API Page 29
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

IP Office Releases 10.1 11.0 11.1
API Support

pauseVideo(arg1)
This API is used to pause the local video stream.

Caution: Pausing local video stream will have video paused effect on all the video calls only on
9.1 versions whereas from 10.0 version it shall be controllable against each call param arg1 is
mandatory if used with 10.0 and later build versions

Arguments Passed and their description:
 arg1 String - call ID parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: Boolean
True indicates the API call is successful.
False indicates the API call failed.
IP Office Releases 10.1 11.0 11.1
API Support

getAlternateServerConfig()
This API returns the alternate server details if resiliency is supported and enabled at the server.

Arguments Passed and their description: Non e
Return type: Object
This return object contains the alternate server details like IP address, domain, port and server
type. If the returned object is null, then resiliency is either not supported or not enabled at the
server.
IP Office Releases 10.1 11.0 11.1
API Support

tokenLogIn(arg1, arg2, arg3, arg4)
This API registers the WebRTC client as SIP user with the supplied arguments to Avaya
IP office and it takes userextension(arg1), authentication token(arg2), type of
authentication token(arg3) as mandatory arguments.
The authentication token can be of two types: RESILIENCY and ESNA
The client should obtain esna token from the one-x server for a user name (Please refer
the one-x open API documentations for details). When gateway receives esna token
based authentication request, gateway contacts one-x server to obtain the IP Office
user’s password corresponding to the token. If gateway obtains the password, it initiates
regular IP Office user authentication over SIP channel.
The client can obtain resiliency token from AWL SDK.It first obtains the resiliency token
from the response object passed in the registration state change callback function
'callback_onRegistrationStateChanged' when it successfully logs in to resilient server
with user password via the logIn API. The client has to update the resiliency token

Description of IP Office WebRTC SDK API Page 30
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

whenever it is renewed. It can obtain the renewed token via the response object passed
in authentication token renewed callback function 'callback_onAuthTokenRenewed'.
Arguments Passed and their description:

 arg1 String - SIP user extension
 arg2 String - Authentication token
 arg3 String – Type of the authentication token. The supported token types are

RESILIENCY and ESNA.
 arg4 String – (Optional)Flag to instruct the Gateway that allow SIP login even if

extension is taken over by other client of same service type. The value must be
either "true" or "false".

There cannot be two clients of same service type logged into the same extension
simultaneously. When an extension is logged into by a client and another client
of the same service type attempts to take the same extension, then the latter
client can instruct the Gateway to either allow the SIP login by logging out the
former client. To do this, client should pass 'true' or 'false' for the parameter arg3
in logIn.
If "true", Gateway proceeds for SIP login even if there is any logged in client for
the same extension.
If "false", Gateway checks if any client has already logged into the same
extension (arg1), proceeds for SIP login only if there is no already logged in
client. If there is any already logged in client, Gateway returns error code and
reason string containing the already logged in client's user agent.

Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

generateAppInstanceID ()

This is utility API used to generate the application instance ID.
Note:
a) This API generates new appInstanceID for each invocation.
b) SDK will not persist the generated appInstanceID.
Arguments Passed and their description: Non e
Return type: String
IP Office Releases 10.1 11.0 11.1
API Support

getStunConfiguration ()

This API returns the STUN server configurations.
Arguments Passed and their description: Non e
Return type: Object
This return object contains the STUN server details like Stun server IP address/FQDN
and port.

Description of IP Office WebRTC SDK API Page 31
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

IP Office Releases 10.1 11.0 11.1
API Support

setStunConfiguration (arg1)

This API is used to configure STUN server details by the application any-time after call
to login(). Subsequent calls shall use new STUN server details.

Example:
 var stunServer = {ip: "example.com", port: "3478"};
 var result = myWebRTC.setStunConfiguration(stunServer);

 arg1

 if(result === "AWL_MSG_SET_STUN_CONFIG_SUCCESS"){
 console.log("Successfully configured STUN settings");
 }else{
 console.log("Could not configure STUN settings. Re-check the values");
 }

Arguments Passed and their description:
arg1 Object - object literal notation pattern as in above example 'stunServer' var.
Return type: String

Possible results that could be passed are:
AWL_MSG_SET_STUN_CONFIG_SUCCESS
AWL_MSG_SET_STUN_CONFIG_FAILED
IP Office Releases 10.1 11.0 11.1
API Support

Telephony API

makeCall (arg1, arg2)
This API is used to dial out by passing the terminating DN (arg1) and the call type being either
audio or video (arg2) and is responsible for creating WebRTC PeerConnection, Offer generation
and other call setup signaling.

Arguments Passed and their description:
 arg1 String - extension number to be dialed
 arg2 String - call Type (whether "video" or "audio" call)

Return type: Object
This return object represents the current call session's call object using which below subsequent
APIs can be invoked to retrieve information’s at different phases of the call.

1. getCallId() - Returns the unique call id used in this particular call session
2. getCallState() - Returns the current call state
3. getFarEndNumber() - Returns the Far End’s number
4. getFarEndName() – Returns the Far End’s full-name
5. getSipUri() - Returns the SipUri in string format

Example of return string format:

Description of IP Office WebRTC SDK API Page 32
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

"sip:4001@192.0.2.0:5060"
6. getSubject() – Returns the subject of the call if provided in the meeting
7. isAutoAnswer() - indicates whether the call is auto answered(true) and this is meaningful only
when the call object acts as recipient
8. isVideoCall() - indicates whether the call is video type(true) or not(false). This could be useful
particularly when there is an incoming call.

Note: The farEndName returned via getFarEndName() API will henceforth not contain the
subject of the call if any, as it can be obtained using getSubject() API.

When resiliency is supported and enabled , if the client is either in failing over, failing back or
reconnecting state, then call will not be made and make Call API returns null

Note:

SDK waits for completion of gathering ICE candidates in all the network interfaces or a timeout
of 10 seconds to initiate call. Applications shall provide progress indication to User after invoking
makeCall (arg1, arg2)

IP Office Releases 10.1 11.0 11.1
API Support

answerCall (arg1)
This API Answers an incoming call by creating WebRTC PeerConnection, answer SDP
generation and other signaling messages. This API takes care of answering the call either as an
audio/video call based on the incoming call type and whether video is enabled locally using
setDomElements API.

Arguments Passed and their description:
 arg1 String - callId parameter(obtained through the callback functions
'onNewIncomingCall' or 'onCallStateChange')

Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

rejectCall (arg1)
This API is to reject an incoming call and also resets the call session object properties.

Arguments Passed and their description:
 arg1 String - callId parameter(obtained through the callback functions
'onNewIncomingCall' or 'onCallStateChange')

Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

Description of IP Office WebRTC SDK API Page 33
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

dropCall (arg1)
This API disconnects a connected existing audio/video call and resets the call session object
properties.

Arguments Passed and their description:
 arg1 String - callId parameter(obtained through the callback functions
'onNewIncomingCall' or 'onCallStateChange')

IP Office Releases 10.1 11.0 11.1
API Support

cancelCall (arg1)
This API is to cancel a dialed call before the call is answered and also resets the call session
object properties

Arguments Passed and their description:
 arg1 String - callId parameter(this can be obtained using the call object
which is returned with makeCall API call)

Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

doHold (arg1)
This API pushes a call to hold state for an audio/video call.

Arguments Passed and their description:
 arg1 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

doUnHold (arg1)
This API retrieves a call from held to active state for an audio/video call.
Arguments Passed and their description:

 arg1 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

doMute (arg1)
This API pushes the WebRTC mic to mute state.

Description of IP Office WebRTC SDK API Page 34
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

Arguments Passed and their description:
 arg1 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: Boolean
True indicates the API call is successful.
False indicates the API call failed

IP Office Releases 10.1 11.0 11.1
API Support

doUnMute (arg1)
This API pushes the WebRTC mic to unmute state from mute condition.

Arguments Passed and their description:
 arg1 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: Boolean
True indicates the API call is successful.
False indicates the API call failed

IP Office Releases 10.1 11.0 11.1
API Support

sendDTMF (arg1 , arg2)
This API generates a DTMF Tone based on ‘arg2’ value and sends it across to the connected
peer. DTMF Tones will be generated only when DTMF support is negotiated during a call (i.e.,
Between Browser and the peer endpoint) and only Chrome browser (latest version) supports
DTMF tone generation.

Arguments Passed and their description:
 arg1 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)
 arg2 Char - It should be one of possible ITU-T supported DTMF
Tones(which are ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘0’, ‘*’, ‘#’).

Return type: None
Note
sendDTMF() API is not supported in Firefox browser
IP Office Releases 10.1 11.0 11.1
API Support

transferCall (arg1 , arg2 , arg3)
This API is used to transfer call by dialing out a new call or merging two existing calls.

Description of IP Office WebRTC SDK API Page 35
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

Arguments Passed and their description:
 arg1 String - extension or callId of the call to be transferred

 arg2 String - CallId of the existing call

 arg3 String - type of transfer (attended/Unattended)
Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

getStats (arg1)
This API is used to get the Call-Statistics of that particular call which can be accessed using the
returned array reference.

Arguments Passed and their description:
 arg1 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: Array
IP Office Releases 10.1 11.0 11.1
API Support

addVideo (arg1)
This API is used to upgrade an ongoing audio call stream to an audio+video stream.

Arguments Passed and their description:
 arg1 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: Boolean
Note: addVideo functionality is available in Chrome Browser version 64 or later; it is not
supported with Firefox.
IP Office Releases 10.1 11.0 11.1
API Support

removeVideo (arg1)
This API is used to downgrade an ongoing audio+video call stream to an audio only stream.

Arguments Passed and their description:
 arg1 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: Boolean
IP Office Releases 10.1 11.0 11.1
API Support

Description of IP Office WebRTC SDK API Page 36
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

setMediaStream (arg1 , arg2 , arg3 , arg4)
This API is to dynamically attach the video media streams with HTML5 video media
Elements provided by the application. All the parameters are mandatory. It is mandatory
for the application to call this API if DOM elements are not initially set using
setDomElements API.
Arguments Passed and their description:

 arg1 String - domElement parameter is HTML5 video media Element’s ID
or HTML5 video media element to which the stream has to be attached

 arg2 String - Stream parameter which is obtained by the call object which
is returned with makeCall API or using the stream parameter obtained by the call
state change callback function ‘onVideoStreamsAvailable’

 arg3 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

 arg4 String - domType parameter which indicates the stream type i.e.
“localVideo” or “remoteVideo”

Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

Network Test API

createLoopBackConnection ()
This API serves for network stability assessment and is accomplished by creating a WebRTC
loopback connection between the browser and the WebRTC gateway for audio and data (if
respective flags are set to TRUE) streams separately. This provides an easy way to assess the
ability of customer network by doing on demand network assessment as well as a long lived,
constant check of the network.

Arguments Passed and their description: None
Return type: None

Example:

 myWebRTC.createLoopBackConnection();

Note: The createLoopBackConnection API call invokes the callback function which was passed as
'callback_onCallStateChanged' earlier in setConfiguration API with result(either
'CONST.AWL_MSG_LOOPBACK_CONN_SUCCESSFULL' or
'CONST.AWL_MSG_LOOPBACK_CONN_FAILED' or 'AWL_MSG_LOOPBACK_CONN_LINK_ISSUE'
and reason associated with it.
IP Office Releases 10.1 11.0 11.1
API Support

Description of IP Office WebRTC SDK API Page 37
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

endLoopBackConnection ()

This API terminates the network assessment loop back connection towards the WebRTC
gateway.
Arguments Passed and their description: None
Return type: None
IP Office Releases 10.1 11.0 11.1
API Support

getLoopBackStats ()

This API generates and updates the below statistical parameters based on which network
analyzer application shall determine the network stability. These parameters are accessible
using the returned array reference.

1. 'nowPLoss' - packet lost count in each second

2. 'totPSent' - Total Packets Sent

3. 'totPLost' - Total Packets Lost

4. 'nowRTT' - Current Round Trip delay(RTT)

5. 'totPLossPercent' - Percentage of packet lost so far

6. 'maxRTT' - Peak Round trip delay

7. 'minRTT' - Min Round trip delay

8. 'avgRTT' - Average Round trip delay

9. 'totJitter' - Jitter Received (total)

10. 'nowPLossPercent' - Observed packet Loss percentage in each second

Arguments Passed and their description: None
Return type: Array
IP Office Releases 10.1 11.0 11.1
API Support

Description of IP Office WebRTC SDK API Page 38
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

3 Properties
Below are the possible resultant (string constants – response .result) properties that
could be passed in any of the call-back function events

AWL_MSG_CALL_CONNECTED String final – Indicates that the call is currently in
CONNECTED state

AWL_MSG_CALL_DISCONNECTED String final - Indicates that the call is currently in
DISCONNECTED state
AWL_MSG_CALL_FAILED String final - Indicates the call has FAILED for some reason
AWL_MSG_CALL_FAREND_UPDATE String final - Indicates that during a call, far end’s
number is UPDATED
AWL_MSG_CALL_HELD String final - Indicates that the call is currently in HELD state
AWL_MSG_CALL_IDLE String final - Indicates that a call object current state is IDLE and
is available for dialing outgoing call or receiving an incoming call
AWL_MSG_CALL_INCOMING String final - Indicates an INCOMING call state
AWL_MSG_CALL_MAXCAP_REACHED String final - Indicates that the current call is
denied due to maximum allowed concurrent call limit of three is reached already
AWL_MSG_CALL_PROGRESSING String final - Indicates that the call is progressing with
early media. When early media received from gateway, call is connected temporarily
and User may need to enter account code in this state.
AWL_MSG_CALL_RINGING String final - Indicates that the far end is in RINGING state
AWL_MSG_CALL_TRANSFER_FAILED String final - Indicates that the call TRANSFER
FAILED and Existing call connection will be retained. This is same as
AWL_MSG_CALL_CONNECTED state except the transfer failure notification.
AWL_MSG_DEVICEACCESS_FAILURE String final - Indicates logIn (arg1, arg2) API call
failure due to audio (Mic) or video (Camera) device access failure and this could be a
possible result value of the response object (i.e., resp.result) passed in the configuration
change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_DUPLICATE_LOGIN String final - Indicates a duplicate logIn (arg1, arg2)
request is received when the SIP extension is already registered and this could be a
possible result value of the response object (i.e., resp.result) passed in the registration
state change callback function 'callback_onRegistrationStateChanged'.

AWL_MSG_FAIL_BACK_FAILED String final - indicates that fail-back is not successful and this
could be a possible result value of the response object(i.e., resp.result) passed in the configuration
change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_FAIL_BACK_SUCCESS String final - indicates that client has successfully failed back
and this could be a possible result value of the response object(i.e., resp.result) passed in the
configuration change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_FAIL_OVER_FAILED String final - indicates that fail-over is not successful and this
could be a possible result value of the response object(i.e., resp.result) passed in the configuration
change callback function 'callback_onRegistrationStateChanged'
AWL_MSG_FAIL_OVER_SUCCESS String final - indicates that client has successfully failed over
and this could be a possible result value of the response object(i.e., resp.result) passed in the
configuration change callback function 'callback_onRegistrationStateChanged'

Description of IP Office WebRTC SDK API Page 39
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

AWL_MSG_FAILING_BACK String final - indicates that client is failing back to alternate server and
this could be a possible result value of the response object(i.e., resp.result) passed in the configuration
change callback function 'callback_onRegistrationStateChanged'
AWL_MSG_FAILING_OVER String final - indicates that client is failing over to alternate server and
this could be a possible result value of the response object(i.e., resp.result) passed in the configuration
change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_LINK_ISSUE_DETECTED String final - Indicates there is a link issue between
the SDK and WebRTC Gateway (i.e., no keep alive message received for about
180seconds from WebRTC Gateway) and this could be a possible result value of the
response object (i.e., resp.result) passed in the registration state change callback
function 'callback_onRegistrationStateChanged'. This shall be further used in UI to
display link issue and also let take corrective action.
AWL_MSG_LOGGEDOUT String final - Indicates logOut () API call is successful and this
could be a possible result value of the response object (i.e., resp.result) passed in the
configuration change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_LOGIN_FAILED String final - Indicates logIn (arg1, arg2) API call failure and
this could be a possible result value of the response object (i.e., resp.result) passed in
the configuration change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_LOGIN_GW_NOTCONFIGURED String final - Indicates logIn(arg1, arg2) API
call failure due to gateway IP address not configured correctly and this could be a
possible result value of the response object(i.e., resp.result) passed in the configuration
change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_LOGIN_EMPTYPASSWORD String final - Indicates logIn(arg1, arg2) API call
failure due to empty password and this could be a possible result value of the response
object(i.e., resp.result) passed in the configuration change callback function
'callback_onRegistrationStateChanged'.
AWL_MSG_LOGIN_EMPTYTOKEN String final - Indicates tokenLogIn(arg1, arg2, arg3)
API call failure due to empty token and this could be a possible result value of the
response object(i.e., resp.result) passed in the configuration change callback function
'callback_onRegistrationStateChanged'.
AWL_MSG_LOGIN_EMPTYUSERNAME String final - Indicates logIn(arg1, arg2) or
tokenLogIn(arg1, arg2, arg3) API call failure due to empty username and this could be a
possible result value of the response object(i.e., resp.result) passed in the configuration
change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_LOGIN_INVALID_TOKENTYPE String final - Indicates tokenLogIn(arg1, arg2,
arg3) API call failure due to invalid token type and this could be a possible result value
of the response object(i.e., resp.result) passed in the configuration change callback
function 'callback_onRegistrationStateChanged'
AWL_MSG_LOGIN_INVALID_TOKENTYPE
AWL_MSG_LOGIN_SUCCESS String final - Indicates logIn (arg1, arg2) API call is
successful and this could be a possible result value of the response object (i.e.,
resp.result) passed in the configuration change callback function
'callback_onRegistrationStateChanged'.
AWL_MSG_LOGIN_WEBSOCKET_FAILURE String final - Indicates logIn(arg1, arg2) API
call failure or registration failure due to web socket connectivity failure and this could be
a possible result value of the response object(i.e., resp.result) passed in the
configuration change callback function 'callback_onRegistrationStateChanged'.

Description of IP Office WebRTC SDK API Page 40
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

AWL_MSG_LOOPBACK_CONN_CLOSED String final - Indicates that the loop back is
closed
AWL_MSG_LOOPBACK_CONN_FAILED String final - Indicates that the loop back
connection to WebRTC gateway failed
AWL_MSG_LOOPBACK_CONN_LINK_ISSUE String final - Indicates that a established
loop back connection has link issue detected
AWL_MSG_LOOPBACK_CONN_SUCCESSFULL String final - Indicates that the loop back
connection to WebRTC gateway is created successfully
AWL_MSG_LOOPBACK_STATS_FAILURE String final - Indicates failure while fetching
stats on the loop back connection
AWL_MSG_RECONNECTING String final - Indicates that connection to the server is lost
and the client is attempting to reconnect to the server. This could be a possible result
value of the response object(i.e., resp.result) passed in the configuration change
callback function 'callback_onRegistrationStateChanged'
AWL_MSG_RELOGGED_IN String final - Indicates that client is re-logged in to the server
and this could be a possible result value of the response object(i.e., resp.result) passed
in the configuration change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_SETCONFIG_FAILED String final - Indicates API call of setConfiguration
(arg1, arg2, arg3, arg4) has failed and this could be a possible result value of the
response object (i.e., resp.result) passed in the configuration change callback function
'callback_onConfigChanged'.
AWL_MSG_SETCONFIG_SUCCESS String final - Indicates API call of setConfiguration
(arg1, arg2, arg3, arg4) is successful and this could be a possible result value of the
response object (i.e., resp.result) passed in the configuration change callback function
‘callback_onConfigChanged’.
AWL_MSG_SETDOM_FAILED String final - Indicates API call of setDomElements (arg1)
has failed and this could be a possible result value of the response object (i.e.,
resp.result) passed in the configuration change callback function
'callback_onConfigChanged'.
AWL_MSG_SETDOM_SUCCESS String final - Indicates API call of setDomElements
(arg1) is successful and this could be a possible result value of the response object (i.e.,
resp.result) passed in the configuration change callback function
'callback_onConfigChanged'.
AWL_MSG_TOKEN_RENEW_FAILED String final - Indicates failure while renewing the
authentication token and this could be a possible result value of the response object
(i.e., resp.result) passed in the configuration change callback function
'callback_onAuthTokenRenewed’.
AWL_MSG_TOKEN_RENEW_SUCCESS String final - Indicates that authentication token
is successfully renewed and this could be a possible result value of the response object
(i.e., resp.result) passed in the configuration change callback function
'callback_onAuthTokenRenewed’.
AWL_MSG_WEBRTC_NOTSUPPORTED String final - Indicates that the browser does not
support WebRTC API and this could be a possible return value for isWebRTCSupported
API call

Description of IP Office WebRTC SDK API Page 41
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

AWL_MSG_WEBRTC_SUPPORTED String final - Indicates that the browser does support
WebRTC API and this could be a possible return value for isWebRTCSupported API
call
Below are the string constants that could be passed as arguments in tokenLogIn API:
RESILIENCY String final - This could be a possible argument value of the authentication
type (i.e., authType) passed in the tokenLogIn(arg1, arg2, arg3).
ESNA String final - This could be a possible argument value of the authentication type
(i.e., authType) passed in the tokenLogIn(arg1, arg2, arg3) API.
AWL_MSG_SET_STUN_CONFIG_FAILED String final - Indicates API call of
setStunConfiguration (arg1) has failed.
AWL_MSG_SET_STUN_CONFIG_SUCCESS String final - Indicates API call of
setStunConfiguration (arg1) is successful.

Description of IP Office WebRTC SDK API Page 42
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

3 Events

callback_onConfigChanged

This callback function parameter (as arg2 parameter) used in setConfiguration API and this has
to be implemented at the application level. This would be invoked whenever configuration

change or DOM Element change is attempted using setConfigura t ion API and this callback
function will be triggered with response object(arg1) containing a result(arg1.result) and

reason(arg1.reason) for the configuration change attempted with setConfigura t ion API call.
Possible result (string constants - resp.result) that could be passed in this callback function is

AWL_MSG_SETCONFIG_SUCCESS
AWL_MSG_SETCONFIG_FAILED
AWL_MSG_SETDOM_SUCCESS
AWL_MSG_SETDOM_FAILED

Below example is a sample implementation of 'callback_onConfigChan g e d ’ (i.e.,
onConfigChanged)' function at the application level:

 function onConfigChanged (resp) {
 console.log('\n onConfigChanged :: RESULT = ' + resp.result);
 console.log('\n onConfigChanged :: reason = ' + resp.reason);
 }

Even t Payloa d:

resp Object - This object can be used to retrieve result and reason properties further. All
the properties are string constants.

Example:
 var resp = {
 result: "",
 reason: ""
 };

callback_onRegistrationStateChanged

This callback function is the parameter (as arg3 parameter) used in setConfiguration API and
this has to be implemented at the application level. This callback function will be triggered
whenever there's a change in the registration/un-registration state or when there is a web
socket connectivity failure. The response object (arg1) would contain a result (arg1.result) and
reason (arg1.reason). When resiliency is supported and enabled, the response object would
also contain authentication token (arg1.authToken) on successful login/fail-over/fail-back.
Possible result (string constants – response result) that could be passed in this callback function
is

Description of IP Office WebRTC SDK API Page 43
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

 AWL_MSG_LOGIN_EMPTYUSERNAME
 AWL_MSG_LOGIN_EMPTYPASSWORD
 AWL_MSG_LOGIN_EMPTYTOKEN
 AWL_MSG_LOGIN_GW_NOTCONFIGURED
 AWL_MSG_LOGIN_SUCCESS
 AWL_MSG_LOGIN_FAILED
 AWL_MSG_LOGIN_WEBSOCKET_FAILURE
 AWL_MSG_LINK_ISSUE_DETECTED
 AWL_MSG_DEVICEACCESS_FAILURE
 AWL_MSG_LOGGEDOUT
 AWL_MSG_FAILING_OVER
 AWL_MSG_FAILING_BACK
 AWL_MSG_FAIL_OVER_SUCCESS
 AWL_MSG_FAIL_BACK_SUCCESS
 AWL_MSG_FAIL_OVER_FAILED
 AWL_MSG_FAIL_BACK_FAILED
 AWL_MSG_RECONNECTING
 AWL_MSG_RELOGGED_IN
 AWL_MSG_LOGIN_INVALID_TOKENTYPE

Below example is a sample implementation of 'callback_onRegis t r a t ionS t a t eC h a n g e d '
(i.e., onRegistrationStateChanged) function at the application level:

 function onRegistrationStateChanged(resp){
 console.log('\n onRegistrationStateChange :: RESULT = ' + resp.result);
 console.log('\n onRegistrationStateChange :: reason = ' + resp.reason);
 if(resp.result === "AWL_MSG_LOGIN_SUCCESS") {
 var authToken = resp.authToken.token;
 var expiryTime = resp.authToken.expiry;
 //logic code
 }
 else{
 //logic code
 }
 }

Event Payload:

 resp Object - This object could be used to retrieve result and reason
properties further. These two properties are string constants. When resiliency is
supported and enabled, the resp object will have authToken property on successful
login/failover/failback. ‘authToken’ is an object which can be used to retrieve token
and expiry properties.

callback_onCallStateChanged

This is the callback function's instance that is used in setConfigura t ion API (as arg4
parameter) and this has to be implemented at the application level. This callback function's
instance will be used to invoke onNewIncomingCall function by the SDK itself whenever there is
a new incoming call or if any change in the call state happens the SDK will invoke
onCallStateChange function. This implementation has to follow the revealing Model Pattern as
in the below example implementation to implement the following functions.

Description of IP Office WebRTC SDK API Page 44
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

 1. onNewIncomingCall(arg1, arg2, arg3)
 2. onCallStateChange(arg1, arg2, arg3)
 3. onCallTerminate(arg1, arg2)
 4. onLoopBackNotification(arg1)
 5. onVideoStreamsAvailable(arg1, arg2, arg3)
 5. onAudioStreamsAvailable(arg1, arg2, arg3)

onNewIncomingCall(arg1, arg2, arg3)

This application level implemented function would be invoked by the SDK whenever there's an
incoming call to this client and this function's parameters are described below.

 arg1 - this is the unique call ID used in the current call session. This has to be stored at
the application level in order to track a call session and this has to be passed as an
argument in all the telephony APIs (except makeCall API) further.

 arg2 - this is the call object used in the current call session. With this, application can get
additional call information like call ID, current call state, far end’s full-name, far end’s
number, subject of the call or subject of the meeting if any, whether the call is auto
answered by the SDK itself and whether a video call is attempted or received with below
APIs respectively.

 1. getCallId()
 2. getCallState()
 3. getFarEndNumber()
 4. getFarEndName()
 5. getSipUri()
 6. getSubject()
 7. isAutoAnswer()
 8. isVideoCall()

 arg3 - this is the autoAnswer flag, if setup to true indicates the call is auto answered by
the SDK itself and if set to false, it is left to the application to take the control of the call
session further.

onCallStateChange(callId, callObject, currentCallState)

This application level implemented function would be invoked by the SDK whenever there's a
change in the call state and this function's parameters are described below.

 arg1 - this is the unique call ID used in the current call session. This has to be stored at
the application level in order to track a call session and this has to be passed as an

argument in all the telephony API’s (except makeCall API) further.

 arg2 - this is the call object used in the current call session. With this, application can get
additional call information like call ID, current call state, far end’s full-name, far end’s
number, subject of the call or subject of the meeting if any, whether the call is auto

Description of IP Office WebRTC SDK API Page 45
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

answered by the SDK itself and whether a video call is attempted or received with below
API’s respectively.

 1. getCallId()
 2. getCallState()
 3. getFarEndNumber()
 4. getFarEndName()
 5. getSipUri()
 6. getSubject()
 7. isAutoAnswer()
 8. isVideoCall()

 arg3 - this reflects the curren t call state of that par ticula r call.

Below are possible call state values (String constant) that this parameter 'arg3' can hold:

 AWL_MSG_CALL_IDLE
 AWL_MSG_CALL_CONNECTED
 AWL_MSG_CALL_DISCONNECTED
 AWL_MSG_CALL_FAILED
 AWL_MSG_CALL_INCOMING
 AWL_MSG_CALL_RINGING
 AWL_MSG_CALL_HELD
 AWL_MSG_CALL_FAREND_UPDATE
 AWL_MSG_CALL_MAXCAP_REACHED

onCallTerminate(arg1, arg2)

This application level implemented function would be invoked by the SDK whenever a call
disconnects and this function takes following parameters:

 arg1 - this is the call ID of the object used in the current call session.

 arg2 - string indicating the call termination reason.

Application shall clean up objects for this call after receiving this onCallTerminate event .

onLoopBackNotification(arg1)
This application level implemented function would be invoked by the SDK during relay service
and notifies any of the below predefined alarms (string) arg1 - this is a notification alarm
parameter. With this, application can get information about the loopback connection status.
Below are possible predefined alarm values (String constant) that this parameter 'arg1' can
hold: AWL_MSG_LOOPBACK_CONN_SUCCESSFULL
AWL_MSG_LOOPBACK_CONN_FAILED
AWL_MSG_LOOPBACK_CONN_LINK_ISSUE
AWL_MSG_LOOPBACK_CONN_CLOSED
AWL_MSG_LOOPBACK_STATS_FAILURE

Description of IP Office WebRTC SDK API Page 46
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

onVideoStreamsAvailable(callId, localStream, remoteStream)

This application level implemented function will be invoked by the SDK whenever local
and remote video streams are available and the application has registered for this
event. This callback function is invoked only once per call i.e. when the call is connected
for the first time. After retrieving the media streams, it is mandatory for the application to
attach the streams to the respective DOM elements using setMediaStream API. This
event is not triggered if setDomElements API is called initially as WebRTC video
streams of local and remote video would be attached to the respective DOM elements
(set in setDomElements API) by the SDK. The application should register to this
callback if it requires dynamic video stream control to attach it to the DOM element on
fly i.e., DOM elements need not be fixed across multiple calls to show local and remote
video streams. But if the application requires a pair of DOM elements(local & remote) to
be fixed across multiple calls i.e., to have the active call’s stream to be attached to the
DOM element at any point of call, then the application shall use setDomElements API to
set the HTML5 video media DOM elements.

 callId - this is the call id of the call object used in the current call session

 localStream - local video stream

 remoteStream - remote video stream

onAudioStreamsAvailable(callId, localStream, remoteStream)

This application level implemented function will be invoked by the SDK whenever local
and remote audio streams are available and the application has registered for this
event. The audio streams are already attached to the DOM elements by the SDK. This
callback is provided for notification purpose only and not for audio play. This callback
function is invoked only once per call i.e., when the call is connected for the first time.

 callId - this is the call id of the call object used in the current call session

 localStream - local audio stream

 remoteStream - remote audio stream

Below example is a sample implementation of 'callback_onCallStateChanged(i.e.,
onCallListener)' function at the application level:

Example:

 var CallListener = function () {
 var _onNewIncomingCall = function (callId, callObj, autoAnswer) {
 console.log("onNewIncomingCall : getFarEndNumber =
"+callObj.getFarEndNumber());
 console.log("onNewIncomingCall : getSipUri = "+callObj.getSipUri());
 console.log("onNewIncomingCall : autoAnswer = "+autoAnswer);

Description of IP Office WebRTC SDK API Page 47
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

 if (callObj1 === null) {
 callObj1 = callObj;
 callmap[callObj1.getCallId()] = callObj1;
 }
 };

 var _onCallStateChange = function (callId, callObj, event) {
 if (typeof(callmap[callObj.getCallId()]) === 'undefined') {
 if (callObj1 === null) {
 callObj1 = callObj;
 callmap[callObj1.getCallId()] = callObj1;
 }
 }
 if (callObj.getCallId() === callObj1.getCallId()) {
 switch (callObj1.getCallState()) {
 case "AWL_MSG_CALL_IDLE":
 // state specific handling code
 break;
 case "AWL_MSG_CALL_CONNECTED":
 // state specific handling code
 break;
 case "AWL_MSG_CALL_RINGING":
 // state specific handling code
 break;
 case "AWL_MSG_CALL_DISCONNECTED":
 // state specific handling code
 break;
 case "AWL_MSG_CALL_FAILED":
 // state specific handling code
 break;
 case "AWL_MSG_CALL_INCOMING":
 // state specific handling code
 break;
 case "AWL_MSG_CALL_HELD":
 // state specific handling code
 case "AWL_MSG_CALL_FAREND_UPDATE":
 // state specific handling code (For example update far end DN
and sipUri information)
 break;
 default:
 }
 }
 }

 var _onCallTerminate = function(callId, reason){
 //application logic to display call terminate reason
 }

 var _onLoopBackNotification = function(notification){
 //application logic to handle notifications and alarms from the loopback
connection
 }

 var _onVideoStreamsAvailable = function(callId, localStream, remoteStream){

Description of IP Office WebRTC SDK API Page 48
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

 //application logic to handle the retrieved streams
 }

 var _onAudioStreamsAvailable = function(callId, localStream, remoteStream){
 //application logic to handle the retrieved streams
 }

 return{
 onNewIncomingCall: _onNewIncomingCall,
 onCallStateChange: _onCallStateChange,
 onCallTerminate: _onCallTerminate,
 onLoopBackNotification: _onLoopBackNotification,
 onVideoStreamsAvailable: _onVideoStreamsAvailable,
 onAudioStreamsAvailable: _onAudioStreamsAvailable
 };

 };

 var onCallListener = new CallListener();

callback_onDeviceListRequested

This callback function parameter (as arg1 parameter) is used in getDeviceList API and this has
to be implemented at the application level. This would be invoked whenever information of all
the devices is found as requested using getDeviceList API and this callback function will be
triggered with response object(arg1) containing a list of media devices and their information i.e.
ID and label of all the media devices.

Below example is a sample implementation of 'callback_onDeviceLis tReque s t e d ’ (i.e.,
onDeviceListRequested)' function at the application level:

Example:

 function onDeviceListRequested(deviceList){
 if(deviceList.length !== 0){
 $.each(deviceList, function (index, value) {
 if(value[0] === "audioinput"){
 //logic code
 }else if(value[0] === "videoinput"){
 //logic code
 }else if(value[0] === "audiooutput"){
 //logic code
 }
 });
 }
 }

Event Payload:

resp Object - This object could be used to retrieve the ID and label of all the
media devices.

Description of IP Office WebRTC SDK API Page 49
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

callback_onAuthTokenRenewed

This callback function parameter (as arg5 parameter) used in setConfiguration API and this has
to be implemented at the application level. This would be invoked when resiliency is enabled
(resiliency support is enabled at server and not disabled by the client application) and renewal
of authentication token succeeds or fails. If the token renewal fails, then auto login using token
will not be supported during failover and failback and the applications have to either relogin or
go for manual login during failover and failback. This callback function will be triggered with
response object(arg1) containing a result(arg1.result) and reason(arg1.reason). The response
object will also contain the authentication token(arg1.authToken) when the token renewal
succeeds. The authentication token is an object containing the token(arg1.authToken.token)
and its expiration time(arg1.authToken.expiry). Possible result (string constants - resp.result)
that could be passed in this callback function is

AWL_MSG_TOKEN_RENEW_SUCCESS
AWL_MSG_TOKEN_RENEW_FAILED

Below example is a sample implementation of 'callback_onAuthTokenRenewed' (i.e.,
onAuthTokenRenewed) function at the application level:

function onAuthTokenRenewed(resp){
 console.log('\n onAuthTokenRenewed :: RESULT = ' + resp.result);
 console.log('\n onAuthTokenRenewed :: reason = ' + resp.reason);
 if(resp.result === "AWL_MSG_TOKEN_RENEW_SUCCESS"){
 if(typeof(resp.authToken)!=="undefined" && resp.authToken!== null){
 var token = resp.authToken.token;
 var expiry = resp.authToken.expiry;
 //logic code
 }
 }else{
 //logic code
 }
 }

Event Payload:

 resp Object - This object could be used to retrieve result and reason
properties further. These two properties are string constants. When token renewal
is successful, this response object will also contain ‘authToken’ property.
‘authToken’ is an object which can be used to retrieve token and expiry properties.

Description of IP Office WebRTC SDK API Page 50
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

4 Terms and Acronyms
Acronyms Description
API Application Programming Interface
CA Certificate Authority
CTI Computer Telephony Integration
DN Directory Number
DTMF Dual-Tone Multi-Frequency
HTTP Hyper Text Transfer Protocol
IPO IP Office
ITU-T International Telecommunication Union - Telecommunications

section
RTT Round Trip Time
SDK Software Development Kit
SDP Session Description Protocol
UDP User Datagram Protocol
UI User Interface
URL Uniform Resource Locator
DTLS Datagram Transport Layer Security
WebRTC Web Real-Time Communication

Description of IP Office WebRTC SDK API Page 51
IP Office™ Platform 173944 Issue 1.21 (21-Oct-2020)

	1 Introduction
	Purpose
	Intended Audience
	Document Changes
	Background
	API
	Availability
	Licensing
	What’s New in this release

	Connectivity
	WebRTC Gateway Signalling Port
	WebRTC Gateway Media Port

	Certificate Requirements
	WebRTC Resilience
	Resiliency API
	disableResiliency
	getAlternateServerConfig()
	Resiliency Events

	2 Getting Started
	Supported Browsers
	Tools
	Avaya IP Office WebRTC SDK Overview
	Non Telephony API
	Telephony API
	Network Test API

	1 Guidelines for using the SDK API
	Pre-requisites
	Mandatory steps

	2 Detailed description of API
	Non-Telephony API
	isWebRTCSupported()
	Arguments Passed and their description: None
	Return type: Boolean

	getSdkVersion()
	Arguments Passed and their description: None
	Return type: String

	setConfiguration (arg1, callback_onConfigChanged, callback_onRegistrationStateChanged, callback_onCallStateChanged)
	Arguments Passed and their description:
	Return type: None

	setConfiguration (arg1, callback_onConfigChanged, callback_onRegistrationStateChanged, callback_onCallStateChanged, onAuthTokenRenewed)
	Arguments Passed and their description:
	Return type: None

	enableLogging()
	Arguments Passed and their description: None
	Return type: None

	setDomElements(arg1)
	Arguments Passed and their description:
	Return type: None

	getDeviceList(callback_onDeviceListRequested)
	Arguments Passed and their description:
	Return type: None

	setDeviceIds(arg1)
	Arguments Passed and their description:
	Return type: None

	logIn(arg1, arg2, arg3, arg4)
	Arguments Passed and their description:
	Return type: None

	logOut()
	Arguments Passed and their description: None
	Return type: None

	isloggedIn()
	Return type: Boolean

	setLogObject (arg1)
	Arguments Passed and their description:
	Return type: None

	disableLogging()
	Arguments Passed and their description: None
	Return type: None

	playVideo(arg1)
	Arguments Passed and their description:
	Return type: Boolean

	pauseVideo(arg1)
	Arguments Passed and their description:
	Return type: Boolean

	getAlternateServerConfig()
	Arguments Passed and their description: None
	Return type: Object

	tokenLogIn(arg1, arg2, arg3, arg4)
	Arguments Passed and their description:
	Return type: None

	generateAppInstanceID ()
	Arguments Passed and their description: None
	Return type: String

	getStunConfiguration ()
	Arguments Passed and their description: None
	Return type: Object

	setStunConfiguration (arg1)
	Arguments Passed and their description:
	Return type: String

	Telephony API
	makeCall (arg1, arg2)
	Arguments Passed and their description:
	Return type: Object

	answerCall (arg1)
	Arguments Passed and their description:
	Return type: None

	rejectCall (arg1)
	Arguments Passed and their description:
	Return type: None

	dropCall (arg1)
	Arguments Passed and their description:

	cancelCall (arg1)
	Arguments Passed and their description:
	Return type: None

	doHold (arg1)
	Arguments Passed and their description:
	Return type: None

	doUnHold (arg1)
	Arguments Passed and their description:
	Return type: None

	doMute (arg1)
	Arguments Passed and their description:
	Return type: Boolean

	doUnMute (arg1)
	Arguments Passed and their description:
	Return type: Boolean

	sendDTMF (arg1 , arg2)
	Arguments Passed and their description:
	Return type: None

	transferCall (arg1 , arg2 , arg3)
	Arguments Passed and their description:
	Return type: None

	getStats (arg1)
	Arguments Passed and their description:
	Return type: Array

	addVideo (arg1)
	Arguments Passed and their description:
	Return type: Boolean

	removeVideo (arg1)
	Arguments Passed and their description:
	Return type: Boolean

	setMediaStream (arg1 , arg2 , arg3 , arg4)
	Arguments Passed and their description:
	Return type: None

	Network Test API
	createLoopBackConnection ()
	Arguments Passed and their description: None
	Return type: None

	endLoopBackConnection ()
	Arguments Passed and their description: None
	Return type: None

	getLoopBackStats ()
	Arguments Passed and their description: None
	Return type: Array

	3 Properties
	3 Events
	callback_onConfigChanged
	Event Payload:

	callback_onRegistrationStateChanged
	Event Payload:

	callback_onCallStateChanged
	onNewIncomingCall(arg1, arg2, arg3)
	onCallStateChange(callId, callObject, currentCallState)
	onCallTerminate(arg1, arg2)
	onLoopBackNotification(arg1)
	onVideoStreamsAvailable(callId, localStream, remoteStream)
	onAudioStreamsAvailable(callId, localStream, remoteStream)
	Example:

	callback_onDeviceListRequested
	Example:
	Event Payload:

	callback_onAuthTokenRenewed
	Event Payload:

	4 Terms and Acronyms

