

Sample Authorization Snap-ins

Table of Contents
Introduction .. 3

Overview ... 3

Authorization Code Grant Flow ... 4

LDAP ... 4

SAML ... 4

Client Credentials Flow ... 4

Resource Owner Password Credentials Flow ... 4

Installation and Configuration .. 5

Authorization specific Snap-in attributes .. 7

Attributes for Authorization Resources ... 7

Resource Features ... 7

Attribute for a Resource to listen on port 9443 .. 8

Enable Tokenless Access ... 8

Attributes for Authorization Clients .. 9

Authorization Service Address .. 9

Identify TaskDashboard as an Authorization Client ... 10

Use Cases .. 10

Client Credentials Flow ... 10

API Usage .. 11

Resource Owner Password Credentials Flow .. 12

API Usage .. 13

Authorization Code Grant Flow ... 14

Filters used by the sample snap-ins for Code Grant flow ... 16

API Usage .. 16

Service Attributes used by the filters ... 17

Limitations in Authorization Code Grant Flow ... 18

Logging out users/Invalidating Access Tokens ... 18

Introduction

Task Dashboard and Task Repository are sample snap-ins that demonstrate authorization
capabilities provided by the Avaya Breeze® Authorization Service. The Task Dashboard
snap-in shows the use of Authorization Service helper APIs (available via Breeze SDK) to
retrieve access tokens for clients and end users. It also demonstrates how these tokens are
used to retrieve tasks from the Task Repository. The Task Repository snap-in shows how a
snap-in can register itself as an authorization resource, which can be consumed by
authorization clients.

Overview

The Task Repository is analogous to an OAuth 2.0 resource server, installed as a snap-in on
a Breeze node. It provides a set of REST APIs to manage tasks of users and these tasks are
similar to protected OAuth 2.0 resources, made accessible only if the requestor is
sufficiently authorized. Tasks are guarded by the following scopes: “create, update, delete,
list, listall”.

HTTP Method API Description Feature Name

POST /tasks/{user-id} Creates a new task for create (standard)
a user

DELETE /tasks/{user- Deletes a user's task delete (standard)
id}/task/{task-id}

GET /tasks/{user-id} Gets list of all tasks for list (standard)
a user

GET /tasks Gets a list of all tasks listall (standard)
of all users

PUT /tasks/{user- Updates a user's task update (standard)
id}/task/{task-id}

This authorization capability is provided by the Breeze Authorization Service by granting
access tokens to clients. The client would then use the granted token and make a request to
access a protected resource (here, for example, it may ask the Task Repository to fetch all
tasks of a specific user).

This leads us to explore the role of Task Dashboard. The Task Dashboard snap-in is
analogous an OAuth 2.0 client whose purpose would be to make token requests to the
Authorization Service and use the tokens to manage resources (tasks) by making requests
to the Task Repository.

Three OAuth 2.0 grant type flows are demonstrated here:

Authorization Code Grant Flow

The authorization code grant flow is used to obtain access tokens for Authorization Clients
based on a resource owner’s grant. Since this is a redirection-based flow, the client must be
capable of interacting with the resource owner's user-agent (typically a web browser) and
capable of receiving incoming requests (via redirection) from the Authorization Service.
[REF]

This is the preferred flow to be used with web applications because it enables multi-factor
authentication and abstracts the Client from the details of how authentication is done.

To support this flow, Task Dashboard redirects the user agent (browser) to the
Authorization Service to get back an intermediary token called an “authorization code”. The
Authorization Service then authenticates the user. Two authentication mechanisms are
supported:

LDAP
Authorization Service presents the user with a login screen. On successful authentication,
the browser is redirected back to Task Dashboard with an authorization code.

SAML
Authorization Service redirects the user to a SAML Identity Provider. On successful
authentication, the identity provider redirects the browser back to Authorization Service
with a SAML assertion. Then, as with LDAP, Authorization Service redirects the browser
back to Task Dashboard with an authorization code.

Client Credentials Flow

In this flow, an Authorization Client can request an access token using only its Client
Credentials (the credentials are in the form of public/private key pairs assigned to clients
and managed implicitly by Breeze) when the client is requesting access to the protected
resources under its control. [REF]

To support this flow, Task Dashboard acts as a client whose purpose is to show all tasks for
all the users, but with no permissions to edit or update any of them.

Resource Owner Password Credentials Flow

The resource owner password credentials grant type is suitable in cases where the
resource owner has a trust relationship with the client. This grant type is suitable for

https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6749#section-4.4

clients capable of obtaining the resource owner's credentials (username and password,
typically using an interactive form). [REF]

Use of this flow is discouraged unless the Authorization Code flow is not possible, e.g. due
to lack of a web user interface on the Client.

To support this flow, Task Dashboard provides a login screen to allow a user to login. Upon
a successful login, it shows the list of tasks the user owns.

Installation and Configuration

Three snap-ins need to be installed and configured on a Breeze setup:-

• Authorization Service (comes pre-loaded),

• TaskRepository and

• TaskDashboard

To build the TaskRepository and TaskDashboard snap-ins, change directories to:

Avaya-Breeze-SDK\samples\Authorization\

Compile it using “mvn clean install”. Then load and install the snap-ins on System Manager.

Once the snap-ins are installed, an admin would need to assign grants to the Task
Dashboard snap-in by navigating to:

Select Avaya Breeze -> Configuration -> Authorization

Select TaskDashboard -> Edit Grants -> New

https://tools.ietf.org/html/rfc6749#section-4.3

Clicking “Commit”, a “create-standard” scope (feature value pair) gets assigned to
TaskDashboard.

Similarly, scopes for “delete-standard”, “update-standard”, “list-standard”, “listall-
standard” must be assigned to TaskDashboard. The end result would look something like
this:

Authorization specific Snap-in attributes

Attributes for Authorization Resources

Resource Features

The snap-in properties.xml file can be used to define features associated with the resource
snap-in. This is done by using <resource_server> tag containing multiple features as
shown below:

<resource_server>

<displayName>TaskRepository</displayName>

<shortName>authzres</shortName>

<feature>

<name>listall</name>

<value>standard,none</value>

</feature>

<feature>

<name>create</name>

<value>standard,none</value>

</feature>

<feature>

<name>delete</name>

<value>standard,none</value>

</feature>

<feature>

<name>list</name>

<value>standard,none</value>

</feature>

<feature>

<name>update</name>

<value>standard,none</value>

</feature>

</resource_server>

Attribute for a Resource to listen on port 9443

All inbound requests that have a bearer token in the request header should be bypassed for
whitelisting and client Cert challenge. In order to achieve this, the snap-in can listen to such
requests on port 9443. For this, the resource snap-in can define a service attribute in its
properties.xml file like below:

<attribute name="com.avaya.edp.authorization.resource.server">

<displayName>Identifier to exclude security check</displayName>

<helpInfo>This attribute is needed so that port

9443 is open for requests with OAuth tokens</helpInfo>

<validation name="anyString">

<type>STRING</type>

</validation>

<admin_visible>false</admin_visible>

<admin_changeable>false</admin_changeable>

<factory>

<value>authorizationresource</value>

<user_changeable>false</user_changeable>

</factory>

</attribute>

Enable Tokenless Access

The snap-in may choose to allow requests coming through port 9443 that do not have
bearer tokens. For this, the resource snap-in can define a service attribute –
“com.avaya.authorization.enableTokenlessAccess”.

If this attribute value is set to “true”, this filter will allow the requests even if there is no
bearer token in the Authorization header. This attribute can be defined in the
properties.xml file as this:

<attribute name="com.avaya.authorization.enableTokenlessAccess">

<displayName>Enable Tokenless Access</displayName>

<helpInfo>This is used to allow requests to access resource

end-points, even

if there is no Authorization token. Set to false if

all clients must have

an Authorization Token. Value should be true or false.

</helpInfo>

<validation name="trueORfalse">

<type>STRING</type>

<pattern>true|false</pattern>

</validation>

<admin_visible>true</admin_visible>

<admin_changeable>true</admin_changeable>

<factory>

<value>false</value>

<user_changeable>true</user_changeable>

</factory>

</attribute>

Attributes for Authorization Clients

Authorization Service Address

This attribute is used to set the FQDN/ IP of the node/cluster where Authorization

Service is installed. This will be used by Authorization Client helper library to discover

the Authorization Service node/cluster. If this value is not set, then Authorization Client

helper library will use the Cluster attribute “Authorization Service Address” which can

be found in the Cluster edit page.

<attribute name="com.avaya.authorization.service.address">

<displayName>Authorization Service Address</displayName>

<helpInfo>FQDN/IP of the node/cluster where Authorization Service is

installed

</helpInfo>

<attr_order>1</attr_order>

<validation name="anyString">

<type>STRING</type>

</validation>

<group>

<group_name>Client Attributes</group_name>

<group_order>1</group_order>

</group>

<admin_visible>true</admin_visible>

<admin_changeable>true</admin_changeable>

<factory>

<value></value>

<user_changeable>true</user_changeable>

</factory>

</attribute>

Identify TaskDashboard as an Authorization Client

This attribute uniquely identifies the snap-in as an Authorization Client. Change the factory
value to the serviceName of the snap-in.

<attribute name="com.avaya.authorization.client">

<displayName>Authorization Identifier</displayName>

<helpInfo>This is used to uniquely identify this snap-in as an

Authorization Client

</helpInfo>

<validation name="anyString">

<type>STRING</type>

</validation>

<admin_visible>false</admin_visible>

<admin_changeable>false</admin_changeable>

<factory>

<value>TaskDashboard</value>

<user_changeable>false</user_changeable>

</factory>

</attribute>

Use Cases

Client Credentials Flow

Access the Task Dashboard snap-in UI by pointing web browser to:

https://<Asset IP of Breeze>/services/TaskDashboard/#/home

A browser call to this page triggers the application to ask for a token, it asks specifically for

scope: “listall” - The admin would have already assigned the feature (listall) in the SMGR

GUI to TaskDashboard. When the token gets retrieved, TaskDashboard asks the

TaskRepository for a list of all tasks owned by all users. TaskRepository validates the token

and if it has permission to “listall”, it sends the data. The client renders the data, lists all the

tasks grouping by username. All tasks of all users are shown, but none can be

edited/removed because the scope "listall" doesn't allow that.

API Usage

The client JavaScript (JS) makes a Web API call to /getresource. This uses the
getAccessToken() Authorization Helper API, with a specific scope “listall”, meaning that
Task Dashboard is requesting Authorization Service for an access token which has “listall”
capabilities:

accessToken =
AuthorizationClientHelper.getAccessToken(Arrays.asList("listall"));

It then appends the retrieved access token into the Authorization header of an HTTP GET
request:

httpGetResource.addHeader("Authorization", AUTHORIZATION_BEARER +
accessToken.toString());

Then it fires the request to the resource server (Task Repository):

GET <HOST>/services/TaskRepository/tasks
HTTP/1.1

Authorization: Bearer

1uUkSBKFIX7ATndFF5[...].OiJSUzI1NiIsImt[...].GjQip78AI4z1PrFRNi[
...]

Content-Type: application/x-www-form-urlencoded
…

The results are then rendered on the GUI.

Resource Owner Password Credentials Flow

Note: To test this flow, comment out the filters section in the TaskDashboard-war web.xml
file, re-build and deploy the snap-in.
(The AuthorizationCodeFilter and AccessTokenCookieFilter are meant to be used
specifically for Authorization Code Grant Flow)

Access the Task Dashboard snap in UI by pointing web browser to:

https://<Asset IP of Breeze node>/services/TaskDashboard/#/user

This presents the user with a login screen. Authorization Service supports LDAP
authentication for use cases following the Resource Owner Password Credentials flow.

A successful authentication of the user triggers the client application to ask for a token, the
client app asks for user specific scopes: create, delete, list. The admin would have already
mapped all these features for the client in the SMGR GUI. When the token gets retrieved,
the client simply passes the token to user’s browser which is accessible through Javascript
(sessionStorage/cookies). The Javascript code makes a REST call to the Resource server to
fetch existing tasks for the specific user. The resource server validates the token, retrieves
the subject of the JWT (user@domain or user-id) and retrieves all the tasks owned by the
user. The Javascript on user’s browser renders the result and shows on the screen.

API Usage

The client JavaScript (JS) makes a Web API call to /gettokenforuser. This uses the
getAccessTokenForUser() Authorization Helper API, with specific scopes “create, list,
delete”, meaning that Task Dashboard is requesting Authorization Service for an access
token which has capabilities for creating listing and deleting tasks:

List<String> accessTokenScopes = Arrays.asList("create", "list", "delete");
AccessToken accessToken = AuthorizationClientHelper.getAccessTokenForUser

(username, password, accessTokenScopes);

The access token is then returned to the JavaScript, where it globally sets the Authorization
Header with the token as well as a session cookie in authentication.service.js:

if (response.data.accessToken) {
$http.defaults.headers.common.Authorization = 'Bearer ' + re-
sponse.data.accessToken;

$cookies.putObject('dashboard_session', $rootScope.globals, {
'expires': expiryDate,
'path': '/services/TaskDashboard/'

});
}

With the access token available, the user’s tasks are fetched from the Repository directly:

function TaskService($http, $q, $rootScope){

this.getAll = function(userId){
return $http

.get("/services/TaskRepository/ws/sample/tasks/" + userId)

.then(function(response){
return response.data;

});
};

};

The results are then rendered on the UI.

Authorization Code Grant Flow

The Authorization Code Grant flow exempts the TaskDashboard snap-in from providing a
login screen for the user to enter credentials. The user is instead redirected to the Breeze
Authorization Service, which authenticates the user using LDAP or SAML. After successful
authentication, the browser is redirected to the TaskDashboard with an authorization code.
TaskDashboard authenticates with the Authorization Service and exchanges the browser
provided authorization code with an access token. The token is then used to make requests
to TaskRepository to fetch user’s tasks.

To enable Authorization Code Grant Flow for TaskDashboard, go to:

SMGR > Avaya Breeze > Configuration > Attributes > Service Clusters

Select the cluster where TaskDashboard has been installed and select Service as
TaskDashboard. Change the attribute "OAuth2 Grant Type” to AuthCode and Commit
changes.

Next, access the TaskDashboard snap-in UI by pointing the browser to:

https://<Asset IP of Breeze node>/services/TaskDashboard/

This will redirect the browser to the Authorization Service. Here, depending on the
authentication mechanism chosen, a login screen will be presented:

For LDAP, the Authorization Service itself will present a login screen and will authenticate
the user against an LDAP server configured on SMGR
For SAML, the Authorization Service will redirect the browser to an Identity Provider
configured on SMGR. The user is authenticated by the Identity Provider and redirected
back to the Authorization Service.

The Authorization Service then generates an intermediate, short-lived authorization code
and redirects the browser back to TaskDashboard along with the code. TaskDashboard
then can exchange the authorization code coming from the browse request with an access
token granted by the Authorization Service.

Filters used by the sample snap-ins for Code Grant flow

The “Filters” package includes four filters used by the two sample snap-ins for handling
Authorization:

AuthorizationCodeFilter

This filter checks if the request contains an authorization code, if not, it redirects the
browser to Authorization Service for getting one. It also allows the request to proceed if a
session cookie is already present in the request.

AccessTokenCookieFilter

This filter fetches an access token from Authorization Service by using the authorization
code present in the request. It then sets the token as a session cookie and redirects the
control to a predefined path. This filter also allows the request to proceed if a session
cookie is already present in the request.

AccessTokenHeaderFilter

This filter fetches an access token from Authorization Service by using the authorization
code present in the request. It then adds the token as a Bearer Authorization header to the
request and allows the control to pass.

BearerTokenValidationFilter

This filter validates a bearer token. Upon successful validation, allow the request to reach
the resource.

API Usage

The sample filters described in the above section use the Authorization Helper APIs
provided by the Breeze SDK. The specific APIs used by each of the filters is described in this
section.

AuthorizationCodeFiler

This filter uses the helper API to build the redirect URI to which the browser request needs
to be sent to, if it doesn’t contain an authorization code.

String authorizationEndpoint = AuthorizationClientHelper.

getAuthorizationEndpoint(servletRequest);

httpResponse.sendRedirect(authorizationEndpoint);

AccessTokenCookieFilter

The filter retrieves the authorization code present in the request, uses it to get an access
token.

AccessToken accessToken = AuthorizationClientHelper.

getAccessTokenForUser(servletRequest);

Cookie sessionCookie = new Cookie(..);
httpServletResponse.addCookie(sessionCookie);
httpServletResponse.sendRedirect(clientRedirectUri.toString());

BearerTokenValidationFilter

Token validation is done by using the following helper API call:

if (AuthorizationResourceHelper.isValid(accessToken))
{

httpServletRequest.setAttribute(BEARER_TOKEN, accessToken);
filterChain.doFilter(servletRequest, servletResponse);

}

Service Attributes used by the filters

com.avaya.authorization.sessionCookieName

This attribute is used by the AccessTokenCookieFilter to know the name of the cookie
when creating one. The TaskDashboard JavaScript would use look up the same name in the
HTTP request when trying to log the user in. The factory value is implementation specific.

<attribute name="com.avaya.authorization.sessionCookieName">

<displayName>Session Cookie Name</displayName>

<helpInfo>AccessTokenCookieFilter uses this attribute to set

set the user session's cookie name.

</helpInfo>

<validation name="anyString">

<type>STRING</type>

</validation>

<admin_visible>true</admin_visible>

<admin_changeable>true</admin_changeable>

<factory>

<value>dashboard_session</value>

<user_changeable>true</user_changeable>

</factory>

</attribute>

com.avaya.authorization.clientRedirectionPath

This attribute is used by AccessTokenCookieFilter to redirect the request to another path
after setting the cookie session. The factory value is implementation specific.

<attribute name="com.avaya.authorization.clientRedirectionPath">

<displayName>Client Redirection Path</displayName>

<helpInfo>AccessTokenCookieFilter uses this path attribute to

redirect the browser to.

</helpInfo>

<validation name="anyString">

<type>STRING</type>

</validation>

<admin_visible>true</admin_visible>

<admin_changeable>true</admin_changeable>

<factory>

<value>/services/TaskDashboard/</value>

<user_changeable>true</user_changeable>

</factory>

</attribute>

Limitations in Authorization Code Grant Flow

Logging out users/Invalidating Access Tokens

The Authorization Service doesn’t yet support invalidating access tokens. TaskDashboard
has been demonstrated to maintain a logged-in user session by use of browser cookies with
a lifetime equal to the granted access token’s lifetime. To log a user out, a stop gap solution
would be to invalidate the “dashboard_session” cookie in the browser and direct the user to
a logout page. This however doesn’t clear the session set either by the Authorization
Service or the Identity Provider, so in all probabilities, if the user tries to log in again to
TaskDashboard, the already authenticated session will be used and a new access token will
be granted to TaskDashboard by the Authorization Service.

In order to test the flow and have the browser get a login screen again provided either by
the Identity Provider or the Authorization Service, browser cookies need to be cleared
manually.

