
 Outbound HTTPS Sample Service     

Introduction       
The Outbound HTTPS Sample Service demonstrates a way to create an HTTPS outbound connection 

using an SSLContext retrieved by the SSLUtilFactory. It also shows the logic needed for a snap-in to 

be advised of a change to trusted certificate(s) on the platform.     

     

Concepts demonstrated     
1. Outbound HTTPS invocations using Apache HttpClient library.     

2. Certificate change listener. When the trusted or identity certificates change, it is  important 

to get a new SSLContext that leverages the new certificate(s).     

3. SSLUtilityFactory. This class allows a snap-in to create a SSLContext object that uses  the 

configured Avaya Breeze® platform trusted certificates and identity certificates.     

4. Using the Security network interface for outbound requests instead of the Management 

network interface.     

     

Detailed description         
1. The snap-in creates an HTTPS outbound connection to the Zang cloud server to get the 

account details and display the account detail.      

i. The Apache HttpClient library is used for HTTP connections  to Zang Cloud.     

ii. The Avaya Breeze® platform SSLUtilityFactory class is used to create the SSL     

     Context.     

2. For the HTTPS outbound connection to work, the Zang cloud server or CA certificate  must 

be added to the Avaya Breeze® platform truststore. TM    

i. Refer to Administering Avaya Breeze  to add a certificate to the Avaya     

     Breeze® platform trust store.     

ii. Importing certificates required for HTTPS connections to Zang Cloud:     

a) Download the following certificates:     

     

a. https://support.cloudflare.com/hc/article_attachments/360037898732  

/origin_ca_ecc_root.pem    

b. Import the CA root certificate   

i.  Save the root certificate from zang.io to a temporary file with the 

following command   

https://support.cloudflare.com/hc/article_attachments/360037898732/origin_ca_ecc_root.pem
https://support.cloudflare.com/hc/article_attachments/360037898732/origin_ca_ecc_root.pem
https://support.cloudflare.com/hc/article_attachments/360037898732/origin_ca_ecc_root.pem
https://support.cloudflare.com/hc/article_attachments/360037898732/origin_ca_ecc_root.pem
https://support.cloudflare.com/hc/article_attachments/360037898732/origin_ca_ecc_root.pem


openssl s_client -showcerts -connect api.zang.io:443 </dev/null 

2>/dev/null|openssl x509 -outform PEM > zangcert.pem  

ii.    Add zang.io root certificate to truststore   

a. Go to SMGR > Services > Inventory > Manage Elements   

b. Select the servers to add the root certificate   

c. Click Manage Trusted Certificates from the More Actions 

dropdown list   

d. Select Store Type SECURITY_MODULE_HTTP   

e. Select Import as PEM  certificate   

f. Copy and paste the content previously saved in zangcert.pem 

to the space    

g. Commit the change   

h. Repeat step (b) to (g) for Store Type WEBSPHERE   

              iii.   Update the supported TLS version for outbound request from  

OutboundHttpsSample service   

a. Go to SMGR > Elements > Avaya Breeze > Cluster   

Administration   

b. Select cluster then Edit  

c. Go to Services tag and select OutboundHttpsSample service   

d. Select TLS12 from Select TLS Version for Selected Snap-in(s) 

dropdown list   

e. Commit the change   

Go to SMGR > Elements > Avaya Breeze >    

b) Navigate to the Cluster Administration page, Home / Elements / Avaya     

     Breeze® platform.     

c) Select the target cluster, then press Certificate Management, and 

select     

Install Trust Certificate (All Avaya Breeze® platform Instances).     

     

d) In the drop down menu, Select Store Type to install trusted 

certificate, select WEBSPHERE. For each of the downloaded certificates: Choose 

File; select the downloaded certificate; Retrieve Certificate; and Commit.    iii. 

The sample does not show the process by which you   can automatically copy 

the certs for the server that you are trying to connect to during snap-in install. 

https://10.129.176.142/SMGR/
https://10.129.176.142/SMGR/
https://10.129.176.142/SMGR/
https://10.129.176.142/rtsapp/faces/pages/welcomeToElements.xhtml?
https://10.129.176.142/rtsapp/faces/pages/welcomeToElements.xhtml?
https://10.129.176.142/rtsapp/faces/pages/welcomeToElements.xhtml?
https://10.129.176.142/rtsapp/faces/pages/welcomeToElements.xhtml?
https://10.129.176.142/rtsapp/faces/pages/welcomeToElements.xhtml?
https://10.129.176.142/rtsapp/faces/pages/welcomeToElements.xhtml?
https://10.129.176.142/rtsapp/faces/pages/welcomeToElements.xhtml?
https://10.129.176.142/rtsapp/faces/pages/welcomeToElements.xhtml?
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&
https://10.129.176.142/AUS/faces/pages/clusterAdmin/clusterAdminMain.xhtml?resourceType=com.avaya.ems.CollabEnv&resourceId=*&


This is because the Outbound HTTP Sample snap-in is not an Avayasigned 

application and the process applies only to Avaya signed applications. To 

automatically copy the certs during installation, you must copy the certs to a  

folder you create under the  

resources folder. The folder     

you create must be named certs. .Then if you publish your snap-in with Avaya 

Snapp-store (this publishing signs the snap-in), the steps in 2 ii, are not 

needed. Look at the service archetype in the Avaya Breeze® platform SDK 

for more details on using this mechanism. Files that will contain comments 

are dist.xml and pom.xml of the snap-in svar.       

     

     

3. The snap-in uses the @ThePlatformListener to listen for the events that indicate that the 

certificate store has been updated. This event triggers the snap-in to update the SSLContext 

used in the HTTPS outbound connection.      

Mandatory Service Attributes to be configured:     
     

Account ID     

     

     

     

     

     

     

     

     

String used for account ID display associated with the account created at 
www.zang.io.     

     

Auth Token     

     

     

     

     

     

The auth token associated with the account created at www.zang.io.     

     

Phone     

Number     

     

     

     

     

     

     

     

The Mobile Phone number for which carrier lookup will be performed.     

     

     

     

     

 Installation and configuration     
For information on installing the service and configuring the service attributes see 

Administering Avaya Breeze® platform.     

     

     

http://www.zang.io/
http://www.zang.io/
http://www.zang.io/
http://www.zang.io/
http://www.zang.io/
http://www.zang.io/
http://www.zang.io/
http://www.zang.io/
http://www.zang.io/
http://www.zang.io/


Testing the service     
To configure the service attributes you need to have a Zang account, please refer to  

http://www.zang.io/ to create the account.     

This service contains the below two REST APIs .Both the API’s can be invoked by simply putting  the 
URL into the browser.     

1)  View Account details API : To see all the information associated with your account.  

https://SecurityIPAddress/services/OutboundHttpsSample/ws/myResource/accou ntDetails    2) 

 The Carrier Lookup API : Allows you to retrieve additional information about a phone.  

https://SecurityIPAddress/services/OutboundHttpsSample/ws/myResource/carrie rLookUp     

     

 Code snippets:     

     1) SSLUtilityFactory to get the SSLContext     

The SSLUtilityFactory.createSSLContext() in the Avaya Breeze® platform SDK creates the 

SSLContext object. This code snippet is present in HttpClientSingleton enum 

getSSLContext() method.     

     

SSLUtilityFactory.createSSLContext();     

     

       

https://securityipaddress/services/OutboundHttpsSample/ws/myResource/accountDetails
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/accountDetails
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/accountDetails
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/accountDetails
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/accountDetails
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/accountDetails
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/accountDetails
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/accountDetails
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/accountDetails
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/carrierLookUp
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/carrierLookUp
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/carrierLookUp
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/carrierLookUp
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/carrierLookUp
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/carrierLookUp
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/carrierLookUp
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/carrierLookUp
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/carrierLookUp
https://securityipaddress/services/OutboundHttpsSample/ws/myResource/carrierLookUp


3)  Using platform listener to get the cert change update     
The certificateStoreUpdated () method gets invoked as soon as a certificates is added to the node. Here 
we are invoking the reset of HttpClientSingleton to create a new HttpClient using the new certificate 
changes. This code snippet is present in CertificateChangePlatformListener class.     

     

@ThePlatformListener     

public class CertificateChangePlatformListener extends PlatformListenerAbstract     

{     

private Logger logger =     

Logger.getLogger(getClass()); @Override public final void certificateStoreUpdated()     
{     

HttpClientSingleton.INSTANCE.reset();     

}     

}     

     

4) Using the security module interface for outbound connectivity     
     

final ZephyrDM dm = (ZephyrDM) DMFactory.getInstance().getDataMgr(   

ZephyrDM.class); myFqdnOrIpAddress =    dm.getMySIPEntity().getFqdnoripaddr(); 

requestConfig =     

getRequestConfigBuilder().setLocalAddress(InetAddress.getByName(myFqdnOrIpAddres 

s)).build();     

client = HttpClients.custom().setDefaultRequestConfig(requestConfig).build();     

 

    


