

Avaya Breeze® platform Snap-in

Development Guide

Release 3.9

Issue 1

January 2024

file:///C:/Users/ndhadawe/AppData/Local/Microsoft/Windows/INetCache/Content.Outlook/67ILX6ON/images/Avaya%20Breeze%20Snap-in%20Development%20Guide_img_0.jpg

Avaya Breeze® platform Snap-in Development Guide 2

© 2024, Avaya, LLC.
All Rights Reserved.

AVAYA SOFTWARE DEVELOPMENT KIT LICENSE AGREEMENT

REVISED: January 14, 2022

READ THIS CAREFULLY BEFORE ELECTRONICALLY ACCESSING OR USING THIS PROPRIETARY

PRODUCT!

THIS IS A LEGAL AGREEMENT (“AGREEMENT”) BETWEEN YOU, INDIVIDUALLY, AND/OR THE LEGAL

ENTITY FOR WHOM YOU ARE OPENING, INSTALLING, DOWNLOADING, COPYING OR OTHERWISE USING

THE AVAYA SOFTWARE DEVELOPMENT KIT (“SDK”) (COLLECTIVELY, AS REFERENCED HEREIN, “YOU”,

“YOUR”, OR “LICENSEE”) AND AVAYA INC. OR ANY AVAYA AFFILIATE (COLLECTIVELY, “AVAYA”). IF

YOU ARE ACCEPTING THE TERMS AND CONDITIONS OF THIS AGREEMENT ON BEHALF OF A LEGAL

ENTITY, YOU REPRESENT AND WARRANT THAT YOU HAVE FULL LEGAL AUTHORITY TO ACCEPT ON

BEHALF OF AND BIND SUCH LEGAL ENTITY TO THIS AGREEMENT. BY OPENING THE MEDIA

CONTAINER, BY INSTALLING, DOWNLOADING, COPYING OR OTHERWISE USING THE AVAYA

SOFTWARE DEVELOPMENT KIT (“SDK”) OR AUTHORIZING OTHERS TO DO SO, YOU SIGNIFY THAT YOU

ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT HAVE SUCH

AUTHORITY OR DO NOT WISH TO BE BOUND BY THE TERMS OF THIS AGREEMENT, SELECT THE

"DECLINE" BUTTON AT THE END OF THE TERMS OF THIS AGREEMENT OR THE EQUIVALENT OPTION

AND YOU SHALL HAVE NO RIGHT TO USE THE SDK.

1.0 DEFINITIONS.

1.1 “Affiliates” means any entity that is directly or indirectly controlling, controlled by, or under common control with

Avaya Inc. For purposes of this definition, “control” means the power to direct the management and policies of such party,

directly or indirectly, whether through ownership of voting securities, by contract or otherwise; and the terms “controlling”

and “controlled” have meanings correlative to the foregoing.

1.2 “Avaya Software Development Kit” or “SDK” means Avaya technology, which may include Software, Client

Libraries, Specification Documents, Software libraries, application programming interfaces (“API”), Software tools,

Sample Application Code and Documentation.

1.3 “Client Libraries” mean any enabler code specifically designated as such and included in a SDK. Client Libraries may

also be referred to as “DLLs”, and represent elements of the SDK required at runtime to communicate with Avaya products

or other SDK elements.

1.4 “Change In Control” shall be deemed to have occurred if any person, entity or group comes to own or control, directly

or indirectly, beneficially or of record, voting securities (or any other form of controlling interest) which represent more

than fifty percent (50%) of the total voting power of the Licensee.

1.5 “Derivative Work(s)” means any translation (including translation into other computer languages), port, compiling of

Source Code into object code, combination with a pre-existing work, modification, correction, addition, extension,

upgrade, improvement, compilation, abridgment or other form in which an existing work may be recast, transformed or

adapted or which would otherwise constitute a derivative work under the United States Copyright Act. Permitted

Modifications will be considered Derivative Works.

1.6 “Documentation” includes programmer guides, CDs, manuals, materials, and information appropriate or necessary for

use in connection with the SDK. Documentation may be provided in machine-readable, electronic or hard copy form.

1.7 “Intellectual Property” means any and all: (i) rights associated with works of authorship throughout the world, including

copyrights, neighboring rights, moral rights, and mask works, (ii) trademark and trade name rights and similar rights, (iii)

Avaya Breeze® platform Snap-in Development Guide 3

trade secret rights, (iv) patents, algorithms, designs and other industrial property rights, (v) all other intellectual and

industrial property rights (of every kind and nature throughout the world and however designated) whether arising by

operation of law, contract, license, or otherwise, and (vi) all registrations, initial applications, renewals, extensions,

continuations, divisions or reissues thereof now or hereafter in force (including any rights in any of the foregoing).

1.8 “Permitted Modification(s)” means Licensee’s modifications of the Sample Application Code as needed to create

applications, interfaces, workflows or processes for use with Avaya products.

1.9 “Specification Document” means any notes or similar instructions in hard copy or machine readable form, including

any technical, interface and/or interoperability specifications that define the requirements and conditions for connection to

and/or interoperability with Avaya products, systems and solutions.

1.10 “Source Code” means human readable or high-level statement version of software written in the source language used

by programmers and includes one or more programs. Source Code programs may include one or more files, such as user

interface markup language (.mxml), action script (.as), precompiled Flash code (.swc), java script (.js), hypertext markup

language (.html), active server pages (.asp), C# or C# .Net source code (.cs), java source code (.java), java server pages

(.jsp), java archives (.jar), graphic interchange format (.gif), cascading style sheet (.css), audio files (.wav) and extensible

markup language (.xml) files.

1.11 “Sample Application Code” means Software provided for the purposes of demonstrating functionality of an Avaya

product through the Avaya Software Development Kit.

1.12 “Software” means data or information constituting one or more computer or apparatus programs, including Source

Code or in machine-readable, compiled object code form.

2.0 LICENSE GRANT.

2.1 SDK License.

A. Provided Licensee pays to Avaya the applicable license fee (if any), Avaya hereby grants Licensee a limited, non-

exclusive, non-transferable license (without the right to sublicense, except as set forth in 2.1B(iii)) under the

Intellectual Property of Avaya and, if applicable, its licensors and suppliers to (i) use the SDK solely for the purpose

of Licensee's internal development efforts to develop applications, interfaces, value-added services and/or solutions,

workflows or processes to work in conjunction with Avaya products; (ii) to package Client Libraries for

redistribution with Licensee’s complementary applications that have been developed using this SDK, subject to the

terms and conditions set forth herein; (iii) use Specification Documents solely to enable Licensee’s products, services

and application solutions to exchange messages and signals with Avaya products, systems and solutions to which

the Specification Document(s) apply; (iv) modify and create Derivative Works of the Sample Application Code,

Specification Documents and Documentation solely for internal development of applications, interfaces, workflows

or processes for use with Avaya products, integration of such applications, interfaces, workflows and processes with

Avaya products and interoperability testing of the foregoing with Avaya products; and (v) compile or otherwise

prepare for distribution the Sample Application Code with Permitted Modifications, into an object code or other

machine-readable program format for distribution and distribute the same subject to the conditions set forth in

Section 2.1B.

B. The foregoing license to use Sample Application Code is contingent upon the following: (i) Licensee must ensure

that the modifications made to the Sample Application Code as permitted in clause (iv) of Section 2.1A are

compatible and/or interoperable with Avaya products and/or integrated therewith, (ii) Licensee may distribute

Licensee’s application that has been created using this SDK, provided that such distribution is subject to an end user

pursuant to Licensee’s current end user license agreement (“Licensee EULA”) that is consistent with the terms of

this Agreement and, if applicable, any other agreement with Avaya (e.g., the Avaya DevConnect Program

Agreement), and is equally as protective as Licensee’s standard software license terms, but in no event shall the

standard of care be less than a reasonable degree of care, and (iii) Licensee ensures that each end user who receives

Avaya Breeze® platform Snap-in Development Guide 4

Client Libraries or Sample Application Code with Permitted Modifications has all necessary licenses for all

underlying Avaya products associated with such Client Libraries or Sample Application Code.

Your Licensee EULA must include terms concerning restrictions on use, protection of proprietary rights,

disclaimer of warranties, and limitations of liability. You must ensure that Your End Users using applications,

interfaces, value-added services and/or solutions, workflows or processes that incorporate the API, Client

Libraries, Sample Code or Permitted Modifications adhere to these terms, and You agree to notify Avaya

promptly if You become aware of any breach of the terms of Licensee EULA that may impact Avaya. You will

take all reasonable precautions to prevent unauthorized access to or use of the SDK and notify Avaya promptly of

any such unauthorized access or use.

C. Licensee acknowledges and agrees that it is licensed to use the SDK only in connection with Avaya products (and

if applicable, in connection with services provided by or on behalf of Avaya).

D. With respect to Software that contains elements provided by third party suppliers, Licensee may install and use

the Software in accordance with the terms and conditions of the applicable license agreements, such as “shrinkwrap”

or “click-through” licenses, accompanying or applicable to the Software.

2.2 No Standalone Product. Nothing in this Agreement authorizes or grants Licensee any rights to distribute or otherwise

make available to a third party the SDK, in whole or in part, or any Derivative Work in source or object code format on a

standalone basis other than the modifications permitted in Section 2.1B of this Agreement.

2.3 Proprietary Notices. Licensee shall not remove any copyright, trade mark or other proprietary notices incorporated in

the copies of the SDK, Sample Application Code and redistributable files in Licensee’s possession or control or any

modifications thereto. Redistributions in binary form or other suitable program format for distribution, to the extent

expressly permitted, must also reproduce Avaya’s copyright, trademarks or other proprietary notices as incorporated in the

SDK in any associated Documentation or “splash screens” that display Licensee copyright notices.

2.4 Third-Party Components. You acknowledge certain software programs or portions thereof included in the SDK may

contain software distributed under third party agreements (“Third Party Components”), which may contain terms that

expand or limit rights to use certain portions of the SDK (“Third Party Terms”). Information identifying the copyright

holders of the Third Party Components and the Third Party Terms that apply is available in the attached Schedule 1 (if

any), SDK, Documentation, or on Avaya’s web site at: http://support.avaya.com/Copyright (or such successor site as

designated by Avaya). The open source software license terms provided as Third Party Terms are consistent with the

license rights granted in this Agreement, and may contain additional rights benefiting You, such as modification and

distribution of the open source software. The Third Party Terms shall take precedence over this Agreement, solely with

respect to the applicable Third Party Components, to the extent that this Agreement imposes greater restrictions on You

than the applicable Third Party Terms. Licensee is solely responsible for procuring any necessary licenses for Third Party

Components, including payment of licensing royalties or other amounts to third parties, for the use thereof.

2.5 Copies of SDK. Licensee may copy the SDK only as necessary to exercise its rights hereunder.

2.6a No Reverse Engineering. Licensee shall have no rights to any Source Code for any of the software in the SDK, except

for the explicit rights to use the Source Code as provided to Licensee hereunder. Licensee agrees that it shall not cause or

permit the disassembly, decompilation or reverse engineering of the Software. Notwithstanding the foregoing, if the SDK

is rightfully located in a member state of the European Union and Licensee needs information about the Software in the

SDK in order to achieve interoperability of an independently created software program with the Software in the SDK,

Licensee will first request such information from Avaya. Avaya may charge Licensee a reasonable fee for the provision of

such information. If Avaya refuses to make such information available, then Licensee may take steps, such as reverse

assembly or reverse compilation, to the extent necessary solely in order to achieve interoperability of the Software in the

SDK with an independently created software program. To the extent that the Licensee is expressly permitted by applicable

mandatory law to undertake any of the activities listed in this section, Licensee will not exercise those rights until Licensee

has given Avaya twenty (20) days written notice of its intent to exercise any such rights.

http://support.avaya.com/Copyright

Avaya Breeze® platform Snap-in Development Guide 5

2.6.b License Restrictions. To the extent permissible under applicable law, Licensee agrees not to: (i) publish, sell,

sublicense, lease, rent, loan, assign, convey or otherwise transfer the SDK; (ii) distribute, disclose or allow use the SDK,

in any format, through any timesharing service, service bureau, network or by any other means; (iii) distribute or otherwise

use the Software in the SDK in any manner that causes any portion of the Software that is not already subject to an OSS

License to become subject to the terms of any OSS License; (iv) link the Source Code for any of the software in the SDK

with any software licensed under the Affero General Public License (Affero GPL) v.3 or similar licenses; (v) access

information that is solely available to root administrators of the Avaya products, systems, and solutions; (vi) develop

applications, interfaces, value-added services and/or solutions, workflows or processes that causes adverse effects to

Avaya and third-party products, services, solutions, such as, but not limited to, poor performance, software crashes and

cessation of their proper functions; and (vii) develop applications, interfaces, value-added services and/or solutions,

workflows or processes that blocks or delays emergency calls; (viii) emulate an Avaya SIP endpoint by form or user

interface design confusingly similar as an Avaya product ; (ix) reverse engineer Avaya SIP protocol messages; or (x)

permit or encourage any third party to do any of (i) through (x), inclusive, above.

2.7 Responsibility for Development Tools. Licensee acknowledges that effective utilization of the SDK may require the

use of a development tool, compiler and other software and technology of third parties, which may be incorporated in the

SDK pursuant to Section 2.4. Licensee is solely responsible for procuring such third party software and technology and

the necessary licenses, including payment of licensing royalties or other amounts to third parties, for the use thereof.

2.8 U.S. Government End Users. The SDK shall be classified as "commercial computer software" and the Documentation

is classified as "commercial computer software documentation" or "commercial items," pursuant to FAR 12.212 or DFAR

227.7202, as applicable. Any use, modification, reproduction, release, performance, display or disclosure of the SDK or

Documentation by the Government of the United States shall be governed solely by the terms of the Agreement and shall

be prohibited except to the extent expressly permitted by the terms of the Agreement.

2.9 Limitation of Rights. No right is granted to Licensee to sublicense its rights hereunder. All rights not expressly granted

are reserved by Avaya or its licensors or suppliers and, except as expressly set forth herein, no license is granted by Avaya

or its licensors or suppliers under this Agreement directly, by implication, estoppel or otherwise, under any Intellectual

Property right of Avaya or its licensors or suppliers. Nothing herein shall be deemed to authorize Licensee to use Avaya's

trademarks or trade names in Licensee's advertising, marketing, promotional, sales or related materials.

2.10 Independent Development.

2.10.1 Licensee understands and agrees that Avaya, Affiliates, or Avaya’s licensees or suppliers may acquire, license,

develop for itself or have others develop for it, and market and/or distribute applications, interfaces, value-added services

and/or solutions, workflows or processes similar to that which Licensee may develop. Nothing in this Agreement shall

restrict or limit the rights of Avaya, Affiliates, or Avaya’s licensees or suppliers to commence or continue with the

development or distribution of such applications, interfaces, value-added services and/or solutions, workflows or

processes.

2.10.2 Nonassertion by Licensee. Licensee agrees not to assert any Intellectual Property related to the SDK or applications,

interfaces, value-added services and/or solutions, workflows or processes developed using the SDK against Avaya,

Affiliates, Avaya’s licensors or suppliers, distributors, customers, or other licensees of the SDK.

2.11 Feedback and Support. Licensee agrees to provide any information, comments, problem reports, enhancement

requests and suggestions regarding the performance of the SDK (collectively, “Feedback”) via any public or private

support mechanism, forum or process otherwise indicated by Avaya. Avaya monitors applicable mechanisms, forums, or

processes but is under no obligation to implement any of Feedback, or be required to respond to any questions asked via

the applicable mechanism, forum, or process. Licensee hereby assigns to Avaya all right, title, and interest in and to

Feedback provided to Avaya.

2.12(a) Fees and Taxes. To the extent that fees are associated with the license of the SDK, Licensee agrees to pay to Avaya

or pay directly to the applicable government or taxing authority, if requested by Avaya, all taxes and charges, including

Avaya Breeze® platform Snap-in Development Guide 6

without limitation, penalties and interest, which may be imposed by any federal, state or local governmental or taxing

authority arising hereunder excluding, however, all taxes computed upon Avaya’s net income. If You move any Software,

including the SDK, and as a result of such move, a jurisdiction imposes a duty, tax, levy or fee (including withholding

taxes, fees, customs or other duties for the import and export of any such Software), then You are solely liable for, and

agree to pay, any such duty, taxes, levy or other fees.

2.12(b) Audit. Avaya shall have the right, at its cost and expense, to inspect and/or audit (i) by remote polling or other

reasonable electronic means at any time and (ii) in person during normal business hours and with reasonable notice

Licensee’s books, records, and accounts, to determine Licensee’s compliance with this Agreement. In the event such

inspection or audit uncovers non-compliance with this Agreement, then without prejudice to Avaya’s termination rights

hereunder, Licensee shall promptly pay Avaya any applicable license fees. Licensee agrees to keep a current record of the

location of the SDK.

2.13 No Endorsement. Neither the name Avaya, Affiliates nor the names of contributors may be used to endorse or

promote products derived from the Avaya SDK without specific prior written permission from Avaya.

2.14 High Risk Activities. The Avaya SDK is not fault-tolerant, and is not designed, manufactured or intended for use or

resale as on-line control equipment or in hazardous environments requiring failsafe performance, such as in the operation

of nuclear facilities, aircraft navigation or aircraft communications systems, mass transit, air traffic control, medical or

direct life support machines, dedicated emergency call handling systems or weapons systems, in which the failure of the

Avaya SDK could lead directly to death, personal injury, or severe physical or environmental damage ("high risk

activities"). If Licensee uses the Avaya SDK for high risk activities, Licensee does so at Licensee’s own risk and Licensee

assumes all responsibility and liability for such use to the maximum extent such limitation or exclusion is permitted by

applicable law. Licensee agrees that Avaya and its suppliers will not be liable for any claims or damages arising from or

related to use of the Avaya SDK for high risk activities to the maximum extent such limitation or exclusion is permitted

by law.

2.15 No Virus. Licensee warrants that (i) the applications, interfaces, value-added services and/or solutions, workflows or

processes Licensee develops using this SDK will not contain any computer program file that includes time code limitations,

disabling devices, or any other mechanism which will prevent the Avaya product (including other software, firmware,

hardware), services and networks from being functional at all times (collectively “Time Bombs”); and (ii) the applications,

interfaces, value-added services and/or solutions, workflows or processes Licensee develops using this SDK will be free

of computer viruses, malicious or other harmful code, black boxes, malware, trapdoors, and other mechanisms which

could: a) damage, destroy or adversely affect Avaya product, or services and/or end users; b) allow remote/hidden attacks

or access through unauthorized computerized command and control; c) spy (network sniffers, keyloggers), and d) damage

or erase such applications, interfaces, value-added services and/or solutions, workflows or processes developed using this

SDK or data, or any computer files or systems of Avaya, Affiliates, and/or end users (collectively “Virus”). In addition to

any other remedies permitted in the Agreement, if Licensee breaches its warranties under this Section, Licensee will, at its

expense, take remedial action to eliminate any Time Bombs and/or Viruses and prevent re-occurrence (including

implementing appropriate processes to prevent further occurrences) as well as provide prompt, reasonable assistance to

Avaya to materially reduce the effects of the Time Bomb and/or Virus.

2.16 Disclaimer. Any software security feature is not a guaranty against malicious code, deleterious routines, and other

techniques and tools employed by computer “hackers” and other third parties to create security exposures. Compromised

passwords represent a major security risk. Avaya encourages You to create strong passwords using three different character

types, change Your password regularly and refrain from using the same password regularly. You must treat such

information as confidential. You agree to notify Avaya immediately upon becoming aware of any unauthorized use or

breach of Your user name, password, account, API Key, or other credentials as provided by Avaya for use of the SDK, or

Avaya Breeze® platform Snap-in Development Guide 7

subscription. You are responsible for ensuring that Your networks and systems are adequately secured against unauthorized

intrusion or attack and regularly back up of Your data and files in accordance with good computing practices.

2.17 Third Party Licensed Software

A. “Commercial Third Party Licensed Software” is software developed by a business with the purpose of making

money from the use of that licensed software. “Freeware Licensed Software” is software which is made available

for use, free of charge and for an unlimited time, but is not Open Source Licensed Software. “Open Source

Software" or "OSS" is as defined by the Open Source Initiative (“OSI”) https://opensource.org/osd and is software

licensed under an OSI approved license as set forth at https://opensource.org/licenses/alphabetical (or such successor

site as designated by OSI). These are collectively referred to herein as “Third Party Licensed Software”.

B. Licensee represents and warrants that Licensee, including any employee, contractor, subcontractor, or consultant

engaged by Licensee, is to the Licensee’s knowledge, in compliance and will continue to comply with all license

obligations for Third Party Licensed Software used in the Licensee application created using the SDK including

providing to end users all information required by such licenses as may be necessary. LICENSEE REPRESENTS

AND WARRANTS THAT, TO THE LICENSEE’S KNOWLEDGE, THE OPEN SOURCE LICENSED

SOFTWARE EMBEDDED IN OR PROVIDED WITH LICENSEE APPLICATION OR SERVICES DOES NOT

INCLUDE ANY OPEN SOURCE LICENSED SOFTWARE CONTAINING TERMS REQUIRING ANY

INTELLECTUAL PROPERTY OWNED OR LICENSED BY AVAYA OR END USERS TO BE (A)

DISCLOSED OR DISTRIBUTED IN SOURCE CODE OR OBJECT CODE FORM; (B) LICENSED FOR THE

PURPOSE OF MAKING DERIVATIVE WORKS; OR (C) REDISTRIBUTABLE ON TERMS AND

CONDITION NOT AGREED UPON BY AVAYA OR END USERS.

C. Subject to any confidentiality obligations, trade secret or other rights or claims of Licensee suppliers, Licensee

will respond to requests from Avaya or end users relating to Third Party Licensed Software associated with

Licensee's use of Third Party Licensed Software. Licensee will cooperate in good faith by furnishing the relevant

information to Avaya or end users and the requester within two (2) weeks from the time Avaya or end user provided

the request to Licensee.

3. OWNERSHIP.

3.1 As between Avaya and Licensee, Avaya or its licensors or suppliers shall own and retain all Intellectual Property rights,

in and to the SDK and any corrections, bug fixes, enhancements, updates, improvements, or modifications thereto and

Licensee hereby irrevocably transfers, conveys and assigns to Avaya, its licensors and its suppliers all of its right, title, and

interest therein. Avaya or its licensors or suppliers shall have the exclusive right to apply for or register any patents, mask

work rights, copyrights, and such other proprietary protections with respect thereto. Licensee acknowledges that the license

granted under this Agreement does not provide Licensee with title or ownership to the SDK, but only a right of limited use

under the terms and conditions of this Agreement.

3.2 Grant Back License to Avaya. Licensee hereby grants to Avaya an irrevocable, perpetual, non-exclusive, sublicensable,

royalty-free, fully paid up, worldwide license under any and all of Licensee's Intellectual Property rights related to any

Permitted Modifications, to (i) use, make, sell, execute, adapt, translate, reproduce, display, perform, prepare derivative

works based upon, distribute (internally and externally) and sublicense the Permitted Modifications and their derivative

works, and (ii) sublicense others to do any, some, or all of the foregoing.

4.0 SUPPORT.

4.1 No Avaya Support. Avaya will not provide any support for the SDK provided under this Agreement or for any

Derivative Works, including, without limitation, modifications to the Source Code or applications built by Licensee using

the SDK. Avaya shall have no obligation to provide support for the use of the SDK, or Licensee's application, services or

solutions which may or may not include redistributable Client Libraries or Sample Application Code, to any third party to

whom Licensee delivers such applications, services or solutions. Avaya further will not provide fixes, patches or repairs

for any defects that might exist in the SDK or the Sample Application Code provided under this Agreement. In the event

that Licensee desires support services for the SDK, and, provided that Avaya offers such support services (in its sole

Avaya Breeze® platform Snap-in Development Guide 8

discretion), Licensee will be required to enter into an Avaya DevConnect Program Agreement or other support agreement

with Avaya.

4.2 Licensee Obligations. Licensee acknowledges and agrees that it is solely responsible for developing and supporting

any applications, interfaces, value-added services and/or solutions, workflows or processes developed under this

Agreement, including but not limited to (i) developing, testing and deploying such applications, interfaces, value-added

services and/or solutions, workflows or processes; (ii) configuring such applications, interfaces, value-added services

and/or solutions, workflows or processes to interface and communicate properly with Avaya products; and (iii) updating

and maintaining such applications, interfaces, value-added services and/or solutions, workflows or processes as necessary

for continued use with the same or different versions of end user and/or third party licensor products, and Avaya products.

5.0 CONFIDENTIALITY.

5.1 Protection of Confidential Information. Licensee acknowledges and agrees that the SDK and any other Avaya technical

information obtained by it under this Agreement (collectively, “Confidential Information”) is confidential information of

Avaya. Licensee shall take all reasonable measures to maintain the confidentiality of the Confidential Information.

Licensee further agrees at all times to protect and preserve the SDK in strict confidence in perpetuity, and shall not use

such Confidential Information other than as expressly authorized by Avaya under this Agreement, nor shall Licensee

disclose any Confidential Information to third parties without Avaya's written consent. Licensee further agrees to

immediately 1) cease all use of all Confidential Information (including copies thereof) in Licensee's possession, custody,

or control; 2) stop reproducing or distributing the Confidential Information; and 3) destroy the Confidential Information

in Licensee’s possession or under its control, including Confidential Information on its computers, disks, and other digital

storage devices upon termination of this Agreement at any time and for any reason. Upon request, Licensee will certify in

writing its compliance with this Section. The obligations of confidentiality shall not apply to information which (a) has

entered the public domain except where such entry is the result of Licensee's breach of this Agreement; (b) prior to

disclosure hereunder was already rightfully in Licensee's possession; (c) subsequent to disclosure hereunder is obtained by

Licensee on a non-confidential basis from a third party who has the right to disclose such information to the Licensee; (d)

is required to be disclosed pursuant to a court order, so long as Avaya is given adequate notice and the ability to challenge

such required disclosure.

5.2 Press Releases. Any press release or publication regarding this Agreement is subject to prior written approval of

Avaya.

6.0 NO WARRANTY.

The SDK and Documentation are provided “AS-IS” without any warranty whatsoever. AVAYA SPECIFICALLY AND

EXPRESSLY DISCLAIMS ANY WARRANTIES OR CONDITIONS, STATUTORY OR OTHERWISE, INCLUDING

THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,

NONINFRINGEMENT AND SATISFACTORY QUALITY. AVAYA DOES NOT WARRANT THAT THE SDK AND

DOCUMENTATION ARE SUITABLE FOR LICENSEE'S USE, THAT THE SDK OR DOCUMENTATION ARE

WITHOUT DEFECT OR ERROR, THAT OPERATION WILL BE UNINTERRUPTED, OR THAT DEFECTS WILL

BE CORRECTED. FURTHER, AVAYA MAKES NO WARRANTY REGARDING THE RESULTS OF THE USE OF

THE SDK AND DOCUMENTATION. NEITHER AVAYA NOR ITS SUPPLIERS MAKE ANY WARRANTY,

EXPRESS OR IMPLIED, THAT THE SDK OR DOCUMENTATION IS SECURE, SECURITY THREATS AND

VULNERABILITIES WILL BE DETECTED OR SOFTWARE WILL RENDER AN END USER’S OR LICENSEE’S

NETWORK OR PARTICULAR NETWORK ELEMENTS SAFE FROM INTRUSIONS AND OTHER SECURITY

BREACHES.

7.0 CONSEQUENTIAL DAMAGES WAIVER.

EXCEPT FOR PERSONAL INJURY CLAIMS, AVAYA SHALL NOT BE LIABLE FOR ANY INCIDENTAL,

INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH, ARISING OUT OF OR

RELATING TO THIS AGREEMENT OR USE OF THE SDK, OR FOR THE LOSS OR CORRUPTION OF DATA,

Avaya Breeze® platform Snap-in Development Guide 9

INFORMATION OF ANY KIND, BUSINESS, PROFITS, OR OTHER COMMERCIAL LOSS, HOWEVER CAUSED,

AND WHETHER OR NOT AVAYA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

8.0 LIMITATION OF LIABILITY.

EXCEPT FOR PERSONAL INJURY CLAIMS, IN NO EVENT SHALL AVAYA'S TOTAL LIABILITY TO LICENSEE

IN CONNECTION WITH, ARISING OUT OF OR RELATING TO THIS AGREEMENT EXCEED FIVE HUNDRED

DOLLARS ($500). THE PARTIES AGREE THAT THE LIMITATIONS SPECIFIED IN THIS SECTION WILL APPLY

EVEN IF ANY LIMITED REMEDY PROVIDED IN THIS AGREEMENT IS FOUND TO HAVE FAILED OF ITS

ESSENTIAL PURPOSE.

9.0 INDEMNIFICATION.

Licensee shall defend, indemnify and hold harmless Avaya, Affiliates and their respective officers, directors, agents,

suppliers, customers and employees “Indemnified Parties”) from and against all claims, demand, suit, actions or

proceedings (“Claims”) and damages, losses, liabilities, costs, expenses, and fees (including fees of attorneys and other

professionals) (“Damages”) based upon an allegation pertaining to wrongful use, misappropriation, or infringement of a

third party’s Intellectual Property right arising from or relating to Licensee’s use of the SDK, alone or in combination with

other software, such as operating systems and codecs, and the, direct or indirect, use, distribution or sale of any software,

Derivative Works or other products (including but not limited to applications, interfaces, and application programming

interfaces) developed utilizing the SDK.

Licensee shall defend, indemnify and hold harmless the Indemnified Parties from and against all Claims and Damages

arising out of or related to: (i) personal injury (including death); (ii) damage to any person or tangible property caused, or

alleged to be caused by Licensee or Licensee’s application created by using the SDK; (iii) the failure by Licensee or

Licensee’s application created by using the SDK to comply with the terms of this Agreement or any applicable laws; (iv)

the breach of any representation, or warranty made by Licensee herein; or (v) Licensee’s breach of any obligation under

the Licensee EULA.

10.0 TERM AND TERMINATION.

10.1 This Agreement will continue through December 31st of the current calendar year. The Agreement will automatically

renew for one (1) year terms, unless terminated as specified in Section 10.2 or 10.3 below.

10.2 Either party shall have the right to terminate the Agreement, upon thirty (30) days written notice to the other party.

10.3 Notwithstanding language to the contrary, Avaya may terminate this Agreement immediately, upon written notice to

Licensee for breach of Section 2 (License Grant), Section 5 (Confidentiality) or Section 12 (Compliance with Laws).

Avaya may also terminate this Agreement immediately by giving written notice if a Change In Control should occur or if

Licensee becomes insolvent, or voluntary or involuntary proceedings by or against Licensee are instituted in bankruptcy

or under any insolvency law, or a receiver or custodian is appointed for Licensee, or proceedings are instituted by or against

Licensee for corporate reorganization or the dissolution of Licensee, which proceedings, if involuntary, have not been

dismissed within thirty (30) days after the date of filing, or Licensee makes an assignment for the benefit of its creditors,

or substantially all of the assets of Licensee are seized or attached and not released within sixty (60) days thereafter, or if

Licensee has ceased or threatened to cease to do business in the regular course.

10.4 Upon termination or earlier termination of this Agreement, Licensee will immediately cease a) all uses of the

Confidential Information; b) Licensee agrees to destroy all adaptations or copies of the Confidential Information stored in

any tangible medium including any document or work containing or derived (in whole or in part) from the Confidential

Information, and certify its destruction to Avaya upon termination of this License. Licensee will promptly cease use of,

distribution and sales of Licensee products that embody any such Confidential Information, and destroy all Confidential

Information belonging to Avaya as well as any materials that embody any such Confidential Information. All licenses

granted will terminate.

10.5 The rights and obligations of the parties contained in Sections 2.3, 2.6, 2.7, 2.10, 2.11, 2.12, 3, and 5 through 17 shall

survive any expiration or termination of this Agreement.

Avaya Breeze® platform Snap-in Development Guide 10

11.0 ASSIGNMENT.

Avaya may assign all or any part of its rights and obligations hereunder. Licensee may not assign this Agreement or any

interest or rights granted hereunder to any third party without the prior written consent of Avaya. The term "assign"

includes, but is not limited to, any transaction in which there is a Change In Control or reorganization of Licensee pursuant

to a merger, sale of assets or stock. This Agreement shall terminate immediately upon occurrence of any prohibited

assignment.

12.0 COMPLIANCE WITH LAWS AND IMPORT/EXPORT CONTROL.

Licensee shall comply with all applicable laws and regulations, including without limitation those applicable to data

privacy, intellectual property, trade secret, and fraud. Licensee is advised that the Technical Information is of U.S.

origin and subject to the U.S. Export Administration Regulations (“EAR”) and may be subject to applicable local

country import/export laws and regulations. Diversion contrary to U.S. and/or applicable local country law and/or

regulation is prohibited. Licensee agrees not to directly or indirectly export, re-export, import, download, or transmit

the Technical Information to any country, end user or for any use that is contrary to applicable U.S. and/or local country

regulation or statute (including but not limited to those countries embargoed by the U.S. government). Licensee

represents that any governmental agency has not issued sanctions against Licensee or otherwise suspended, revoked or

denied Licensee's import/export privileges. Licensee agrees not to use or transfer the Technical Information for any use

relating to nuclear, chemical or biological weapons, or missile technology, unless authorized by the U.S. and/or any

applicable local government by regulation or specific written license. Additionally, Licensee is advised that the

Technical Information may contain encryption algorithm or source code that may not be exported to government or

military end users without a license issued by the U.S. Bureau of Industry and Security and any other country’s

governmental agencies, where applicable.

13.0 WAIVER.

The failure to assert any rights under this Agreement, including, but not limited to, the right to terminate in the event of

breach or default, will not be deemed to constitute a waiver of the right to enforce each and every provision of this

Agreement in accordance with their terms.

14.0 SEVERABILITY.

If any provision of this Agreement is determined to be unenforceable or invalid, this Agreement will not be rendered

unenforceable or invalid as a whole, and the provision will be changed and interpreted so as to best accomplish the

objectives of the original provision within the limits of applicable law.

15.0 GOVERNING LAW AND DISPUTE RESOLUTION.

15.1 Governing Law. This Agreement and any dispute, claim or controversy arising out of or relating to this Agreement

(“Dispute”), including without limitation the formation, interpretation, breach or termination of this Agreement, or any

issue regarding whether a Dispute is subject to arbitration under this Agreement, will be governed by New York State

laws, excluding conflict of law principles, and the United Nations Convention on Contracts for the International Sale of

Goods.

15.2 Dispute Resolution. Any Dispute will be resolved in accordance with the provisions of this Section 15. The disputing

party shall give the other party written notice of the Dispute in accordance with the notice provision of this Agreement.

The parties will attempt in good faith to resolve each controversy or claim within 30 days, or such other longer period as

the parties may mutually agree, following the delivery of such notice, by negotiations between designated representatives

of the parties who have dispute resolution authority.

Avaya Breeze® platform Snap-in Development Guide 11

15.3 Arbitration of Non-US Disputes. If a Dispute that arose anywhere other than in the United States or is based upon an

alleged breach committed anywhere other than in the United States cannot be settled under the procedures and within the

timeframe set forth in Section 15.2, it will be conclusively determined upon request of either party by a final and binding

arbitration proceeding to be held in accordance with the Rules of Arbitration of the International Chamber of Commerce

by a single arbitrator appointed by the parties or (failing agreement) by an arbitrator appointed by the President of the

International Chamber of Commerce (from time to time), except that if the aggregate claims, cross claims and

counterclaims by any one party against the other party exceed One Million US Dollars at the time all claims, including

cross claims and counterclaims are filed, the proceeding will be held in accordance with the Rules of Arbitration of the

International Chamber of Commerce by a panel of three arbitrator(s) appointed in accordance with the Rules of Arbitration

of the International Chamber of Commerce. The arbitration will be conducted in the English language, at a location agreed

by the parties or (failing agreement) ordered by the arbitrator(s). The arbitrator(s) will have authority only to award

compensatory damages within the scope of the limitations of Section 8 and will not award punitive or exemplary damages.

The arbitrator(s) will not have the authority to limit, expand or otherwise modify the terms of this Agreement. The ruling

by the arbitrator(s)) will be final and binding on the parties and may be entered in any court having jurisdiction over the

parties or any of their assets. The parties will evenly split the cost of the arbitrator(s)’ fees, but Avaya and Customer will

each bear its own attorneys' fees and other costs associated with the arbitration. The parties, their representatives, other

participants and the arbitrator(s) will hold the existence, content and results of the arbitration in strict confidence to the

fullest extent permitted by law. Any disclosure of the existence, content and results of the arbitration will be as limited and

narrowed as required to comply with the applicable law. By way of illustration, if the applicable law mandates the

disclosure of the monetary amount of an arbitration award only, the underlying opinion or rationale for that award may not

be disclosed.

15.4 Choice of Forum for US Disputes. If a Dispute by one party against the other that arose in the United States or is

based upon an alleged breach committed in the United States cannot be settled under the procedures and within the

timeframe set forth in Section 15.2, then either party may bring an action or proceeding solely in either the Supreme Court

of the State of New York, New York County, or the United States District Court for the Southern District of New York.

Except as otherwise stated in Section 15.3 each party consents to the exclusive jurisdiction of those courts, including their

appellate courts, for the purpose of all actions and proceedings arising out of or relating to this Agreement.

15.5 Injunctive Relief. Nothing in this Agreement will be construed to preclude either party from seeking provisional

remedies, including, but not limited to, temporary restraining orders and preliminary injunctions from any court of

competent jurisdiction in order to protect its rights, including its rights pending arbitration, at any time. The parties agree

that the arbitration provision in Section 15.3 may be enforced by injunction or other equitable order, and no bond or security

of any kind will be required with respect to any such injunction or order.

15.6 Time Limit. Actions on Disputes between the parties must be brought in accordance with this Section within 2 years

after the cause of action arises.

16.0 AGREEMENT IN ENGLISH.

The parties confirm that it is their wish that the Agreement, as well as all other documents relating hereto, including all

notices, have been and shall be drawn up in the English language only. Les parties aux présentes confirment leur volonté

que cette convention, de même que tous les documents, y compris tout avis, qui s'y rattachent, soient rédigés en langue

anglaise.

17.0 ENTIRE AGREEMENT.

This Agreement, its exhibits, schedules and other agreements or documents referenced herein, constitute the full and

complete understanding and agreement between the parties and supersede all contemporaneous and prior understandings,

agreements and representations relating to the subject matter hereof. No modifications, alterations or amendments shall

be effective unless in writing signed by both parties to this Agreement.

18. REDISTRIBUTABLE CLIENT FILES.

The list of SDK client files that can be redistributed, if any, are in the SDK in a file called Redistributable.txt.

Avaya Breeze® platform Snap-in Development Guide 12

Schedule 1 to Avaya SDK License Agreement

Third Party Notices

1. CODECS: WITH RESPECT TO ANY CODECS IN THE SDK, YOU ACKNOWLEDGE AND AGREE YOU

ARE RESPONSIBLE FOR ANY AND ALL RELATED FEES AND/OR ROYALTIES, IF ANY. IT IS YOUR

RESPONSIBILITY TO CHECK.

THE H.264 (AVC) CODEC IS LICENSED UNDER THE AVC PATENT PORTFOLIO LICENSE FOR THE

PERSONAL USE OF A CONSUMER OR OTHER USES IN WHICH IT DOES NOT RECEIVE REMUNERATION

TO: (I) ENCODE VIDEO IN COMPLIANCE WITH THE AVC STANDARD ("AVC VIDEO") AND/OR (II)

DECODE AVC VIDEO THAT WAS ENCODED BY A CONSUMER ENGAGED IN A PERSONAL ACTIVITY

AND/OR WAS OBTAINED FROM A VIDEO PROVIDER LICENSED TO PROVIDE AVC VIDEO. NO LICENSE

IS GRANTED OR SHALL BE IMPLIED FOR ANY OTHER USE. ADDITIONAL INFORMATION FOR THE

H.264 (AVC) CODEC MAY BE OBTAINED FROM MPEG LA, L.L.C. SEE HTTP://WWW.MPEGLA.COM.

http://www.mpegla.com/

Avaya Breeze® platform Snap-in Development Guide 13

Contents

Avaya Breeze® platform Snap-in Development Guide ... 1

Chapter 1: What you can do with Avaya Breeze® platform ... 17

Sample snap-ins ... 17

Chapter 2: Creating a service project ... 20

Prerequisite ... 20

Project skeletons .. 20

Service projects .. 20

Creating a project skeleton using Eclipse .. 21

Creating a project skeleton using Maven from the command line 23

Generated project structure .. 24

Project request types ... 25

Trimming project request type: Calls .. 25

Trimming project request type: HTTP JAX-RS .. 25

Trimming project request type: HTTP Servlet ... 26

Platform listener .. 26

Call listener implementation ... 26

Life Cycle Management .. 28

Building and packaging the service using Eclipse .. 30

Building and packaging the service using Maven from the command line 31

Avaya Breeze® platform and third-party Jars... 32

Parent First Versus Parent Last Classloading ... 36

Next steps .. 37

Chapter 3: Developing the service .. 38

Developer update method .. 38

Updating a service ... 38

Service versioning .. 39

Configuring the Eclipse plug-in .. 41

System Manager Browser field descriptions .. 44

Using the Eclipse IDE .. 45

Actions supported for the project ... 45

Avaya Breeze® Global actions ... 47

Converting an older project to Avaya Breeze® platform 3.9 .. 49

Avaya Breeze® platform Snap-in Development Guide 14

Snap-in start/stop from Avaya Breeze® Service Management page 51

Creating a snap-in with the start/stop functionality ... 51

Configuring log file size ... 52

Service attributes .. 52

Override the factory default values of attributes for snap-ins .. 59

How to read service profile attribute values ... 61

Service cluster/service global attribute values .. 62

Snap-in URL .. 63

Cluster attribute values .. 63

Attribute notifications ... 64

Logger .. 66

Raising alarms .. 67

Avaya Breeze® platform application programming interface ... 70

How to get the original HTTP request IP and scheme ... 78

How to get the HTTP/HTTPS proxy settings ... 78

HTTP header X-Frame-Options ... 78

HTTP headers in responses ... 79

When to use the session affinity parameter for HTTP load balancing 80

How to decide which TLS version to be used .. 80

Considerations about sending outbound HTTP requests .. 82

Properties.xml ... 84

About Avaya Snapp Store .. 88

Obtaining the Supplier ID .. 89

Adding EULA... 89

Bundles .. 90

Defining dependencies on pre-loaded connectors on Avaya Breeze® platform Element
Manager ... 96

Workflows and tasks in a SVAR bundle ... 97

Creating a Workflow SVAR .. 97

Creating a task SVAR .. 97

Creating a bundle with the workflow and task SVARs using a sample bundle 98

Chapter 4: Avaya Breeze® platform Call Handling ... 100

Call Intercept ... 100

Inbound call blocking ... 100

Avaya Breeze® platform Snap-in Development Guide 15

Outbound call blocking .. 101

Outbound caller ID change ... 102

Redirect call... 102

Calling Party vs. Called Party ... 103

Outbound calling .. 103

Participant tracking... 104

Dropping and adding participants .. 104

Flexible Call Leg Control ... 106

Callable Service .. 106

Inserting and removing Avaya Aura® Media Server ... 108

Media operations on mixed audio stream .. 109

Service invocation configuration .. 109

Removing service from call .. 111

Chapter 5: Developing the service to use the Cluster DB ... 114

Introduction to Cluster DB ... 114

Database setup .. 114

DB schema creation and maintenance ... 116

Notifications for Cluster DB backup and restore ... 118

Upgrade engine .. 119

Inserting the upgrade scripts into your svar ... 120

DB removal .. 120

Accessing the Cluster DB ... 120

Chapter 6: Avaya Breeze® platform connectors .. 121

Scopia connector .. 121

Configuring the Scopia connector ... 122

Scopia connector field descriptions ... 122

Using the SCOPIA Connector from your service .. 123

Email connector .. 124

Configuring the Email connector .. 125

Email connector field descriptions ... 126

Using the Email SMTP connector from your service .. 127

Chapter 7: Performance and scalability considerations ... 131

Performance and scalability considerations .. 131

Scaling ... 134

Avaya Breeze® platform Snap-in Development Guide 16

Additional resources .. 135

Chapter 8: Authorization ... 136

Overview .. 136

Integrating snap-in clients with Authorization Service .. 136

User Scopes .. 138

Scopes from Oceana Unified Collaboration Administration (UCA) 138

Integrating snap-in resources with Authorization Service .. 138

Administering grants to an Authorization Client .. 140

Discovering Authorization Service ... 141

Authentication mechanisms .. 142

Chapter 9: Service monitors ... 149

Health Monitoring Service ... 149

Measuring snap-in resource usage ... 149

Avaya Breeze® platform Snap-in Development Guide 17

Chapter 1: What you can do with Avaya

Breeze® platform

Sample snap-ins
Avaya Breeze® platform supports the following types of snap-ins:

• Call Intercept

• Outbound Calling

• Callable Services

• HTTP-invoked

For more information, see Avaya Breeze® platform Overview and Specification.

The Avaya Breeze® platform SDK provides the following sample snap-ins. These snap-ins
demonstrate the different concepts and show how to use various capabilities of Avaya Breeze®
platform. These snap-ins can also be used as models to test whether your system is correctly
installed and configured. The sample snap-ins are not intended for general deployment.

Snap-in Name Description Concepts illustrated

HelloWorld A test snap-in intended for developers
to use to verify that Avaya Breeze®
platform is working correctly.
When either the calling or called party
is associated with this snap-in, the
message Hello from Avaya Breeze
displays on the called endpoint.

Call Intercept
Display Manipulation
Service Attributes

Whitelist Routes incoming calls to the dialed
user only if the calling number is on a
whitelist of numbers designated for the
user.
If the calling number is not on the
whitelist, the call redirects to an
alternate number. This snap-in uses
Cluster Database as the default
database. The snap-in database also
supports the use of external
databases. The snap-in uses the
JDBC Source and JDBC Providers.

Call Intercept
Call Redirect
Cluster Database
Service Attributes

DynamicTeamFormationService Sends emails or text messages to
participants inviting them to join
conference calls using Avaya Scopia.
Recipients can join the conference by
clicking the link in the message.

Scopia conference
creation
Send SMS
Send Email
Service Attributes

MultiChanBroadcastService Sends a broadcast message by email,
text message, or voice messages to
contacts.

HTTP Servlet
Outbound calling
Call Event Handling

Avaya Breeze® platform Snap-in Development Guide 18

This snap-in can be used in Zang-
enabled Avaya Breeze® platform
environments.
For more information about Zang-
enabled Avaya Breeze® platform, see
Deploying Zang-enabled Avaya
Breeze® platform.

Play announcement
Send SMS
Send Email
Service Attributes

ClickToCall Allows users to enter the calling and
called numbers on a webpage.
The snap-in establishes a call
between the calling and the called
party numbers. The snap-in displays
the call progress on the user interface.

HTTP Servlet
Simple web user
interface
Two-party Make Call
Call Event Handling

Callingpolicies Plays announcements and allows the
call to continue to the original number,
forks the call to other numbers,
redirects the call to another
number, or drops the call with an
announcement. The caller must use
DTMF to select the options.
Calling Policies supports Flexible Call
Leg Control methods that include
serial forking and serial calling
operations. This snap-in also
demonstrates attribute scoping.

Call Intercept
Call Redirect
Call Fork (Parallel and
Serial)
Call Drop
Play Announcement
Prompt and Collect
Service Attributes

CallableService A test snap-in for Callable Services.
The snap-in also demonstrates the
use of the message recording function
of the SDK.

Callable Service
Message Recording
Service Attributes

OutboundHttpsSample Demonstrates correct use of Avaya
Breeze® platform facilities to invoke
external web services through
HTTPS. The snap-in ensures that the
latest provisioned trust or identity
certificates are always leveraged and
ensures that the correct network
interfaces on Avaya Breeze sends
requests.
This snap-in provides a web interface
to get the phone number and to
display the output of the Zang lookup
carrier service.

REST API Invocation
Trust / Identity
Certificate Use
Certificate Change
Notification
Simple Web UI
Zang Carrier Lookup
Service Attributes

TaskRepository An example AuthorizationResource
snap-in that, in this context, stores
tasks of users.
This snap-in has APIs for CRUD
operations of tasks that users own.
These APIs are protected and only
requests with valid access tokens
containing appropriate authorization

Authorization Resource
REST APIs
Service Attributes

Avaya Breeze® platform Snap-in Development Guide 19

grants can perform relevant
operations.

TaskDashboard An example AuthorizationClient snap-
in that is an OAuth 2.0 client with an
intention to provide a user interface for
users to view their tasks by retrieving
the data from the TaskRepository
snap-in.
TaskDashboard authenticates users,
gets access tokens for them from
AuthorizationService and uses these
tokens while making task-related
queries to TaskRepository.

Authorization Client
including user
authentication
Web User Interface
JavaScript invoking
REST APIs
Service Attributes

AuthorizationSampleBundle Demonstrates the bundle creation as
an SVAR.
This sample bundle also shows how
snap-ins can be packaged in a bundle
and how a snap-in can define
dependency on another snap-in.

Snap-in Bundling

CallDeflection Demonstrates a number of Avaya
Breeze® platform features available to
snap-in writers.
These features include the ability to
prompt and collect, send SMS, send
email, and add participants to calls.
This snap-in can be used in Zang-
enabled Avaya Breeze® platform
environments. For more information
about Zang-enabled Avaya Breeze®,
see Deploying Zang-enabled Avaya
Breeze® platform.

Zang Enabled Breeze
Callable Service
Add Participant
Send SMS
Send Email

Avaya Breeze® platform Snap-in Development Guide 20

Chapter 2: Creating a service project

Prerequisite
This chapter assumes that you have the Avaya Breeze® SDK installed in your environment. If you
do not yet have the SDK, see Getting Started with the Avaya Breeze® SDK.

You must also have JDK 1.8 installed. Only Java version 1.8 is supported.

Project skeletons
The recommended procedure for creating an Avaya Breeze® service project is to use the
Maven archetype provided by the SDK. When executed, the archetype creates a skeleton
service to act as a starting point for your development.

A service project skeleton can either be created from within Eclipse or by using Maven from

the command line. This guide will demonstrate both ways.

Note:

Before you use the Avaya Breeze® 3.9 Maven Archetype, remove the

.m2/repositorydirectory and .m2/catalog file from your Maven home directory. You will then

have to reinstall the SDK.

Service projects

Project skeleton information
To create a skeleton project, the archetype needs some information from the developer. The
group ID, artifact ID, and version are used by Maven to identify the project (aka Maven
coordinate). The last two, serviceName and serviceVersion are used by the Avaya Breeze®
platform to identify the service.

• Group ID and Artifact ID: Together these uniquely identify your Maven project

• Version: A version string to be used by Maven for your project

• Package: Java package name used to generate the service skeleton code

• serviceName: The name that will identify the service to the Avaya Breeze® platform and
System Manager.

• serviceVersion: A version string used in Avaya Breeze® platform for the service in the
format X.X.X.X.X where X is one or more digits. For more information, see the Service
Versioning section.

Example Maven values
• Group ID: com.mycompany

• Artifact ID: testService

• Version: 0.0.1-SNAPSHOT

• Package: com.mycompany.testservice

Avaya Breeze® platform Snap-in Development Guide 21

Example Avaya Breeze® platform values
• serviceName: TestService

• serviceVersion: 1.0.0.0.0

Note:

Service name can contain only the following special characters: hyphen (-) and
underscore (_).

Creating a project skeleton using Eclipse

Procedure
1. Choose New > Other from the File menu.
2. In the dialog that appears, expand the Maven group, select Maven Project, and select

Next.

3. Clear the Create a simple project check box and click Next.

Avaya Breeze® platform Snap-in Development Guide 22

4. Enter com.avaya.zephyr.sdk in the Filter field on the archetype selection screen.

5. Select the service-archetype artifact and click Next.

Avaya Breeze® platform Snap-in Development Guide 23

6. Enter the Maven Group Id, Artifact Id, and Version for the service you will be creating,
as well as values for the serviceName and serviceVersion properties which are used
by Avaya Breeze® platform and Avaya Aura® System Manager.

7. Click Finish.

Creating a project skeleton using Maven from the command
line

Procedure
1. Open a terminal in the directory where you want to create the service project.

2. Run the following command: mvn archetype:generate -

DarchetypeGroupId=com.avaya.zephyr.sdk -

DarchetypeArtifactId=service-archetype

3. Enter the Maven group id, artifact id, and version for the service you will be creating.

Avaya Breeze® platform Snap-in Development Guide 24

4. If you want to alter the serviceName and serviceVersion properties from their defaults,

enter N at the prompt that appears and reenter the group id, artifact id, version, along

with the serviceName and serviceVersion.

5. Enter Y to confirm that your selections are correct.

Generated project structure
After running the archetype, you will have a parent project which contains 3 modules:

• SVAR module: creates a SVAR file which is the component installed on System
Manager and Avaya Breeze® server. It contains the application EAR as well as
additional Avaya Breeze® platform specific configuration.

• EAR module: creates an EAR file containing the WAR. Service developers should not
need to modify anything in this package.

• WAR module: contains the java source code for the service as well as container
configuration.

Note:

Eclipse may display warnings about missing XML schemas in the generated project. These
do not affect the service build and can be ignored. XML schema warnings can be disabled in
Eclipse by opening Window > Preferences, navigating to XML > XML Files > Validation,
and selecting Ignore for No grammar specified and Missing root element.

mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide

Avaya Breeze® platform Snap-in Development Guide 25

Project request types
The archetype sets the service up to handle three types of requests.

A service does not typically handle all three types of requests. If it does, no trimming is

necessary. If not, the one or two unused request types should be trimmed from the project.

Note:

The service archetype does not have any impact on a snap-in's ability to handle Eventing
Framework or Collaboration Bus messages.

Trimming project request type: Calls

About this task
If your service does not handle calls, perform the following steps to trim it from the project. Find
these files under the WAR module created by the archetype.

Procedure
1. Delete MyCallListener.java (under src/main/java/<yourpackagename>)

Your package name is determined by the group ID and the artifact ID that was entered when

setting up the archetype. Using the example values your package name would be
com.mycompany.testservice.

2. Edit the CARRule.xml under src/main/resources and remove the“SequencedServiceRule” and

"TerminatingServiceRule" related tags.

3. Delete sip.xml from src/main/webapp/WEB-INF directory.

4. Edit the web.xml under src/main/webapp/WEB-INF and remove the "“servlet” ,

“servletmapping” and "listener" tags.

Trimming project request type: HTTP JAX-RS

About this task
If your service does not handle HTTP REST Requests, trim it from the project. Find these files
under the WAR module created by the archetype, under src/main/<yourpackagename>.

Avaya Breeze® platform Snap-in Development Guide 26

Procedure
1. Delete MyApplication.java
2. Delete MyResource.java

Trimming project request type: HTTP Servlet

About this task
If your service does not handle HTTP Servlet Requests, trim it from the project.

Procedure
Delete MyServlet.java

Find this file under the WAR module created by the archetype, under

src/main/<yourpackagename>.

Platform listener
The platform listener is a Listener interface through which a snap-in is informed of changes in
the status of the platform components. In order to receive these events, a snap-in must
implement this listener and the snap-in must also annotate the class with @ThePlatformListener
as shown below:

@ThePlatformListener public class SamplePlatformListener extends PlatformListenerAbstract
{

@Override
public void clusterDbStateChanged(final ClusterDbStateChangeEvent

clusterDbStateChangeEvent)

{

 }

@Override
public void certificateStoreUpdated()
{
}

}

For more information, see the PlatformListener and SamplePlatformListener classes in the
Avaya Breeze® platform SDK Javadocs.

Call listener implementation
The heart of a call intercept or outbound calling service is the Java code that handles calls
passing through the service. Open the MyCallListener.java file. Using the example values above,

mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide

Avaya Breeze® platform Snap-in Development Guide 27

it would be located at testService-
war/src/main/java/com/mycompany/testservice/MyCallListener.java. Because this class is
annotated with @TheCallListener and extends the CallListenerAbtract class, the framework will
invoke the callIntercepted method each time a new call enters the service.

Example

This is an example of a very simple call listener that logs calls entering it and allows them to
continue as dialed.

package com.mycompany.testservice;

import com.avaya.collaboration.call.Call

 import com.avaya.collaboration.call.CallListenerAbstract;

import com.avaya.collaboration.call.TheCallListener;

import com.avaya.collaboration.util.logger.Logger;

@TheCallListener

public class MyCallListener extends CallListenerAbstract {

private static Logger logger = Logger.getLogger(MyCallListener.class);

public MyCallListener()

{

}

@Override
public final void callIntercepted(final Call call)
{

logger.info ("Call from " + call.getCallingParty().getHandle() +
" entered the service!");
call.allow();

}
}

If your snap-in is a call intercept snap-in, your callIntercepted implementation should call one of the
“call verb” methods, allow, divertTo, drop, or suspend. For parallel forking use cases, you can
optionally call "addParticipant" in addition to “divertTo” or “allow”. Additionally, for the sake of
consistent operation, the call verb method should be called last in the callIntercepted method. If a
“call verb” is not called explicitly, the allow method will be called implicitly.

If your snap-in is a callable snap-in, the callIntercepted implementation holds true except that:

• The “allow” verb is not supported for callable snap-ins. This is because the snap-in itself is
the ultimate destination of the call, so it does not make sense to “allow” the call to proceed
to its original destination.

• Calling “addParticipant” is allowed without additionally invoking “allow” or “divertTo”. This will
have the same effect as invoking “divertTo”.

Avaya Breeze® platform Snap-in Development Guide 28

More information on using the Avaya Breeze® platform API to handle calls is presented
later in the document. For now, however, let us look at building and packaging the service.

Life Cycle Management
The ServiceLifeCycle interface of the Avaya Breeze® platform SDK defines service initialization
and destroys callback methods for the purpose of startup and cleanup, respectively. A snap-in
must define a class that implements the “init” and “destroy” methods of this interface, and it must
be annotated with “ServiceLifeCycle”. See the “ServiceLifeCycle” Interface in the Javadoc for
complete information.

It is important to note that the service life cycle relies on the well-defined initialization and
cleanup capabilities of the CallListener interface and is most suited for use with a snap-in that
implements call processing functionality. Therefore, a snap-in that makes use of the service life
cycle will need to follow the procedures for implementing the CallListener, as described
elsewhere in this guide. These procedures include implementing either the CallListener interface
or extending the CallListenerAbstract class; they also include providing the sip.xml and
CARRule.xml file as part of your project. The Maven archetype included with the SDK provides
the framework for the various call processing pieces mentioned here.

In addition to the service life cycle capabilities provided by this interface, there are a variety of
standard J2EE life cycle capabilities available to the snap-in developer. One of these other
approaches may be more appropriate for a snap-in to use when no call processing functionality
is needed. The suitability of any particular approach will depend on the specifics of the snap-in
being developed. Several examples are provided below to demonstrate other life cycle options.
Additional information about these J2EE elements is widely available on the Internet.

HTTP Servlet
A snap-in implementing an HTTP Servlet can implement init/destroy methods similar to the
following:

@WebServlet(value = "/MyServlet", loadOnStartup = 1)
public class MyServlet extends HttpServlet
(

private Logger logger = Logger.getLogger(MyServlet.class);
public void init() throws ServletException
{

logger.info("MyServlet init";
}
public void destroy()
{

logger.info("MyServlet destroy");

}
}

Avaya Breeze® platform Snap-in Development Guide 29

JAX-RS Resource
A snap-in implementing a JAX-RS resource can do something like this:

@Startup
@Singleton
@Path("/myResource)
public class MyResource
{

private Logger logger = Logger.getLogger(MyResource.class);

@PostConstruct

public void startup()

{

logger.info("Resource startup");

@PreDestroy
public void shutdown()
{

logger.info("MyResource shutdown");

}
}

}

The “MyResource” class shown is generated by default by the Avaya Breeze Maven Archetype. If

nothing is modified, this class can be invoked at a URL such as:

https://{myBreezeServerAddress}/services/myService/ws/myResource.

Everything up to myService is not specified by the snap-in; it is the default path used by the Avaya

Breeze platform to route incoming HTTP request to snap-ins. The last part “myResource” is declared in

the “@Path” annotation on the MyResource class. The “ws” portion of the URL comes from another

generated class called “MyApplication”. This class has an “@ApplicationPath” annotation with the value

“ws”. All of these class names and paths can be modified. There is only one ApplicationPath annotation

allowed for a given snap-in. There can be multiple resources defined with unique Path annotations

underneath the ApplicationPath.

Enterprise Java Bean
EJBs can use the following life cycle construct:

@Startup
@Singleton
public class MyBean
{

private Logger logger = Logger.getLogger(MyBean.class);
@PostConstruct
public void startup()

Avaya Breeze® platform Snap-in Development Guide 30

{
logger.info("MyBean startup");
}
@PreDestroy
public void shutdown()
{

logger.info("MyBean shutdown");
}

}

Building and packaging the service using Eclipse

Before you begin

Note:
An internet connection is required the first time a service is built after installing the SDK as
some libraries need to be downloaded from the Maven central repository.

Procedure
1. Right click on the parent project (testService in the example above) in the project

explorer and click Run as > Maven build....
2. In the window that appears, enter clean package in the Goals field and select Run.

If the build fails, fix any errors, and rebuild. If the build succeeds, a SVAR archive will be

placed in the SVAR module’s target directory.

Note:

You may need to refresh the project for the target directory to appear in eclipse.

mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide

Avaya Breeze® platform Snap-in Development Guide 31

Building and packaging the service using Maven from the
command line

Before you begin

Note:
An internet connection is required the first time a service is built after installing the SDK as
some libraries need to be downloaded from the Maven central repository.

Procedure
From the command line, run mvn clean package from the root directory of the parent project.

If the build fails, fix any errors in the source code, and rebuild.

If the build succeeds, a SVAR archive will be placed in the SVAR module’s target directory
(testservice-svar/target if using the values from the project creation example).

Note:

You may need to refresh the project for the target directory to appear in eclipse.

Avaya Breeze® platform Snap-in Development Guide 32

Avaya Breeze® platform and third-party Jars
Many third-party Jars are used by the platform and are available to use by snap-in developers.
This section lists Avaya Breeze® platform and third-party jars along with the version. Version for
Avaya Breeze® platform jars are always the same as that of Avaya Breeze® platform. To ensure
compatibility, these are the only versions of jars that should be used. Execute “swversion” to
retreive the value for <platform-version> and <management-version>.

Jars in lib/ext
• accessors-smart-1.2.jar

• activation-1.1.jar

• aopalliance-1.0.jar

• apache-cassandra-2.1.20.jar

• archive-jaxb-<platform-version>.jar

• asm-5.0.4.jar

• asm-common.jar

• asmmgmt_trust_cli-<management-verion>.jar

• AsmEventCodes.jar

• avaya-commons-io-3.0.jar

• avaya-commons-lang-3.0.jar

• avaya-logging-client-0.0.4.jar

• avaya_logging_formatter.jar

• avaya-periodic-retention-logging.jar

• bc-fips-1.0.2.3.jar

• bcpkix-fips-1.0.5.jar

• bctls-fips-1.0.12.2.jar

• car-xsd-<platform-version>.jar

• cassandra-driver-core-3.8.0.jar

• checker-qual-3.37.0.jar

• commons-codec-1.8.jar

• commons-collections-3.2.1.jar

• commons-configuration-1.9.jar

• commons-dbcp-1.4.jar

• commons-exec-1.1.jar

• commons-io-2.1.jar

• commons-lang-2.6.jar

• commons-lang3-2.1.jar

• commons-pool-1.5.4.jar

• concurrentlinkedhashmap-lru-1.3.2.jar

• dom4j-1.6.1.jar

• error_prone_annotations-2.21.1.jar

• failureaccess-1.0.1.jar

• gson-2.2.2.jar

• guava-19.0.jar

Avaya Breeze® platform Snap-in Development Guide 33

• guava-32.1.3-jre.jar

• guice-4.0.jar

• guice-throwingproviders-4.0.jar

• hamcrest-all-1.3.jar

• internalSchemas-<platform-version>.jar

• j2objc-annotations-2.8.jar

• jackson-annotations-2.10.3.jar

• jackson-core-2.15.2.jar

• jackson-databind-2.15.2.jar

• jackson-module-jaxb-annotations-2.12.2.jar

• jakarta.activation-api-1.2.1.jar

• jakarta.xml.bind-api-2.3.2.jar

• javassist-3.23.2-GA.jar

• javax.annotation-3.1.1.jar

• javax.enterprise.concurrent-api-1.0.jar

• javax.ejb-3.1.1.jar

• javax.inject-1.jar

• javax.transaction-3.1.1.jar

• jboss-trust-logging- <management-version>-SDK-1.0.jar

• jcip-annotations-1.0-1.jar

• jni-libs.jar

• json-20230227.jar

• json-smart-2.4.11.jar

• log4j-1.2-api-2.20.0.jar

• log4j-api-2.19.0.jar

• log4j-core-2.19.0.jar

• log4j-rolling-appender-20100605-1200-1.2.9.jar

• log4j-slf4j-impl-2.17.2.jar

• metrics-core-3.2.2.jar

• mxparser-1.2.2.jar

• netty-all-4.0.56.Final.jar

• netty-buffer-4.1.4.Final.jar

• netty-codec-4.1.4.Final.jar

• netty-common-4.1.4.Final.jar

• netty-handler-4.1.4.Final.jar

• netty-resolver-4.1.4.Final.jar

• netty-transport-4.1.4.Final.jar

• nimbus-jose-jwt-9.37.jar

• org.apache.oltu.oauth2.client-1.0.1.jar

• org.apache.oltu.oauth2.common-1.0.1.jar

• pgjdbc-ng-0.7-complete.jar

• platformListener-api-<platform-version>.jar

Avaya Breeze® platform Snap-in Development Guide 34

• platformListener-api-impl-<platform-version>.jar

• platformResources-<platform-version>.jar

• postgresql-9.4.1212.jar

• reflections-0.9.9-RC1.jar

• schemas-<platform-version>.jar

• sip-common.jar

• smc-logging-helper-<platform-version>.jar

• snapin-alarms-jaxb-<platform-version>.jar

• snappy-java-1.1.2.6.jar

• speech-search-query-<platform-version>.jar

• spring-aop-4.3.20.RELEASE.jar

• spring-beans-4.3.20.RELEASE.jar

• spring-context-4.3.20.RELEASE.jar

• spring-core-4.3.20.RELEASE.jar

• spring-expression-4.3.20.RELEASE.jar

• spring-jdbc-4. 3.20.RELEASE.jar

• spring-tx-4. 3.20.RELEASE.jar

• srAgentProxy-<platform-version>.jar

• tmclient- <management-version>-SDK-1.0.jar

• xml-apis-1.0.b2.jar

• xmlpull-1.1.3.1.jar

• xstream-1.4.20.jar

• zephyrDataAPI-<platform-version>.jar

• zephyrDataApiFactory-<platform-version>.jar

• zephyrDM-<platform-version>.jar

• zephyrEncryptDecrypt-<platform-version>.jar

• zephyr-logging-client-<platform-version>.jar

• zephyrGlobalData-<platform-version>.jar

• zephyrSecurityManager-<platform-version>.jar

• zephyrUtilities-<platform-version>.jar

JARs in lib/ce_shared
• activemq-all-5.16.7.jar

• amclientsdk-9.5.4_RTM.jar

• authorization_helper-api-<platform-version>.jar

• authorization_helper-impl-<platform-version>.jar

• collaborationBusAPI-<platform-version>.jar

• collaborationBusCore-<platform-version>.jar

• collaborationBusFactory-<platform-version>.jar

• collaborationBusListener-<platform-version>.jar

• commons-logging-1.2.jar

• cr-api-<platform-version>.jar

Avaya Breeze® platform Snap-in Development Guide 35

• cr-api-impl-<platform-version>.jar

• datagrid-api-<platform-version>.jar

• dcm-was.jar

• eac-<platform-version>.jar

• email-api-<platform-version>.jar

• email-api-impl-<platform-version>.jar

• eventing-api-<platform-version>.jar

• eventing-api-impl-<platform-version>.jar

• eventPublisherHelpers-<platform-version>.jar

• http-api-<platform-version>.jar

• http-api-impl-<platform-version>.jar

• internalmessaging-api-<platform-version>.jar

• internalmessaging-api-impl-<platform-version>.jar

• java-facade-<platform-version>.jar

• log4j-web-2.19.0.jar

• logging-api-<platform-version>.jar

• logging-api-impl-<platform-version>.jar

• logging-was-puinfo-<platform-version>.jar

• openssoclientsdk-9.5.4_RTM.jar

• opensso-sharedlib-9.5.4_RTM.jar

• p2p-<platform-version>.jar

• pfaServices-<platform-version>.jar

• ports-api-<platform-version>.jar

• ports-api-impl-<platform-version>.jar

• reliableeventing-api-<platform-version>.jar

• reliableeventing-api-impl-<platform-version>.jar

• resource-datastore-<platform-version>.jar

• schedConf-api-<platform-version>.jar

• schedConf-api-impl-<platform-version>.jar

• serviceActivity-api-<platform-version>.jar

• serviceActivity-api-impl-<platform-version>.jar

• smc-api-<platform-version>.jar

• smc-api-impl-<platform-version>.jar

• smc-call-reconstruction-<platform-version>.jar

• sms-api-<platform-version>.jar

• sms-api-impl-<platform-version>.jar

• ssal-common-<platform-version>.jar

• ssal-well-behaved-<platform-version>.jar

• ssl_util-api-<platform-version>.jar

• ssl_util-api-impl-<platform-version>.jar

• systemState-api-<platform-version>.jar

• systemState-api-impl-<platform-version>.jar

Avaya Breeze® platform Snap-in Development Guide 36

• zangconnectionlib-<platform-version>.jar

• zephyrDataUtil-<platform-version>.jar

• zephyrHelper-<platform-version>.jar

JARs in lib/ce_isolated
• Breeze-AAMSConnectorAPI-<platform-version>.jar

• ceSystemStatus-<platform-version>.jar

• commons-codec-1.11.jar

• httpclient-4.5.14.jar

• httpcore-4.4.16.jar

• javax.mail-1.6.0.jar

• p2p-singleton-<platform-version>.jar

• slf4j-api-1.7.26.jar

• slf4j-log4j12-1.7.26.jar

Jars provided by IBM Websphere
For the list of jars/libraries provided by IBM Websphere that are running on Avaya Breeze® platform,

see
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/
com.ibm.websphere.nd.multiplatform.doc/ae/opensourcesoftwareapis.html

Parent First Versus Parent Last Classloading
Avaya Breeze® platform only supports parent first classloading for snap-ins. Therefore, use of
any mechanism that results in parent last classloading for a snap-in is not supported. For
example, it is possible to place a deployment.xml file in the EAR portion of a snap-in as follows:

<?xml version="1.0" encoding="UTF-8"?>
<appdeployment:Deployment xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:appdeployment="http://www.ibm.com/websphere/appserver/schemas/5.0/
appdeployment.xmi" xmi:id="Deployment_1471449536828">

<deployedObject xmi:type="appdeployment:ApplicationDeployment"
xmi:id="ApplicationDeployment_1471449536829" startingWeight="10">

<modules xmi:type="appdeployment:WebModuleDeployment"
xmi:id="WebModuleDeployment_14714495368300" startingWeight="10000" uri="TestBreeze.war"
classloaderMode="PARENT_LAST"/>

<classloader xmi:id="Classloader_1471449536831" mode="PARENT_LAST"/>

</deployedObject>

</appdeployment:Deployment>

Use of this file with a mode of PARENT_LAST results in an unsupported configuration for your

snap-in.

https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/opensourcesoftwareapis.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/opensourcesoftwareapis.html
https://www.ibm.com/support/knowledgecenter/en/SSAW57_8.5.5/com.ibm.websphere.nd.multiplatform.doc/ae/opensourcesoftwareapis.html

Avaya Breeze® platform Snap-in Development Guide 37

Next steps
Congratulations! You have created a service that is ready to be installed on System Manager.
To learn how to install on the System Manager and for more information on the process of
installing, configuring and testing a service, see Deploying Avaya Breeze® platform and
Administering Avaya Breeze® platform . The rest of this guide focuses on details of service
development and the capabilities and other aspects of the collaboration API. There are also
many sample services on the DevConnect website that show how to write different types of
applications such as HTTP services and HTTP REST.

Avaya Breeze® platform Snap-in Development Guide 38

Chapter 3: Developing the service

You can deploy services using System Manager or Eclipse plug-ins.

Developer update method
Avaya Breeze® platform is designed to install services from a central server, the System
Manager, across the network to multiple Avaya Breeze® platform servers. Consequently,
movement of a service to an Avaya Breeze® platform server is subject to network delays and
outages. This characteristic prevents the rapid updating of services as is desirable when
developing and debugging services. In addition, installation from the System Manager requires
that the service version be incremented each time. So, to make it easier for developers, the
developer update method is an alternative to get an updated service up and running. It bypasses
the System Manager and runs the service on the Avaya Breeze® platform server quickly and
without the need of updating the version number each time.

Important:

This method only works on subsequent installs of the service. The initial install of a

particular service must be done on the System Manager.

Updating a service

Before you begin
This method only works on services that have already been installed on the System Manager.

Procedure
1. Log in to the Avaya Breeze® platform server.
2. Run deploy_service –l to list the services already installed. If your service is not there, go

the System Manager and install it there.
3. Copy the svar file for your service to the /tmp directory on the Avaya Breeze® platform

server.

If you develop in a linux environment, you can use the scp command to copy the file from

your development system to the Avaya Breeze® platform. If you develop in a Windows

environment, you could use cygwin tools, PSCP (a Putty tool), or similar to copy the file.

4. Run deploy_service –d /tmp/filename.svar to quickly install your service.

Note:

If you change the properties.xml, you must update the service version, delete and install

on the System Manager again before you can use the developer update method. If you

change the version number of the service, you must install via System Manager. See the

section on Service Versioning for more information.

Avaya Breeze® platform Snap-in Development Guide 39

Service versioning

Introduction
Once you have put the initial version of your service into production, you are already thinking
about the improvements to make for the next version. Avaya Breeze® platform can run and
manage multiple versions of the same service at the same time. Once your service goes into
production, the administrators will spend time and effort integrating your service into Avaya
Breeze® platform by configuring the service’s attributes and adding the service into service
profiles. If you keep the version number the same, delete the old version and load the new
service, that effort will have to be duplicated. Service versioning allows you to preserve the
configuration of your service when a new version is loaded. It also allows the use of two or more
different versions of the same service at the same time. For example, the Accounting
Department may use a different version of a service in their service profile than the Marketing
Department uses.

Instead of new and old, we use the terms earlier, later and latest for versions of a service. The
version number determines what is considered a later version or an earlier version of the
service, not when it was built. To produce a later version of your service, you simply update the
serviceVersion property in your service pom.xml from 1.0.0.0.0 to 1.1.0.0.0, as shown below. If
you are using eclipse, you can find this pom.xml file directly under the project that has just your
service name without an svar, ear or war extension.

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.mycompany</groupId>

<artifactId>testservice</artifactId>

<version>0.0.1-SNAPSHOT</version>

<packaging>pom</packaging>

<properties>

<serviceName>TestService</serviceName>

<serviceVersion>1.1.0.0.0</serviceVersion>

</properties>

<modules>

<module>testservice-war</module>

<module>testservice-ear</module>

<module>testservice-svar</module>

</modules>

Avaya Breeze® platform Snap-in Development Guide 40

</project>

The new version number should be larger than the earlier version (see below). Now when you
build your service it will be a later version of the service. You can load and install a later version
of the service without deleting the earlier version and the entire configuration for the service will
be retained. The service attribute values are shared amongst all the versions, so there is no
need to reconfigure them. You should avoid deleting the last remaining version of a service.
The only times you would do that is if you are forever done with that service and have no
intention of ever loading any version of it again or the service is under development and you
need to delete it to make changes. When you delete the lone remaining version of a service, its
attributes values will be removed, and the service will be removed from any service profiles that
contain it. The service must be configured again when it is loaded.

Service version numbering considerations
The service version number consists of 5 numbers separated by 4 periods. Some valid version
numbers are 1.0.0.0.0, 2.0.0.0.1, 2.220.87.200.20 and 888.999.333.444.444. Some invalid ones are
1.2.3 (less than 5 numbers), 1.2.3.4.5.6 (more than 5 numbers) and 1.0.0.0.revA (revA is not a
number). The numbers can be very large, but we recommend using 5 digits or less. The later
version is the version with the larger version number determined by comparison as in the following
example. Version A is x1.x2.x3.x4.x5 and version B is x6.x7.x8.x9.x10 where x1 - x10 represent
arbitrary numbers. Start by comparing the left most numbers of each version, x1 and x6. If x1 is
greater than x6, then Version A is larger. If x1 is less than x6, then Version B is larger. If x1 and x6
are equal then compare the next number to the right in each version, x2 and x7. Repeat the
comparison and move to the right if equal until the larger version is determined. So, version
2.0.0.0.0 is later than 1.9999.1.1.1 and 2.0.0.1.0 is later that 2.0.0.0.60. Beware of using leading
zeros. They are insignificant in the comparison. So, 1.005.077.000.01, 01.0005.77.0.00001 and
1.5.77.0.1 are all equal. The latest version is the version with the largest version number. Version
numbers between different services are not related. So, one cannot tell whether TestService
3.0.0.0.0 is later or earlier than HelloService 2.0.0.0.0.

Attribute considerations
When developing a later version of a service, your later version may need to define new attributes.
That is fine; just add the new ones into the properties.xml file as you did for the earlier version.
However, you cannot modify anything about the attributes that existed in an earlier version. This
rule is to make sure the earlier version can still operate in its original configuration. Failure to
observe this rule could cause an error when you try to load your later service. If you need to change
something about an existing attribute in a later version, create a new attribute and have the later
version use the new attribute.

Properties.xml considerations
The properties.xml contains other information about the service version. The properties.xml is
located under the .svar module in src/main/resources. If you need to update information contained
in the properties.xml, you must update the version number or delete the service before loading
and installing again. If you delete the service rather than update the version, and no other
versions of the service are loaded, you will lose any NON-DEFAULT attribute values and the
service will be removed from any service profiles that contain it as described above.

Service Profile considerations
There are three ways than an administrator can specify the version of a service that is used in
a particular service profile: specific version, latest, or preferred.

Avaya Breeze® platform Snap-in Development Guide 41

• If a specific version is specified, that version of the service will always be invoked for users
with the given service profile regardless of what other versions of that service are installed.

• If “latest” has been specified, the latest version of the service will be invoked for users with
the given service profile. If a newer version of the service is installed, that newly installed
version will be invoked without any further actions by the administrator.

• If “preferred” has been specified, then the designated “preferred” version of the service will
be invoked for users with the given service profile. This is similar to the specific version
setting but has the added benefit that the preferred version is applicable to both calls and
HTTP messages. If administrators want to change the version of the service being invoked
for both calls and HTTP, they can do so by updating the preferred version in a single place.

The Administering Avaya Breeze® platform guide explains about:

• How to assign services to service profiles

• How to designate a service version as being the preferred version.

Configuring the Eclipse plug-in

About this task
Using the Eclipse plug-in, developers can manage System Manager and Avaya Breeze® platform
servers from the Eclipse IDE. The Eclipse plug-in is included in the Avaya Breeze® platform SDK.

Before you begin
Locate the Eclipse plug-in icon.

Procedure

1. Click the Avaya icon on the tool bar.

The system displays the System Manager Browser window.

Avaya Breeze® platform Snap-in Development Guide 42

2. Click Add SMGR.

The system displays the Server Configurations tab of the Avaya Breeze Developer Helper

window.

3. Configure the following fields for a CLI user and click Save.
• System Manager IP
• User Name (cli user)
• Password (cli user)
• SSH Port: The default SSH port is the 22 TCP port.

Avaya Breeze® platform Snap-in Development Guide 43

SSH is a network protocol that supports a secure connection to remote computers for

administrators to execute commands. The SSH port is the port on which the SSH server

listens to the remote server.

4. Click Save.

The system displays the cluster tree of all the Avaya Breeze® platform and System Manager
servers, along with the default configuration details.

• A green status indicates that the Avaya Breeze® platform and System Manager servers

are connected and are correctly configured.
• A red status indicates that the servers are not connected or not correctly configured.

5. (Optional) To change the Avaya Breeze® platform or System Manager server configuration,
select the server and right-click the server name.

The system displays the options to change the server configuration.

6. Click Edit System.

The system displays the Server Configurations tab.

7. Change the relevant configuration and click Save.

If the changed configuration is correct, the system changes the status of the server to green.

Next steps
Repeat this procedure for all the System Manager and Avaya Breeze® platform servers that have
the red status.

Avaya Breeze® platform Snap-in Development Guide 44

System Manager Browser field descriptions
System Manager Browser supports the following administration for Avaya Breeze® platform

and System Manager:

Name Description

Add SMGR Add a System Manager node in System Manager Browser.

Edit System Edit the Avaya Breeze® platform and System Manager server
configurations.

System Manager Browser displays an Avaya Breeze Developer
Helper window to edit the server configuration.

Refresh Apply the changes made to the Avaya Breeze® platform and
System Manager servers.

All Avaya Breeze® platform and System Manager selections are
lost after you apply the new changes. You must select the Avaya

Breeze® platform nodes and clusters again.

Expand All Expand the Avaya Breeze® platform and System Manager nodes

tree.

Remove SMGR Remove selected System Manager nodes.

mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide

Avaya Breeze® platform Snap-in Development Guide 45

Using the Eclipse IDE

About this task
The Maven CLI options, such as -DskipTests=true, -debug, or -quiet, must be separated by a
comma.

Before you begin
• Configure the Eclipse plug-in.
• Ensure that all the System Manager and Avaya Breeze® platform servers and clusters are

connected to the Eclipse plug-in.

Procedure
1. On the Eclipse ID, right-click the Avaya Breeze® project.

The Eclipse IDE displays the available project options.

2. Click Avaya Breeze® Actions. The Eclipse IDE displays the Avaya Breeze® project

options.

Actions supported for the project
The following actions are supported for a project.

Deploy/Redeploy
This action will automatically transfer the svar file built using Maven to either the System
Manager or Avaya Breeze® platform based on the selected action. The first installation of
the service will be done through System Manager and all the subsequent deployment

Avaya Breeze® platform Snap-in Development Guide 46

(redeploy) will be executed directly on Avaya Breeze® platform. The progress of the action
can be viewed through the Eclipse console window (Window > Show View > Console).

Redeploy through System Manager
This action will clean build the service and deploy the svar through System Manager.

List Snap-ins Verbose
This action will list the services deployed on Avaya Breeze® platform server. The progress
of the action can be viewed through the eclipse console window (Window > Show View >
Console).

Disable Platform Logging All
This action will stop tailing logs on console that is performed by action Log Watch All.

Disable Log Watch Selected Snap-in
This action will stop tailing of logs on console performed by action Log Watch Selected

Service.

Log Watch Selected Snap-in
The selected service specific logs can be viewed by executing this command. Logs will get
automatically updated on the console window.

Log Watch Platform
All the Avaya Breeze® platform logs can be viewed by executing this command. The will
be automatically updated on the console window.

Enable Platform Logging All
This is to set the logging level of Avaya Breeze® platform server to All. Set the logging
level of Avaya Breeze® platform server as info.

Delete Snap-in
This action will delete the selected service from the system. The progress of the
action can be viewed through the eclipse console window (Window > Show View >
Console).

Enable Debug on Selected server(s) (container will restart)
This action will put Avaya Breeze® platform servers in debug mode to help service
developers to debug the deployed/installed services.

Disable Debug on Selected server(s) (container will restart)

This action will put selected Avaya Breeze® platform servers out of debug mode.

Launch Avaya Breeze® platform Terminal

Launch the Avaya Breeze® platform terminal by using the configured user name and

password.

Launch System Manager Terminal

Launch the System Manager terminal by using the configured user name and password.

Avaya Breeze® platform Snap-in Development Guide 47

Avaya Breeze® Global actions
The following global actions are supported for Avaya Breeze® platform.

List Snap-ins Verbose This action will list the services deployed on Avaya Breeze®

platform server.

Log Watch Platform The Avaya Breeze® platform logs can be viewed by executing this

command.

Disable Log Watch

Platform

This action will stop tailing logs on console that is performed by

action Log Watch Platform.

Enable Platform Logging

All

This is to set the logging level of Avaya Breeze® platform server

to ALL (i.e., enable fine, finer and finest logging levels).

Default logging level for Avaya Breeze® platform server set as

INFO.

Disable Platform Logging

All

This action will stop tailing logs on console that is performed by

action Log Watch Platform.

Enable Debug on Selected

server(s) (container will

restart)

This action will put Avaya Breeze® platform servers in debug

mode to help.

Snap-in developers to debug the deployed/installed services.

Disable Debug on Selected

server(s) (container will

restart)

This action will put selected Avaya Breeze® platform servers out

of debug mode.

Launch Avaya Breeze®

Terminal

Launch the Avaya Breeze® platform terminal by using the

configured user name and password.

Avaya Breeze® platform Snap-in Development Guide 48

Launch System Manager

Terminal

Launch the System Manager terminal by using the configured

user name and password.

Enabling remote debugging on Avaya Breeze®

About this task

The default debugging port is not open for remote debugging by default because of the security risks

associated with unauthorized access to the enterprise network. It might be feasible to open the

debugging port for remote debugging only in lab-based environments.

To perform an indepth debugging, install a remote debugger, such as the Eclipse plug-in for Avaya

Breeze in order to step through your snap-in's code. There are 2 easy mechanisms to do so.

• Invoke the "Enable Debug on Selected server(s)" action in Eclipse (This is only available if the

Breeze Eclipse Plugin is installed).

• Run the "enableDebugCE" command on the Breeze CLI.

Procedure

1. To enable a port for remote debugging, do one of the following:

• In Eclipse, invoke the Enable Debug on Selected server(s) action.

This action is available only if you installed the Avaya Breeze® Eclipse plug-in.

• On the Avaya Breeze® CLI, run the following command: enableDebugCE.

2. To disable the debug port, do one of the following:

• In Eclipse, invoke the "Disable Debug on Selected server(s)" action.

• On the Avaya Breeze® CLI, run the following command: disableDebugCE

Result

• Port 8787 is opened on the Avaya Breeze® firewall.

• Websphere shuts down and all Avaya Breeze® snap-ins stop.

• Websphere restarts having bound its debugger port to port 8787 on the "Management NIC".

There are no negative ramifications to leaving debug mode on all the time in the lab. You would not

want to do this on production systems due to the security risk (incoming connections to that port are not

authenticated in any way).

Avaya Breeze® platform Snap-in Development Guide 49

Converting an older project to Avaya Breeze® platform 3.9

Before you begin
• 3.9 SDK is successfully installed.
• JDK 1.8 is installed.

Procedure
1. In the pom.xml present in war project replace dependency below :

<dependency>
<groupId>com.avaya.collaboration.api</groupId>

<artifactId>avaya-aura-collaboration-api-x.x</artifactId>
<version>x.x.x.x.x</version>
<scope>provided</scope>

</dependency>

With

<dependency>

<groupId>com.avaya.collaboration.api</groupId>
<artifactId>avaya-aura-collaboration-api-3.9</artifactId>
<version>3.9.0.0.xxxxx</version>
<scope>provided</scope>

</dependency>

2. In the src/main/resources/CARRule.xml file under the war project, add the following rule:

<TerminatingServiceRule desc="Interested in serviceName featureURI as named app">
<FeatureURI>serviceName</FeatureURI>

</TerminatingServiceRule>

3. Replace the JRE system Library 1.x dependency with 1.8 JRE System library.

4. In the pom.xml for service svar project , make changes below:

a. Replace the highlighted part:

artifactItem>
<groupId>com.avaya.collaboration.api</groupId>
<artifactId>avaya-aura-collaboration-api-x.x</artifactId>
<version>x.x.x.x.x</version>
<type>jar</type>
<overWrite>true</overWrite>
<outputDirectory>${project.build.directory}/tmp</outputDirectory>
<destFileName>sdk.properties</destFileName>

<includes>META-INF/MANIFEST.MF</includes></artifactItem>

With

mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide

Avaya Breeze® platform Snap-in Development Guide 50

<artifactId>avaya-aura-collaboration-api-3.9</ artifactId>

<version>3.9.0.0.xxxxxx</version>

b. Replace the highlighted part:

<dependency>
<groupId>com.avaya.zephyr.zephyrCommon.xsds</groupId

>
<artifactId>archive-xsd</artifactId>
<version>x.x.x.x.x</version>
<exclusions>
<exclusion>
<artifactId>smc-api</artifactId>
<groupId>com.avaya.zephyr.services.smc</groupId>
</exclusion>
</exclusions>

</dependency>

With

<version>3.9.0.0.xxxxxx</version>

5. Add the following snippet:

<validationSet>
<dir>${basedir}</dir>
<systemId>${basedir}/target/dependency/alarms.xsd</systemId>
<includes>
<include>src/main/resources/alarms.xml</include>
</includes>

</validationSet>

After having added this snippet, the developer will be able to specify service-specific
alarms in the following file: <servicename>-svar/src/main/resources/alarms.xml.

6. Add the following snippet to dist.xml located at /<svcname>-

svar/src/main/assembly/dist.xml:

<file>
<source>src/main/resources/alarms.xml</source>
<outputDirectory>/</outputDirectory>
<filtered>true</filtered>

</file>

Avaya Breeze® platform Snap-in Development Guide 51

Snap-in start/stop from Avaya Breeze® Service Management
page

You can start and stop a snap-in for selected clusters from the Avaya Breeze® Service
Management page. You can use the Start and Stop buttons on the Avaya Breeze® Service
Management page to start or stop snap-ins. For additional information, see Administering
Avaya Breeze® platform.

Creating a snap-in with the start/stop functionality

Procedure
1. Modify the properties.xml of the service to enable the start/stop options by adding the

following entry and build the svar:

<attribute name="SnapInStoppableName">
<displayName>EnableStartStopForSnapin</displayName>
<helpInfo>Enable Start Stop For Snapin</helpInfo>
<validation name="anyString">

<type>STRING</type>
</validation>
<admin_visible>true</admin_visible>
<factory>

<value>true</value>

<user_changeable>true</user_changeable>

</factory>

</attribute>

2. This snap-in can be installed in a started state or a stopped state based on value of tag

pattern.

• When value is set to false, the snap-in is installed in a Stopped state on the cluster.

• When value is set to true, the snap-in is installed in a Started state on the cluster.

<attribute name="StartOnInstall">
<displayName>StartOnInstall</displayName>
<helpInfo>This attribute will enable Snap-In Stop-Start capabilities. This cannot be
changed from UI.
</helpInfo>
<validation name="booleanType">
<type>STRING</type>
<pattern>false.</pattern>
</validation>
<admin_visible>false</admin_visible>
<admin_changeable>false</admin_changeable>
<factory>

<value>true</value>

Avaya Breeze® platform Snap-in Development Guide 52

<user_changeable>false</user_changeable>
</factory>

</attribute>

Note : Above steps are all that is needed to enable start/stop functionality for a snap-in.

Configuring log file size
As is explained in the Logger section below, log statements from services are written to a
log file specific to that service. Developers of services can specify their desired disk space
for log files. This is done by adding the highlighted tag to the properties.xml file. The default
is 10 MegaBytes. Please note that this line is commented out by default. The comment tags
will have to be removed in order to have a modified value take effect.

<?xml version="1.0" encoding="UTF-8"?>

<service xmlns="http://archiveschemas.aus.avaya.com/properties"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://archiveschemas.aus.avaya.com/properties
properties.xsd"

name="${serviceName}" version="${serviceVersion}" application="${serviceName}
${serviceVersion}">

<smgr>
<description>Test Service</description>
<term_order>1</term_order>
<term_group>1</term_group>
<fs_component>true</fs_component>

</smgr>
<log_space>10MB</log_space>

</service>

Service attributes

Attribute definition and access levels
A snap-in can optionally define one or more configurable snap-in attributes. The snap-in
can then query the values during processing. Snap-in attributes can be administered and
retrieved in three different levels. The getAttribute() method has two forms. The first form
specifies a user and an attribute name, the second specifies only an attribute name. If the
first form is used, all three levels are searched in order. If the second form is used, only
levels 2 and 3 are searched. Here are the levels:

1. Service Profile values are administered by service profiles which are assigned to users.
If the specified user is found and the specified attribute value is found in the Service

Avaya Breeze® platform Snap-in Development Guide 53

Profile of that user, then that value is returned. If not, the attribute is searched for in the
next level. This is the only level that has values by user.

2. Service Cluster values are administered by cluster. The search for the attribute name is
made on the cluster where the snap-in is running. If a value is found on the cluster, that
value is returned. If not, the attribute is searched for in the next level.

3. Service Global values are assigned a default value by the snap-in writer. Each default
value may be overridden by administration. If the value was overridden, then the
overridden value is returned else the default value is returned.

As an example, consider a service that would log calls to a certain user to a database.
This service could have 1 attribute that enables or disables the feature on a service profile
basis. Another attribute could be the address of the server that hosts the database – this
attribute could be set for certain clusters and the service global value could be used for
any clusters that do not specifically define a database server. You might even have
attributes that have only Service Cluster or Service Global values

The attributes that a service uses are declared in the properties.xml file inside the SVAR. In

a project generated by the service archetype, the properties.xml file can be found in the

SVAR module in src/main/resources/properties.xml. The following is an example of an

attribute declared in properties.xml:

<smgr>
...
<attribute name="displayString">

<displayName>Display String</displayName>
<helpInfo>String used for caller's caller ID display</helpInfo>
<validation name="anyString">

<type>STRING</type>
</validation>
<admin_visible>true</admin_visible>
<factory>

<value> Hello from Avaya Breeze</value>
<user_changeable>true</user_changeable>

</factory>
</attribute>
...
</smgr>

The definition of the attribute includes the following parts:

• Attribute name: the name that will be used to reference the attribute in your code.

• Display name: the name that will be used for this attribute in the Service Profile editor.

• Help Info: descriptive text for this attribute in the service profile editor.

• Type: Defined in the following “Avaya Breeze® attribute types” section.

• Admin visible: Determines whether the attribute appears in the System Manager
administration UI.

• Factory: this section describes the default values for the attribute

 Note:

Avaya Breeze® platform Snap-in Development Guide 54

The order in which the elements of an attribute are mentioned in its definition is important
for the snap-in to be built successfully.

Avaya Breeze® platform attribute types
Snap-in can declare attributes with any of the following types and avail the in-built
validation capabilities.

• String – any String value that is displayed as a text box on the user interface (UI).

<attribute name="stringAttribute">
<displayName>StringAttribute</displayName>
<helpInfo>Example of String Attribute</helpInfo>
<type>STRING</type>
<validation name="anyString">

<type>STRING</type>
</validation>
<admin_visible>true</admin_visible>
<factory>

<value>sample</value>

<user_changeable>true</user_changeable>

</factory>

</attribute>

• Integer – Any integer value within the range -2147483648 to 2147483647 that is
displayed as a text box.

<attribute name="integerAttribute">
<displayName>IntegerAttribute</displayName>
<helpInfo>Example of Integer Attribute</helpInfo>
<type>INTEGER</type>
<encrypted>false</encrypted>
<validation name="anyInteger">

<type>STRING</type>
</validation>
<admin_visible>true</admin_visible>
<factory>

<value>80</value>
<user_changeable>true</user_changeable>

</factory>

</attribute>

• Encrypted Integer – Any value belonging to type integer that will be encrypted once the
snap-in is loaded. This is done by setting the encrypted tag to true. Encrypted Integer is
displayed as a text box. The value is rendered in an encrypted format on the UI.

<attribute name="encryptedIntegerAttribute">
<displayName>EncryptedIntegerAttribute</displayName>
<helpInfo>Example of Encrypted Integer Attribute</helpInfo>

Avaya Breeze® platform Snap-in Development Guide 55

<type>INTEGER</type>
<encrypted>true</encrypted>
<validation name="anyInteger">

<type>STRING</type>
</validation>
<admin_visible>true</admin_visible>
<factory>

<value>65</value>
<user_changeable>true</user_changeable>

</factory>

</attribute>

• Range – Validation supported to check if the value entered by the user falls within a
specific range of integers. The validation check is performed on when you click Commit
after changing the attribute value on the Attribute page in System Manager.

<attribute name="rangeAttribute">
<displayName>RangeAttribute</displayName>
<helpInfo>Example of Range Attribute</helpInfo>
<type>RANGE</type>
<valueChoices>200-700</valueChoices>
<validation name="anyInteger">

<type>STRING</type>
</validation>
<admin_visible>true</admin_visible>
<factory>
<value>500</value>

<user_changeable>true</user_changeabe>

</factory>

</attribute>

• Boolean – Value of this attribute type, by default, can be set to true or false. The attribute
is rendered as a check box on the Snap-in Attributes page.

<attribute name="booleanAttribute">
<displayName>BooleanAttribute</displayName>
<helpInfo>Example of Boolean Attribute</helpInfo>
<type>BOOLEAN</type>
<validation name="anyBoolean">

<type>STRING</type>
</validation>
<admin_visible>true</admin_visible>
<factory>

<value>true</value>
<user_changeable>true</user_changeable>

</factory>

</attribute>

Avaya Breeze® platform Snap-in Development Guide 56

• Choice – A Snap-in developer can restrict the value of an attribute by defining the
attribute type as Choice by providing a comma-separated list of values that are not
editable. The values are rendered in a drop-down format on the Attributes page. A user
can select only a single value from the list of values provided in the choice drop-down
list.

<attribute name="choiceAttribute">
<displayName>ChoiceAttribute</displayName>
<helpInfo>Example of Choice Attribute</helpInfo>
<type>CHOICE</type>
<valueChoices>value1,value2,value3</valueChoices>
<validation name="anyChoice">

<type>STRING</type>

</validation>
<admin_visible>true</admin_visible>
<factory>

<value>value2</value>

<user_changeable>true</user_changeable>

</factory>
</attribute>

• List – A comma separated list of values, in which you can add or delete elements. A list
is rendered on the UI in separate text boxes with buttons to add or delete a value. A user
is able to add more values to this list by clicking on the + button that is present next to
the last value in the list. A user can also delete a value in this list by clicking on the -
button that is present next to each of the values added previously. Users might add the
values manually or the values might be added by default, owing to the factor default
values shown in the following snippet:

<attribute name="listAttribute">
<displayName>ListAttribute</displayName>
<helpInfo>Example of List Attribute</helpInfo>
<type>LIST</type>
<validation name="anyList">

<type>STRING</type>

</validation>
<admin_visible>true</admin_visible>
<factory>

<value>Value1,Value2,Value3</value>

<user_changeable>true</user_changeable>

</factory>

• </attribute> Cluster – Snap-in developers can define a new attribute with the Cluster type

to select an Avaya Breeze cluster name. All available Avaya Breeze cluster names are
displayed in a drop-down format. You can select a cluster name as the value. This
attribute type is useful when a snap-in is installed on multiple clusters with one of the

Avaya Breeze® platform Snap-in Development Guide 57

clusters being the main cluster for the snap-in. You can set the value of the new attribute
to point to the main cluster.

Example:
 <attribute name="clusterAttribute">
 <displayName>ClusterAttribute</displayName>
 <helpInfo>Example of Cluster Attribute</helpInfo>
 <type>CLUSTER</type>
 <validation name="anyCluster">
 <type>STRING</type>
 </validation>
 <admin_visible>true</admin_visible>
 <factory>
 <value>clusterName</value>
 <user_changeable>true</user_changeable>
 </factory>
</attribute>

Note:

If you want to change the attribute type in a newer snap-in version, use one of the following
methods:

• Uninstall and delete from System manager, all older versions of the snap-in.
• Change the name of the attribute for which type needs to be changed, increment

the snap-in version number. Build and load this new snap-in version for use.

Attribute Grouping, Ordering, and Scope
Snap-in developers now have more control over how the snap-in's attributes are displayed
on the Attributes Configuration page.

• multiple attributes can be combined into an attribute group. The attributes in an attribute
group will be shown together on the Attributes Configuration page.

• the scope of an attribute can be restricted, to control the visibility of the attribute on each
of the tabs of the Attributes Configuration page.

• the sorting order of attributes can be specified explicitly.

These features only control how attributes are displayed on the Element Manager's
Attribute configuration page. There is no change to the underlying attribute behavior.

An extract from a snap-in's properties.xml file is shown below, demonstrating all the above
features. Refer below for more details on each feature.

<attribute name="ServerHostname"> <!-- the first three attributes are in the "Server"
attribute group -->

<group>
<group_name>Server</group_name> <!-- the group name is used as the title for this group

on the Attributes page -->
<group_order>1</group_order>
</group>

Avaya Breeze® platform Snap-in Development Guide 58

<scope>Global,Cluster</scope> <!-- these attributes will only be shown on the Global and Service
Clusters tabs of the Attributes page -->
<attr_order>1</attr_order>

</attribute>
<attribute
name="ServerUsername">

<group>
<group_name>Server</group_name>
<group_order>1</group_order> <!-- this value is used when sorting multiple attribute groups to
display on the Attributes page -->
</group> <scope>Global,Cluster</scope>
<attr_order>2</attr_order>

</attribute>
<attribute name="ServerPassword">

<group>
<group_name>Server</group_name>
<group_order>1</group_order> </group>
<scope>Global,Cluster</scope>
<attr_order>3</attr_order>

</attribute>
<attribute name="SecureConnection"> <!-- the next two are not in an attribute group, and are also
limited to the ServiceProfile scope -->

<scope>ServiceProfile</scope>
<attr_order>1</attr_order>

</attribute>
<attribute name="ConnectionTimeout">

<scope>ServiceProfile</scope>

<attr_order>2</attr_order>

</attribute>

Attribute Grouping
Put attributes into a group by adding a group tag to the attribute definition in the properties.xml
file. Attribute groups are shown separately on the snap-in's Attribute Configuration page and be
hidden (collapsed) to improve usability when there are many attributes and groups. Attributes
not part of an attribute group are placed into a default group and displayed first on the page.

Attribute Scope
An attribute's scope, i.e., which tabs of the Attribute Configuration page the attribute is
displayed on, can now be controlled by specifying one of four possible values:

• Global - the attribute will only be shown on the Service Globals tab.

• ServiceProfile - the attribute will be shown only on the Service Profiles tab.

• Global,Cluster - the attribute will be shown on the Service Globals and Service
Clusters tab

• Global,Cluster,ServiceProfile - the attribute will be shown on all three tabs of the
Attribute Configuration page.

If no value is provided, the default value is Global,Cluster,ServiceProfile.

Avaya Breeze® platform Snap-in Development Guide 59

Attribute Order
Attributes are currently displayed on the Attribute Configuration page in alphabetical order.
Snap-in developers can now control the order of attributes by providing a value for attr-order
for each attribute. If an order is not specified, the attributes are still sorted alphabetically.

If there are multiple attribute groups, the order of the attribute groups can also be
specified by specifying the group_order for each group.

Attribute Value Validation using Regular Expressions
Regular expressions provide a way for snap-in developers to validate attribute values. Snap-in
developers can provide a regular expression for each attribute in the snap-in's properties.xml
file. The value entered by the administrator is matched against the regular expression, and if
they do not match, an error message is displayed, and the commit is blocked. Snap-in
developers should include a user-friendly description of the valid attribute values which will
match the regular expression.

The regular expression is specified in the validation section in the properties.xml file. A
couple of examples are given below.

<attribute name="Extension">

<displayName>User's Extension</displayName>
<helpInfo>The user's extension (should be a numeric value with at least 4 digits).</ helpInfo>
<validation name="Numeric">
<type>STRING</type>
<pattern>[1-9][0-9]{3,}</pattern>
</validation>

</attribute>
<attribute name="Username">

<displayName>name</displayName>
<helpInfo>The username. Valid usernames start with an alphabet and can end with one or more
digits.</helpInfo>
<validation name="Alphanumeric">
<type>STRING</type>
<pattern>[a-z][a-z]*[0-9]*</pattern>
</validation>

</attribute>

Override the factory default values of attributes for snap-ins

Snap-in developers can now override the factory default values of attributes for snap-ins that
are loaded on System Manager. Use the attribute_overrides XML element to define the new
factory default values for a set of snap-in attributes to a value specified in the attribute_override
element. Each attribute_override element defines a group of snap-in attributes that has the
same value.

Following is an example of attribute_overrides declared in properties.xml:

<service>

<smgr>

Avaya Breeze® platform Snap-in Development Guide 60

<attribute_overrides>

<attribute_override>

<factory_override name=”xxxx”>

<displayName>phoneNumber</displayName>

<type>STRING</type>

<validation name="type">

<type>STRING</type>

</validation>

<admin_visible>false</admin_visible>

<admin_changeable>false</admin_changeable>

<factory>

<value>2222</value>

 <user_changeable>false</user_changeable>

</factory>

</factory_override>

<override_snapin_attribute>

<snapin_name>MultiChanBroadcastService</snapin_name>

<attribute_name>smsFrom</attribute_name>

</override_snapin_attribute>

</attribute_override>

</attribute_overrides>

</smgr>
</service>

Definition of attribute_overrides includes the followings parts:

• attribute_override

• factory_override

• override_snapin_attribute

Definition of factory_override includes the following parts:

• Attribute name: The name of the attribute.

• Display name: The name of the attribute in the Service Profile editor.

• Help Info: The descriptive text of the attribute in the Service Profile editor.

• Type: The type defined in the following Avaya Breeze® platform attribute types section.

• Admin visible: The option to display the attribute in System Manager. This value must be
“false”.

• Factory: This section describes the default values of the attribute. It includes the “value” and
“user_changeable” parts. “user_changeable” must be “false”.

Definition of override_snapin_attribute includes:

• snapin_name: The snap-in loaded on System Manager.

• attribute_name: The name of the attribute to override.

Notes:

• The attribute_override element must include at least one factory_override element.

• The sub-element of factory_override must be one of the following: STRING, INTEGR, or
BOOLEAN

• The attribute_override element must include at least one override_snapin_attribute element.

Avaya Breeze® platform Snap-in Development Guide 61

• For each attribute_override element, the type for the attribute specified by the
attribute_name element for the snap-in specified in each override_snapin_attribute element
must be the same as the type specified in the factory_override element.

• If the specified snap-in is currently loaded on System Manager, the factory default value of
the attribute specified by the attribute_name element is updated with the value provided in
the factory_override element.

• For the Password attribute, use ENCRYPTED_STRING as validation type.

How to read service profile attribute values
First, get an instance of ServiceData from the CollaborationDataFactory. Then, use
ServiceData’s getServiceAttribute method to retrieve the value defined for the attribute in the
template. The getServiceAttribute method takes two parameters:

• attributeName: the name of the attribute for which to retrieve the value.

• userAddress: the user for which you want to retrieve the attribute value in the format
handle@domain. It may be desirable to use the result of the Participant.getAddress()
method as input for this parameter.

If there is no value for the user’s service profile, the value for the attribute administered for
the cluster will be returned. If no there is no value administered for the cluster, then the
global value administered is returned. If no global value is administered, then the default
value is returned.

Sample code
For example, the following code snippet modifies the call listener from the first example to
retrieve and log the attribute value declared above.

@TheCallListener

public class CallListener extends CallListenerAbstract {

private final Logger logger = Logger.getLogger(CallListener.class);

@Override
public final void callIntercepted(final Call call) {

ServiceDescriptor svc = ServiceUtil.getServiceDescriptor();
ServiceData svcData =

CollaborationDataFactory.getServiceData(svc.getName(),svc.getVersion());
String attrValue =

svcData.getServiceAttribute(call.getCallingParty().getAddress(), "displayString");
logger.info("attribute value was " + attrValue);

}
}

Avaya Breeze® platform Snap-in Development Guide 62

Service cluster/service global attribute values
If you do not want to get attribute values based on users, use the same method,
getAttribute() but specify just the attribute name. It works the same way except the
service profiles are not checked.

You might want to protect certain data, such as passwords. An attribute can be defined as
an encrypted attribute. Such an attribute is stored internally in encrypted form, and the
value is masked on the Attribute Configuration form:

<attribute name="accountPassword">
<displayName>Account Password</displayName>
<helpInfo>The password for this account.</helpInfo>
<validation name="EncryptedString">

<type>ENCRYPTED_STRING</type>
</validation>
<admin_visible>true</admin_visible>
<admin_changeable>true</admin_changeable>
<factory>

<value></value>

<user_changeable>true</user_changeable>

</factory>

</attribute>

The method getServiceEncryptedAttribute would be used to retrieve an attribute that
has been defined as encrypted.

Sample code
As an example, the following code snippet retrieves a username (clear text) and password
(encrypted):

final class MyAttributeReader {
public String getUsername() {

ServiceData svcData = CollaborationDataFactory.getServiceData(“FooService”,
“2.0.0.0.0”);

return svcData.getGlobalServiceAttribute(“username”);
}
/**
* Return the decrypted value for some data that was stored in encrypted form.
*/
public String getPassword() {

ServiceData svcData = CollaborationDataFactory.getServiceData(“FooService”,
“2.0.0.0.0”);

return svcData.getGlobalServiceEncryptedAttribute(“accountPassword”);
}

}

Avaya Breeze® platform Snap-in Development Guide 63

Snap-in URL
The administrator can select a Snap-in URL from the Service URL column on the Cluster
Administration page. This will navigate to one of the landing pages of the snap-ins installed
on the cluster. Developers can specify one or more home or landing pages for their snap-in
by adding them using the cutthrough_url property in the properties.xml as shown in the
example.

Example

If the home page or landing page of the snap-in is “admin.html” or “index.html”, then the

below sample code needs to be added in the properties.xml after the <smgr> tag.

[service xmlns=http://archiveschemas.aus.avaya.com/properties

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" name="CES2" version="3.1.0.0.0"

application="CES2-3.1.0.0.0"

xsi:schemaLocation="http://archiveschemas.aus.avaya.com/properties properties.xsd"]

[smgr]

.......

.......

.......

[/smgr]

[cutthrough_url]

[url_display_name]Admin URL[/url_display_name]

[url]admin.html[/ur]

[cutthrough_url]

[cutthrough_url]

[url_display_name]Designer URL[/url_display_name]

[url]index.html[/ur]

[cutthrough_url]

[/service]

Cluster attribute values
Cluster Attributes have a name that is similar to “Service Cluster Attributes” but they are
really quite different. Service Cluster Attributes are values that are service-specific but are
provisioned at the cluster scope. Cluster attributes, on the other hand, are values that are
defined by the administrator for the Avaya Breeze® platform cluster as a whole. They are not
specific to any particular service and are not defined by the developer of the snap-in. Cluster
attributes are accessed through the com.avaya.collaboration.businessdata.api.ClusterData
class.

Avaya Breeze® platform Snap-in Development Guide 64

Attribute notifications
Avaya Breeze® platform DAO provides a means for snap-ins to request notification on

changes to its attributes.

Usage
Snap-in needs to define listeners to listen to attribute change notifications. The listener can
be defined by extending “com.avaya.zephyr.platform.dm.AbstractDMListener” class. This
class has a callback method called “#objectChanged”, which gets invoked whenever there is
a change in snap-in's attribute value. Below is an example of attribute change listener:

public class TestDaoListener extends AbstractDMListener
{

private static TestDaoListener listener = new TestDaoListener();
private TestDaoListener() {

}

public static TestDaoListener getInstance()

{

return listener;

}

@Override
public void objectChanged(Object oldObject, Object newObject)
{

if (oldObject instanceof DefaultAttribute || newObject instanceof DefaultAttribute)
{
//Objects are of type DefaultAttribute, when the attribute value changed at "Service Global"
level
}
if (oldObject instanceof ClusterDefaultAttribute || newObject instanceof
ClusterDefaultAttribute)
{
//Objects are of type ClusterDefaultAttribute, when the attribute value changed at "Service
Clusters" level
}
if (oldObject instanceof AusAttribute || newObject instanceof AusAttribute)
{
//Objects are of type AusAttribute, when the attribute value changed at "Service Profiles"
level }
}

}

Once you get the notification, use the apis serviceData.getServiceAttribute(attributeName)
or serviceData.getServiceAttribute(useraddress, attributeName) to get the latest attribute
values as shown below.

@Override

Avaya Breeze® platform Snap-in Development Guide 65

public void objectChanged(Object oldObject, Object newObject) {

if ((newObject instanceof DefaultAttribute) || (oldObject instanceof DefaultAttribute))

{

if (newObject != null)

{

if (((DefaultAttribute) newObject).getAttributeName().equalsIgnoreCase("attribute1"))

{

LOGGER.info("New Value:" + svcData.getServiceAttribute("attribute1"));

}

}

else

{

if (((DefaultAttribute) oldObject).getAttributeName().equalsIgnoreCase("attribute1"))

{

LOGGER.info("New Value:" + svcData.getServiceAttribute("attribute1"));

}

}

}

}

If you are changing the attribute values only at the cluster and global level, then the api
serviceData.getServiceAttribute(attributeName) can be used. If you are also interested in
the attribute values at the Service Profile level, then you should use the api
serviceData.getServiceAttribute(attributeName). Refer to the Javadoc for more information
on how these apis work.

The listeners need to be registered with DAOs (AusServiceDAO /
AusAttributeDAO) to get notifications.

For notifications of attribute value changes at “Service Global” and “Service Clusters” level,
the listener needs to be registered with “AusServiceDAO” and to listen to attribute change
notifications at ““Service Profiles”” level, with “AusAttributeDAO”. And the listeners should
also be removed during snap-in uninstallation.

The registration and removal of listeners can be done at “#init” and “#destroy”
methods of “ServiceLifeCycle” respectively.

Register an object with DMFactory before adding any references to the DAO classes.
Registering objects can be done using the #init method of the ServiceLifeCycle or
#postConstruct method of a startup bean. Register an object that remains throughout the
snap-in lifecycle. This ensures that the DAO objects being referenced in the service will not
get garbage collected as long as the 'object' exists.

Failing to do this registration will result in warning messages in platform logs, such as
"WARN - Calling component not registered with the DMFactory: ClassLoader
Name....".

Avaya Breeze® platform Snap-in Development Guide 66

Below is an example of registration and removal of listeners with DAOs:

@TheServiceLifeCycle

public class MyServiceLifeCycle implements ServiceLifeCycle

{

@Override public void init()

{

 // Registering the class to DMFactory

 DMFactory.getInstance().register(this);

// Registration of Listener with "AusServiceDAO" for notifications of attribute value
changes

// at "Service Global" and "Service Clusters" level

DMFactory.getInstance().getDataMgr(AusServiceDAO.class).registerListener(TestDaoListener.g
etInstance());

// Registration of Listener with "AusAttributeDAO" for notifications of attribute
value changes

// at "Service Profiles" level
DMFactory.getInstance().getDataMgr(AusAttributeDAO.class).registerListener(TestDaoListener
.getInstance());

}

@Override public void destroy()

{

// Removal of Listener from "AusServiceDAO"

DMFactory.getInstance().getDataMgr(AusServiceDAO.class).removeListener(TestDaoListener.get
Instance());

// Removal of Listener from "AusAttributeDAO"

DMFactory.getInstance().getDataMgr(AusAttributeDAO.class).removeListener(TestDaoListener.g
etInstance());

}
}

Logger
The log files for a particular service can be viewed by typing ce dlogv<servicename> (e.g.,
ce dlogv myCEService) from the command line on the Avaya Breeze® platform server.

Avaya Breeze® platform Snap-in Development Guide 67

Debug logging (Fine level and lower) can be enabled by typing ce dlogon<servicename>
and disabled by typing ce dlogoff <servicename>.

The logger class provided for collaboration services is
com.avaya.collaboration.util.Logger. This class logs messages to the log file for your
service. To obtain a logger for a class in a service, call
Logger.getLogger(YourClass.class).

To log a message, call the method of the Logger object named after the logging level that
you want to log at. The logger provides 7 logging levels which are as follows.

• Fatal: Non-recoverable error

• Error: Recoverable error.

• Warn: Not an error, but might indicate something is not as it should be

• Info: Logging that an event occurred in your service

• Fine: coarsest debugging info

• Finer: finer debugging info

• Finest: finest debugging info

Note that ““Info”” is the lowest level that is enabled by default. Also note that excessive
logging can impact performance. In general, you should log only significant events at the
“Info” level, and use the “Fine”, “Finer”, and “Finest” for more detail. The log level can be
changed on the fly to be more verbose; it can also be changed on the fly to return to the
default level. In a development environment, you might choose to leave logging at the
most verbose level. In a production environment, you might change the log level to
verbose, run a test to collect data, and then change back to the default log level.

The logger also provides methods that check if the fine, finer, or finest logging level is
enabled (e.g., isFinerEnabled()). This can be used to save the time that would be spent
constructing a log message that will not be used.

Sample code
For example, this statement from the attribute example, logger.info("attribute value was" +
attrValue); will replace a line like the following in the System Manager log:

2013-02-08 13:48:00,070 [SipContainerPool : 1] com.mycompany.testService.CallListener
INFO – testService-2.0.0.0.0 – attribute value was [attribute value]

Each service is allocated 100 MB of logging space. To request a different amount of space,
you may do so in the properties.xml file. Locate the code phrase

<log_space>10MB<log_space>. Uncomment it and put in the requested allocation in

megabytes. So, to request 200 megabytes, the line would look as follows:
<log_space>200MB<log_space>. The log for your service will be located in

/var/log/Avaya/services/ServiceName/. This will create 20 files of 10 MB each for this service.

Raising alarms
Snap-in developers are able to raise alarms that are specific to their snap-in. These alarms
will be sent to System Manager and/or other Network Management Systems. Alarms are
defined in the <servicename>-svar/src/main/resources/alarms.xml file for a given service.

Avaya Breeze® platform Snap-in Development Guide 68

Event names are generated in the <snap-in name>_<event code> format. In a svar, the

maximum characters of event code that can be defined is 12. If an alarm is provisioned for
clearing then “CLR_” is added to the event code, which increases the character count by 4,
which makes the length of the event code 16. In this case, the event name is generated in
the format: <snap-in name>_<CLR_event code>. For example, in case of the Whitelist sample

service, Whitelist_DB_ERROR_01 can be a sample event name.

Important:

The maximum length supported for snap-in event names is 32 bytes.

The Clear flag makes the alarm clearable by System Manager by automatically creating an
entry of <CLR_event name> for <event name> alarm.

The following is an example of an alarm definition from the Whitelist sample service:

<xml version="1.0" encoding="UTF-8">
<alarms xmlns:p=http://archiveschemas.aus.avaya.com/snapinalarms

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="http://archiveschemas.aus.avaya.com/snapinalarms alarms.xsd ">
<alarm>

<eventcode>DB_ERROR_01<eventcode>
<alarmDisplayText>Whitelist service couldn't connect to the

DB.<alarmDisplayText>
<severity>major<severity>
<clearFlag>false<clearFlag>

<alarm>
<alarms>

The sample service further shows that the alarm can then be raised with a simple log
statement:

catch (final Exception e)

{

entityManager = null;

logger.error("initializeEntityManager exception=", e);
logger.logEvent("DB_ERROR_01");

}

When developing alarm-related snap-ins changing the throttling value is important, as the same
alarm is not raised within 12 hours, which is the default throttle period. To help debug alarms
getting raised, either change the throttle value to lesser time or disable throttling. See
“Changing the throttle value” or “Disabling throttling”. You can also configure the throttle time for
a specific event. See “Configuring the throttle time for a specific event”.

Note:

Contact Avaya Services to change the alarm throttle value and to disable alarm throttling.

Throttling changes are lost after service removal as it is specific to a service. However, the
system-level attribute changes in AlarmThrottle.properties get reset after an upgrade.

Avaya Breeze® platform does not restrict the number of alarms in each snap-in, but it is
better to have a maximum of 100 alarms for each snap-in.

Avaya Breeze® platform Snap-in Development Guide 69

Guidelines for raising alarms
Alarms.xml must adhere to the following three conditions so that the snap-in loads without

a failure:

The SNMP Notification OID is the unique identifier for a trap/alarm. Alarms usually have
two notifications OIDs - one for setting the alarm and one for resolving the alarm. Setting
the OID is typically not required. The only reason to set the OID would be if:

• You are not an Avaya developer and need to represent your snap-in to the SNMP
manager under your enterprise / product IDs.

• You are an Avaya developer and need to represent your snap-in to the SNMP manager
under your product ID.

If you do not define the Notification OID, your alarm will automatically be represented
under the Avaya enterprise and the Avaya Breeze® platform (CE) product ID. If you do
define a Notification OID, ensure that it is unique for your enterprise/product.

If you wish to represent a different organization than Avaya with your alarm, you must set the
OrgType (p:organization) tag. If you set this tag, it is mandatory to specify a notification OID as
well. Below is an example of how to do both of those.

For more information on Notification OIDs, please see Wikipedia:
https://en.wikipedia.org/wiki/ Object_identifier .

<p:organization>
<p:enterpriseToProductId>123456.2.83</p:enterpriseToProductId>

<p:enterpriseToProductIdentifier>mycompany.products.samplep:enterpriseToProductIdentifier<
/p:enterpriseToProductIdentifier>
</p:organization>

<p:alarm>
<p:eventcode>EVENT_001</p:eventcode>
<p:alarmDisplayText>{1}:{2}p:alarmDisplayText>{1}:{2}
</p:alarmDisplayText>
<p:severity>major</p:severity>
<p:notificationOid>.1.3.6.1.4.1.123456.2.83.0.1</p:notificationOid>
<p:clearFlag>true</p:clearFlag>

<p:clearNotificationOid>.1.3.6.1.4.1.123456.2.83.0.101</p:clearNotificationOid>
</p:alarm>

In this example, 123456 is the enterprise number assigned to "mycompany" by IANA. 5
corresponds to "products" and 20 corresponds to "sample".

Alarm severity can be defined using the <p:severity>...</p:severity> tag. Severities are:
Minor, Major, Warning, Critical, and Normal.

Note:

Contact Avaya Services for configuring of throttle time for a specific event.

https://en.wikipedia.org/wiki/Object_identifier
https://en.wikipedia.org/wiki/Object_identifier

Avaya Breeze® platform Snap-in Development Guide 70

Avaya Breeze® platform application programming interface
Up to this point, we have covered the basics of the Avaya Breeze® API, but there is much
more. Here is a short introduction to the other parts. Details to each part including samples
of how to use it are contained in the Javadoc documentation. The sample code is included
as its own package named after the API with a .sample appended. Explore and use any or
all parts you need to quickly and easily write your Avaya Breeze® Services.

Collaboration Call API
This API allows you to process incoming calls and launch outgoing calls. We’ve already
shown you a little, but if you want more, see the Javadoc under package
com.avaya.collaboration.call.

One concept you will see in the Call API is the concept of a “UCID” (Universal Call ID). This
is similar in nature to the call ID that can be retrieved through Call.getId(). The difference is
that the Universal Call ID is also accessible to other entities in Avaya Aura®. For instance,
Application Enablement Services applications and Avaya Aura® Experience Portal both
have access to the UCID. UCID is also used extensively in the Avaya Aura® reporting
platforms. The Call ID, however, is scoped only to a Avaya Breeze® cluster.

Collaboration Bus API
The collaboration bus API is a simple way to send and receive messages between
services. If you are interested, please see the Javadoc located under the package
com.avaya.collaboration.bus. The com.avaya.collaboration.bus.sample contains a sample
client and connector.

Eventing API
The eventing API allows services to produce and/or subscribe to events in a loosely
coupled fashion. The event types and semantics are not defined by the eventing API itself.
The API is quite happy to accept any event family, type and message bodies passed by
the producers and consumers.

One might wonder why this API is needed in addition to the Pub/Sub channels
provided by the Collaboration Bus API. There are a few key differences between these
two APIs.

• Subscription establishment/duration:
o Pub/Sub: subscriptions are defined in the properties.xml file and are therefore

static for the entire lifecycle of a service.
o Eventing: subscriptions can be established / cleared dynamically at any

point during the service lifecycle.

• Filters:
o Pub/Sub: there is no support for fine-grained filters. A service is invoked for

every event sent on the channel.
o Eventing: a service can specify fine-grained filters based on specific users,

calls or other criteria specific to event families.

• Locality of event publishers:
o Pub/Sub: the publisher of events must be executing as a CE service. If any

external events are to be published, a snap-in must expose its own web service
interface to receive those events.

o Eventing: An Eventing Connector is provided. This Connector has a pre-
defined REST interface that allows remote applications to publish events

Avaya Breeze® platform Snap-in Development Guide 71

directly into the Eventing Framework. The Connector also has a REST
interface to allow remote applications to subscribe for events that are then
delivered via HTTP POST.

• Consumer Private Data:
o Pub/Sub: there is only a single subscription per service so there is no easy way

to have service-specific data associated with an event.
o Eventing: a service can provide “Consumer Private Data” with a subscription.

Services will often have some data specific to that service that will be related to
events for specific subscriptions (for example., some data associated with a
user subscription). This feature enables such data to be provided to the service
without the service having to maintain a separate map.

One of the primary concepts in the Eventing API is that of Event Families and Event Types. An
example of an Event Family is the Call Event family. Examples of Event Types are Call Alerting,
Call Answered, and Call Ended. It is important to note that Call Events, while prepopulated and
generated by an Avaya provided service (Call Event Control) are no more integrated into the
Eventing Framework than would be an Event Family produced by a third party. The Eventing
API has no semantic knowledge of Call Events. It simply dutifully relays the Call Events from
the Call Event Control Service to any services that have subscribed for such events.

Another important concept in the Eventing API is the idea that a subscription is scoped to a
cluster and not to a specific server within a cluster. If a service subscribes to an event on server
A within a cluster, and that event occurs on server B, the subscribing service will be notified of
that event. It is important to note, however, that the instance of the service running on server B
would be notified of this event rather than the instance that actually subscribed. You should
bear this in mind when designing your logic. Anything stored in local memory on the subscribing
server may not be accessible when actually processing the event. However, Consumer Private
Data does cross nodes. Any private data provided when subscribing on server A in this
example would be provided to the service on server B when an event occurs for this
subscription.

The Eventing Framework has a mechanism to treat subscriptions as being duplicates of each
other and ensures that only one event will be sent to a subscriber. This is to handle the case
where a service subscribes to events on startup and will therefore subscribe on each server in
a cluster. In such cases, it is desirable to treat those multiple subscriptions as a single
subscription so that only a single service instance is notified when an event of interest occurs.
There are very specific criteria to determine if a subscription is a duplicate. Please check the
Javadoc for the com.avaya.collaboration.eventing package for a detailed description of what
qualifies as a duplicate subscription.
There are 2 primary roles with respect to Eventing: producers and consumers. Event
Producers needn’t know anything about who (if anybody) is subscribed for events. They
simply use the Producer API to publish their events with the proper event family, type and
metadata. Similarly, Event Consumers subscribe for events without the need to know which
service (or services) is the producer of those events.

Given the earlier discussion of Call Events, you might be wondering why one would use this
method of receiving call events rather than functioning as a Call Intercept service. There are
several reasons why you might choose to subscribe for call events rather than intercept calls:

• Reduced call latency. Call Intercept services are invoked serially, and an intercepted call
is not allowed to proceed to the called party until each and every Call Intercept service
has executed its logic. However, some services don’t need to actually perform their logic

Avaya Breeze® platform Snap-in Development Guide 72

before the call is sent to the called party. If such services subscribe for Call Events, the
call will be allowed to proceed before the service logic is invoked, thus reducing latency.

• Textual events. Some services will want to store call events in a database or send them
to a remote system. If using the Call Intercept interface, these sorts of services would
have to define their own textual format for the events in order to send them across the
wire. This is not an issue with Call Events, as they are sent in a JSON format and a
JSON schema is available for those events. If you’d rather work with Java objects than
JSON strings, never fear! Tools such as Gson exist that allow you to easily deserialize
JSON strings into Java objects.

Keep the following in mind when using Call events.

• Depending on configuration, subscribers may be notified that a call has been answered
when in actuality it has been intercepted by a snap-in or workflow that then played an
announcement. No subsequent answered event would be received if the call is sent
along to an endpoint.

• If a snap-in/workflow is performing Flexible Call Leg Control operations, a subscriber to
call events may think a call has completely dropped when only one party has dropped,
or it may not be aware of a change of participants.

Examples of how to produce and consume events can be found in the Javadoc in the
com.avaya.collaboration.eventing.sample package. An example of an HTTP event producer
can be found in that same package.

Eventing Frameworks

Avaya Breeze features 2 types of Eventing Frameworks.

Eventing Framework (EF)
EF is the original event delivery method provided through IBM Service Integration Bus
(SIB) that runs in the context of the same JVM (WebSphere) as most Avaya Breeze snap-
ins. The event delivery method increase the speed of the publish and consume events
within a single Avaya Breeze node.

Reliable Eventing Framework (REF)
REF uses a central, highly available message broker group to distribute events across the
Avaya Breeze nodes and clusters. REF guarantees the event delivery reliability through
event persistency and replication and load balancing of events across multiple consumers
on the same event subscription.

For more information about consuming events from REF, see Breeze
ReliableEventStreaming Adapter User Guide.

Collaboration Media API
The Media API allows you to add the ability to play announcements and collect digits as part of
your call processing. If the Real-Time Speech Snap-in has been installed, you can also
perform text to speech (TTS). These operations can be carried out at any point during a call:
when the call is intercepted, during alerting and after answer.

Note:

Avaya Breeze® platform Snap-in Development Guide 73

For best performance, the recommended media file format of a recorded announcement is
a 16-bit, 8 kHz, single channel (mono), PCM WAV file. For more information about other
supported formats see Implementing and Administering Avaya Aura® Media Server.

Now let’s look at some code snippets that illustrate the use of the media operations. Please
also see the Javadoc located under the package com.avaya.collaboration.call.media as well as
a sample service located at com.avaya.collaboration.call.media.sample.

Please see the Javadoc located under the package com.avaya.collaboration.call.media as well
as a sample service located at com.avaya.collaboration.call.media.sample.

Play Announcement:

There are a few different ways to play announcements. They are distinguished by the format
of the “source” parameter on the PlayItem object:

1. The recorded announcement can be accessible via HTTP, either as part of a snap-in or
on a separate HTTP server. In this case, the source URI would simply look like an HTTP
URL: http://www.mycompany.com/announcements/greetings/welcome.wav.

2. The recorded announcement can be populated in the Avaya Media Server content store.
In this case, the source URI would have the following format where “ns” stands for
namespace and “cg” stands for content group. An administrator must have previously
populated the wave file on AAMS: cstore://welcome?ns=announcements&cg=greetings

3. If the Real-Time Speech Snap-in has been installed and if a Speech Server like Nuance
has been configured with your Avaya Media Server, you can use Text to Speech (TTS).
This can be done by simply putting the text string into the source URI: “Welcome to my
company.”

The following snippet shows how to construct a PlayItem using the content store format and
play it to the calling party:

final PlayItem playItem = MediaFactory.createPlayItem();

final MediaService mediaService = MediaFactory.createMediaService();

playItem.setSource(“cstore://welcome?ns=announcements&cg=greetings”);

playItem.setInterruptible(true);

playItem.setIterateCount(1);

playItem.setDuration(5000);

final UUID requestID = mediaService.play(participant, playItem,

myMediaListener);

Collect digits:

There are 2 ways that you can collect DTMF digits from a caller or called party in a call. You
can collect digits without specifying any announcement at the same time. Alternatively, you
can invoke the promptAndCollect method that will play an announcement then collect digits
immediately after. The single promptAndCollect operation is the more common way of doing
things and is what is shown below.

The PlayItem that is passed would be constructed in exactly the same fashion as is used for
the play method. A DigitOptions object is also required to invoke promptAndCollect. The first
few parameters in the DigitOptions class are about when to stop the collection and return
results. These values are all optional, and the first to be satisfied will cause the collection to be
terminated.

Avaya Breeze® platform Snap-in Development Guide 74

The NumberOfDigits value defaults to 1. If you want to keep collecting digits until the
termination key is pressed or until there is a timeout, you would have to set this to a very high
number. In most cases, however, you’ll want to set an upper bound anyway so this will not be
an issue.

The TerminationKey is quite simple to understand. When this key is pressed by the
user, the collection completes, and results are returned. By default, there is no
termination key.

A timer is started with value Timeout (in milliseconds) immediately after the collectDigits or
promptAndCollect operation. If this timer expires before a digit is entered, the collection
terminates. The default value is 60000 milliseconds (one minute).

The FlushBuffer parameter is an indication of whether any digits collected prior to the
invocation of collectDigits or promptAndCollect should be discarded. If set to true, all digits in
the buffer will be discarded. If false, they will be retained.

final DigitOptions digitOptions = MediaFactory.createDigitOptions();
digitOptions.setNumberOfDigits(MAX_DIGITS);
digitOptions.setTerminationKey(“#”);
digitOptions.setTimeout(MILLIS_TO_WAIT);
digitOptions.setFlushBuffer(true);
final UUID requestID = mediaService.promptAndCollect(participant,

playItem, digitOptions, myMediaListener);

The collect digits operation can be used in a 2 party call to, for instance, collect a credit card
from one of the parties. If an announcement is played towards the other party, the second party
would not be able to hear what was being dialed by the first party.

Stopping a media operation:

Sometimes, it will be desirable to stop a media operation that is in progress. For instance, if
the Work Assignment Element indicates that an agent is available to take a call, you would
want to stop music from playing to the caller before routing that caller to the agent. To do this,
you would utilize the unique request identifier (UUID) that was returned to you when invoking
the play method. You might have saved this identifier as an attribute on the Call object.

Controlling a call on completion of a media operation:

In many cases, you will want to take some action after a media operation completes. For
instance, you may want to play an announcement to a caller asking if a call is urgent, then
take varying actions (allow, divert, terminate) based on input from the user. If you want to take
action on a call, you first must have saved a handle to the Call (or the string call ID)
someplace. The easiest way to do this is to have a field in your MediaListener implementation
class that contains a handle to the call. The following code snippet illustrates that concept:

final MediaListener myMediaListener = new MyMediaListner(call);
...
final UUID requestID = mediaService.promptAndCollect(participant, playItem, digitOptions,

myMediaListener);

Your implementation of the digitsCollected might then look like:

void digitsCollected(UUID requestId, String digits,
DigitCollectorOperationCause cause)

{

Avaya Breeze® platform Snap-in Development Guide 75

if(digits.equals(URGENT))
{

call.allow();
}
else if(digits.equals(NOT_URGENT))
{

call.terminate();
}

}

Important limitation: no cross-server media invocations:

A very nice aspect of the Call Manipulation API is that call control operations can be invoked
across servers in a cluster. That means that if a call is handled by server A in a cluster, then an
HTTP message arrives at server B in that same cluster, the service logic in server B can control
the call on server A. This is all handled automatically by the API. Just get a Call object from the
CallFactory on server B and operate on it as if that call was local. However, that same
functionality is not available for media and speech operations. If there’s a chance that your
service might receive HTTP events on one server that will need to operate on a call on another
server, you’ll need to redirect that HTTP event on your own. A utility has been provided that will
make this easier for you:
if (!CallProperties.isHostedOnLocalNode(myCall)
{ String remoteNodeIp = CallProperties.getNodeThatHostsThisCall(myCall)
 /* Redirect HTTP request to the correct node. */ }

Redirecting an HTTP request to the correct node can be done either by redirecting to an
FQDN that corresponds to the IP address of the remote node, or by redirecting to the cluster
FQDN using an affinity query parameter that contains the IP address of the server. For
example:
https://myBreezeCluster.example.com/services/myBreezeService/resource?affinity=xxx.x.x.xx.

Note:

It is not recommended to redirect to a URL based on an IP address, since TLS certificates
are generally not issued for IP addresses, common names, or subject alternative names.

Collaboration Conference API
Provides classes and interfaces for scheduling conferences, including ones that can begin
right away. It also includes a raw interface to Scopia. You must install the Scopia Connector
that is pre-loaded on the system to use the Conference API. Please see the Javadoc located
under the package com.avaya.collaboration.conference.scheduled.

Collaboration Email API
This API should be used to send Emails. You must install the Email Connector service that is
pre-loaded on the system to use the Email API. The Javadoc for this API is located under the
package com.avaya.collaboration.email. There is a useful sample there also.

Collaboration SMS API
This API should be used to send SMS messages. You must install the SMS Connector
service that is pre-loaded on the system to use the SMS API . The Javadoc for this API is
located under the package com.avaya.collaboration.sms. There is a useful sample there also.

Avaya Breeze® platform Snap-in Development Guide 76

Collaboration SIP Header Manipulation API
Provides classes and interfaces for doing SIP header manipulation. Please see the Javadoc
located under the package com.avaya.collaboration.call.sip.

Collaboration System Status API
The System Status API provides methods for checking CPU utilization, overload status and
other system information from a service. Note that the overload status should generally be
checked before starting new work. If the system is overloaded, adding more work will likely
further degrade performance. The Javadoc is located under com.avaya.collaboration.util.

Collaboration Service Data API
The Service Data API allows services to access global and service attributes. The
Javadoc is located under the package com.avaya.collaboratation.businessdata.api.

Collaboration User Data API
The User Data API allows services to access data associated with their phone
numbers and handles. The Javadoc is located under the package
com.avaya.collaboratation.data.api.

Collaboration Logging API
The Logging API allows services to log data based on service name and version . The
Javadoc is located under the package com.avaya.collaboratation.util.logger.

Collaboration Service API
The Logging API allows a service to obtain data about itself, like name, version and the
version of the SDK used to build the service. The Javadoc is located under the package
com.avaya.zephyr.platform.dal.api.

Node Status API
Avaya Breeze® adds the capability for a snap-in to request the status of another Avaya Breeze®

node in its cluster. The status indicates the ability of a node to process calls. When the status is
UP, the node is able to process calls; when the status is DOWN, the node is not able to
process calls.

Use the following API to retrieve the status of all nodes in a cluster:

package com.avaya.collaboration.cluster;
List<NodeStatus> Cluster.getNodeStatus();

Session Manager (SM) uses OPTIONS requests to both monitor individual Avaya Breeze®
nodes and to inform individual Avaya Breeze® nodes about the status of all Avaya Breeze®
nodes in a cluster. By default, the OPTIONS requests are sent once every 900 seconds (15
minutes). This means that Avaya Breeze® node and a snap-in using the Node Status API might
have the incorrect status of another Avaya Breeze® node for up to 15 minutes.

When a snap-in is using the Node Status API, Avaya recommends that you increase the
frequency of the OPTIONS requests that SM sends to the Avaya Breeze® nodes in the cluster
from once every 900 seconds to every 10 seconds so that a status change is detected faster.

Administrators can change how frequently SMs send OPTIONS requests. For information on
how to change the rate of the OPTIONS requests on SM for this feature, see Administering
Avaya Breeze® platform.

Avaya Breeze® platform Snap-in Development Guide 77

Send Digits API
Using sendDigits method in MediaService, you can send digits (DTMF tones) to a participant
in a call. The method also allows you to register a MediaListener instance, so that you get a
callback to perform some actions after the send digits operation completes. The sendDigits
API supports sending the set of digits { A,B,C,D, 0-9, *, # }. A typical use of this API will look
like the below code snippet.

//Obtain a participant
Participant participant = ... ;
//The digits to be sentString digits = "D19175";
//create an instance of MediaListenerMediaListener
listener = new MediaListenerAbstract()
{

public void sendDigitsCompleted(final UUID requestId, final SendDigitsOperationCause cause)
{

//it's invoked when send digits operation gets completed
}}
...

//obtain an instance of MediaServiceMediaService
mediaService = MediaFactory.createMediaService();
//Perform send digits operation
mediaService.sendDigits(participant, digits,listener);

...

Speech API
The speech search portion of the Speech API is operational only if you have installed and
licensed the Real-Time Speech snap-in. This powerful API enables you to perform speech
queries on live one or two party conversations so that you can be notified when somebody
speaks a phrase of interest. If you also have installed and licensed a speech server such as
Nuance, you will additionally be able to use Automatic Speech Recognition by using the
VoiceXMLDialog methods. Use of the VoiceXMLDialog portion of the API does not require the
Real-Time Speech snap-in to be installed.

The Speech Search operations are sufficiently detailed such that they are not described in this
guide. Instead, they are described in the separate Real-Time Speech SDK. Similarly, no
description will be provided on how to construct a VoiceXML script. The following snippet
illustrates the use of the VoiceXMLDialog methods, however.

final SpeechService speechService =
SpeechFactory.createSpeechService();

final VoiceXMLDialogItem = SpeechFactory
.createVoiceXMLDialogItem();

final URI scriptURI = new URI(voiceXMLScript);
voiceXMLDialogItem.setVoiceXMLScript(scriptURI);
speechService.startVoiceXMLDialog(participant, voiceXMLDialogItem,

CMATestListenerFactory.createVoiceXMLDialogListener(call));

SSLUtil API
The SSLUtil API allows to create SSLContext for TLS connections using Avaya Breeze®
platform's trust store and key store. See the Javadoc located in the

Avaya Breeze® platform Snap-in Development Guide 78

com.avaya.collaboration.ssl.util.SSLUtilityFactory package. There are also some useful samples in

the com.avaya.collaboration.ssl.util.sample package.

If there is no TLS version specified explicitly then by default a TLS version will be
used as mentioned in the section “How to decide which TLS version to be used”.

How to get the original HTTP request IP and scheme
A snap-in that consumes HTTP requests in some cases could be interested in the Original
HTTP Request IP:Port and Scheme that was used to make the HTTP request to the Avaya
Breeze® snap-in. This could be specifically useful when an HTTP request was made through
multiple HTTP reverse proxies in a network and a load balancer.

An Avaya Breeze® snap-in can get this information by reading the “Host” and “Scheme”

headers.

Example scenario: A snap-in is accessed from a browser using the URL :

http://BreezeCluster-IP/services/<snap-in name>/index.jsp and the request gets to Avaya

Breeze® platform, which is on Breeze-IP.

In the above scenario if a snap-in wants to know the Breeze-Cluster-IP, it can get that

from the “Host” header in the HTTP request and get the Scheme as http or https from the

“Scheme” header in HTTP request.

How to get the HTTP/HTTPS proxy settings
Avaya Breeze® platform provides an API HttpProperties class for snap-in developers to
retrieve the HTTP/ HTTPs proxy setting information on the platform. When a snap-in is
designed to send an HTTP/ HTTPs request out of the customer’s network boundary to the
internet, the snap-in should use the API to get proxy settings. All requests must pass
through the forward (outbound) proxy, if any, which will send the requests to the destination,
and forward the received responses back to the snap-in.

HTTP header X-Frame-Options
Snap-ins can set the HTTP header “X-Frame-Options" in the response as per their usage.

If not added, Avaya Breeze® platform uses SAMEORIGIN as the value. Other possible
values for this response header are “DENY”, "ALLOW-FROM uri” where uri is any HTTPS
URI. For example, https://example.com/.

Avaya Breeze® platform Snap-in Development Guide 79

HTTP headers in responses

When sending HTTP responses, Avaya Breeze® platform adds the following headers with the

corresponding values as mentioned in the below table:

Header Default Header
Value

Additional comments and Possible values
which snap-ins may want to specify

X-Frame-
Options

SAMEORIGIN "DENY" - To prohibit any domain from framing

the content.

"ALLOW-FROM uri" - Permit a specific uri to

frame the content.

Strict-

Transport-

Security

"max-age=31536000;
includeSubdomains"

Snap-ins might want to change max-age value

in seconds or remove includeSubdomains tag.

X-Content-
Type-
Options

"nosniff"

X-XSS-
Protection

"1; mode=block" "0" disables XSS filtering, this should be
avoided.

Cache-
Control

"no-cache,no-store" This header specifies directives for caching the

response. There are various different values

which snap-ins may want to specify for this

header.

Please see all the valid values

at https://developer.mozilla.org/en-

US/docs/Web/HTTP/Headers/Cache-Control

Pragma "no-cache" Pragma is HTTP/1.0 is an implementation-
specific header - Should not be overridden, see
Cache-Control instead.

Expires "0" HTTP-date timestamp can be used instead of

"0"

E.g. Expires: Mon, 27 Nov 2017 02:44:00 GMT

If a snap-in wants to change the value for any of the above headers in its HTTP response, it can do

so and Avaya Breeze® platform will retain the value set by the snap-in.

For all of the above headers, Avaya Breeze® platform advises to use default values and override

them only when it is absolutely necessary for snap-in functionality.

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control

Avaya Breeze® platform Snap-in Development Guide 80

When to use the session affinity parameter for HTTP load
balancing

By default, the Avaya Breeze® platform HTTP load balancer uses a round-robin algorithm
to distribute incoming HTTP requests among Avaya Breeze® nodes in a cluster. Snap-ins
that are stateless, including those that store state in an external database or memory grid,
are fine using the default round-robin algorithm. However, stateful snap-ins require affinity
of HTTP requests to a particular Avaya Breeze® platform server. In these cases, you must
enable the session affinity attribute on the Avaya Breeze® cluster. The session affinity
attribute is present in the Cluster Attributes section of the Cluster Editor page in System
Manager.

When you enable session affinity, HTTP requests are targeted to a particular Avaya Breeze®
platform server in two ways:

• By default, a hashing algorithm is used on the source IP address such that all
requests from a given IP address are routed to the same Avaya Breeze node. This
works well in cases where the senders of the HTTP messages are end-user devices
and the real IP address of those sending devices is not obscured by a proxy or
firewall.

• In the case of a server-based HTTP sender, or in cases where a reverse proxy /
firewall makes all HTTP requests to appear to be from a single source IP address,
the IP hashing algorithm is insufficient. In such cases, this algorithm can be
overridden by populating an affinity query parameter in the incoming HTTP requests.

o The affinity parameter contains the IP address of the Avaya Breeze® platform

server.

o The IP address does not have to be addressable by the sending client.

It only has to be addressable by the Avaya Breeze® platform server that

hosts the load balancer.
An example URL with affinity parameter: https://myBreezeCluster.example.com/
services/myBreezeService/resource?affinity=xxx.x.x.xx.

If you would like the client IP address to be used for load balancing instead of the last hop IP
address in a series of reverse proxies being traversed, please work with your administrator
to configure the Cluster Attribute “Trusted addresses for converting to use X-Real-IP for
session affinity”. This will make sure that when a client makes a HTTP request to Avaya
Breeze® platform via Reverse proxies like Avaya Session Border Controller for Enterprise,
the X-Real-IP header gets used for load balancing instead of the Avaya Session Border
Controller for Enterprise IP address for load balancing.

How to decide which TLS version to be used
Many organizations are starting to require that TLS 1.3 be the minimum TLS version that is
used on their networks. This is because TLS 1.3 addresses security vulnerabilities that exist
in TLS 1.0,

Avaya Breeze® platform Snap-in Development Guide 81

1.1, and 1.2. However, certain legacy components can only support TLS 1.0 or TLS 1.2, so
some flexibility is required in the TLS versions that are used. The high-level algorithm
employed when a snap-in is creating a SSLContext is as follows:

• In general, use the global minimum TLS version across all products that System
Manager manages.

• Allow an administrator to override the global minimum TLS version with a different
version on a snap-in by snap-in basis.

If your snap-in only talks to a single external entity or if all external entities can support
all TLS versions, do not specify a TLS version (SSLProtocolType) when creating your
security context. If you do not specify a TLS version, the SSLUtilityFactory will return:

• The minimum TLS version provisioned for your snap-in on the given cluster OR

• The global System Manager TLS version if no version was specifically provisioned
for your snap-in.

In certain cases, it is necessary for a snap-in to talk to multiple external entities that have
varying levels of support for TLS 1.3. In such cases, create an attribute for your snap-in that
allows an administrator to indicate the TLS version that is to be used to communicate to
each external entity. Administrators additionally must configure the minimum TLS version
for your snap-in on the Cluster Editor page. Use the indicated version to explicitly select the
required TLS version when creating an SSLContext to use with that entity. If you do not do
this, the provisioned minimum TLS version is used for all SSLContexts, including those that
are talking to entities that support TLS 1.3.

The following table explains the TLS versions and what value their createSSLContext()
returns:

System

Manager

TLS

version

Snap-in

TLS

version

createSSLContext() createSSLContext(

TLS)

createSSLContext(

TLS 1.3)

SSL v3 Default Returns SSLContext
with TLS

Returns SSLContext
with TLS

Returns SSLContext
with TLS1.3

TLS v1.0 Default Returns SSLContext

with TLS

Returns SSLContext
with TLS

Returns SSLContext
with TLS1.3

TLSv1.1 Default Returns SSLContext

with TLS

Returns SSLContext
with TLS

Returns SSLContext

with TLS1.3

TLSv1.2 Default Returns SSLContext

with TLS1.2

Throws an exception
and raises an alarm

Returns SSLContext

with TLS1.3

TLSv1.3 Default Returns SSLContext

with TLS1.3

Throws an exception
and raises an alarm

Returns SSLContext

with TLS1.3

SSL v3 TLS Returns SSLContext

with TLS

Returns SSLContext
with TLS

Returns SSLContext

with TLS1.3

TLS v1.0 TLS Returns SSLContext

with TLS

Returns SSLContext
with TLS

Returns SSLContext

with TLS1.3

TLSv1.1 TLS Returns SSLContext

with TLS

Return SSLContext
with TLS

Returns SSLContext

with TLS1.3

TLSv1.2 TLS Returns SSLContext

with TLS

Returns SSLContext
with TLS

Returns SSLContext

with TLS1.3

TLSv1.3 TLS Returns SSLContext

with TLS

Returns SSLContext
with TLS

Returns SSLContext

with TLS1.3

Avaya Breeze® platform Snap-in Development Guide 82

SSL v3 TLS1.3 Returns SSLContext

with TLS1.3

Throws an exception
and raises an alarm

Returns SSLContext

with TLS1.3

TLS v1.0 TLS1.3 Returns SSLContext
with TLS1.3

Throws an exception
and raises an alarm

Returns SSLContext

with TLS1.3

TLSv1.1 TLS1.3 Returns SSLContext
with TLS1.3

Throws an exception
and raises an alarm

Returns SSLContext

with TLS1.3

TLSv1.2 TLS1.3 Returns SSLContext
with TLS1.3

Throws an exception
and raises an alarm

Returns SSLContext

with TLS1.3

TLSv1.3 TLS1.3 Returns SSLContext
with TLS1.3

Throws an exception
and raises an alarm

Returns SSLContext

with TLS1.3

Considerations about sending outbound HTTP requests
Many snap-ins have to send outbound HTTP requests to external services running on
Avaya Breeze® platform or elsewhere. One common example is cloud-based RESTful web
services. The XXX sample application demonstrates how to do this. Here are some
important points to note when sending outbound HTTP requests:

• Depending on the network configuration where your snap-in is deployed, you might
need to support an outbound HTTP proxy. To understand how to retrieve
HTTP/HTTPS proxy setting information, see “How to get the HTTP/HTTPS proxy
settings”.

• The recommended client for sending outbound HTTP requests is the Apache HTTP
Client which is bundled on the Avaya Breeze® platform. You can use other clients,
but all documentation and samples use the Apache client.

• Most outbound invocations should use HTTPS rather than HTTP. HTTPS brings

additional considerations. In order to address these considerations, use the
com.avaya.collaboration.ssl.util.SSLUtilityFactory class to create an SSLContext that can

then be passed to the HTTP client.

The following table contains the code snippets of the tasks that you need to

perform to create SSLContext to pass it to the HTTP client. Using this class

ensures that:

o Your snap-in uses the correct TLS version that has been provisioned by

an administrator. For more information, see “How to decide which TLS

version to be used”.

o Your snap-in uses the provisioned Avaya Breeze® platform

WebSphere identity certificate, if challenged for a client certificate.

o Your snap-in uses the provisioned Avaya Breeze® platform trusted

certificates to validate the identity of the server. Unlike browsers, this trusted

certificate store, by default, does not include the well-known Certificate

Authorities (CAs). You need to manually add all trusted CAs for your

deployment.

o The outbound HTTP messages go out the eth1 (traffic) interface rather than
the eth0 (management) interface. Some customers segregate their
management network, and it is not possible to access many network

Avaya Breeze® platform Snap-in Development Guide 83

services, particularly those external to the enterprise, from the management
network.

Task Code snippet

Use SSLUtilityFactory to get SSLContext. SSLUtilityFactory.createSSLContext();

Use the platform listener to get the
certificate update.

@ThePlatformListener
public class
CertificateChangePlatformListener
extends PlatformListenerAbstract
{
 private Logger logger =
Logger.getLogger(getClass());
 @Override
 public final void
certificateStoreUpdated()
 {
HttpClientSingleton.INSTANCE.reset();
 }

}

Set the SSLContext in the HTTP client. final SSLConnectionSocketFactory

sslConnectionSocketFactory = new
SSLConnectionSocketFactory(
SSLUtilityFactory.createSSLContext(),
NoopHostnameVerifier.INSTANCE);
 final
Registry<ConnectionSocketFactory>
registry =
RegistryBuilder.<ConnectionSocketFactory>
create()
 .register("http",
PlainConnectionSocketFactory.getSocketFac
tory())
 .register("https",
sslConnectionSocketFactory)
 .build();
 final
HttpClientConnectionManager cm
= new
BasicHttpClientConnectionManager(registry
);
 client =
HttpClients.custom().setConnectionManage
r(cm)

 .build();

Use the security module interface to
establish

outbound connectivity.

final ZephyrDM dm = (ZephyrDM)
DMFactory.getInstance().getDataMgr(
ZephyrDM.class);
myFqdnOrIpAddress =
dm.getMySIPEntity().getFqdnoripaddr();
requestConfig =
RequestConfig.custom();.setLocalAddress(I

Avaya Breeze® platform Snap-in Development Guide 84

netAddress.getByName(myFqdnOrIpAddress)).
build();
client =
HttpClients.custom().setDefaultRequestCon
fig(requestConfig)

.build();

• If your snap-in reuses an HTTP client and its initial SSLContext across multiple

HTTP requests, be sure to listen for identity/trust certificate changes. This ensures

that any changes made by an administrator are reflected immediately in your snap-

in. Otherwise, for instance, an administrator might add a new trusted CA but your

snap-in would not trust that CA until your snap-in or Avaya Breeze® platform is

restarted. See the PlatformListener and SamplePlatformListener class in the Avaya

Breeze® platform SDK Javadoc on how to listen to certificate changes.

Properties.xml
The properties.xml file is a mandatory component of a Snap-in’s Archive (.svar). It allows
the snap-in to define various properties and needs including the service name, the service
version and service attributes. The following list describes the elements and attributes
used in the properties XML file.

<service>

This is the root element of the XML file.

Level: Root Level

Type/Scope: Mandatory. Complex element.

.name

This value defines the name of the snap-in service. It should be a customer-friendly name
without acronyms or abbreviations, including spaces as needed for readability. It is used
for display purposes on administrative screens.

Level: Attribute of <service>

Type/Scope: Mandatory. String. Globally unique, although the same for all versions of the
same service.

Purpose: Defines the version of the Snap-in service.

.version

This value should follow the Avaya versioning standard, five numbers separated by dots
major.minor.update.patch.build. The first four numbers are used to determine which
version is Latest, so the format is important to those components. Subsequent versions of
the snap-in service should have increasing version numbers.

Level: Attribute of <service>

Type/Scope: Mandatory. String. Unique within service.

Purpose: Defines the name of the Snap-in service.

.application

Avaya Breeze® platform Snap-in Development Guide 85

This value should match the name of the service archive, the servlet EAR and the portlet
WAR. It should combine a variation of the service name and the version string. It should
not contain spaces and need not be a customer-friendly name. It may be needed by the
service deployer to figure out which services need to be deployed or undeployed.

Level: Attribute of <service>

Type/Scope: Mandatory. String. Globally unique.

.<smgr>

This element defines the properties of the service that are needed by SMGR.

Level: Sub-element of <service>

Type/Scope: Mandatory, even if empty. Complex element.

Purpose:

.<log_space>

This value defines the maximum size allocated for snap-in logs. After log size reaches the
maximum value of 10MB, it will be rolled over to next log file.

Level: Sub-element of <smgr>

Type/Scope: Optional. Integer.

.<description>

This value should be a short description of the service for the administrator, which expands
somewhat on the service name.

Level: Sub-element of <smgr>

Type/Scope: Optional, but strongly encouraged. String.

.<admin_visible>

This value specifies whether or not the service is visible to the administrator. In 99% of the
cases, the value will be TRUE, which is the default, so you would generally not specify it.

Level: Sub-element of <smgr>

Type/Scope: Optional. Boolean. Defaults to TRUE.

.<orig_order>

This value is only needed for call intercept snap-ins. If null or omitted, the service will not be
sequenced when a call is made.

Optional. Integer. Value need not be unique. Defaults to null.

.<term_order>

This value is only needed for call intercept snap-ins. If null or omitted, the service will not be
sequenced when a call is made.

Level: Sub-element of <smgr>

Type/Scope: Optional. Integer. Value need not be unique. Defaults to null.

.<orig_group>

This value is only needed for call intercept snap-ins. If omitted, the service will not be
sequenced when a call is made.

Avaya Breeze® platform Snap-in Development Guide 86

Level: Sub-element of <smgr>

Type/Scope: Optional. Integer. Defaults to null.

.<term_group>

This value is only needed for call intercept snap-ins. If omitted, the service will not be
sequenced when a call is made.

Level: Sub-element of <smgr>

Type/Scope: Optional. Integer. Defaults to null.

.<attribute>

This element is used to define a service attribute. Define one for each attribute needed by
your service.

Level: Sub-element of <smgr>

Type/Scope: Optional. Complex element..name

This value is name of the attribute used by the code to retrieve its value. It typically is in
camel case and does not contain spaces.

Level: Attribute of <attribute>

Type/Scope: Mandatory. String. Unique within a service.

.<displayName>

This value is a customer friendly name to describe the attribute to the administrator,
including spaces as needed for readability.

Level: Sub-element of <attribute>

Type/Scope: Mandatory. String.

.<onChangeAlertMsg>

This value specifies a warning message that will be displayed to administrator upon
changing the value for attribute.

Level: Sub-element of <attribute>

Type/Scope: Optional. String.

.<helpInfo>

This value is a short description of the attribute to help the administrator decide what it is
used for and how to set it.

Level: Sub-element of <attribute>

Type/Scope: Optional. String.

.<attr_order>

This value specifies the order in which the attribute will be displayed.

Level: Sub-element of <attribute>

Type/Scope: Optional. Integer.

.<scope>

This value specifies the scope of attribute. The possible combinations are: 1.Global,
2.)ServiceProfile 3.) Global,Cluster and 4.)Global,Cluster,ServiceProfile. Attribute will be

Avaya Breeze® platform Snap-in Development Guide 87

applicable for the given scope(s) as mentioned here. By default, it will be applicable for all
the scopes (i.e. combination 4).

Level: Sub-element of <attribute>

Type/Scope: Optional. String.

.<group>

This value specifies logical grouping of attributes. It takes name as string and order as
integer for the group as sub-element

Level: Sub-element of <attribute>

Type/Scope: Optional. Complex element.

.<validation>

This element specifies the validation rule for this attribute. It is only used for scalar attributes.

Level: Sub-element of <attribute>

Type/Scope: For each <attribute>, it is mandatory that you include either a <validation>
element.

.name

This value specifies the name of the validation rule. Only two rules are supported,
“anyString” or “EncryptedString”.

Level: Attribute of <validation>

Type/Scope: Mandatory. String.

.<type>

This value specifies the type of the attribute. It must be STRING of validation of “anyString”
and “ENCRYPTED_STRING” for validation “EncryptedString”.

Level: Sub-element of <validation>

Type/Scope: Mandatory. Enumeration.

.<pattern>

This value specifies that this validation includes a regular expression pattern match. This
pattern match will be applied in addition to the validation type specified.

Level: Sub-element of <validation>

Type/Scope: Optional. String.

.<admin_visible>

This value specifies whether this attribute is visible to the administrator. In 99% of the cases,
the value will be TRUE , which is the default, so you would generally not specify this.

Level: Sub-element of <attribute>

Type/Scope: Optional. Boolean. Defaults to true.

.<admin_changeable>

This value specifies whether or not this value is changeable by the administrator. In 99% of
the cases, the value will be TRUE, which is the default, so you would generally not specify
this.

Avaya Breeze® platform Snap-in Development Guide 88

Level: Sub-element of <attribute>

Type/Scope: Optional. Boolean. Defaults to true.

.<global>

This value is not supported and must always be set to false.

Level: Sub-element of <attribute>

Type/Scope: Optional. Boolean. Defaults to false.

.<factory>

This element optionally specifies the default as defined by the snap-in writer, it is called the
factory default value.

Level: Sub-element of <attribute>

Type/Scope: Optional. Complex element.

.<value>

This value specifies the factory default for this attribute.

Level: Sub-element of <factory>

Type/Scope: Mandatory. String.

.<cutthrough_url>

This element defines the properties of the service that are needed for a snap-in to define cut
through url. (see cut through URL section)

Level: Sub-element of <service>

Type/Scope: Optional.Complex element.

.<url_display_name>

This element defines the properties of the cutthrough_url to define the display name

Level: Sub-element of <cutthrough_url>

Type/Scope: Mandatory. String.

.<url>

This element defines the properties of the cutthrough_url to define the actual url

Level: Sub-element of <cutthrough_url>

Type/Scope: Mandatory. String.

About Avaya Snapp Store
Avaya Snapp Store (https://www.devconnectmarketplace.com/marketplace/) is Avaya's e-
commerce solution that allows developers to post their snap-ins for purchase by other
Avaya customers to monetize their snap-in. If you would like to offer your snap-in on the
Avaya Snapp Store, you must register on the store as a developer and follow the
onboarding process for your snap-in. As part of the onboarding process, you must include
the following in the snap-in code:

https://www.devconnectmarketplace.com/marketplace/

Avaya Breeze® platform Snap-in Development Guide 89

1. The Supplier ID in the snap-in. See “Obtaining the Supplier ID”.
2. Your EULA text in the snap-in. See “Adding EULA”.

Obtaining the Supplier ID

About this task
The Supplier ID is used for identifying the supplier of a particular snap-in. All snap-ins from a
given supplier have the same supplier id. A supplier ID is required for all the snap-ins
offered through the Avaya Snapp Store; in other cases, the supplier id is optional. Use the
following procedure to define the supplier ID.

Procedure
1. To obtain a Supplier ID, register to the Snapp store as a developer.

The Supplier ID is included in any snap-in that is to be offered on the Snapp Store.

2. Define the supplier ID by adding the service attribute to the properties.xml file of the

snap-in.

For example:

<attribute name="com.avaya.supplierId">
<displayName>Supplier Id</displayName>
<helpInfo>Example supplier id</helpInfo>
<validation name="AnyString">

<type>STRING</type>
</validation>
<admin_visible>true</admin_visible>
<admin_changeable>false</admin_changeable>
<factory>

<value>SUPPLIER_ID_VALUE</value>
<user_changeable>false</user_changeable>

</factory>
</attribute>

Adding EULA

About this task
Use the following procedure to add end-user license agreement (EULA) text to a snap-in.
EULA is required for snap-ins that are offered on the Snapp Store, in other cases adding
EULA is optional.

Procedure
1. Place the EULA text file in the resources folder of the svar module.
2. Open the manifest.xml file that is also present in the same resources folder and add the

EULA component type as follows:

<component type="eula" filename="eula.txt" />

Avaya Breeze® platform Snap-in Development Guide 90

Example of a manifest.xml file with the EULA component added:

<?xml version="1.0" encoding="UTF-8"?>
<service_description xmlns="http://archiveschemas.aus.avaya.com/aus"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=http://archiveschemas.aus.avaya.com/aus aus.xsd name="$
{serviceName}" version="${serviceVersion}"
sdk_version="${sdk-version}" sdk_build="${sdk-build}">

<component type="properties" filename="properties.xml" />
<component type="eula" filename="eula.txt" />

</service_description>

Bundles
Service developers may want to package multiple services in a single archive called a
bundle. Services packaged in a bundle can optionally declare dependencies on one or
more services. Services that are declared as dependencies may be:

• Packaged within the same bundle as the dependent service.

• Packaged within a different bundle.

• Loaded independently.

Internal and external dependencies
Snap-in dependencies can be categorized as “internal” or “external”. If a snap-in is
dependent on another snap-in that is included in the same bundle, this is referred to as an
“internal” dependency. If a snap-in is dependent on another snap-in that is not included in
the same bundle, this is referred to as an “external” dependency.

As an example, consider a bundle that includes snap-ins S1 and D1. Snap-in S1 has
dependency on snap-ins D1 and D2. Here snap-in D1 is an internal dependency, and D2
is an external dependency. Snap-in D2 can be loaded individually or it can be part of
another bundle.

Bundle load
Using the Load operation from the Bundles page, one or more services packaged in the
bundle can be loaded at a single time. If a snap-in with the same name and version is
already loaded on System Manager, then this snap-in load will be skipped. The load
operation will succeed for the other snap-ins within that bundle. If an external dependency is
not yet loaded on System Manager, the bundle load operation will not fail; the external
dependency can then be loaded later on the “Services” page.

Partial loading of a bundle is not supported. Either all or none of the services within a bundle
will be loaded. All snap-in names and versions defined in bundle.xml in the “<p:service >”
element must match with the packaged snap-ins’ manifest.xml name and version or bundle
load will fail.

Bundle install
Using the Install operation, one or more services can be installed on one or more clusters at
a single time using bundles. Bundle install also installs the dependencies (internal/external)
on the cluster if any snap-in has defined a dependency on another snap-in and the

Avaya Breeze® platform Snap-in Development Guide 91

dependency snap-in is not yet installed on the cluster. Any dependencies are installed prior
to the snap-in that declared the dependencies. This allows snap-in developers to control the
sequence of snap-in installation as well.

If an external dependency is not yet loaded on System Manager then the bundle install
operation will fail. If a snap-in which is part of bundle or dependency snap-in
(internal/external) is already installed on the cluster with the same or later version, it will not
be installed again. If any snap-in installation fails on the platform, bundle installation will be
rolled back. Snap-ins which were already installed on the platform prior to bundle installation
will be untouched.

Bundle uninstall
Using the Uninstall operation, one or more services can be uninstalled from one or more
clusters at a single time using bundles. Bundle uninstall also uninstalls the internal
dependencies on the cluster if:

• Any snap-in has defined dependency on another snap-in.

• The dependency snap-in was installed on the cluster with bundle install operation.

• No other snap-ins have a dependency on the snap-in.

Any external dependencies or individually installed snap-ins are not uninstalled with bundle
uninstall.

Bundle delete
Using the Delete operation, snap-ins packaged in the bundle can be deleted at a time. If a
snap-in was loaded independently from “services” page then it will not be deleted. Partial
bundle deletion is not supported. Either all or none of the services within a bundle will be
deleted.

Cyclic dependency
A bundle load operation will fail if snap-ins declare cyclic dependencies. For example, snap-
in A depends on snap-in D1 and D1 depends on Snap-in D2 and D2 depends on A. This
forms a cyclic dependency, so the bundle load operation will fail in this case.

Conflicting/Overlapping dependencies
If two bundles have conflicting/overlapping dependencies, then dependency loading will be
skipped for during the second bundle load operation on the same cluster as those snap-ins
were already loaded during the first bundle load operation. For example, bundle B1 has
snap-in X which has a dependency on snap-in D1, and bundle B2 has snap-in Y which has
a dependency on Snap-in D1. Loading of bundle B1 is followed by loading of bundle B2. In
this case, loading of snap-in D1 as part of bundle B2 will be skipped.

Similarly, during the bundle installation, installation of any overlapping snap-ins will be
skipped, as they were already installed as part of the first bundle. Consider bundles B1 and
B2 from the example above. Installation of bundle B1 is followed by B2. In this case,
installation of snap-in D1 as part of bundle B2’s install will be skipped as it was already
installed as part of with B1’s installation on the same cluster.

During a bundle uninstall operation, overlapping snap-ins will be uninstalled only if none of
the dependent snap-ins are in the installed state after bundle uninstall. During delete

Avaya Breeze® platform Snap-in Development Guide 92

operation, overlapping snap-in will be deleted only when last bundle is deleted which is
packaging it.

Bundle feature support
Bundle feature is supported from Avaya Breeze™ Release 3.3 onwards. Bundles should only
include snap-ins built with Avaya Breeze™ SDK Release 3.3 or later and can only be
installed on Avaya Breeze™ Release 3.3 or higher versions.

Creating bundles

About this task
To create a new bundle, start with the AuthorizationSampleBundle in the Avaya
Breeze® platform SDK sample services. Copy the AuthorizationSampleBundle
contents to a new directory {bundle_name} and perform the below steps in the newly
created directory.

Note:

Bundle SVARs can only be loaded from the Bundles page in System Manager.
Bundles cannot be loaded through the Service Management page or loaded and
installed using the Eclipse plug-in.

Procedure
1. Remove any existing SVARs present in the {bundle_name}\src\main\svars directory.
2. Copy the new SVARs to be packaged in the bundle into the

{bundle_name}\src\main\svars directory.
3. To define the contents of the bundle, edit the

{bundle_name}\src\main\resources\bundle.xml file to add the appropriate serviceName,

serviceVersion, and svarFileName as shown below.
a. To package a service without a dependency in a bundle, add the below snippet to

bundle.xml:

<p:services>
<p:service name="sampleServiceName"
version="sampleServiceVersion"
svarFileName="sampleSvarFileNameWithDotSVARWithEx
tension">
</p:service>
</p:services>

Here the name and version in the Bundle tag specify the name and version of
the Bundle artifact that is built.There are three parts to the service tag.
Name:
The name of the service as defined in the manifest.xml of the service.

Version:
The name of the service as defined in the manifest.xml of the service.

svarFileName:

Avaya Breeze® platform Snap-in Development Guide 93

The name of the snap-in artifact / svar name that is built.
This is the name of the svar artifact that is copied to the svars
directory of the bundle project

b. Package Service with dependency service packaged within the bundle.

The service should explicitly define a dependency on another service through

bundle.xml using the <p:dependsOn> tag. Here the dependency service is

required to be in the same bundle.

<p:services>
<p:service name="sampleServiceName"
version="sampleServiceVersion"
svarFileName="sampleSvarFileNameWithDotSVARWithEx
tension">

<p:dependsOn name="dependencyServiceName"
version="dependencyServiceVersion" />

<p:service>
<p:service name="dependencyServiceName"
version="dependencyServiceVersion"

svarFileName="dependencyServiceSvarFileNameWith
DotSVARWithExtension">

</p:service>
</p:services>

Here, the ‘dependsOn’ tag has the information about the snap-in it depends
on.
This component has two parts:

- name
This is the name of the snap-in in the manifest.xml of this snap-in
artifact.
When the snap-in is created using the Avaya Breeze service
archetype, the manifest.xml obtains the name as the value of variable
from the tag – serviceName from the pom.xml of the main snap-in project.

- version
This is the version of the snap-in in the manifest.xml of this snap-in
artifact.
When the snap-in is created using the Avaya Breeze service
archetype, the manifest.xml obtains the version as the value of variable
from the tag – serviceVersion from the pom.xml of the main snap-in
project

Here the name of the actual svar of the’ depends On’ snapin can be different
than serviceName-version.svar.

c. Package Service with dependency service not packaged within the bundle – the

dependency service can be packaged in another bundle or it is an independent

service that is loaded from the services page.

Avaya Breeze® platform Snap-in Development Guide 94

The service should explicitly define dependency on another service through

bundle.xml using the <p:dependsOn> tag. Here packaging dependency service in

bundle is not required.

<p:services>
<p:service name="sampleServieName" version="sampleServiceVersion"
svarFileName="sampleSvarFileNameWithDotSVARWithExtension">

<p:dependsOn name="dependencyServiceName"
version="dependencyServiceVersion" />
</p:service>
</p:services>

Here, the ‘dependsOn’ tag has the information about the snap-in it depends
on.
This component has two parts:

- name
This is the name of the snap-in in the manifest.xml of this snap-in
artifact
When the snap-in is created using the Avaya Breeze service
archetype, the manifest.xml obtains the name as the value of variable
from the tag – serviceName from the pom.xml of the main snap-in project

- version
This is the version of the snap-in in the manifest.xml of this snap-in
artifact
When the snap-in is created using the Avaya Breeze service
archetype, the manifest.xml obtains the version as the value of variable
from the tag – serviceVersion from the pom.xml of the main snap-in
project

Here the name of the actual svar of the dependsOn snapin can be different
than serviceName-version.svar.

d. Packaging EULA in bundle:

A bundle can contain a EULA which administrator will need to Accept to
load it successfully on System Manager. If such a bundle contains individual
snap-ins that have their own EULA, these individual EULAs are not displayed
to the user.

To add a EULA to a bundle, follow below steps

Add eula.txt in {bundle_name}/src/main/resources. Add component type “eula” in

{bundle_name}/src/main/resources/manifest.xml as shown below.

<?xml version="1.0" encoding="UTF-8"?>
<service_description xmlns="http://archiveschemas.aus.avaya.com/aus"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://archiveschemas.aus.avaya.com/aus

../../../target/dependency/aus.xsd"

Avaya Breeze® platform Snap-in Development Guide 95

name="${bundleName}" version="${bundleVersion}"
sdk_version="${CE-SDK-Version}" sdk_build="${CE-SDK-

Release}">
<component type="bundle" filename="bundle.xml" />
<component type="eula" filename="eula.txt"/>

</service_description>

Update {bundle_name}/src/main/assembly/dist.xml to package eula.txt in bundle

SVAR as shown below.

<?xml version="1.0" encoding="UTF-8"?>
<assembly

xmlns="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.2"

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.2 http://maven.apache.org/xsd/assembly-1.1.2.xsd">
<id>svar</id>
<formats>

<format>zip</format>
</formats>
<fileSets>
<fileSet>
<directory>src/main/svars/</directory>
<outputDirectory>/</outputDirectory>

<filtered>false</filtered>
</fileSet>
<fileSet>

<directory>${project.build.directory}/tmp</directory>
<outputDirectory>/</outputDirectory>
<filtered>false</filtered>

</fileSet>
</fileSets>
<files>

<file>
<source>src/main/resources/manifest.xml</source>
<outputDirectory>/</outputDirectory>
<filtered>true</filtered>

</file>
<file>

<source>src/main/resources/bundle.xml</source>
<outputDirectory>/</outputDirectory>
<filtered>true</filtered>

</file>
<file>

<source>src/main/resources/eula.txt</source>
<outputDirectory>/</outputDirectory>
<filtered>true</filtered>

</file>
</files>
<includeBaseDirectory>false</includeBaseDirectory>
<baseDirectory>/</baseDirectory>

Avaya Breeze® platform Snap-in Development Guide 96

<dependencySets>
<dependencySet>

<outputDirectory>/</outputDirectory>
</dependencySet>

</dependencySets>
</assembly>

4. To change the name and version of the Bundle, modify the {bundle_name}\pom.xml

and replace values of the tags bundleName and bundleVersion in snippet below.

<properties>
<bundleName>SampleBundle</bundleName>
<bundleVersion>3.3.0.0.0</bundleVersion>
<CeSdk.version>3.3</CeSdk.version>

</properties>

5. Once all of the above steps are complete, run the command “mvn clean install” to build

the bundle SVAR artifact. Once this operation is completed, the artifact named

bundleName-bundleVersion.svar i.e. SampleBundle-3.3.0.0.0.svar will be created in the

{ SampleBundle} \target directory.

Defining dependencies on pre-loaded connectors on Avaya
Breeze® platform Element Manager

Procedure
1. To define a dependency on Email Connector, add the below line to the bundle.xml under

entry for appropriate snap-in in the service tag:

<p:dependsOn name="EmailConnector" version="<ServiceVersionNumber>"/>

2. To define a dependency on Scopia Connector add below:

<p:dependsOn name="ScopiaConnector" version="<ServiceVersionNumber>"/>

3. To define a dependency on Zang SMS Connector add below:

<p:dependsOn name="ZangSmsConnector" version="<ServiceVersionNumber>"/>

4. To define a dependency on Authorization service, add below:

<p:dependsOn name="AuthorizationService" version="<ServiceVersionNumber>"/>

Avaya Breeze® platform Snap-in Development Guide 97

Workflows and tasks in a SVAR bundle

Creating a Workflow SVAR

About this task
Engagement Designer 3.9 allows users to export existing workflows from “Engagement
Designer console” using the “Export Workflow As Package” button. This will create a SVAR
containing the workflow. This workflow SVAR can then be packaged in a Bundle SVAR.

Procedure
On the Engagement Designer Admin console, export the existing workflows using Export
Workflow As Package.

Result
The system creates a SVAR containing the workflow.

Creating a task SVAR

About this task
Engagement Designer allows users to export selected tasks that have previously been
uploaded into Engagement Designer Administration Console on the “Bundles” tab.

To export a bundle of Tasks from Engagement Designer, navigate to the Bundles tab on the
Engagement Designer Administration Console, select the task bundle, and perform the
“Export to SVAR” operation. This will create a SVAR containing with the selected tasks
which can then be packaged into a Bundle SVAR.

Note:

Engagement Designer Administration Console uses the term “Bundle” to refer to the
package.
with a set of Tasks. This is different than the broader concept of a Bundle in System
Manager.

Procedure
1. On the Engagement Designer Admin console, select the task from the Bundles list.
2. Export selected tasks using the Export to SVAR option.

Avaya Breeze® platform Snap-in Development Guide 98

Result
The system creates a SVAR containing the selected tasks.

Creating a bundle with the workflow and task SVARs using a
sample bundle

About this task
Use the AuthorizationSampleBundle sample in the Avaya Breeze® platform SDK to create
the bundle with the workflow and task SVARs.

The Eclipse plug-in does not support bundle installation. The workflow and task SVARs can
only be loaded from the Bundles tab. The WFDs and Tasks SVAR must define the
dependency on Engagement Designer Release 3.3 or later through bundle.xml using the
dependsOn tag.

Procedure
1. For creating a new bundle using “AuthorizationSampleBundle” present in Avaya Breeze®

platform SDK sample services, copy “AuthorizationSampleBundle” to new directory
{bundle_name}and perform the below steps in the newly created directory.

2. Remove the existing SVARs in the {bundle_name}\src\main\svars directory.
3. Copy the workflow and task SVARs into the {bundle_name}\src\main\svars directory.
4. Modify the {bundle_name}\src\main\resources\bundle.xml file and add the metadata in the

metadata.xml as shown in the following code snippet:

• serviceName

• serviceVersion

• svarFileName

<p:services>
<p:service name="wfdServieName" version="wfdServiceVersion"

svarFileName="wfdSvarFileNameWithDotSVARWithExtension">
<p:dependsOn name="EngagementDesigner" version=" 3.3.0.0.3750" />

</p:service>
<p:service name="taskServieName" version="taskServieVersion"

svarFileName="taskSvarFileNameWithDotSVARWithExtension">
<p:dependsOn name="EngagementDesigner" version=" 3.3.0.0.3750" />

</p:service>
</p:services>

Avaya Breeze® platform Snap-in Development Guide 99

5. Modify the {bundle_name}\pom.xml file and add the bundleName and bundleVersion as

shown in the following code snippet:

<properties>
<bundleName>WFDandTaskBundle</bundleName>
<bundleVersion>3.3.0.0.0</bundleVersion>
<CeSdk.version>3.3</CeSdk.version>

</properties>

6. Run the following command to build the bundle SVAR artifact: mvn clean install

Result
The system creates the bundleName-bundleVersion.svar file, such as the

WFDandTaskBundle-3.3.0.0.0.svar file, in the {bundleName}\target directory. This must be

loaded from Bundles page on System Manager.

Avaya Breeze® platform Snap-in Development Guide 100

Chapter 4: Avaya Breeze® platform Call

Handling

There are multiple ways that your snap-in can be involved in call handling:

• Call Intercept provides the ability for a snap-in to intercept all calls FROM a Calling Party or
TO a Called Party so that application logic can be applied before the call reaches its
intended destination.

• Outbound Calling starts an outbound call to a single individual and interacts with the
individual directly. The snap-in can also perform the function of a broker in a call between
two individuals.

• Callable Services receives an inbound call and interacts with the caller, then add an
additional participant to the call.

Avaya Breeze® platform manages calls in the following way:

• Each Avaya Breeze® platform snap-in is included in a call at a signaling level independently
of the others. If there are multiple Call Intercept snap-ins in the same service profile, each
snap-in will each intercept the call and will get their own independent set of events.
Sometimes, an action taken by one snap-in can cause another snap-in to be invoked. For
example, if an Outbound Calling snap-in initiates a call to a number that is associated with a
Call Intercept snap-in, that Call Intercept snap-in will be invoked. When the call is answered,
both the Outbound Calling and the Call Intercept snap-in will get callAnswered callbacks.

• The same snap-in can be involved in a single call multiple times. If the snap-in acts as an
Outbound Calling snap-in and that same snap-in is a Calling Party Call Intercept snap-in, it
will get two callbacks for events on that call, one for each of its invocations in the call.

You can monitor and control calls without having a CallListener by using one of the call handling
snap-ins. A Call Event and Control snap-in is involved in all calls where Avaya Breeze® platform is
sequenced by Session Manager. This service publishes call events on the Avaya Breeze® platform
Eventing Framework. Snap-ins that monitor these events or determine the UCID of calls using
another method can create a Call object from the CallFactory using the App ID or UCID. The snap-
in can then invoke any of the operations on the Call object that the Call Event and Control snap-in
performs.
It is not possible to invoke any MediaService operations unless your snap-in was involved in a call
as a Call Intercept, Outbound Calling, or Callable snap-in.

Call Intercept

Inbound call blocking
To block inbound calls with a service, in your implementation of CallListenerAbstract, inspect
the call to determine if it should be allowed or blocked. Call either the allow or drop method
on the Call object provided by the framework. Note that this service should be invoked on
inbound calls to users for whom the service is enabled, which is also called party service.
Information on configuring services to be invoked on incoming or outgoing calls is covered in
more detail later in this document.

Example

Avaya Breeze® platform Snap-in Development Guide 101

@Override
public final void callIntercepted(final Call call) {

if(isCallAllowed(call)) {
call.allow();

}else {
call.drop();

 }

}
private final boolean isCallAllowed(final Call call) {

// in this example we'll block calls from a specific handle

return !call.getCallingParty().getHandle().equals("+15553091337");
}

Outbound call blocking
Blocking outbound calls is similar to blocking inbound calls. Examine the attributes of the
call and call either the allow or drop method. Note that in this example we’re looking at the
called party rather than the calling party in isCallAllowed. This service should be a calling
party service. It should be invoked on outgoing calls made by users for whom the service is
enabled.

Example

@Override
public final void callIntercepted(final Call call) {

if (isCallAllowed(call))
{

call.allow();
}
else
{

call.drop();
}

}
private final boolean isCallAllowed(final Call call)
{

// in this example we'll block calls from a specific handle
return !call.getCalledParty().getHandle().equals("+15553091337");

}

When the Avaya Breeze® platform API Call drop() method is invoked before a call has been
answered, Avaya Breeze® platform generates and sends a block message to the caller’s
endpoint. In general, endpoints can handle Avaya Breeze® platform’s block message in
different ways. Some endpoints might play a tone, such as reorder, while other endpoints
might not play a tone or drop the line immediately.

Avaya Breeze® platform Snap-in Development Guide 102

Outbound caller ID change
First, get the Participant object that represents the caller from the Call object. Then use its
setPresentedDisplayName method to change the display name that the called party will see.
Then use the allow method to allow the call to exit the service. This service is a calling party
service, since it is invoked for calls made by users for whom it is enabled.

Example

@Override
public final void callIntercepted(final Call call) {

call.getCallingParty().setPresentedDisplayName("New display name");
call.allow();

}

Redirect call
To redirect a call for either a calling or called party service, use the divertTo() method with a
new destination on the Call object in the callIntercepted() method.

Example

@Override

public final void callIntercepted(final Call call)

{call.divertTo(“18005551212”); }

Suggested formats of the new destination include:

• A simple telephone number that matches your system’s dial plan: “18005551212”
• An E.164 number (include + before the country code) that matches your system’s dial

plan: “+18005551212”

For an explanation of E.164, see https://en.wikipedia.org/wiki/E.164.

Alternate formats of the new destination include:

• A handle of a URI where the domain of the URI is the same as the domain of the original
destination: “joe.smith”

• A URI with the form “handle@domain” where the handle is a name, telephone number,
or E.164 number and the domain is either a host or a domain name. These forms must
be used if the domain of the diverted to destination differs from that of the original
destination.

o “joe.smith@avaya.com”

o “18005551212@destinationdomain.com”

o “+18005551212@destinationdomain.com”

https://en.wikipedia.org/wiki/E.164

Avaya Breeze® platform Snap-in Development Guide 103

Calling Party vs. Called Party
It is possible to determine in code whether the service has been invoked for the calling party,
or for the called party. The Call object provides an easy way to do this:

Example

@Override

public final void callIntercepted(final Call call) {

if (call.isCallingPhase() {

// invoked for calling party

}else if (call.isCalledPhase() {

// invoked for called party

}

}

Zang-enabled Avaya Breeze® specific information
The CallProperties.getCallProvider(Call) is available to determine the call type (e.g., SIP
or ZangCallProvider). In this environment, all snap-ins are invoked as Callable snap-ins.
This means that:

• Call.wasServiceCalled() will always return true

• Call.isCalledPhase() will always return false

• Call.isCallingPhase() will always return false

Outbound calling

The Avaya Breeze® platform API provides a way for a service to initiate outgoing calls. A
1-party call could be used, for example, to ring a party and play a notification
announcement. A 2-party call could be used, for example, for a click-to-call scenario.

This functionality is provided in the Collaboration Call API that is part of the larger Avaya
Breeze® platform API. In particular, the CallFactory includes these methods:

• Call create(final Participant callingParty, final String target): This will create a Call which
will ring the “target”. The “callingParty” is not a true party, but rather makes the call to
“target” appear to be from “callingParty”.

• Call create(final String from, final String to, final Identity onBehalfOf): This will create a
call between the “from” party and the “to” party. The “to” party is called first, and the call
to the “from” party appears to be from the “onBehalfOf” party (but note that “onBehalfOf”
is an Identity). Once the “from” party has answered, the “to” party will be called, and the
call to the “to” party also appears to be from “onBehalfOf”. When the “to” party answers,
the two parties will be talking.

It is a 2-step approach to make an outgoing call. First, the call is created, then, the call is
initiated.

Here is a simplified example:

Avaya Breeze® platform Snap-in Development Guide 104

Identity onBehalfOf = IdentityFactory.create("771234");

Call twoPartyCall = CallFactory.create("779999", "775555", onBehalfOf);

twoPartyCall.initiate();

In this example, 779999 would ring first. When 779999 answers, 775555 would ring. When
775555 answers, 779999 and 775555 would be talking together.

Note:

An Avaya Aura® Media Server is required to make outgoing calls.

Zang-enabled Avaya Breeze® specific information
The CallProperties.getCallProvider(Call) is available to determine the call type (e.g., SIP or
ZangCallProvider)

A 2-party make-call operation is not supported in a Zang-enabled Avaya Breeze®
environment. See CallFactory.create(String, String, Identity) in the Avaya Breeze® platform
SDK Javadoc for more details.

Participant tracking
The introduction of the ability to subtract and add participants, enabled by the new Call
Termination Policy, creates the ability for a service writer to change the participants in a call
in ways not previously possible. The original calling and called parties may not be involved
in a call after certain changes. New methods and operations have been created to allow the
service writer to obtain access to the changed participants.

The existing methods in the Call API, getCallingParty() and getCalledParty(), will now
always return the original calling and called participants in the call, even if they are no longer
active. The participants currently active in a call can be retrieved using the method
getActiveParties(), which returns a list of Participants. The display information for these
participants can be updated with the three existing methods setPresentedHandle(),
setPresentedDomain() and setPresentedDisplayName(). The existing method
getAlertingParties still returns a list of Participants, but now those Participants can be
updated with Presented information as well.

To aid in tracking a participant's activity in a call, a new method is added to the Participant
API. getState() returns the ParticipantState of the Participant, which can be IDLE,
ORIGINATING, ALERTING or CONNECTED. Note that the states only change when a
change is confirmed. For instance, the called party is IDLE in the CallIntercepted callback
because it is not yet known whether the call will be allowed. Comparably a Participant will
not progress to ALERTING until a response is received to confirm that the Participant is
ALERTING.

Dropping and adding participants
To drop and add participants in a call, a service can invoke dropParticipant() and
addParticipant(). The first requirement to make use of these abilities is to set the Call
Termination Policy to NO_PARTICIPANT_REMAINS so that a call will not drop when one

mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide

Avaya Breeze® platform Snap-in Development Guide 105

party drops out of a call or is dropped from the call and another party remains. When the
policy is set this way, Avaya Aura® Media Server is required in the system. Media Server is
needed to provide feedback tones to the remaining participant in a call. The default Call
Termination Policy is ONE_PARTICIPANT_REMAINS, which means that when either
party drops out of a call the entire call drops.

Methods

Insert content for the first section.

setCallTerminationPolicy

Example

final CallPolicies callPolicies = call.getCallPolicies();

callPolicies.setCallTerminationPolicy(CallTerminationPolicy.NO_PARTICIPANT_REMAINS);

DropParticipant
The new method dropParticipant can be invoked on any currently active participant in a call.
If invoked when only one participant is active the entire call will be dropped. If two or more
participants are active the specified participant will be dropped and depending on the
resulting state, all participants may still be dropped. For example, when a call is ringing
dropping the calling party will drop the entire call. When a participant drops or is dropped a
new participantDropped callback will be invoked. Note that if dropping a single participant
leads to dropping both participants the callback will be invoked twice (once for each
participant), followed by the callTerminated callback.

AddParticipant
The existing method addParticipant() that was previously used to add additional target
parties during the alerting phase can now also be used to add a participant to a call that
currently only has one participant remaining. It can still be used to achieve parallel ringing. If
a call is starting from a two-party state and the service wishes to drop one participant and
add another one, it is necessary to wait for the participantDropped() callback after dropping
the first participant before the addParticipant() method can be invoked. If the attempt to add
a participant fails a new callback is invoked, addParticipantFailed(). If the extra party is
added without issue the existing callAlerting callback will be received.
Note:

The addParticipant method can only be used to go beyond 2 parties when the call is
alerting (i.e., for parallel forking). After the call has been answered, it is not possible to add
more than 2 parties and therefore this method cannot be used to create conference calls.

Examples
Sequential Ringing: This feature refers to the new ability to attempt to ring a called party,
then drop that participant after a timer expires and attempt to ring another party. This can be
done by calling Call.allow, then after a timeout call call.dropParticipant(call.getCalledParty()),
followed by call.addParticipant(“18005551212”). The call to addParticipant should not be
invoked until the participantDropped callback is invoked.

Serial Calling: This feature refers to the new ability to make a series of calls on behalf of the
calling party. A caller could request to speak to Bob and then Carol and the snap-in can

Avaya Breeze® platform Snap-in Development Guide 106

detect when Bob drops out and use the participantDropped callback to
addParticipant(“Carol”).

Zang-enabled Avaya Breeze® specific information
The CallProperties.getCallProvider(Call) is available to determine the call type
(e.g., SIP or ZangCallProvider)

There are restrictions pertaining to adding a participant to a Zang call. See
Call.addParticipant(Participant) in the Avaya Breeze® platform SDK Javadoc for more
details.

The feature option of keeping a call active when a participant hangs up from a two-party
call is not supported in this environment, which means that the
NO_PARTICIPANT_REMAINS option is not available.

Flexible Call Leg Control

Multiple call targets
To add an additional called party in parallel with the original called party use the
addParticipant() method with a new destination. The method is invoked on the call object in the
callIntercepted() method. The added participant will only be added if the service allows the call
to proceed using either allow() or divertTo(), and only after the called or diverted party is
ringing. If a party cannot be added the addParticipantFailed callback will be invoked.

Example

@Override
public final void callIntercepted(final Call call)
{

call.addParticipant(“18005551212”);

call.allow();

}

See the section on Redirect call for information about formats of the destination.

Callable Service

What is a callable service?
Callable Services are services that are invoked as a result of being directly called, as
opposed to being invoked on the behalf of an end user when that user originates or receives
a call. An example would be a snap-in that is handling incoming calls to a contact center’s
800 number.

Avaya Breeze® platform Snap-in Development Guide 107

Callable service snap-in configuration
In a pure call intercept scenario, Avaya Breeze® platform is provisioned as a "sequenced
application" that is invoked by Session Manager in the originating phase (invoked on the
behalf of a caller) and/or the terminating phase (invoked on the behalf of the called party).
Avaya Breeze® platform is able to invoke the appropriate snap-in(s) based on the
provisioned service profile for the user.

In a callable service scenario, Avaya Breeze® platform is not provisioned as a sequenced
application. Instead, a routing policy is configured to route calls with a particular pattern to
Avaya Breeze® platform. Session Manager sends the call there without an expectation that
the call will be coming back so that it can be sent on to its end destination. This is the key
differentiation between a call intercept and callable snap-in.

You can invoke Call Intercept Snap-ins before sending a call to a Callable Snap-in. In this
case, Session Manager is not configured to send the call to Avaya Breeze® platform as a
sequenced application. The same routing policy configuration is used as for a standalone
Callable Service, except multiple snap-ins are configured in the Service Profile. The last
snap-in in the sequence is treated as a Callable Service, and the others are treated as
Called Party Call Intercept Services.

More details on how to configure a snap-in as a callable service can be found in
Administering Avaya Breeze® platform.

How to write a snap-in that acts as a callable service
A snap-in does not need to define any special tags or attributes to make it a callable service.
The difference is entirely in the Session Manager configuration.

A typical callable service might do some of the following in its callIntercepted() callback
implementations:

• The logic to divert a call to a different destination based on certain conditions.

• The logic to play an announcement and ask for digits to the caller, then take further
action based on entered digits.

Though it is unlikely, it is possible for a snap-in to act both as a call intercept snap-in and a
callable service. Therefore, Avaya Breeze® platform provides an API for a snap-in to identify
whether it was invoked as a callable service: Call.wasServiceCalled() API has this functionality.
More details on this API can be found in the SDK Javadocs. This could be important since
things work slightly differently for callable snap-ins versus call intercept snap-ins. We strongly
recommend that you use this method.

“com.avaya.collaboration.call.sample. SampleCallableService” is an example of call listener
for a callable service. Javadocs for this class can be found in the SDK.

Avaya Breeze® platform API differences for a callable service
When a snap-in is invoked as a callable service, a few APIs behave differently than they do
for call intercept snap-ins.

• Call.allow() API – A snap-in generally invokes Call.allow() when it wants the call to

proceed to the original target. When a snap-in is configured as a callable service, it

Avaya Breeze® platform Snap-in Development Guide 108

itself is the original target of the call, hence it does not need to invoke call.allow() to

proceed with the call. This operation has no effect in a callable service scenario.

• Call.addParticipant(Participant Party) API – When a snap-in invokes

Call.addParticipant in call intercept scenario, the added participant starts ringing

only when original called party starts ringing. When a snap-in is configured as a

callable service, the addParticipant operation takes effect immediately and

invocation of the allow() or divertTo() API is not required.

Call.wasServiceCalled() API: This API returns true if the service was invoked as a Callable service
or false if invoked as a Calling Party or Called Party service. We strongly recommend that you use
this method in your callable service.

Inserting and removing Avaya Aura® Media Server
Avaya Breeze® platform can add the Avaya Aura® Media Server into the media stream
automatically whenever a media operation is performed. Most snap-ins will not have to
give any thought as to when or how to insert Media Server; it will just happen when a
media operation is invoked. This is true both before the call has been answered (during
the callIntercepted() callback) and after the call has been answered. Similarly, most snap-
ins need not be concerned about removing Media Server after the media operation
completes. After several seconds go by without any active media operations, Media Server
will automatically be removed. The list of media operations that will cause Media Server to
be inserted include play, record, send or collect digits, speech search, and Voice XML
dialog.

The default Media Server inclusion policy of “AS_NEEDED” can be overridden to instead be
set to “INCLUDED”. With this setting, Media Server will immediately be added to the call and
will not be removed until the setting is changed to “AS_NEEDED”. There are two cases
where a snap-in will want to use the “INCLUDED” Media Server inclusion policy:

1. The process of inserting and removing Media Server causes a momentary disruption in

the audio path. In some cases, a snap-in may find it preferable to leave Media Server in

the flow for the duration of the call rather than having these disruptions.

2. There is a window of time in which Media Server cannot be inserted: after a snap-in

invokes allow()/divertTo() and before it receives the answered() callback. If a snap-in

doesn’t need to invoke a media operation in the callIntercepted() callback but wants to

reserve the right to do so before the call is answered, it should set the policy to

“INCLUDED” during the callIntercepted() callback. It can then set the policy back to

“AS_NEEDED” after the call is answered.

Note:

The enableMediaBeforeAnswer has been deprecated and should no longer be used.

Methods
setMediaServerInclusion:

Example:

final CallPolicies callPolicies = call.getCallPolicies();

callPolicies.setMediaServerInclusion(MediaServerInclusion.INCLUDED);

Avaya Breeze® platform Snap-in Development Guide 109

Insert Media Server MediaServerInclusion.INCLUDED:
This changes the policy immediately and causes Avaya Breeze® platform to not remove the
media stream unless the media policy is set to AS_NEEDED. If this was invoked after the
call has been answered, Media Server will be inserted when the next media operation is
invoked.

Remove Media Server MediaServerInclusion.AS_NEEDED:

This default policy causes Avaya Breeze® platform to remove Media Server from the
stream when no media operations are active. If the previous policy was INCLUDED,
Media Server would be removed immediately if there were no media operations active
at the time of invocation.

Media operations on mixed audio stream
To play an announcement or start speech search on a call, the service can specify the API
method with a call parameter in its signature. The method with this signature specifies the
mixed audio stream as the target on which the Avaya Aura© Media Server should invoke the
media operation. This means that when play announcement is invoked in the callIntercepted
method, the calling party will hear the full announcement. However, the called party will only
hear the portion of the announcement that is remaining after answering the call. Also, this
means that when start speech search is invoked in the callIntercepted method, the calling
party's speech will be analyzed for the duration of the call. However, the called party's
speech will be analyzed only after answering the call.

Methods
play, startSearch

Example
final UUID requestId = mediaService.play(Call call, PlayItem playItem, MediaListener
mediaListener);

final UUID searchId = speechService.startSearch(Call call, SearchOptions searchOptions,
SpeechSearchListener speechSearchListener);

Service invocation configuration
Avaya Breeze® platform currently supports three modes of service invocation: calling party
services, called party services, and callable services.

• A calling party service is invoked when a user with the service enabled in their Service
Profile makes a call.

• A called party service is invoked when a user with the enabled service in their Service
Profile is called.

• For callable service invocation, see the “Callable Services” chapter. The example
properties.xml file for callable services is same as the configuration for called party

services.

Avaya Breeze® platform Snap-in Development Guide 110

Configuring your service as either a calling or called party service is done by editing the
properties.xml file in the resources directory of the SVAR project (testService-
svar/src/main/resources with the values from the example above).

Note that a calling party service includes the orig_order and orig_group elements. The
values provided for these are irrelevant, but some value must be present (you could
simply use “1” for both). The following is an example of a minimal properties.xml for a
calling party service:

Example

<?xml version="1.0" encoding="UTF-8"?>
<service xmlns=http://archiveschemas.aus.avaya.com/properties

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:schemaLocation="http://archiveschemas.aus.avaya.com/properties properties.xsd"

name="${serviceName}" version="${serviceVersion}" application="${serviceName} -
$ {serviceVersion}">

<smgr>
<description>Test Service</description>
<orig_order>1</orig_order>
<orig_group>1</orig_group>
<fs_component>true</fs_component>

</smgr>

</service>

Note that a called party service includes the term_order and term_group elements. The
values provided for these are irrelevant, but some value must be present (you could
simply use “1” for both). The following is an example of a minimal properties.xml for a
called party service:

Example

<?xml version="1.0" encoding="UTF-8"?>
<service xmlns=http://archiveschemas.aus.avaya.com/properties

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://archiveschemas.aus.avaya.com/properties properties.xsd"

name="${serviceName}" version="${serviceVersion}" application="${serviceName} -
${serviceVersion}">

<smgr>
<description>Test Service</description>
<term_order>1</term_order>
<term_group>1</term_group>
<fs_component>true</fs_component>

</smgr>
 </service>

Avaya Breeze® platform Snap-in Development Guide 111

Removing service from call

This feature allows a Snap-in to request that Avaya Breeze® platform be removed from the call
signaling path without the call being dropped. This helps conserve Avaya Breeze® platform
resources.

Snap-in Implementation

If the snap-in is a call intercept or two party make call snap-in, the implementation can invoke
ServiceManager.removeServiceFromCall(call) in any state. If it is invoked before the call becomes
stable with 2 parties, the request will be queued.

Example:

1. Snap-inX receives call (Call Intercept)
2. Snap-inX invokes removeServiceFromCall()

 @Override
 public final void callIntercepted(final Call call)
 {

ServiceManager.removeServiceFromCall(call);
 }

3. Avaya Breeze® ‘queues’ the remove service from call request until the called party answers.
4. Snap-inX allows the call to the Called participant.
5. When the called party answers, Snap-inX will be removed from the signaling path. In case

Snap-inX is the only snap-in in the application sequence, Avaya Breeze® platfom is removed
from the signaling path.

If the snap-in is invoked as a callable snap-in, the implementation should invoke
ServiceManager.removeServiceFromCall(call) only after invoking addParticipant() or divertTo().

Example1:

1. Snap-inX receives call (Callable Service)
2. Snap-inX invokes removeServiceFromCall()

3. Avaya Breeze® platform will throw an IllegalStateException because Avaya Breeze®

platform only knows of one party on the call (Calling participant)

Example2:

1. Snap-inX receives call (Callable Service)
2. Snap-inX invokes addParticipant() or divertTo()
3. Snap-inX invokes removeServiceFromCall()
4. Avaya Breeze® platform ‘queues’ the remove service from call request until the called party

answers.

Avaya Breeze® platform Snap-in Development Guide 112

5. When the called party answers, Snap-inX will be removed from the signaling path. In case
Snap-inX is the only snap-in in the application sequence, Avaya Breeze® platform is
removed from the signaling path.

ServiceManager.removeServiceFromCall(call) cannot be used if there is a single party on a call
without a pending action to add a second party. The method must only be invoked after a second
party has been added to the call by invoking addParticipant(). Note that this condition does not
apply to call intercept and two-party make call, as both of these scenarios have a pending action to
add a second party.
There are two ways that a snap-in can be involved in a one-party call:

• The snap-in initiated a one-party make call

• The snap-in set the call termination policy to NO_PARTICIPANT_REMAINS and only one
party remains in the call.

Service listener implementation

It may be important for the snap-in to know whether the invocation to
ServiceManager.removeServiceFromCall succeeded. In order for a snap-in to be notified of the
outcome, the application must create a serviceListener class, annotated with TheServiceListener
and implementing the ServiceListener interface as shown below:

@TheServiceListener

public class SnapinServiceListener implements ServiceListener

{

public void removeServiceFromCallSucceeded(Call call)

{

}

public void removeServiceFromCallFailed(Call call, String

reason)

{

}

 }

Avaya Breeze® platform Snap-in Development Guide 113

Avaya Breeze® platform Snap-in Development Guide 114

Chapter 5: Developing the service to use the

Cluster DB

Introduction to Cluster DB
The Cluster DB provides a relational database (DB) on a per cluster basis that snap-ins can
easily set up and use. This section focuses on what a developer needs to do to create and
access the DB from the snap-in. The snap-in can then access the DB using JDBC, Open
JPA, or Hibernate. The snap-in can create and upgrade the schema from snap-in version to
snap-in version using the schema upgrade feature. The snap-in can also get a JDBC
Datasource setup with a connection pool to access it DB using JNDI.

Note:
It is not recommended to perform database operations, especially write operations, in a SIP
call thread. See the Performance and scalability considerations chapter on how to move to a
non-SIP thread for database operations.

Database setup
A snap-in can setup one or more databases instances by adding a database section in the
properties.xml file. Each database instance can have its own set of tables and structure and
is independent from the other database instances contained in the Cluster DB. In this
section, one DB instance in the Cluster DB that the snap-in uses is referred as “DB”. You
can specify the following attributes for a DB:

Name Default Example Required Description

Name – Mydb Yes A short name that is appended to your
snap-in name with underscores in
between words.

container-

mgmtname

– jndi</mydb No The JNDI name of the datasource. This
name is automatically created and you
must specify this name in the
persistence.xml file.

max-conns 10 8 No The maximum number of connections in
the
connection pool. Only used if container-
mgmt-name is specified. You this attribute
sparingly since connections are a limited
resource and once specified each node in
the cluster uses these many connections.

non-

transactional

False True No If you do not want container managed
transactions, set this attribute to True.
Only used if containermgmt-name is
specified.

multi-

threadedaccess

False True No If you want to check the multi-threaded
access flag in the datasource, set this
attribute to True.

Avaya Breeze® platform Snap-in Development Guide 115

Description – Call

Statistics

Yes To provide more information about the

attribute.

schema-major – 0 No Not required for the current version.
However, required for version 3.1, so you
must set this attribute to 0, even if it is not
used.

schema-minor – 0 No Not required for the current version.
However, required for version 3.1, so you
must set this attribute to 0, even if it is not
used.

schema-revision – 0 No Not required for the current version.
However, required for version 3.1, so you
must set this attribute to 0, even if it is not
used.

Properties.xml
As an example, we can use SampleSnap as our snap-in. To set up a DB, the Properties.xml
file for SampleSnap can include the following attributes:

<database>
<instance>

<name>statdb</name>
<container-mgmt-name>jdbc/statdb</container-mgmt-name>
<non-transactional>false</non-transactional>
<max-conns>5</max-conns>
<description>Holds test statistics</description>

<</instance>
</database>

Ensure that the properties.xml file contains Unix Format (LF) End Of Line (EOL) characters

of the instead of Windows Format (CRLF). For the Windows platform you can use the
“dos2unix'” free utility or the “Notepad++ text editor” to do this conversion. Or on the Unix
platform you can use dos2unix command. Or in an IDE (Eclipse/Netbeans) you can use

plugins available with them. You can set the lineEnding attribute to unix in dist.xml section in

the Properties.xml to avoid running into issues.

When SampleSnap is installed on a cluster the following takes place:

• If the DB user of SampleSnap is not present then the DB user named samplesnap is
created. (Remember: Postgres does not use capitals).

• DB named samplesnap_statdb is created, if not already present. It is owned by the user

samplesnap.
• A JDBC datasource that is transactional is created that has five connections in the

pool and can be looked up with JNDI name of jdbc/statdb.

Persistence.xml
Following is a sample persistence.xml that displays the use of the JDBC datasource.
Persistence.xml is located at SampleSnap/SampleSnap-war/src/main/resourses/META-
INF/persistence.xml.

<?xml version="1.0"?>
<persistence xmlns=http://java.sun.com/xml/ns/persistence
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Avaya Breeze® platform Snap-in Development Guide 116

xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd" version="1.0">

<persistence-unit name="statdb" transaction-type="JTA">
<jta-data-source>jdbc/statdb</jta-data-source>

<class>com.mycom.snapins.feature.db.Stats/class>
...

<properties>
...

</properties>
</persistence-unit>

</persistence>

The snap-in can now access and use the created DB named samplesnap_statdb. You must first

create and manage your DB schema before you can use the DB.

DB schema creation and maintenance
This section explains how to create, update, and manage the tables in the snap-in DB. The
schema is managed using a version number, which is independent of the snap-in version.
Schema versions might not change with each new version of the snap-in since each new
version of the snap-in might or might not require a schema update. Use schema upgrade
scripts to initially create the schema and also for subsequently updating the schema.
Schema versions consist of three positive integer number separated by a dash. The
numbers represent in order, the major, minor, and revision of the schema. All snap-in
schema numbers start at 0-0-0. The 0-0-0 version of the schema does not contain tables or
anything else, it is just a newly created DB.

Schema upgrade scripts
Each schema upgrade script takes the schema from one schema version, the “from”
version, to another schema version, the “to” version. The snap-in developer decides the
from and to versions on each script. Over the lifetime of a snap-in, there might be many
schema changes and therefore many schema upgrade scripts. The upgrade scripts are
stored in the .svar at the top level directory named dbupgrade. The upgrade script is an .sql
script containing DDL and SQL that creates new tables, alters existing tables and inserts
seed data. The upgrade script does not contain transaction syntax because it is run in a
single transaction. Each new snap-in version includes all the previously written schema
upgrade scripts to ensure that the DB schema can be made current irrespective of the
contents of the currently existing schema. The scripts are executed in a progression
determined by the from and to version along with the current version of the DB. The scripts
must following a naming convention that the Upgrade Engine uses to determine the from
and to versions of the DB. The naming conventions are detailed in the following section.

Naming of the upgrade scripts
Following components make up the name of the upgrade scripts:

1. upgrade_
2. db name (short name taken from the properties.xml file)
3. _ (an underscore)
4. from version (FromSchemaVersion)

Avaya Breeze® platform Snap-in Development Guide 117

5. _ (an underscore)
6. to version (ToSchemaVersion
7. .sql

So, for example, upgrade_statdb_0-0-0_3-0-0.sql is the name of the script that creates the
initial schema of the DB used by SampleSnap. Schema version 0-0-0 is the initial blank
schema version. After this script is run and completes successfully, the current schema
version is now the FromSchemaVersion or 3-0-0. The current schema version of each DB is
maintained in a system table. After an upgrade script runs successfully, the current schema
version is updated to the ToSchemaVersion of the script. Snap-in developers can determine
the schema number. However, the progression of upgrade script execution is determined by
chaining together the FromSchemaVersion and the ToSchemaVersion, so you must be
careful not to break the chain. In this case, the next version of the schema upgrade script
must have a FromSchemaVersion of 3-0-0.

Snap-in upgrade scripts tips
• Include a database section in the properties.xml. This sets up a DB instance with a

name for the snap-in to use.
• Include all the upgrade scripts representing each time the schema has been updated

over the life of your snap in. Follow the naming conventions described in “Naming of
the upgrade scripts”.

• Ensure that the very first upgrade script has a FromSchemaVersion of 0-0-0. In most
cases, this script creates all the tables for the first version of the snap-in.

• Schema versions are not tied to snap-in versions. There might be many schema
versions between a snap-in release version or there might be none.

• Schema versioning persist throughout all versions of the snap-in. The snap-in
developer can determine the version numbering.

• Upgrade scripts are run as one transaction so all of it succeeds or none of it succeeds.
If the upgrade script fails the current schema version remains same. Do not include
transactions control statements such as begin and commit, in your upgrade scripts.

• Schema versions must be backwards compatible with older versions of a snap-in. If
you drop a column of a table, chances are you have broken backwards compatibility.
The older version will fail when it tries to insert, update, or select on the column that
was dropped.

• Schema versions do not have to be consecutive but it is a good idea within one
version. For example, upgrade_mydb_1-1-10_2-3-22.sql..

• Ensure that you tie the ToSchemaVersion and FromSchemaVersion chain together so
that version progresses to current. That is, a new upgrade script must have a
FromSchemaVersion of the previous version's ToSchemaVersion. The upgrade run
ends when there is no upgrade script with the FromSchemaVersion of the current
schema version.

• Avoid loops in the progression of execution by making the versions go progressively
higher.

• There are no downgrades, once the schema is upgraded it stays on that version, even
if the new version is uninstalled or deleted.

• Older versions of the snap-ins must work with newer schema versions.
• Upgrade messages are located at /var/log/Avaya/sm/clusterdb.log, which is filtered

using the hadb_ctl printlog command.

Avaya Breeze® platform Snap-in Development Guide 118

Notifications for Cluster DB backup and restore
Snap-ins can request to be notified when backup and restore operations occur on the
Cluster Database.

Usage
A snap-in can define a listener class to get backup and restore status change notifications.
The listener can be defined by implementing the interface
“com.avaya.zephyr.platform.dm.DMListener”. The method “objectChanged()” gets invoked
whenever there is a change in Cluster Database backup and restore status.

A sample code for this can be seen below:

public class TestDaoListener implements DMListener
{

private static TestDaoListener listener = new TestDaoListener();
private Logger logger = Logger.getLogger(TestDaoListener.class);

private TestDaoListener()
{
}

public static TestDaoListener getInstance()
{

return listener;
}

@Override
public void objectChanged(Object oldObject, Object newObject)
{

if (oldObject instanceof AusBackupRestoreData || newObject instanceof
AusBackupRestoreData)

{
if (newObject != null)
{

AusBackupRestoreData newData = (AusBackupRestoreData)
newObject;

logger.info("Service Name: " + newData.getServiceName());
logger.info("Database Name: " + newData.getDbName());
logger.info("Schema version: " + newData.getSchemaVersion());
logger.info("Cluster Name:" + newData.getClusterName());
logger.info("Operation: " + newData.getOperation());
logger.info("Operation Status: " + newData.getStatus());

}
}

}
}

Avaya Breeze® platform Snap-in Development Guide 119

The listener needs to be registered with DAO (AusBackupRestoreDAO) to get notifications.
And the listener should also be removed during service uninstallation. The registration and
removal of listeners can be done in the init() and destroy() methods of ServiceLifeCycle
class as shown below:

@TheServiceLifeCycle
public class MyLifeCycleClass implements ServiceLifeCycle
{

private Logger logger = Logger.getLogger(MyLifeCycleClass.class);

@Override
public void init()
{
// Registration of Listener with "AusBackupRestoreDAO" for notifications of backup/ restore
status value changes

DMFactory.getInstance().getDataMgr(AusBackupRestoreDAO.class).registerListener(TestDaoList
ener.getInstance());

}

@Override
public void destroy()
{

// Removal of Listener from "AusBackupRestoreDAO"
DMFactory.getInstance().getDataMgr(AusBackupRestoreDAO.class).removeListener(TestDaoListen
er.getInstance());

}
}

Upgrade engine
The upgrade engine runs each time a snap-in is installed on a cluster for each DB instance
specified in the properties.xml file. The upgrade engine looks for scripts to run and stops

when it does not find a matching FromSchemaVersion, in which case it exits successfully.
When a script fails the upgrade, engine quits looking and exits as failed. Steps followed by
the upgrade engine steps are as follows:

Steps followed by the upgrade engine:

1. Retrieve the current version of the DB from system table, if not found use 0-0-0.
2. Look for an upgrade script with its from version equal to the current version. If the

upgrade engine cannot find any then exit as a successful upgrade.
3. Run the found script as a single transaction. If it fails, everything done in script is

rolled back, schema remains the same, and the upgrade engine exits as a failed

upgrade.
4. Upgrade the current version of the DB in the system table.
5. Go to step 1.

Avaya Breeze® platform Snap-in Development Guide 120

Inserting the upgrade scripts into your svar

Procedure
1. Add a file section in the SampleSnap/SampleSnap-svar/src/main/assembly/dist.xml

for each upgrade script.

An example containing two upgrade scripts:

<file>
<source>src/main/resources/upgrade_statdb_0-0-0_3-0-0.sql</source>
<outputDirectory>/dbupgrade</outputDirectory>
<filtered>true/filtered>

</file>
<file>

<source>src/main/resources/upgrade_statdb_3-0-0_3-1-0.sql</source>
<outputDirectory>/dbupgrade</outputDirectory>
<filtered>true</filtered>

</file>

2. Place the upgrade scripts in the SampleSnap/SampleSnap-svar/src/main/resource

directory.

The maven build automatically includes the scripts in the svar.

DB removal
Once created, the DB is not removed immediately when the snap-in is uninstalled from the
cluster, or even when the last remaining version of the snap-in is uninstalled from the
cluster. The DB and all its data is removed after around one week of no snap-in being
installed on the cluster that is using the DB. This allows for uninstalling of a snap-in for short
period of time without fear of losing its data.

Accessing the Cluster DB
JPA (OpenJPA or Hibernate) can look up the datasource using the jndi name specified in
properties.xml instead of using a JBDC connection.

SSL client authentication is used to ensure that only Avaya Breeze® platform nodes within the
same cluster are able to access the cluster DB.

Avaya Breeze® platform Snap-in Development Guide 121

Chapter 6: Avaya Breeze® platform

connectors

Avaya Breeze® platform comes pre-loaded with three connectors that can be used to send
email and SMS messages and to schedule conferences. Each has an API so your services
can quickly incorporate email, sms and conferencing functionality.

• Scopia Conferencing Connector to setup conferences.

• Email Connector to send Email messages.
• Zang SMS Connector to send SMS messages.

For information about Zang SMS Connector, see the Zang SMS Connector Snap-in

document.

Scopia connector

Introduction
The Scopia Connector enables programmatic access from Avaya Breeze® platform to a
Scopia Conferencing system. The connector, in combination with the Conferencing API,
provides a convenient way for service writers to schedule, list, and cancel conferences
using Java. The connector uses HTTP/S to communicate with the Equinox Management
application through the Scopia XML-based API. Please note that the XML-based Equinox
Management API is an 8.x and higher feature of Scopia systems and only enabled with
certain models/configurations of Scopia systems. Please check with your Scopia
representative for details.

Overview
To use the Scopia Connector, you’ll minimally need to configure a couple of things in
Equinox Management. You optionally can also configure Equinox Management to allow the
use of HTTPS. A summary of how to configure Equinox Management appears in this
section. Please refer to the Scopia documentation that came with your Scopia system for
more detailed configuration information. You will also need to configure the connector in
System Manager, as detailed below.

Service provider (multi-tenant) support
Scopia supports service provider deployments for multiple organizations (tenants). In a
multi-tenant deployment, each Scopia meeting is associated with only one tenant and
visibility across tenant boundaries is restricted.

To use the Scopia connector in a multi-tenant mode, you must:

• Enter a company name in the Organization Name field.

• Use the organization name as part of the user name format.

mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide

Avaya Breeze® platform Snap-in Development Guide 122

For more information, see Scopia connector field descriptions.

Configuration summary
First, you’ll need to create a Meeting Type that will be used when scheduling conferences
through the connector. A Meeting Type defines the audio and video resources that will be
used during a conference. You’ll want to make note of the prefix that gets assigned to this
Meeting Type. This value will be used for later configuration of the connector in System
Manager.

Second, you’ll need to create a user account in Equinox Management. This account is a
standard user account from the point of view of Equinox Management, but it will be the
account used to authenticate API connections from Avaya Breeze® platform. To ensure the
account has adequate authority to perform all of the necessary functions, you will need to
create an account and assign it a profile with at least the following characteristics enabled:

• “Can schedule meetings”

• “Can invite endpoints and reserve resources”

• “Can record meetings”

You’ll also need to select the Meeting Type created previously as an “allowed” meeting type
for this profile.

Finally, if you would like to configure Equinox Management to allow the use of HTTPS by the
SCOPIA Connector, perform the steps described in the section “Configuring the Tomcat Web
Server to Use HTTPS” of the Administrator Guide for SCOPIA Management document.

Configuring the Scopia connector

About this task
Configure attributes for the Scopia Connector using Avaya Aura® System Manager

Procedure
1. From the Elements panel, select Avaya Breeze®.
2. From the Configuration menu, select Attributes.
3. Select the Service Globals tab; then select ScopiaConnector from the Service menu.
4. Fill out the Attributes Configuration page for the SCOPIA Connector according to the

Scopia connector field descriptions.

Scopia connector field descriptions

Field Description

Dial-in Number for
Conference
Access

This is the phone number used to contact the auto-attendant of your
SCOPIA system. A user will typically dial this number and then enter
a conference number to gain access to a conference.

mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide

Avaya Breeze® platform Snap-in Development Guide 123

Field Description

Meeting ID Length The number of digits used for the Meeting ID. It must be greater
than or equal to the Minimum Meeting ID Length configured on the
conference service.

Organization Name Used only in multi-tenant deployments. The organization name
configured on the conference service for scheduling conferences

from Avaya Breeze® platform.

Password for API
Access to
Conference Service

This is the password previously configured in Equinox Management.

Service Prefix for
Scheduling
Conferences

This is the prefix assigned to the Meeting Type that was previously
configured in Equinox Management.

Test mode enabled? When you are first testing your service that uses the Scopia
Connector (typically through the Scheduled Conference API), you
might want to set this to true (check the Override Default checkbox
and change the Effective Value to true). When test mode is
enabled, the Scopia Connector runs through a subset of its typical
behavior and then forms a typical response that is returned to the
requesting service.

URI for API Access to
Conference
Service

This is the URI that provides access to the XML-based API of the
Equinox Management application. You can use either HTTP or
HTTPS. If you use HTTPS, you’ll need to be sure that Equinox
Management has been configured to allow TLS connections. Also,
depending on the configuration of Equinox Management, for HTTP
communication you may need to specify a port number of 8080;
similarly, you may need to specify a port number of 8443 for HTTPS
communication. It is recommended that you use HTTPS
communication to ensure that the password used to authenticate to
Equinox Management is secure on the network.

URI for Conference
Access

This is the URI used by conference attendees to gain access to a
conference using a browser.

User Name for API
Access to
Conference Service

This is the user ID previously configured in Equinox Management. In
multi-tenant deployments, this field must be formatted to include the
Organization Name. For example, for Company A, the correct

format is: <user name>@CompanyA.

Using the SCOPIA Connector from your service
Use the Scheduled Conference (SchedConf) API (which is a part of the larger Avaya
Breeze® platform API suite) to schedule, list, and cancel conferences through the SCOPIA
Connector. The Scheduled Conference API is a fairly flexible API designed to operate with
potentially more than just a SCOPIA system, so some of the method names in the API will
not appear to directly correlate with a specific conferencing connector. The API primarily
consists of a SchedConf object that you obtain from a factory and populate with the various
information to schedule a conference (via the schedule() method). Other operations allow
you to list and cancel conferences that have not yet started.

The following code snippet illustrates the use of the API to schedule a conference:

final SchedConf conf = SchedConfFactory.createConf();

Avaya Breeze® platform Snap-in Development Guide 124

// Set our subject and a duration of 4 hours. conf.setSubject("Meeting for Urgent Customer
Request").setDuration(0, 4, 0); conf.setParticipantPin(-1).setModeratorPin(-1); // Generate pins for
me

try
{

conf.schedule();
}
catch (SchedConfException e)
{

System.out.println("Error while scheduling a conference; " + e);

}

// // The getUrl() method returns the URL that participants use

// to join a conference from a browser.

//

System.out.println("URL=" + conf.getUrl());

This code snippet results in the scheduling of a conference that will start immediately. The
API also allows the start time to be explicitly set to a future date and time.

Note that for the immediate scheduling of a conference to run reliably, the Avaya Breeze®
platform host and the Equinox Management host must be tightly synchronized. This
synchronization can be achieved by the use of a time server. If the servers are not
synchronized, one of two things can happen:

• If the Avaya Breeze® platform host has a time later than the time on the Equinox
Management host, the start time of the conference will be delayed.

• If the Avaya Breeze® platform host has a time earlier than the time on the Equinox
Management host, the conference may fail to be scheduled, depending on the
version of Equinox Management that is being run. Some versions of Equinox
Management will reject an attempt to schedule a conference that has a start time in
the past.

To ensure the successful scheduling of a conference in the absence of tight
synchronization, it is suggested that a service schedule “immediate conferences” 1 or 2
minutes in the future to avoid the possibility of a schedule request being rejected by Equinox
Management.

Email connector

Introduction
The Email SMTP Connector is a convenience service provided by Avaya Breeze® platform
that gives a service writer an easy way to send an email to 1 or more recipients. The service
writer interacts with the Email SMTP Connector using the Email API that is part of the larger
Avaya Breeze® platform API suite.

mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide

Avaya Breeze® platform Snap-in Development Guide 125

As its name suggests, the Email SMTP Connector communicates using only SMTP (the
Simple Mail Transfer Protocol) and SMTPS, so this connector can be used only to send
email. You do not need to buy a license for Email Connector to work. However, to connect
to any licensed email server you must add a trust certificate in the WebSphere truststore.
Email Connector version 3.2 and later supports sending emails in plain text, HTML, XML,
RTF, and VCF formats. However, Email Connecter does not support sending emails with
attachments.

Overview
A “connector” is a Avaya Breeze® platform service that provides connectivity to some
application that is external to Avaya Breeze® platform. The Email SMTP Connector
communicates with an email server (or more appropriately, a Mail Transfer Agent, or
MTA) using SMTP over the well-known SMTP port (port 25).

A service can send a request to the Email SMTP Connector using the Avaya Breeze®
platform Email API. The Email Connector queues requests for subsequent delivery (i.e.,
places the request in its email outbox). The Email Connector will generally send 2
responses to a request: the first response is an acknowledgement that the request was
received and queued (placed in the outbox), while the second response indicates the
result of the SMTP exchange with the email server.

The Email SMTP Connector requires a small amount of configuration to be operational.

Description
The Email SMTP Connector services its queue (outbox) about every 30 seconds, in what is
called a “drain run”. This queuing approach allows the connector to recover from transient
email server outages, and also provides a way to throttle outgoing traffic. This traffic
throttling allows you to smooth bursts of activity, so that email processing does not compete
for resources (e.g., cpu) with other applications that might be higher priority.

At the start of each drain run, the connector checks to see if any requests exist in its outbox.
If so, the connector creates a connection pool, if not already created. If the outbox is empty,
the connector clears its connection pool. Changes in host configuration will be picked up
only once the connection pool has been cleared (i.e., when the outbox is empty). The
connections in the connection pool will be maintained as long as the outbox is not empty
(i.e., as long as the connector has work to do). The use of a connection pool allows the
connector to increase throughput by reusing connections and minimizing the amount of time
spent establishing connections.

Configuring the Email connector

About this task
Configure attributes for the Email SMTP Connector using Avaya Aura® System

Manager.

Procedure
1. From the Elements panel, select Avaya Breeze® .
2. From the Configuration menu, select Attributes.

Avaya Breeze® platform Snap-in Development Guide 126

3. Select the Service Globals tab, then select EmailConnector from the Service
menu.

4. Fill out the Attributes Configuration page for the Email SMTP Connector according to

the Email connector field descriptions.

Email connector field descriptions

Field Description

SMTP Email Host #1
Address

Enter the fully qualified domain name or IP address of a mail
transfer agent to which the Email SMTP connector will connect
and send email requests. The email connector distributes load
between the 2 email hosts. Only 1 email host need be configured.

Concurrent Connections to
Host #1

When the Email SMTP connector has work queued up, it will
attempt to open this number of concurrent connections to the mail
transfer agent.

Host #1 User (optional) This feature is not currently available.

Host #1 Password
(optional)

This feature is not currently available.

SMTP Email Host #2
Address

Enter the fully qualified domain name or IP address of a mail
transfer agent to which the Email SMTP connector will connect
and send email requests. The email connector distributes load
between the 2 email hosts. Only 1 email host need be configured.

Concurrent Connections to
Host #2

When the Email SMTP connector has work queued up, it will
attempt to open this number of concurrent connections to the mail
transfer agent.

Host #2 User (optional) This feature is not currently available.

Host #2 Password
(optional)

This feature is not currently available.

Default Sender’s Email
Address

Enter an email address that you would like to appear as the
email’s sender (the sender is the “From” address for an email, but
not the “Reply-To” address). If you set this value, all emails sent
from the Email SMTP connector will appear to be from this email
address, unless overridden in the Email API.

Can service override
default
sender?

If this value is true, then a service can specify a different email
sender address (i.e., the email’s “From” address) when sending a
request using the Email API. If this value is false, then the Default
Sender’s Email Address will always appear to be the sender of the
email.

Maximum Number of
Emails to
Send per Run

This is the maximum number of emails that will be sent on a
connection to an email host during the connector’s drain run. As
an example, if you configure SMTP Email Host #1 Address and 5
Concurrent Connections to Host #1, no Host #2 User, and
Maximum Number of Emails to Send per Run is set to 2, then a
maximum of 10 emails (5 concurrent connections * 2 emails to
send per run) will be sent during a drain run.

Maximum Age of an Email
Request
in Outbox

This is the maximum amount of time a request will sit in the
connector’s outbox (queue). This condition could be encountered if
the connector is unable to connect to an email host, or if the
number of emails sent during a drain run is not sufficiently high to
empty the outbox in a timely manner.

Avaya Breeze® platform Snap-in Development Guide 127

Field Description

Maximum Memory Usage
for the
Outbox

The connector’s outbox (queue) is maintained in memory. If you
are sending large bursts of emails, you may need to increase this
value (maximum is 100MB). If the connector receives a request
when the outbox is at its maximum size, an error response will be
returned indicating that the outbox is at its size limit.

Test mode enabled? When you are first testing your service that uses the Email SMTP
Connector, you might want to set this to true (check the Override
Default checkbox and change the Effective Value to true). When
test mode is enabled, the Email SMTP Connector runs through its
normal request parsing and validating, and then forms a normal
response (but with a status code indicating the connector is in test
mode) that is returned to the requesting service.

Using the Email SMTP connector from your service
Use the Email API (which is a part of the larger Avaya Breeze® platform API suite) to
request that an email be sent to 1 or more recipients, where a recipient could be in the
email’s To, Cc, or Bcc list. The Email API is a general API designed to operate with
potentially many flavors of Email connector. The API consists of:

• A request object (EmailRequest) that you obtain from a factory and populate with the
needed information (e.g., list of recipients, subject, email body). The “send” method
on the request sends the request to the Email SMTP Connector. Note that the “send”
method is asynchronous, so you need not worry about writing code to spin off a
thread to handle a possibly long-running operation.

• A listener object that you implement (to the EmailListener interface) if you are
interested in viewing the response from the Email SMTP Connector.

• A response object (EmailResponse) that holds the response from the Email SMTP
Connector, provided in the listener.

Following is a snippet from a simple test service. This test service is an HTTP servlet that
uses URL query parameters to pass recipients (the to, cc, and bcc parameters), the sender
(the from parameter), an email subject (the subject parameter), and an email body (the
body parameter). This test servlet also takes an “n” parameter as a count for the number of
emails to send, as a way to exercise behavior of the email connector according to various
attribute settings.

protected void sendRequest(final HttpServletRequest request, final HttpServletResponse response)
throws IOException

{
int count = 1;
final String numEmails = request.getParameter("n");
if (numEmails != null)
{

try
{

count = Integer.valueOf(numEmails).intValue();
}
catch (Exception e)

Avaya Breeze® platform Snap-in Development Guide 128

}
count = 1;

}
}

final PrintWriter w = response.getWriter();
response.setContentType("text/plain");
int status = HttpServletResponse.SC_OK;
for (int i = 0; i < count; i++)
{

final EmailRequest email = formRequest(request, i);
Integer id = EmailTesterRequestCorrelator.INSTANCE.getId();
final EmailListener listener = new EmailListener(id, i);
email.setListener(listener);
EmailTesterRequestCorrelator.INSTANCE.add(id, listener);
try
{

email.send();
w.println("request sent to email connector, id = " + id);

}
catch (final Exception e)
}

status = HttpServletResponse.SC_INTERNAL_SERVER_ERROR;
w.println("encountered an error: " + e.toString());

}
}
response.setStatus(status);

}

private EmailRequest formRequest(final HttpServletRequest request, int n)
{

final EmailRequest email = EmailFactory.createEmailRequest();
final String[] to = request.getParameterValues("to");
if (to != null)
{

email.getTo().addAll(Arrays.asList(to));
}
final String[] cc = request.getParameterValues("cc");
if (cc != null)
{

email.getCc().addAll(Arrays.asList(cc));
}
final String[] bcc = request.getParameterValues("bcc");
if (bcc != null)
{

email.setFrom(from);
email.setReplyTo(from);

}

Avaya Breeze® platform Snap-in Development Guide 129

final String subject = request.getParameter("subject");
if (subject != null)
{

email.setSubject(subject + "[" + n + "]");
}
final String body = request.getParameter("body");
if (body != null)
{

email.setTextBody(body);
}

return
email; }

The bulk of the code in this snippet is HttpServlet code for getting the URL query parameters.
The key points are:

• Get an EmailRequest using the factory.final EmailRequest email =
EmailFactory.createEmailRequest();

• Set the various attributes of an email, such as: email.setFrom(from),
email.setReplyTo(from);, email.setTextBody(body);

• Create a listener and set that listener in the EmailRequest. final EmailListener listener =
new EmailListener(id);, email.setListener(listener);

• Send the request to the connector. email.send();

Note that this sample application has a singleton (EmailTesterRequestCorrelator), which
tracks requests so that a subsequent query to the application can provide the status of a
request.

The listener provides the way to read the response from the email connector. This is simply a
class that implements the EmailListener interface and implements the responseReceived
method:

package com.avaya.zephyr.services.test.emailtester;

import com.avaya.collaboration.email.EmailResponse;
import com.avaya.common.logging.client.Logger;
import com.google.common.base.Joiner;

public final class EmailListener implements com.avaya.collaboration.email.EmailListener
{

private final Integer id;
private int status;
private String detail;
private String validSent;
private String validUnsent;
private String invalid;
private Logger logger = Logger.getLogger(EmailListener.class);

public EmailListener(Integer id)
{

this.id = id;

Avaya Breeze® platform Snap-in Development Guide 130

this.status = 0;
this.detail = null;
this.validSent = null;
this.validUnsent = null;
this.invalid = null;

}

@Override
public void responseReceived(EmailResponse response)
{

status = response.getStatus();
detail = response.getDetail();
validSent = Joiner.on(",").join(response.getValidSentAddresses());
validUnsent = Joiner.on(",").join(response.getValidUnsentAddresses());
invalid = Joiner.on(",").join(response.getInvalidAddresses());
logger.fine("ZZZZ responseReceived: " + toString());

}

@Override
public String toString()
{

return "id=" + id + ", status=" + status + ", detail=" + detail + ", validSent=[" + validSent + "],
validUnsent=[" + validUnsent + "], invalid=[" + invalid + "]";

}
}

The response includes a status (to indicate success, failures, etc.), a detail (a string that
provides more detail about a failure), and 3 lists indicating the general status of each of the
recipients. The “ValidSent” list holds those recipients which the email host accepted as valid
(depending on the email host configuration, this might mean, for example, that the email host
relayed the email on to another email host). The “ValidUnsent” list holds those recipients which
the email host identified as valid, but the email host did not accept the request. The “invalid”
recipients list holds those recipients which the email host identified as invalid and rejected.
When the email connector returns a status of “partial success”, these 3 lists can help identify
those recipients that likely received the email, and those recipients which did not receive an
email. Depending on the behavior and/or configuration of the email host, a success indication
could actually result in failure or partial success. For example, an email host might accept all
recipient addresses and then later send an email reply (i.e., an email sent to the address
specified using EmailRequest.setReplyTo) indicating that an address was not reachable.

Avaya Breeze® platform Snap-in Development Guide 131

Chapter 7: Performance and scalability

considerations

Performance and scalability considerations
The callIntercepted method of CallListenerAbstract is invoked in a synchronous manner. It is
important to consider the impact and minimize or eliminate any synchronous calls in your
listener if your listener could start any long-running operation (such as reading from an
external database). Only a very limited number of call processing threads can run
simultaneously. Under load, the sooner the callIntercepted method returns, the sooner the
next call can be processed. To get the best performance, process your calls
asynchronously. This means you should create a container-managed asynchronous thread
to handle any time consuming work and allow the callIntercepted method to return right
away so the next call can be processed. When your thread obtains its desired info, it can
use its reference to the original call and allow it to proceed.

The following is an example showing how to do just that. When a call comes into this

sample service, it must invoke a REST service to get information about the call. It uses

an asynchronous thread to do the REST look up which allows the callIntercepted

method to return right away.

Example

Here is the CallListener:

@TheCallListener
public class MyCallListener extends CallListenerAbstract
{

private AsynchronousInvocator asynchronousInvocator;

// Look up an EJB
public MyCallListener() throws NamingException
{

// Use JNDI to look up the EJB that will do asynchronous operation
asynchronousInvocator = (AsynchronousInvocator) new

InitialContext().lookup("ejblocal:" +
AsynchronousInvocator.class.getName());

}

@Override
public final void callIntercepted(final Call call)
{

call.suspend(); // Always call suspend() before invoking the @Asynchronous method
asynchronousInvocator.processCall(call); // This bean performs the background

task (e.g.,
REST access to a server)

}
}

mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide

Avaya Breeze® platform Snap-in Development Guide 132

Important:

Be sure to invoke the suspend method as shown above (call.suspend()) before
invoking the asynchronous method.

Below is the implementation of the stateless session bean, you can see the method
processCall() which is annotated with @Asynchronous. In this example, it invokes a REST
client method, shouldCallBeAllowed(), which could take some time to complete while it
determines if the call should be allowed or dropped. This could just as easily be a database call
or any other operation that could block.

Example

@Stateless
public class AsynchronousInvocatorImpl implements AsynchronousInvocator
{

private final RestClient restClient;

AsynchronousInvocatorImpl(final RestClient restClient)
{

this.restClient = restClient;
}

@Override
@Asynchronous
public void processCall(final Call call)
{

try
{

if (restClient.shouldCallBeAllowed())
{

call.allow();
}
else
{

call.drop();
}

}
catch (final Exception exception)
{

System.err.println("processCall call=" + call);
System.err.println("processCall exception=", exception);

}
}

}

Avaya Breeze® platform Snap-in Development Guide 133

Use container managed threads

Avaya Breeze runtime is based on JEE and JEE best practices must be followed while writing snap-
ins.
Using threads that are not managed by the JEE container can lead to:

• Thread exhaustion by uncontrollable creation of threads.

• OutOfMemoryError as each thread consumes memory and huge number of threads can get
created.

• Debugging issues with hung threads. No stack traces are shown for hung threads.

The following examples show different ways of using container managed threads in your snap-in.

Example 1:
In a session bean, you can run your code in a container managed thread by annotating a method
with “@Asynchronous” as shown below:

@Stateless
public class RunAsyncMethodsImpl implements RunAsyncMethod
{
 @Override
 @Asynchronous
 public void asyncMethod()
 {
 //Add your code here that needs to be run asynchronously
 // in a different thread.
 }
}

You can invoke this method from a POJO by doing a JNDI lookup of the EJB as shown below.

public final class MainClass
{
 private RunAsyncMethod runAsyncMethod;

 public void invokeAsyncMethod()
 {

runAsyncMethod = (RunAsyncMethod)new InitialContext().lookup("ejblocal:" +
RunAsyncMethod.class.getName());

 runAsynchMethod.asynchMethod();
 }
}

If you are not writing a session bean, use the container’s WorkManager or TimerManager service
as shown below.

Example 2:
Submitting a runnable task to an Executor service:

 public class MyRunnableTask implements Runnable

Avaya Breeze® platform Snap-in Development Guide 134

 {
 @Override
 public final void run()
 {
 //Your code to be executed in a
 //separate thread.
 }
 }

In the main class do a JNDI look up of “wm/default” to get the container’s ExecutorService and
submit the task.

 final MyRunnableTask myRunnableTask = new MyRunnableTask();
 final InitialContext initialContext = new InitialContext();
 final ExecutorService executorService = (ExecutorService) initialContext.lookup("wm/default");
 executorService.submit(myRunnableTask);

Example 3:
Scheduling a thread on a regular interval using TimerManager :

import commonj.timers.Timer;
import commonj.timers.TimerListener;

public class MyTimerTask implements TimerListener
{
 @Override
 public void timerExpired(Timer arg0)
 {
 //Your code to be executed every regular
 // interval in a separate thread.
 }
}

In the main class do a JNDI look up of “tm/default” to get the container’s TimerManager and
schedule the task.

 final MyTimerTask myTimerTask = new MyTimerTask();
 final InitialContext initialContext = new InitialContext();

final TimerManager timerManager = (TimerManager)
initialContext.lookup("tm/default");
final Timer timer = timerManager.scheduleAtFixedRate(myTimerTask, 60000, 60000);

Scaling
Avaya Breeze® platform is designed to run in a clustered configuration. There may be up to
5 Avaya Breeze® platform instances running the same set of services. So, a service should
not rely on resources on a specific Avaya Breeze® platform instance such as configuration

Avaya Breeze® platform Snap-in Development Guide 135

files or databases. Instead, these resources should be placed on a remote system that all of
the Avaya Breeze® platform instances have access to.

Additional resources
For further information about the Avaya Breeze® platform APIs, check the Avaya Breeze®
platform API Javadoc which can be accessed by clicking on a class name in eclipse,
pressing F2 and clicking Open Attached Javadoc in Browser. If you get stuck, check
Avaya Breeze® platform FAQ and Troubleshooting for Snap-in Developers and the Avaya
Breeze® platform forum on Avaya DevConnect.

mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide

Avaya Breeze® platform Snap-in Development Guide 136

Chapter 8: Authorization

Overview
The Authorization Service snap-in is pre-loaded with Avaya Breeze™ Release 3.9 Element
Manager. The snap-in provides the following capabilities:

• Authenticate and grant tokens to end users by supporting the OAuth 2.0
Authorization Code Grant flow.

• Authenticate and grant tokens to Avaya Breeze® platform or external authorization
clients by supporting the OAuth 2.0 Client Credentials Grant flow.

• Authenticate and grant tokens to end users by supporting the OAuth 2.0 Resource
Owner Password Credentials Grant flow.

The following is a brief description of what the three snap-ins, Authorization Service and

two test snap-ins, are used for:

• Authorization Service - Is the snap-in that issues the access tokens to the client after
successfully authenticating the client itself or the resource owner and obtaining
authorization.

• TestAuthorizationClient - Is an authorization client, which according to OAuth2.0
terminology, is an application that makes protected resource requests on behalf of
the resource owner and with its authorization.

• TestAuthorizationResource - Is a snap-in or an authorization resource that hosts the
protected resources and is capable of accepting and responding to the protected
resource requests using access tokens.

Integrating snap-in clients with Authorization Service

About this task
Use the following procedure to enable a snap-in built using the Avaya Breeze® platform SDK
to be recognized as an Authorization Client. To understand how the Authorization Clients
discover which Authorization Service node or cluster they need to talk to, see “Discovering
Authorization Service”.

Procedure
1. Modify the properties.xml file of the client snap-in SVAR, TestAuthorizationClient in the

following example, to add the new authorization.client attribute.

<attribute name="com.avaya.authorization.client">
<displayName>Authorization Identifier</displayName>
<helpInfo>This is used to uniquely identify this snap-in as an Authorization
Client</helpInfo>
<validation name="anyString">

<type>STRING</type>
</validation>
<admin_visible>false</admin_visible>

https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6749#section-4.1
https://tools.ietf.org/html/rfc6749#section-4.4/t_blank
https://tools.ietf.org/html/rfc6749#section-4.3
https://tools.ietf.org/html/rfc6749#section-4.3
https://tools.ietf.org/html/rfc6749#section-4.3

Avaya Breeze® platform Snap-in Development Guide 137

<admin_changeable>false</admin_changeable>
<factory>

<value>TestAuthorizationClient</value>

<user_changeable>false</user_changeable>
</factory

</attribute>

Important:

The content that you type within <factory><value> must match the servicename of

the snap-in that you have specified during creation of the snap-in. In our example

the name specified is TestAuthorizationClient.

2. Use the AuthorizationClientHelper API that is part of the SDK in the

com.avaya.collaboration.authorization.client package to get access tokens.

An example usage of the APIs is provided by the SampleAuthorizationClient class

in the com.avaya.collaboration.authorization.sample package. Following is a

snippet:

AccessToken response = null;
try
{

response = AuthorizationClientHelper.getAccessToken();
if (response.getToken() != null)
{

return Response.ok(response, MediaType.APPLICATION_JSON).build();
}

}

The retrieved token is used as a Bearer token in the Authorization header when the

client makes a resource request to the resource server. The following APIs are available

for getting tokens, the details for which are available in Javadocs:

Oauth 2.0 flow Entity being

authenticated

 SDK API used

Authorization Code
Grant

End User AuthorizationClientHelper.getAccessTokenFo

rUser(ServletRequest servletRequest)

Authorization Code
Grant

End User AuthorizationClientHelper.getAuthorization

Endpoint(ServletRequest servletRequest)

Client Credentials Application AuthorizationClientHelper.getAccessToken()
;

Client Credentials Application AuthorizationClientHelper.getAccessToken

(List<String>scopes)

Resource Owner End User AuthorizationClientHelper.getAccessTokenFo
rUser(String userName, String

userPassword)

Resource Owner End User AuthorizationClientHelper.getAccessTokenFo
rUser(String userName, String
userPassword, List<String>scopes)

Avaya Breeze® platform Snap-in Development Guide 138

3. Shut down the helper during snap-in uninstall.

The API calls mentioned in the previous steps use HTTP connections to talk to the

Authorization Service and require an explicit call to shut down when you are

uninstalling the snap-in. Therefore you must call the API to clear up system

resources. Include the following code snippet wherever you are cleaning up snap-

in held resources before an uninstall:

AuthorizationClientHelper.shutDown();

Once the snap-in is built, loaded and installed on System Manager an entry is

created in the Authorization Clients table with the same name you have specified in

the authorization.client attribute. In our example the name is

TestAuthorizationClient. The Authorization Clients table is located in the Avaya

Breeze® > Configuration > Authorization > Clients tab.

User Scopes
After successful authentication, the Authorization Service includes scopes of a user in the
access token that the service generates.

Scopes from SMGR Profile
If the authenticated user’s entry is available in System Manager, the following profile
information is included, if configured:

• CommunicationAddress

• MailboxNumber

• StationExtension

• AgentId

Scopes from Oceana Unified Collaboration Administration (UCA)
If the Authorization Service has been configured to query the UCA service to fetch
the agent-related information that is provisioned in Avaya Control Manager, after
authenticating the user, Authorization Service will make a UCA query to know what
role has been configured for the user and will include this information in the access
token.

Integrating snap-in resources with Authorization Service

About this task
Use the following procedure to enable a snap-in built using the Avaya Breeze® platform SDK
to be recognized as an Authorization Resource.

Procedure
1. Modify the properties.xml file of the resource snap-in SVAR, TestAuthorizationResource

in the following example, to add the new resource_server element.

Avaya Breeze® platform Snap-in Development Guide 139

<smgr>
<resource_server>

<displayName>TestAuthorizationResource</displayName>
<shortName>ar</shortName>
<feature>

<name>write</name>
<value>standard,privileged,none</value>

</feature>
<feature>

<name>read</name>
<value>standard,privileged,none</value>

</feature>
</resource_server>

</smgr>

where,

displayName is the name that will be displayed in the Avaya Breeze® platform Authorization

Resource servers page. This must be the serviceName of the snap-in.

shortName is the short version of the displayName. You must choose a globally unique
shortName to ensure there is no namespace collision. At runtime, Authorization Service
prefixes the shortName specified to each feature while granting an authorization token to a
client. For example, read feature in the example code snippet provided above, will be
denoted as "featureName" : "ar.read" when a grant is being given to a client. This name is
verified by the resource server when a client uses the granted token and requests for a
resource.

feature (with a name and one or more values) tags specify the features advertised by an
authorization resource. The features specified are available to an administrator to map them
to appropriate clients.

2. Handling bearer tokens coming from Authorization Clients.

An Authorization Resource snap-in does not need to talk to the Authorization Service to
validate tokens. Bearer tokens contain authorization data signed by the Authorization
Service. If the signature validates to true, then the token is valid. The SDK provides an API
called AuthorizationResourceHelper, which helps in validating tokens. An example which
uses this API is given in the SampleAuthorizationResource class in the package
com.avaya.collaboration.authorization.sample in Javadocs. Following is a snippet:

String accessToken = bearerToken.substring("Bearer".length()).trim();
try
{

if (AuthorizationResourceHelper.isAccessTokenValid(accessToken))
{

// proceed with logic to serve the request
}
else
{

// respond back to the client saying the token is invalid
}

Avaya Breeze® platform Snap-in Development Guide 140

}

The API mentioned above is fine, if you have APIs that really do not need to perform any
authorization grant checks on the token. However, more frequently, resource servers have
APIs that need to check if the request has sufficient privileges, such as features that had
been assigned to clients by an administrator on System Manager. For this case, the
AuthorizationResourceHelper API provides a way which retrieves authorization information
from the token passed by the client. Following is a snippet:

AuthorizationData response =
AuthorizationResourceHelper.getAuthorizationData(accessToken);
List<AuthorizationScope> clientScopes = response.getClientScopeList();

for (AuthorizationScope aScope : clientScopes)
{
if (aScope.getFeatureName().equals("ar.read") &&
aScope.getFeatureValues().contains("standard"))

{
// API logic to serve the request

}
}

Apart from client scopes, user scopes are also associated if a token granted to an

authenticated user is used to make a resource request. The user's communication profile

information is available in the userScopeList. The same is retrieved using the following API

call:

AuthorizationData response =
AuthorizationResourceHelper.getAuthorizationData(accessToken);
List<AuthorizationScope> userScopes = response.getUserScopeList();
....

The token also contains information on the subject retrieved, which is the user's login handle.
The following helper API call returns the subject:

AuthorizationData response =
AuthorizationResourceHelper.getAuthorizationData(accessToken);
String subject = response.getSubject();

Once the snap-in is installed on System Manager an entry is created in the Breeze

Resources Servers table with the same name you have specified in the

displayNameattribute of the resource_server element. In our example the name is

TestAuthorizationResource. The Breeze Resources Servers table is located in the Avaya

Breeze® > Configuration > Authorization > Resource Servers tab.

Administering grants to an Authorization Client

Before you begin
Install an Authorization Client and an Authorization Resource.

Avaya Breeze® platform Snap-in Development Guide 141

About this task
Use the following procedure to assign grants to an Authorization Client.

Procedure
1. On the System Manager web console, click Elements > Avaya Breeze® .

2. Click the Configuration > Authorization > Clients tab.

3. Select the Authorization Client installed and click Edit Grants.

The Edit Grants page displays grants that have been assigned to the client.

4. To assign a grant to the client, click New on the Edit Grants page.

5. On the Create Grants page, do the following:

a. From the Resource Name drop-down list, select the resource name.

b. From the Resource Cluster drop-down list, select the resource cluster.

c. From the Feature drop-down list, select any of the features the resource server

advertises.

Once you select the feature the system displays values associated with that

feature in a Values table.

d. Select that appropriate values to be associated with the feature from the Values

table.

e. Click Commit.

The Edit Grants page displays the saved grant. This completes the mapping of

an Authorization Resource feature to an Authorization Client.

6. On the Edit Grants page, click Done.

Discovering Authorization Service

About this task
Use the following procedure to understand how the Authorization Clients discover which
Authorization Service node or cluster they need to talk to.

Procedure
1. On the System Manager web console, click Elements > Avaya Breeze® .

2. In the navigation pane, click Cluster Administration.
3. On the Cluster Administration page, click New.
4. On the Cluster Editor page, select the cluster profile of your choice.
5. Specify the Authorization Service node or cluster that the snap-in must integrate with by

entering the IP address or FQDN of the node or cluster where the Authorization Service
is running in the Authorization Service Address field in the Cluster Attributes section.

An Authorization Client snap-in can also override the cluster value by providing a service

attribute in its properties.xml file and updating the attribute under Avaya Breeze® >

Configuration > Attributes as follows:

Avaya Breeze® platform Snap-in Development Guide 142

<attribute name="com.avaya.edp.authorization.service.address">
<displayName>Authorization Service Address</displayName>
<helpInfo>FQDN/IP of the node/cluster where Authorization Service is installed</helpInfo>
<validation name="anyString">

<type>STRING</type>
</validation>
<admin_visible>true</admin_visible
 <admin_changeable>true</admin_changeable>
<factory>

<value></value>
<user_changeable>true</user_changeable>

</factory
</attribute>

Authentication mechanisms
Authorization Service supports two mechanisms for authenticating users before authorizing
them. The below table provides an overview:

OAuth 2.0 Grant Type (Authorization) Authentication Mechanism supported

Authorization Code SAML, LDAP

Resource Owner Password Credentials LDAP

The following sections describe how to integrate each Grant type with the particular
authentication mechanism.

SAML authentication with Authorization Code Grant Flow
Security Assertion Markup Language (SAML) is an XML-based, open-standard data format
for exchanging authentication and authorization data between parties, in particular,
between an identity provider (IdP) and a service provider. For more information, see
https://en.wikipedia.org/wiki/ Security_Assertion_Markup_Language .

The Avaya Breeze® platform Authorization Service acts as an SAML Service Provider when
trying to authenticate end-users against an Identity Provider. Authentication is initiated by
using an SP-initiated SSO exchange. For more information, see http://docs.oasis-
open.org/security/saml/Post2.0/ sstc-saml-tech-overview-2.0.html#5.1.2.SP-
Initiated%20SSO:%20%20Redirect/POST%20Bindings %7Coutline .

In such an exchange, the user attempts to access a resource, for example an
(Authorization) Client snap-in (TaskDashboard). Since she doesn’t yet have a login session
and her identity is maintained by an IdP, she is redirected by the Client snap-in to the
Authorization Service, which in-turn redirects her to a configured IdP. After successful
authentication with the IdP, she is redirected back to Authorization Service with a SAML
assertion. An assertion contains information given by the IdP about the user. For more
information, see https://www.oasis-open.org/committees/download.php/ 11785/sstc-saml-
exec-overview-2.0-draft-06.pdf .

https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html#5.1.2.SP-Initiated%20SSO:%20%20Redirect/POST%20Bindings%7Coutline
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html#5.1.2.SP-Initiated%20SSO:%20%20Redirect/POST%20Bindings%7Coutline
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html#5.1.2.SP-Initiated%20SSO:%20%20Redirect/POST%20Bindings%7Coutline
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html#5.1.2.SP-Initiated%20SSO:%20%20Redirect/POST%20Bindings%7Coutline
http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html#5.1.2.SP-Initiated%20SSO:%20%20Redirect/POST%20Bindings%7Coutline
https://www.oasis-open.org/committees/download.php/11785/sstc-saml-exec-overview-2.0-draft-06.pdf
https://www.oasis-open.org/committees/download.php/11785/sstc-saml-exec-overview-2.0-draft-06.pdf
https://www.oasis-open.org/committees/download.php/11785/sstc-saml-exec-overview-2.0-draft-06.pdf

Avaya Breeze® platform Snap-in Development Guide 143

The Authorization Service then creates a session for the user and redirects her back to the
Client snap-in with an “authorization code”. The Client snap-in then uses the Authorization
Service to exchange this code with an access token. The access token is then used to login
the user. For more information, see https://tools.ietf.org/html/rfc6749#section-1.3.1 .

Using Servlet Filters to enable SAML redirection
To enable an Authorization Client Snap-in to support SAML, the Breeze SDK provides
sample filters which adopters can use to redirect the user to the Authorization Service.
Modify the snap-in WAR web.xml to include the filters as shown:

<filter>
<filter-name>AuthorizationCodeFilter</filter-name>
<filter-class>

com.avaya.zephyr.services.sample_services.Authorization.AuthorizationCodeFilter
</filter-class>

</filter>
<filter-mapping>

<filter-name>AuthorizationCodeFilter</filter-name> <url-pattern>/*
</url-pattern>

</filter-mapping>

<filter>

<filter-name>AccessTokenCookieFilter</filter-name>
<filter-class>

com.avaya.zephyr.services.sample_services.Authorization.AccessTokenCookieFilter

</filter-class>
</filter>
<filter-mapping>

<filter-name>AccessTokenCookieFilter</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

AuthorizationCodeFilter
This filter checks if the request contains an authorization code, if not, it redirects the
browser to Authorization Service for getting one.

For example, when the user clicks on the home page:

https://<FQDN>/services/TaskDashboard/

The filter will redirect the user to authenticate with the Authorization Service. When the user
authenticates successfully, another redirection gives the control back to the
AuthorizationCodeFilter, but now with the request containing an authorization code.

https://tools.ietf.org/html/rfc6749#section-1.3.1
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide

Avaya Breeze® platform Snap-in Development Guide 144

AccessTokenCookieFilter
This filter retrieves the authorization code present in the request and uses it to get an
access token from the Authorization Service. Once the access token is available, it sets the
token as a session cookie and redirects the user back to where she had begun:

https://<FQDN>/services/TaskDashboard/

AccessTokenCookieFilter Service Attributes
The filter uses two service attributes to handle the session cookie creation and user
redirection.

SessionCookieName: To provide a name to the session cookie, use the following service
attribute in the snap-in properties.xml file:

<attribute name="com.avaya.authorization.sessionCookieName">
<displayName>Session Cookie Name</displayName>
<helpInfo>AccessTokenCookieFilter uses this attribute to set the user session's cookie
name.</helpInfo>
<validation name="anyString">

<type>STRING</type>
</validation>
<admin_visible>true</admin_visible>
<admin_changeable>true</admin_changeable>
<factory>

<value>dashboard_session</value>
<user_changeable>true</user_changeable>

</factory>
</attribute>

In the example code above, the filter will create the session cookie with the name
“dashboard_session”

ClientRedirectionUri: This attribute is used to redirect the request to another path (for
ex, the home page) after setting the cookie session. Modify the properties.xml file to
include this attribute:

<attribute name="com.avaya.authorization.clientRedirectionPath">
<displayName>Client Redirection Path</displayName>
<helpInfo>AccessTokenCookieFilter uses this path attribute to redirect the browser
to.</helpInfo>
<validation name="anyString">

<type>STRING</type>
</validation>
<admin_visible>true</admin_visible>
<admin_changeable>true</admin_changeable>
<factory>

<value>/services/TaskDashboard/</value>
<user_changeable>true</user_changeable>

</factory>
</attribute>

In the example code above, the attribute value has been set to “/services/TaskDashboard/”.
This means that the filter, after setting the cookie, redirects the user to:

Avaya Breeze® platform Snap-in Development Guide 145

https://<FQDN>/services/TaskDashboard/ with the session cookie with name
“dashboard_session”.

Session Cookie usage to maintain an SAML authentication logged-
in session

The cookie, which the filter sets during redirection, has the format:

{
“currentUser”:
{

“authdata”:”<access_token>,
“username”:”testuser”,
“expiry”:”<unix_time>”

}
}

The UI to be rendered can check for the presence of this cookie when the user tries to
access the page. If the cookie is present, the access token can be retrieved and set as a
global Authorization header so that requests to resources are authorized:

$rootScope.globals = $cookies.getObject('dashboard_session') || {};

if($rootScope.globals.currentUser) {
$http.defaults.headers.common['Authorization'] = 'Bearer ' +
$rootScope.globals.currentUser.authdata;

}

Refer to the Authorization Sample snap-ins in the Breeze SDK for a detailed walkthrough of
the flow and sample code.

LDAP authentication with Authorization Code Grant flow
Similar to SAML, the Authorization Service supports LDAP authentication for

authenticating and authorizing users with the Authorization Code Grant flow.

Consider again the example of a user trying to access a resource using the (Authorization)
Client snap-in (TaskDashboard). Since she doesn’t yet have a login session and her
identity is validated against an LDAP server, she is redirected by the Client snap-in to the
Authorization Service, which presents her with a login screen.

After successful authentication, the Authorization Service then creates a session for the user
and redirects her back to the Client snap-in with an authorization code. The Client snap-in
then uses the Authorization Service to exchange this code with an access token. The
access token is then used to login the user.

Using Servlet Filters to enable LDAP redirection
Please refer to the SAML section above on the usage of filters to enable the Client snap-in
to support this flow. The same filter usage applies for LDAP authentication.

mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide

Avaya Breeze® platform Snap-in Development Guide 146

Session Cookie usage to maintain an LDAP authentication logged-in session
Please refer to the SAML section above on how a session cookie set by the filters can be
used to maintain a logged-in user session. The cookie creation/usage remains the same
for LDAP authentication.

Choosing SAML or LDAP in a deployment

To choose an Authentication Mechanism, go to: System Manager> Avaya Breeze® >

Configuration > Authorization > Authentication Mechanism

SAML authentication
SAML deployments require agreements between system entities regarding identifiers,
binding support and endpoints, certificates and keys, and so forth. A metadata
specification is useful for describing this information in a standardized way.

The system entities involved here are the Avaya Breeze® platform Authorization Service
(acts as a Service Provider (SP)) and a far-end IdP. The metadata of both the entities are
XML files which need to be exchanged between the them:

• The SP Metadata is used for configuring the SP at the IdP.

• The IdP Metadata is used for configuring the IdP at the SP.

Getting the SP (Authorization Service) Metadata
The Authorization Service, after installing in an Avaya Breeze® platform cluster, generates
its metadata on a per-node basis.

The metadata file is available for download by accessing the following path on each node:

https://<SecurityModuleIP>:9443/services/AuthorizationService/spmetadata

Configuring the SP (Authorization Service) at the IdP
The downloaded metadata file needs to be used while configuring the Authorization Service
as a Service Provider at a far-end IdP. Please refer to the Authorization Section in
Administering Avaya Breeze® platform for an example on how to configure the Authorization
Service SP as a Relying Party on the Active Directory Federation Services.

Configuring the IDP on SMGR
The Authorization Service acting as a Service Provider, picks the IdP details from the SAML
Authentication Mechanism configuration.

To configure an IdP, choose Authentication Mechanism > SAML. For details on the
configuration steps, refer to Administering Avaya Breeze® platform .

Enabling SAML Profile for Authorization
When the Authorization Service is installed, the SAML component is not enabled/started by
default. After configuring the IDP metadata, the profile needs to be enabled. This can be
done by changing the following service attribute:

Go to Avaya Breeze® > Configuration > Attributes > Service Clusters

Choose the Cluster where Authorization Service has been installed and choose Service as
Authorization Service. On the attribute named “SAML Profile”, change the value to choose
“Deploy” and commit the changes.

Avaya Breeze® platform Snap-in Development Guide 147

LDAP authentication
LDAP Authentication is enabled by default. For information on how to configure LDAP and
synchronize the server with System Manager, see:

• Administering Avaya Breeze® platform

• Avaya Aura® System Manager 7.0 LDAP Directory Synchronization Whitepaper

LDAP authentication with Resource Owner Password Credentials
Grant Type

Use of Resource Owner Password Credentials flow is discouraged unless the
Authorization Code Grant flow is not possible, e.g. due to lack of a web user interface on
the Client.

Consider again the example of a user trying to access a resource using the (Authorization)
Client snap-in (TaskDashboard). Since she doesn’t yet have a login session and her
identity is validated against an LDAP server, the TaskDashboard snap-in provides her with
a Login page to enter her credentials. The Avaya Breeze® platform Authorization SDK
provides the following APIs to authenticate the credentials entered on the form:

Function SDK API

Authenticate User AuthorizationClientHelper.getAccessToke
nForUser(String userName, String

userPassword)

Authenticate User with Scopes AuthorizationClientHelper.getAccessToke
nForUser(String userName, String

userPassword, List<String>scopes)

The difference between the two APIs is that the second one asks for an access token with
Authorization capabilities including a specific list of scopes. The first API will get an access
token for all the scopes a user/client has been assigned with.

System Manager datasource synchronization caveats for LDAP
configuration

To know which LDAP server to talk to Authorization Service uses the datasources

configured in System Manager. You can configure two types of datasources in System

Manager:

• Active Directory

• Non-Active Directory (includes OpenLDAP)

Authorization Service requires the username parameter provided in the APIs mentioned

in the “LDAP integration for authenticating users” section to be in the user@domain

format. This is because Authorization uses the user@domain format to fetch the relevant

communication profile data of the respective user and include it in the token being

generated for the user.

Avaya Breeze® platform Snap-in Development Guide 148

Synchronization is not necessary if a single Active Directory datasource is
provisioned

Active directory understands usernames in the user@domain format and therefore, it is not
necessary to synchronize Active Directory users in System Manager. Authorization Service
directly uses the username parameter that is sent to the API to authenticate the user
against the configured LDAP server. However you must configure the LDAP server under
System Manager Directory Synchronization.

Synchronization is mandatory if multiple datasources are provisioned
If multiple datasources are provisioned in System Manager, then synchronization of users
from all the datasources is mandatory. In this case, Authorization Service always tries to
fetch the Distinguished Name (DN) of the provided username from System Manager and
use the DN to authenticate the user.

Synchronization is mandatory if a Non-Active Directory (OpenLDAP) datasource is
provisioned

OpenLDAP requires LDAP bind requests to contain the Fully Qualified Distinguished Name
(FQDN), for example: uid=testuser,ou=people,dc=avaya,dc=com, when authenticating
users.

However, you cannot expect users to type in the DN when they are logging in, which means
that the userName parameter in the APIs mentioned in the “LDAP integration for
authenticating users” section cannot be passed with a DN. Therefore, Authorization Service
requires OpenLDAP server deployments to enforce a mandatory synchronization of users
with System Manager when such a datasource is being provisioned. When this is done, the
user can provide the userName in the user@domain format, but Authorization Service
retrieves the DN of the synchronized user mapped to the username available from System
Manager and uses the DN while authenticating the user against OpenLDAP.

Avaya Breeze® platform Snap-in Development Guide 149

Chapter 9: Service monitors

Health Monitoring Service
The Health Monitoring Service monitors the status and health of various platform
components. Several of the monitored components are only for use by Avaya snap-ins. The
Cluster Database is the component that is monitored by Health Monitoring Service and is
available for general use.

If your snap-ins uses the Cluster Database, you can declare it as a dependency in
properties.xml. You can also declare actions to be taken when the Cluster Database
becomes unavailable.

Snap-in dependencies and actions
You snap-in can declare platform dependencies and actions in properties.xml. A
sample declaration is provided here:

<dependencies>
<dependency type="platform">

<name>CLUSTER_DB</name>
<actions>

<install-time-action>ADMIN_WARNING</install-time-action>
<run-time-action>STOP</run-time-action>
<startup-time-action>DONT_START</startup-time-action>

</actions>
</dependency>

</dependencies>

Actions

Action Type Description

Install time
actions

Admin
Warning

Element Manager displays a warning that a dependent platform
component is unavailable.

Administrators can choose to continue or cancel the installation.

Run time
actions

Stop Health Monitoring Service stops the snap-in.

The system will start the snap-in when the dependent platform
components are available. Administrators can manually start snap-ins

using the Start button on the Service Status page of an Avaya Breeze®
platform instance.

Startup
time
actions

Don’t
Start

The snap-in cannot be started if the dependent components are not
available.

Measuring snap-in resource usage

Before you begin
Make sure your snap-in is not installed in the cluster.

Avaya Breeze® platform Snap-in Development Guide 150

Procedure
1. Reboot all nodes in the cluster.

2. Reset the peak usage for the cluster in which you plan to test.

3. Get a resource usage baseline:

• If your snap-in is a call intercept type, then run traffic or load at the level you desire to

measure against the cluster without your snap-in.

• If not, then let the system idle with no load.

• There are many platform operations that occur in the background, so you should run

this for at least two hours.

4. Record the peak value of all resources on all nodes in the cluster.

5. Install your snap-in.

6. Reset the peak usage again.

7. Run traffic or load at the level you desire to measure against the cluster with your snap-

in.

• Again, do this for at least two hours.

• If your snap-in runs some of its own operations in the background, then run for as long

as it takes to execute all of these operations.

8. Record the peak value of all resources on all nodes in the cluster.

Result
The difference between the two peaks is the incremental resource usage for your snap-in.

mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide
mailto:infodev@avaya.com?subject=Avaya%20Breezeâ—¢%20Snap-in%20Development%20Guide

