
Avaya Breeze® platform External Database Access

The following document provides sample code and guidelines for how an Avaya Breeze Service can use

Java Persistence API (JPA) to access data from an external database. The document is only meant as a

“getting started” guide and only provides very high-level concepts.

The document will use the WhiteList sample application to illustrate the points. For a design overview of

the WhiteList sample application, please refer to the Whitelist Sample Service Guide. The source code,

without the concepts discussed in this document, is in the Avaya Breeze SDK, Developer Preview Release.

Both the Whitelist Sample Service Guide and the SDK are available on Avaya DevConnect.

This document will provide sample code to enhance the WhiteList service with the concepts described
here.

There are six areas covered:

1 . Standard JPA configuration file: persistence.xml

2 . Stateless beans with local interfaces

3 . Connection pooling

4 . Entity

5 . Entity Manager

6. Cache Specific Attributes

Standard JPA configuration file: persistence.xml
The persistence.xml configuration file, located at META-INF/persistence.xml, defines one or

more persistence units. At a high level, a persistence unit contains information about how to contact a
database, and entities associated with that unit. An entity represents a table in a relational database; an

entity instance represents a row in that database.

The WhiteList sample service connects to a PostgreSQL database on the server itself. It uses an entity,

WhiteListEntry, to read a row from the whitelist database. The WhiteList persistence.xml

has one persistence unit. It is named whiteListDataSource, and contains one entity,

com.avaya.services.whitelist.db.WhiteListEntry. It also contains properties about

how to connect to a local PostgreSQL database, such as the database driver,

org.postgresql.Driver, Url, jdbc:postgresql://localhost/whitelist and

credentials.

Stateless beans with local interfaces
The main class for the WhiteList service is WhiteList.class. It makes use of a helper class,

DestinationFinderImpl, which retrieves the ultimate destination for the call. The

DestinationFinderImpl is a POJO and is created in the WhiteList constructor. We want to

turn the DestinationFinderImpl into a stateless bean. That way, it can use dependency injection

for its resources and enjoy all other benefits of being a container managed bean.

To turn the class into a stateless local bean, add the bolded, @Local, text to the
DestinationFinder:

@Local

public interface DestinationFinder {…}

Add the bolded text, @Stateless, to the DestinationFinderImpl:

@Stateless

public class DestinationFinderImpl implements DestinationFinder {…}

The WhiteList.class is not managed by the container. Therefore it must use JNDI to lookup the

DestinationFinderImpl bean. It cannot use injection.

There is only one implementation of the local DestinationFinder interface. The JNDI name for the

bean

becomes: ejblocal:com.avaya.services.whitelist.DestinationFinder.

The DestinationFinderImpl stateless bean also makes use of another stateless bean,

PermissionAgentImpl. Since the DestinationFinderImpl is a bean managed by the

container, it is not necessary to use JNDI to lookup that bean, it can use injection. The injection

becomes:

@Stateless

public class DestinationFinderImpl implements DestinationFinder

{

 @EJB

 private PermissionAgent permissionAgent;

 ...

}

The above describes the procedure of how to either lookup or inject a stateless bean.

Connection pooling

The WhiteList service makes a request to the database every time it is invoked. This is to determine
whether the caller can directly call the called party.

Without connection pooling, each request requires a connection to be opened to the PostgreSQL

database. That is a time intensive operation.

To avoid that time intensive operation, the application makes use of a connection pool. This, very

simply, means that the database connections are maintained so future requests can reuse an existing

connection.

One way to enable connection pooling for the application is to make use of the DBCP component of the

Apache project (http://commons.apache.org/dbcp). Add the bolded line to the persistence unit in the

persistence.xml:

<persistence-unit name="whiteListDataSource"

transaction-type="JTA">

 <class>com.avaya.services.whitelist.db.WhiteListEntry</class>

 <properties>

<property name="openjpa.ConnectionProperties"

value="DriverClassName=org.postgresql.Driver,
Url=jdbc:postgresql://135.9.182.116:5432/whitelist,

 MaxActive=100,

 MaxWait=10000,

 TestOnBorrow=true,

Username=postgres,

 Password=postgres" />
<property name="openjpa.ConnectionDriverName"

 value="org.apache.commons.dbcp.BasicDataSource"/>

</properties>

 </persistence-unit>

</persistence>

Entity

The WhiteList service uses one entity, the WhiteListEntry. It contains two attributes: calling and

called handles.

The class is annotated as an entity, using the @Entity annotation. It is also annotated with name of the

database, @Table(name = "WHITELIST").

Entity Manager
An Entity Manager is associated with a Persistence Context. A Persistence Context is essentially a cache.

The WhiteList service uses the WhiteListDaoImpl to interact with the PostgrSQL database. The

WhiteListDaoImpl is created for every request along with an Entity Manager. This means that any

cached data is flushed for each request.

Using the same technique described in the “Stateless beans with local interfaces” section above we can

turn the WhiteListDaoImpl into a stateless bean. This allows us to inject an Entity Manager into

the bean, thus removing the need to get an Entity Manager for each request.

The code for the WhiteListDaoImpl with the Entity Manager injected looks like this:

@Stateless

public class WhiteListDaoImpl implements WhiteListDao

{

 private static final String PERSISTENCE_UNIT_NAME =

"whiteListDataSource";

 @PersistenceContext(unitName = PERSISTENCE_UNIT_NAME) private

EntityManager entityManager;

 ...

}

To inject a @PersistenceContext, the Persistence Unit must use a transaction-type of JTA. The

persistence.xml changes the name

From: <persistence-unit name="whitelist" transaction-

type="RESOURCE_LOCAL">

To: <persistence-unit name="whiteListDataSource" transaction-

type="JTA">

Although not necessary, the name change better represents that we’re going to use a data source.

Cache Specific Attributes

The above information describes a very simple configuration and java code to read information from

a PostgreSQL database.

The following information will explain what additional attributes are needed to enable basic JPA caching

and a time-based eviction scheme for queries.

One way to turn on caching is to add the following line to the persistence unit in persistence.xml:

<property name="openjpa.DataCache" value="true"/>

That will cache a default number of queries. The default number of queries can be changed by adding
the following attribute:

<property name="openjpa.QueryCache" value="true(CacheSize=10000,

SoftReferenceSize=0)"/>

The above line will make the cache size 10,000. The SoftReferenceSize parameter indicates how

many evicted queries will still have soft references to them.

With the two above lines added, the persistence.xml becomes:

<persistence-unit name="whiteListDataSource"

 transaction-type="JTA">

 <class>com.avaya.services.whitelist.db.WhiteListEntry</class>

 <properties>

 <property name="openjpa.ConnectionProperties"

 value="DriverClassName=org.postgresql.Driver,

 Url=jdbc:postgresql://135.9.182.116:5432/whitelist,

 MaxActive=100,

 MaxWait=10000,

 TestOnBorrow=true,

 Username=postgres,

 Password=postgres" />

 <property name="openjpa.ConnectionDriverName"

value="org.apache.commons.dbcp.BasicDataSource" />

 <property name="openjpa.DataCache" value="true" />

 <property name="openjpa.QueryCache" value="true(CacheSize=10000,

SoftReferenceSize=0)" />

 </properties>

</persistence-unit>

The WhiteList service only reads from the external database. It does not use JPA to write data. Updates
to the database are performed by logging into PostgresSQL and affecting the data directly. Because

updates are not reflected in the persistence context, such data is stale from the service’s perspective.

For instance, say Alice can call Bob directly. The element manager caches this query. Then the database is

modified such that Alice is not allowed to call Bob directly. The persistence context still has the old query

cached and until the cache changes the service will allow calls directly between Alice and

Bob. That’s not good.

One simple way around the above issue is to evict queries from the cache periodically. This

can be achieved by simply adding the following line to the entity:

@DataCache(timeout = 600000) // This would evict the cached entry

after 600 seconds (10 minutes)

The above strategy would guarantee that a query is at most 10 minutes out of synch with the

data source.

With the above annotation added in bold, the entity becomes:

@Entity(name = "WHITELIST")

@DataCache(timeout = CacheValues.DEFAULT_EVICTION_TIMEOUT_IN_MILLISECONDS)

@Table(name = "WHITELIST")

@NamedQueries(

{

 @NamedQuery(

 name = NamedQueriesList.FIND_WHITELIST_ENTRY,

 query = "SELECT c FROM WHITELIST c " +

 "WHERE c.calledHandle= :calledNumber and

c.callingHandle= :callingNumber"),

 @NamedQuery(name = NamedQueriesList.FIND_WHITELIST_ENTRIES,

 query = "SELECT c FROM WHITELIST c")

})

Configuring JNDI using a persistence unit properties

We are using a file PersitanceUnitProperties.java to configure JNDI which is based on the openjpa

persistence.

In this file we have a method called Map<String, String> getPersistanceUnitMap(), we are configuring

the JNDI name into the map.

persistenceProperties.put("javax.persistence.jtaDataSource", getJNDIName());

The above line is where the JNDI is configured where the value is got from the Attribute page.

The External Database should be having the schema for whitelist and a table created in the

following format:

CREATE TABLE whitelist (

id BIGSERIAL PRIMARY KEY NOT NULL,

updateDateTime timestamp NOT NULL

DEFAULT now(), called_handle

VARCHAR(255) NOT NULL, calling_handle

VARCHAR(255) NOT NULL,

unique(called_handle,calling_handle)

);

Testing using an External Database

We can use an external Postgres Database.

We must configure the attributes page in the SMGR as shown in the above Screenshot.

The Data source JNDI name should be configured using the JDBC Providers and JDBC Sources.

Refer to Avaya Breeze Admin Guide on how to configure Providers and Sources.

A screenshot of basic configuration of JDBC Providers is as below.

This JDBC Provider should be installed as the Service into the Cluster.

Next, we have to configure the JDBC Sources and a screenshot is as below.

Once the above JDBC Providers and JDBC Sources are configured we must use the same name of

JNDI from here to the attribute page.

Now by using the User- Interface/Script/Rest web service we can insert data into the database

and we can start using the Whitelist snap-in.

