
Avaya In-App Messaging android SDK - Development Guide

1

Avaya In-App Messaging Android SDK -
Development Guide

SDK Release 3.1.0
November 2022

Avaya In-App Messaging android SDK - Development Guide

2

Table of Contents

Introduction .. 5

What changed between SDK 1.0.3 and 3.1.0 .. 5

Guidance on how to update settings during SDK upgrade ... 7

Color customization in v.3.1 ... 8

Customisation of the header of the chat window .. 10

note and known limitations: .. 11

OS support notes: ... 11

Getting Started ... 15

API reference .. 15

QuickStart to your first conversation... 16

Adding to your app ... 18

Initialize in your app ... 18

Initialize from an Activity class ... 19

Adding an Application class to your app .. 21

Displaying the User Interface ... 22

Location messages ... 22

Region configuration .. 23

Log in with userId and JWT .. 24

Authentication delegate .. 24

Configuring push notifications ... 25

Localization .. 27

Adding more languages ... 27

Customization .. 27

Strings customization... 27

Menu items ... 28

Notification Action Intent Override ... 30

Notification Channel Settings Override ... 30

Starting Text ... 31

Extending ConversationActivity .. 31

Permissions ... 32

Appendix A – Users Authentication ... 33

Appendix B - Managing Users .. 37

Appendix C - Android FAQ ... 39

Appendix D – certificate configuration for file transfer feature .. 40

Avaya In-App Messaging android SDK - Development Guide

3

Avaya In-App Messaging android SDK - Development Guide

4

The Avaya In-App Messaging android SDK is a highly customizable chat
embeddable that can be added to any android app. It supports the Avaya IX
Digital Connection API capabilities, push notifications and is fully localized.

• Introduction

• Capabilities

• Getting Started

o SDK bundle

o API reference

• QuickStart with Demo App

• Adding to your App

• Region Configuration

• Authenticating users

o Authentication Delegate

• Configuring push notifications

• Localization

• Customization

• Permissions

• Appendices

o Appendix A – Users

Authentication

o Appendix B - Managing Users

o Appendix C - Android FAQ

Current version: v3.1.0

Android SDK

Avaya In-App Messaging android SDK - Development Guide

5

Introduction
This document is a development guide and contains instructions and information for

developers seeking to build In-app messaging applications on android platform which is

supported by Avaya IX Digital Connection.

What is the Avaya IX Digital Connection?

The Avaya IX Digital Connection is a software platform that enables businesses to

communicate with their customers across several popular messaging app.

Developers can use the Avaya IX Digital Connection along with the SDK to add messaging

and conversational capabilities to their software. Avaya IX Digital Connection’s rich APIs

allow for conversation management, rich messaging, user metadata collection, account

management and more.

Businesses can also use the Avaya IX Digital Connection to connect to their customers (with

agents, bots) over messaging using Avaya contact center solution.

Who is this for?

• Product teams who want to add in-app messaging capabilities to their own software.

• Developers who want the richest in-app messaging available with a powerful, simple,

and customizable SDK.

• Businesses who want to add in-app messaging to their app, and allow the

conversation to live beyond the app and in any messaging channel.

• Bot builders who want to build a mobile app for their bot to live in using a powerful

SDK.

• Customer success teams who want to proactively engage mobile users and build

engaging relationships.

• Sales teams who want to do commerce and upsell from their mobile app.

What you’ll need

• Technical expertise in Android development to add the SDK to your app.

What changed between SDK 1.0.3 and 3.1.0

• Fixed an issue related to Proguard rules

• Fixed an issue related to DexGuard

• Fixed a bug where the SDK would crash showing a notification in rare cases

IMPORTANT NOTE: This Development guide is applicable to android sdk
release v3.1.0

Avaya In-App Messaging android SDK - Development Guide

6

• enhances the support for Multi-Conversations and introduces a new conversation list

UI. We have also included updates to our conversation screen UI to show the

conversation icon, conversation name and description. You can also configure your

app to allow users to create multiple conversations from our conversation list screen.

The release also includes support for Android X and we've fixed a bug relating to JWT

expiry which invokes an auth delegate required to refresh the JWT and reattempt

connection.

• Hide/Disable keyboard.

• Android 11 (API 30) support.

• Button text wrapping.

• “Messages” is displayed for conversations that do not have a name assigned.

• Added the ability to send “avatarUrl” when creating a conversation.

• Added the ability to set the notification color.

• Better Message Delivery tracking - enabling integrators to know when a message

arrives on the device.

• We now return the participant's userExternalId when fetching the conversation

information.

• Fixed a bug when opening a conversation from a list with no network connection.

• “Updated all dependencies to Android X.

• Storage permission changes for Android 11

• Improve performance when opening a conversation

• Allow copying/pasting of bot messages inside a conversation

• Fixed a crash when initializing the SDK without an integrationId.

• Fixed an issue with camera permissions.

• Android 12 support

• Upgrading firebase to the latest version

• Fixed a bug related to web hooks with wrong creation reason

• Fixed an issue with disappearing agent messages.

• Fixed an issue with push notifications not being received when the app is closed.

• Fixed an issue with metadata being ignored on createConversation for anonymous

users.

• Add new ProGuard rules to core and UI modules

• Add new ProGuard rules to core for gson

• Added fix for null pointer exception

• Fixed an issue where new conversation could be pressed multiple times

• Fixed Javadocs gradle plugin not generating the docs.

• Fixed issue where removing the start of conversation and welcome string would result

in a whitespace on conversation screen.

• Fixed issue with Java util threading concurrency exception.

• Bumped dependencies to resolve security issues.

• Fixed index out of bounds exception in conversations list.

• Fixed NPE for google maps API key.

Avaya In-App Messaging android SDK - Development Guide

7

• support for Android 13

• Updated targetSdkVersion and compileSdkVersion to 33.

• Added support for POST_NOTIFICATIONS permission.

• Updated minSdkVersion to 21.

Guidance on how to update settings during SDK upgrade
• You need to update the gradle to 7.3.3 or later.

• Remove the old artifacts folders and add new one from “distribution” folder. For

Example: “core-3.1.0” and “ui-3.1.0”

• Register new folders in the project “settings.gradle” file, like this – “include ':core-

3.1.0', ':ui-3.1.0'”

• Update or create the “build.gradle” file in the new artifacts folders. It should looks like

– “configurations.maybeCreate("default")

artifacts.add("default", file('core-3.1.0.aar'))”

• Update the dependencies versions in the application “build.gradle” file. You should

use the following:

android {

 compileSdkVersion 33

 defaultConfig {

 minSdkVersion 21

 targetSdkVersion 33

 }

dependencies {

 implementation 'androidx.appcompat:appcompat:1.4.2'

 implementation 'androidx.annotation:annotation:1.4.0'

 implementation project(':core-3.1.0')

 implementation 'com.google.firebase:firebase-messaging:23.0.5'

 implementation 'com.google.code.gson:gson:2.9.0'

 implementation 'com.squareup.okhttp3:okhttp:4.10.0'

 implementation 'com.squareup.retrofit2:retrofit:2.6.2'

 implementation 'com.squareup.retrofit2:converter-gson:2.6.2'

 implementation 'com.google.dagger:dagger:2.30.1'

 implementation 'androidx.annotation:annotation:1.4.0'

 annotationProcessor 'com.google.dagger:dagger-compiler:2.30.1'

 implementation project(':ui-3.1.0')

Avaya In-App Messaging android SDK - Development Guide

8

 implementation 'com.github.bumptech.glide:glide:4.11.0'

 implementation 'androidx.legacy:legacy-support-v4:1.0.0'

 implementation 'androidx.appcompat:appcompat:1.4.2'

 implementation 'androidx.exifinterface:exifinterface:1.3.3'

 implementation 'androidx.recyclerview:recyclerview:1.2.1'

 implementation 'androidx.media:media:1.6.0'

 implementation 'com.google.android.gms:play-services-location:20.0.0'

 implementation 'com.davemorrissey.labs:subsampling-scale-image-view:3.10.0'

}

• Add in the project “gradle.properties” file the following parameters:

android.enableJetifier=true

android.useAndroidX=true

org.gradle.jvmargs=-Xmx1536m

• Add in the “AndroidManifest.xml” file the FcmService. Like this –

<service

 android:name="com.avaya.core.FcmService"

 android:exported="true">

</service>

Color customization in v.3.1
To be sure you color customization will persist after upgrade from v.1.0.3, you need to
consider the following points:

1) color customization should be implemented using actual resource variables from SDK.
You need to override the needed variables in res/values/colors.xml in your project.

2) if your app should support the dark theme and several languages, you need to define
needed variables is correspond resource files. For example, in res/values-night/colors
for dark theme and in res/values-ru for Russian languege. Otherwise, your color
customisation will change to default after applied the dark theme or other languages.

3) please note - the variables for header of the chat window named the following:
background is "AvMessagingSdk_actionBarColor", text color is
"AvMessagingSdk_actionBarTextColor"

4) list of the variables with default values:
• <color name="AvMessagingSdk_accent">#0072EE</color>

<color name="AvMessagingSdk_accentDark">#76008a</color>

<color name="AvMessagingSdk_accentDarker">#66008a</color>

<color name="AvMessagingSdk_accentLight">#be7cca</color>

<color name="AvMessagingSdk_accentFailure">#800072EE</color>

<color name="AvMessagingSdk_btnSendHollow">#7fc0c0c0</color>

<color name="AvMessagingSdk_btnSendHollowBorder">#c0c0c0</color>

<color name="AvMessagingSdk_btnActionButton">#eeeeee</color>

<color name="AvMessagingSdk_btnActionButtonPressed">#cccccc</color>

<color name="AvMessagingSdk_btnActionButtonRipple">#c0c0c0</color>

<color name="AvMessagingSdk_header">#a0a0a0</color>

Avaya In-App Messaging android SDK - Development Guide

9

<color name="AvMessagingSdk_inputTextBackground">#ffffff</color>

<color name="AvMessagingSdk_inputTextColor">#212121</color>

<color name="AvMessagingSdk_inputTextColorHint">#bdbdbd</color>

<color

name="AvMessagingSdk_messageDate">@color/AvMessagingSdk_header</color>

<color name="AvMessagingSdk_conversationBackground">#ffffff</color>

<color

name="AvMessagingSdk_conversationListBackground">#ffffff</color>

<color

name="AvMessagingSdk_conversationListTextColor">#99000000</color>

<color

name="AvMessagingSdk_conversationListTitleTextColor">#DE000000</color>

<color

name="AvMessagingSdk_conversationListErrorTextColor">#ffffff</color>

<color

name="AvMessagingSdk_conversationListErrorBackgroundColor">#212b35</co

lor>

<color

name="AvMessagingSdk_conversationListErrorRetryIconColor">#ffffff</col

or>

<color

name="AvMessagingSdk_conversationListTitleTimestampTextColor">#9900000

0</color>

<color

name="AvMessagingSdk_remoteMessageAuthor">@color/AvMessagingSdk_header

</color>

<color name="AvMessagingSdk_remoteMessageBackground">#ecebeb</color>

<color name="AvMessagingSdk_remoteMessageBorder">#d9d9d9</color>

<color name="AvMessagingSdk_remoteMessageText">#212121</color>

<color

name="AvMessagingSdk_userMessageBackground">@color/AvMessagingSdk_acce

nt</color>

<color

name="AvMessagingSdk_userMessageBorder">@color/AvMessagingSdk_accentDa

rk</color>

<color

name="AvMessagingSdk_userMessageUnsentBackground">@color/AvMessagingSd

k_userMessageFailedBackground</color>

<color

name="AvMessagingSdk_userMessageUnsentBorder">@color/AvMessagingSdk_us

erMessageFailedBorder</color>

<color

name="AvMessagingSdk_userMessageFailedBackground">@color/AvMessagingSd

k_accentFailure</color>

<color

name="AvMessagingSdk_userMessageFailedBorder">@color/AvMessagingSdk_ac

centFailure</color>

<color name="AvMessagingSdk_userMessageText">#ffffff</color>

<color name="AvMessagingSdk_descriptionText">#FFC0C0C0</color>

<color

name="AvMessagingSdk_unreadBadge">@color/AvMessagingSdk_accent</color>

<color name="AvMessagingSdk_unreadBadgeText">#ffffff</color>

<color name="AvMessagingSdk_statusBarColor">#C6C6C6</color>

<color name="AvMessagingSdk_actionBarColor">#ffffff</color>

<color name="AvMessagingSdk_actionBarTextColor">#000000</color>

<color

name="AvMessagingSdk_errorSnackbarBackgroundColor">#ff222222</color>

<color

Avaya In-App Messaging android SDK - Development Guide

10

name="AvMessagingSdk_btnNewConversationBackground">@color/AvMessagingS

dk_accent</color>

<color

name="AvMessagingSdk_btnNewConversationTextColor">#ffffff</color>

<color

name="AvMessagingSdk_btnNewConversationIconColor">#ffffff</color>

<color name="text_helper_color">#a8a8a8</color>

<color name="text_failure_color">#ff2851</color>

Customisation of the header of the chat window
In SDK v 3.0.0 and following by default will using the icon from your account from

https://app.smooch.io/ and name from using app integration from your account from a
same site.

If you want to update the icon or\and header text you should implement it in your app.
Please use the following method:

private void loadConvo() {

 Log.d("titleTest", "Grabbing user's conversations");

 AvMessagingSdk.getConversationsList(new

AvMessagingSdkCallback<List<Conversation>>() {

 @Override

 public void run(@NonNull Response<List<Conversation>> response) {

 List<Conversation> conversations = response.getData();

 //for new conversation immediately after creation this

instance will null.

 //update is possible after first messages

 if(conversations != null) {

 Conversation firstConvo = conversations.get(0);

 if (firstConvo != null) {

 AvMessagingSdk.loadConversation(firstConvo.getId(), new

AvMessagingSdkCallback<Conversation>() {

 @Override

 public void run(@NonNull Response<Conversation>

response) {

 Log.d("titleTest", "Loaded conversation,

attempting to update title and icon.");

 updateConvo();

 }

 });

 }

 }

 }

 });

}

private void updateConvo() {

 if (AvMessagingSdk.getConversation().getId() != null) {

 Map metadata = new HashMap<String, Object>();

 metadata.put("oceana_intrinsic_name", "any name");

 String convId = AvMessagingSdk.getConversation().getId();

 String title = "Updated conversation title";

 ConversationActivity.close();

 AvMessagingSdk.updateConversationById(convId, title, null,

"https://web-assets.zendesk.com/images/p-sunshine-conversations/img-sunco-

footer@2x.jpg", metadata, new AvMessagingSdkCallback(){

 @Override

 public void run(@NonNull Response response) {

 Log.i("response", "responce is - " + response);

 ConversationActivity.builder()

Avaya In-App Messaging android SDK - Development Guide

11

 .withFlags(Intent.FLAG_ACTIVITY_NEW_TASK)

 .show(getActivity());

 }

 });

 Log.d("titleTest", "Conversation title updated.");

 }

}

note and known limitations:
1) for new conversation immediately after creation the conversations list will null.

Updating is possible after the first messages. You have two ways. Update header after the
second opening of the conversation or track messages and update header after the first
delivered message.

2) By default, for each end user will exist only one conversation. But we have the
possibility to create several. Please look at the article:

https://docs.smooch.io/guide/multi-party-conversations/
There are several good use cases for a user having (or being a participant of) multiple

conversations, which we cover in the article. However, if you're not explicitly creating new
conversations for your users and adding them as participants you should not need to worry
about getConversationsList returning more than one conversation.

3) In example you can see the close of activity before update and reopen after update.
This is necessary. The update may not work correctly without it.

4) you may add or update the metadata for the user using a same method. The title and
the isonUrl may be null in this case for AvMessagingSdk.updateConversationById

OS support notes:
You may launch the demo app and your app based on SDK on Chrome OS. All base

functions should work, but you may face the OS specific issues, for example with resize the

app window.

No commitments to support Chrome OS are provided, even though it could be using

Android OS as core/base

Only Android is tested and supported.

Avaya In-App Messaging android SDK - Development Guide

12

Capabilities

Native Android SDK supports a wide variety of capabilities. Below is a detailed view of each
capability:

Text and Emoji

Plain text messages and Unicode Emojis✨

The Android SDK displays any Unicode emoji
sent in text messages. Mobile users can use
the emoji keyboard on their device to send
them.

Image

Display static images. The conversation

interface supports the display of various

image types. Tapping on an image will

open it in an image viewer.

GIF

GIFs sent via the API will be animated on
Android devices. Tapping on a Gif will open it
in an image viewer. Note that for animated
gifs, the image viewer will display the first
frame only. The Android SDK does not include
a way for users to choose GIFs to send.

Link

Display web links as buttons, Transform
links into clear calls to action.

Avaya In-App Messaging android SDK - Development Guide

13

Location
Send and receive geolocation messages

Upon sending a location, users will see a map
of that location. Tapping on the map opens
the Maps app centered on that location.
Location messages include longitude and
latitude coordinates along with a Google Maps
link (as text) in the API. Location messages are
rendered as text messages when a Maps API
Key is not present.

Postback

Send buttons to trigger events on your

server.

Postback buttons notify the server by

webhook when clicked. The server can

then act on the click and post messages

back to the user in response to the click.

Reply

You can suggest a few answers to reply to a
message.

When including replies with a message, the
android SDK will display them at the bottom
of the conversation. Users can quickly select
one of them to send that reply.

Location Request
Request the current location of the user

Once a user taps the request button, the

android SDK will first ask for location

permission and then send the user's

location.

Avaya In-App Messaging android SDK - Development Guide

14

Compound Message
You can compose messages with multiple

actions.

Compound message allows to send text,

image and multiple buttons all in a single

message.

Carousel
Send a horizontally scrollable set of cards

that can contain text, image, and action

buttons.

Carousels support up to a maximum of 10

message items. Each message item must

include a title and at least one supported

action.

Typing Status
Display a typing indicator. Web Messenger

can show that the agent is typing with a

typing animation. The API allows to specify

an agent name and avatar.

Avaya In-App Messaging android SDK - Development Guide

15

Getting Started
 Avaya DevConnect offers a bundle Avaya In-app messaging SDK. This bundle includes SDK
for each platform (iOS, android), API reference docs and
a basic implementation of a mobile messaging app and
Web Messenger that uses the SDK to send messages
from an android Device to your Avaya contact center
Solution.

To get started, download the bundle from Avaya
DevConnect http://www.avaya.com/devconnect

What’s included in the bundle?

./DemoApp: contains project you can open in
Android Studio, configure settings and run it
on android device or AVD. read more.

./distribution: contains the ready to use SDK
binaries that you can add as a dependency in
your Android app.

. android\distribution\docs\: contains API
reference documentation in javadoc.jar
format.

./docs: this guide.

API reference

The Avaya Messaging SDK for

Android includes a client side

API to initialize, customize and

enable advanced use cases of

the SDK. See the Android API

reference included in the

bundle to discover all the

classes and methods available.

http://www.avaya.com/devconnect

Avaya In-App Messaging android SDK - Development Guide

16

QuickStart to your first conversation
The DevConnect bundle for android includes a /DemoApp subfolder with a basic

implementation of a mobile messaging app that uses the Avaya Messaging android SDK to

send messages from an android Device to your contact center.

Prerequisites
To complete the steps below, you must have Android Studio installed & updated, as well as

an Android Device to run the sample mobile app (Physical device or Android Virtual Device

(AVD)).

Steps

1. Launch Android Studio

2. From the Menu, use File > Open to open the project’s /DemoApp subfolder

3. From the Menu, select Build > Clean Project (if the project was built/run and code

changes were made)

4. Ensure your Android device is connected (or AVD has been created/configured)

5. From the Menu, select Run > Run App

6. Open the menu and press “Settings” . See Figure 1

7. Setup the correct Integration ID and press “RE-INITIALIZE SDK”

8. Open the menu and press “Conversation” . See Figure 1

9. Send a test message!

10. you can also configure user credentials (userId, jwt) in the same settings screen to test

for an authenticated user, see Figure 2.

11. From the Menu, select Build > Build APK(s) if you want to run the demo app on a

Physical device.

Please note that the Demo App and APK provided in the bundle is only for reference,
you will need to embed the SDK into your app as per your business requirements.

The minimum supported SDK version is API level 15, and your app must be compiled
with at least API version 26. If your app needs to support earlier versions of Android, you
may still try to integrate, but it is untested and we cannot guarantee compatibility.

https://developer.android.com/studio/install
https://developer.android.com/studio/intro/update
https://developer.android.com/studio/run/managing-avds
https://developer.android.com/studio/run/managing-avds

Avaya In-App Messaging android SDK - Development Guide

17

Figure 1 - Android SDK Setting in menu

Figure 2 - Android SDK: Set user credentials on settings screen

Avaya In-App Messaging android SDK - Development Guide

18

Adding to your app
The AvMessagingSdk library is distributed in both AAR and JAR format. If you are using

Android Studio, Manually add the SDK dependencies right into your build.gradle file.

• core-3.1.0.aar

• ui-3.1.0.aar

You can refer to /.. /android/distribution/README.md in the bundle for more information.

Initialize in your app

After following the steps above, your app is set up for working with the SDK. Before your
code can invoke its functionality, you’ll have to initialize the library using your app’s ID. This
ID uniquely identifies your app and links it to the backend (Avaya IX Digital Connection) that
does the heavy lifting necessary to bridge the gap between you and your users.

Once you’ve received your integration ID, you can initialize in two different ways: from
your Application class (suggested), or from an Activity class:

Add the following lines of code to your onCreate method on your Application class:

You can contact Avaya DevOps Team to get the integration ID for Android Channel

Integration to your Avaya IX Digital Connection app.

AvMessagingSdk.init(this, new Settings("YOUR_INTEGRATION_ID"), new
AvMessagingSdkCallback <InitializationStatus>() {

 @Override

 public void run(@NonNull Response<InitializationStatus> response) {

 // Handle the response, no casting required...

 if (response.getData() == InitializationStatus.SUCCESS) {

 // Your code after init is complete

 } else {

 // Something went wrong during initialization

 }

 }

});

 Make sure to replace YOUR_INTEGRATION_ID with your integration ID.

Avaya In-App Messaging android SDK - Development Guide

19

If you don’t have an Application class, you must create one to make sure It is always
initialized properly. You can follow the instructions here.

Initialize from an Activity class

You can also initialize from an Activity. This is useful if you don’t know your integration ID at
app launch or if you want to run many apps in the same Android app.

Add the following line of code to your onCreate method on your Application class:

If you don’t have an Application class, you must create one to make sure is always initialized
properly. You can follow the instructions here.

Add the following line of code where you want to initialize in your Activity class:

For example, to initialize when a button is tapped, you can do the following:

AvMessagingSdk.init(this);

AvMessagingSdk.init(this, new Settings("YOUR_INTEGRATION_ID"), new
AvMessagingSdkCallback <InitializationStatus>() {

 @Override

 public void run(@NonNull Response<InitializationStatus> response) {

 // Handle the response, no casting required...

 if (response.getData() == InitializationStatus.SUCCESS) {

 // Your code after init is complete

 } else {

 // Something went wrong during initialization

 }

 }

});

Remember to replace your.package, YourActivity, YOUR_INTEGRATION_ID by the

appropriate names and your integration ID.

https://docs.smooch.io/guide/native-android-sdk/#adding-an-application-class-to-your-app

Avaya In-App Messaging android SDK - Development Guide

20

If you initialize from an Activity, you’ll need to handle initialization when receiving a push

notification. To do so, override the activity that is opened when tapping a notification and

initialize before opening ConversationActivity. For example:

package your.package;

import android.os.Bundle;

import android.support.v7.app.AppCompatActivity;

import android.view.View;

import android.widget.Button;

import com.avaya.core.InitializationStatus;

import com.avaya.core.Settings;

import com.avaya.core.AvMessagingSdk;

import com.avaya.core. AvMessagingSdkCallback;

import com.avaya.ui.ConversationActivity;

public class YourActivity extends AppCompatActivity implements View.OnClickListener {

 @Override

 protected void onCreate(final Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 Button showConversationActivityButton =

findViewById(R.id.button_show_conversation_activity);

 showConversationActivityButton.setOnClickListener(this);

 }

 public void onClick(View v) {

 final int id = v.getId();

 if (id == R.id.button_show_conversation_activity) {

 AvMessagingSdk.init(getApplication(), new Settings("YOUR_INTEGRATION_ID"), new

 AvMessagingSdkCallback <InitializationStatus>() {

 @Override

 public void run(@NonNull Response<InitializationStatus> response) {

 if (response.getData() == InitializationStatus.SUCCESS) {

 ConversationActivity.show(getApplicationContext());

 } else {

 // Something went wrong during initialization

 }

 }

 });

 }

 }

}

Avaya In-App Messaging android SDK - Development Guide

21

Adding an Application class to your app

If you don’t have an Application class in your app, you can copy the following and save it to

your application package.

You also need to declare your newly created Application class in the <application> tag in
your AndroidManifest.

package your.package;

import android.os.Bundle;

import android.support.v7.app.AppCompatActivity;

import com.avaya.core.InitializationStatus;

import com.avaya.core.Settings;

import com.avaya.core.AvMessagingSdk;

import com.avaya.core.AvMessagingSdkCallback;

import com.avaya.ui.ConversationActivity;

public class YourNotificationHandlerActivity extends AppCompatActivity {

 @Override

 protected void onCreate(final Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 AvMessagingSdk.init(getApplication(), new Settings("YOUR_INTEGRATION_ID"), new

AvMessagingSdkCallback <InitializationStatus>() {

 @Override

 public void run(@NonNull Response<InitializationStatus> response) {

 if (response.getData() == InitializationStatus.SUCCESS) {

 ConversationActivity.show(getApplicationContext());

 } else {

 // Something went wrong during initialization

 }

 }

 });

 }

}

package your.package;

import android.app.Application;

public class YourApplication extends Application {

 @Override

 public void onCreate() {

 super.onCreate();

 // Initialize here

 }

}

<application
 android:name="your.package.YourApplication">
 ...
</application>

Avaya In-App Messaging android SDK - Development Guide

22

Displaying the User Interface

Once you’ve initialized , you’re ready to try it out.

Find a suitable place in your app’s interface to invoke and use the code below to display the
user interface. You can bring up the Conversation User Interface whenever you think that
your user will need access to help or a communication channel to contact you.

You should also take the time to configure the push notifications setup.

Location messages

IX Digital Connection offers the option to render location messages with a Google Maps
preview. To do so, you must provide your Google Maps API Key when initializing the SDK.

Remember to replace your.package, YourApplication by the appropriate names.

ConversationActivity.show(this);

Settings settings = new Settings("YOUR_INTEGRATION_ID");

settings.setMapsApiKey("YOUR_MAPS_API_KEY");

AvMessagingSdk.init(this, settings, new AvMessagingSdkCallback<InitializationStatus>() {

 @Override

 public void run(@NonNull Response<InitializationStatus> response) {

 if (response.getData() == InitializationStatus.SUCCESS) {

 // Your code after init is complete

 } else {

 // Something went wrong during initialization

 }

 }

});

• Location messages are rendered as text messages when a Maps API Key is not present.

• If you provide an invalid Maps API Key, messages will render with an error message.

• On Google Cloud Platform, you need to enable Maps Static API.

https://cloud.google.com/maps-platform/#get-started

Avaya In-App Messaging android SDK - Development Guide

23

Region configuration
The Android SDK is supported in the following regions:

Name Region identifier

United States Leave unspecified

European Union eu-1

To target the EU region for example, set the region identifier with Settings.setRegion():

Settings settings = new Settings("YOUR_INTEGRATION_ID");

settings.setRegion("eu-1");

AvMessagingSdk.init(this, settings, new AvMessagingSdkCallback<InitializationStatus>() {

 @Override

 public void run(@NonNull Response<InitializationStatus> response) {

 if (response.getData() == InitializationStatus.SUCCESS) {

 // Your code after init is complete

 } else {

 // Something went wrong during initialization

 }

 }

});

You can contact Avaya DevOps Team to verify region setting for your Avaya IX Digital

Connection app.

Avaya In-App Messaging android SDK - Development Guide

24

Log in with userId and JWT
After the SDK is initialized, your user can start sending messages right away. These messages
will show up on the business side under a new appUser. However, these appUsers will not yet
be associated to any user record you might have in an existing user directory.

If your application has a login flow, or if a user needs to access the same conversation from
multiple devices, this is where the login method comes into play. You can associate users
with your own user directory by assigning them a userId. You will then issue each user
a jwt credential during the login flow.

Authentication delegate

The Android SDK offers an AuthenticationDelegate which will be called when an invalid
authentication token has been sent to IX Digital Connection. It allows you to provide a new
token for all subsequent requests. The request that originally failed will be retried up to five
times. To set the delegate, set it in the Settings object when initializing the SDK:

Where authDelegate is an instance that implements the AuthenticationDelegate

interface. For example:

You can read more about this in the Authenticating users section.

Settings settings = new Settings(“myIntegrationId”);

settings.setAuthenticationDelegate(authDelegate);

AvMessagingSdk. init (application, settings, initCallback);

class MyAuthDelegate implements AuthenticationDelegate {

/**

* Notifies the delegate of a failed request due to invalid credentials

*

* @param error detail about the authentication error

* @param callback callback to invoke with a new token

*/

 void onInvalidAuth(AuthenticationError error, AuthenticationCallback completionHandler) {

 // retrieve new token

 completionHandler.updateToken(updatedToken);

 }

}

See Expiring JWTs on SDKs for more information.

Avaya In-App Messaging android SDK - Development Guide

25

Configuring push notifications
Push notifications are a great, unobtrusive way to let your users know that a reply to their
message has arrived.

Step 1. Generate a FCM configuration file for your Android project

1. Go to Google’s Firebase console.

2. If you do not have a project already, create a new one.

3. Once created, click on “Add Firebase to your Android app” and follow the instructions

to generate your google-services.json file (for your package name, copy and paste

the package used in your application’s AndroidManifest.xml file).

4. Save the google-services.json file generated by the tool at the root of your Android

application (<project>/<app-module>/google-services.json).

5. Follow the Gradle instructions and modify your build.gradle files accordingly:

1. Project-level build.gradle (<project>/build.gradle):

2. App-level build.gradle (<project>/<app-module>/build.gradle):

3. Press Sync now in the bar that appears in the IDE.

Following these steps will enable cloud messaging for your app and create a server API
key.

buildscript {

 dependencies {

 // Add this line

 classpath 'com.google.gms:google-services:4.3.3'

 }

}

// Add to the bottom of the file
apply plugin: 'com.google.gms.google-services'

https://console.firebase.google.com/

Avaya In-App Messaging android SDK - Development Guide

26

Step 2. Configure push notifications in

You will need to share your Server API Key and Sender ID (these can be retrieved by clicking

on the cogwheel (Settings) next to Project Overview on the sidebar, then clicking on

the CLOUD MESSAGING tab).

Step 3. Test it out!

1. Kill and restart your app.

2. Launch .

3. Send a message.

4. Press the home button or navigate away from the conversation.

5. Reply to the message from your choice of integrated service.

You’ll receive a notification on the phone!

Note: the SDK adds its own implementation of FirebaseMessagingService to

your AndroidManifest automatically. If your app needs to handle Firebase messages

from different providers then you must create your own implementation

of FirebaseMessagingService. In that case, you need to notify the Avaya Messaging

SDK about token changes with setFirebaseCloudMessagingToken method

on AvMessagingSdk class and use triggerAvMessagingSdkNotification method

on FcmService class whenever a new RemoteMessage is received to trigger push

notifications from Avaya IX Digital Connection.

You can contact your Avaya DevOps Team to configure Server API Key and Sender ID in

Avaya IX Digital Connection.

To test push notifications in the Android emulator, you must use a system image with
Google APIs.

http://docs.smooch.io/api/android/io/smooch/core/FcmService.html

Avaya In-App Messaging android SDK - Development Guide

27

Localization
Strings can be customized and localized. The SDK provides a few languages out of the box,
but adding new languages is easy to do. When localizing strings, look for values in
the strings.xml in your app first then in the ui bundle, enabling you to customize any strings
and add support for other languages.

Adding more languages

To enable other languages beside the provided ones, first copy the English strings.xml file
from the ui bundle to the corresponding values folder for that language. Then, translate the
values to match that language.

Customization

Strings customization

String Customization lets you customize any strings it displays by overwriting its keys. In
order to do so, simply add res/values-<your-language-code>/strings.xml file in your
Android project and specify new values for the keys used in . You can find all available keys by
browsing to the ui-x.x.x/res/values/values.xml file in the External Libraries in Android
Studio.

Dates shown in the conversation view are already localized to the user’s device.

For example, if you wanted to override strings for English, you would create a file res/values-

en/strings.xml and include the following in that file:

Avaya In-App Messaging android SDK - Development Guide

28

Menu items

The Android SDK features a tappable menu icon that allows the user to send various message
types. The types displayed in this menu can be customized, or the menu can be hidden
altogether.

If you want to control this menu, simply override the following resource in settings.xml to the
value of your choice:

<resources>

 <color name="AvMessagingSdk_accent">#9200aa</color>

 <color name="AvMessagingSdk_accentDark">#76008a</color>

 <color name="AvMessagingSdk_accentLight">#be7cca</color>

 <color name="AvMessagingSdk_backgroundInput">#ffffff</color>

 <color name="AvMessagingSdk_btnSendHollow">#c0c0c0</color>

 <color name="AvMessagingSdk_btnSendHollowBorder">#303030</color>

 <color name="AvMessagingSdk_header">#989898</color>

 <color name="AvMessagingSdk_messageDate">@color/AvMessagingSdk_header</color>

 <color name="AvMessagingSdk_messageShadow">#7f999999</color>

 <color name="AvMessagingSdk_conversationBackground">#ecebeb</color>

 <color name="AvMessagingSdk_remoteMessageAuthor">@color/AvMessagingSdk_header</color>

 <color name="AvMessagingSdk_remoteMessageBackground">#ffffff</color>

 <color name="AvMessagingSdk_remoteMessageBorder">#d9d9d9</color>

 <color name="AvMessagingSdk_remoteMessageText">#000000</color>

 <color name="AvMessagingSdk_userMessageBackground">@color/AvMessagingSdk_accent</color>

 <color name="AvMessagingSdk_userMessageBorder">@color/AvMessagingSdk_accentDark</color>

 <color name="AvMessagingSdk_userMessageFailedBackground">@color/AvMessagingSdk_accentLight</color>

 <color name="AvMessagingSdk_userMessageText">#ffffff</color>

</resources>

<string-array name="AvMessagingSdk_settings_showMenuOptions"
type="array">

 <item>@string/AvMessagingSdk_settings_takePhotoMenuKey</item>

 <item>@string/AvMessagingSdk_settings_chooseMediaMenuKey</item>

 <item>@string/AvMessagingSdk_settings_uploadFileMenuKey</item>

 <item>@string/AvMessagingSdk_settings_shareLocationMenuKey</item>

</string-array>

Avaya In-App Messaging android SDK - Development Guide

29

To hide the menu completely, override the resource as follows:

<string-array name=" AvMessagingSdk_settings_showMenuOptions" type="array"/>

Avaya In-App Messaging android SDK - Development Guide

30

Notification Action Intent Override

The default behaviour of tapping on a push or in-app notification is to open
the ConversationActivity intent. If you want to change this behaviour, simply override the
following resource in settings.xml to the value of your choice.

When launched, the intent will include an extra with the key trigger which can be accessed
through intent.getStringExtra. You can override the key / value of this extra if you want. Use
this extra to know when your intent has launched as a result of a notification.

Notification Channel Settings Override

Apps targeting Android Oreo (SDK 26) or higher will have push notifications delivered to
a notification channel. If you wish to override the channel settings for notifications, set the
following resources in settings.xml to the values of your choice:

<resources>

 <string name="AvMessagingSdk_settings_notificationIntent">com.avaya.ui.ConversationActivity</string>

 <string name="AvMessagingSdk_settings_notificationTriggerKey">trigger</string>

 <string name="AvMessagingSdk_settings_notificationTrigger">AvMessagingSdkNotification</string>

</resources>

@Override

protected void onCreate(final Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 String notifTriggerKey =

getString(R.string.AvMessagingSdk_settings_notificationTriggerKey);

 String notifTrigger = getIntent().getStringExtra(notifTriggerKey);

 if (notifTrigger != null && notifTrigger.equals (getString

(R.string.AvMessagingSdk_settings_notificationTrigger))) {

 // Intent was launched by a notif tap

 }

}

Note that the specified intent must extend the Activity class.

<resources>

 <string name="AvMessagingSdk_settings_notificationChannelId">your_channel_id</string>

 <string name="AvMessagingSdk_settings_notificationChannelName">Your Channel
Name</string>

</resources>

https://developer.android.com/reference/android/content/Intent.html#getStringExtra(java.lang.String)
https://developer.android.com/guide/topics/ui/notifiers/notifications.html#ManageChannels

Avaya In-App Messaging android SDK - Development Guide

31

Starting Text

Allows to you to prefill the text box in the conversation when opening it. To do so, simply
supply a startingText string when calling ConversationActivity.show:

Extending ConversationActivity

In some cases it may be desirable to use your own custom ConversationActivity in place of
the one provided. One such case is if you want to modify or remove the action bar. This can
be achieved if you extend the ConversationActivity.

To do so, do the following:

1. Create a new activity that extends ConversationActivity
2. Add the theme to your activity in your AndroidManifest.xml file (or create one which

specifies <item name="android:windowActionBarOverlay">true</item>)

At this point, your Activity should look something like this:

And your manifest should look something like this:

3. When showing in your Android code, instead of

calling ConversationActivity.show(this), call startActivity(new Intent(this,

CustomConversationActivity.class));

4. To ensure the correct activity is launched when a notififcation is tapped, override the

setting AvMessagingSdk_settings_notificationIntent to provide the full path of your

new activity.

ex: <string name=" AvMessagingSdk_settings_notificationIntent">

 <your.package.CustomConversationActivity

ConversationActivity.show(this, "Hi there! Can you help me please?");

package your.package;
import android.os.Bundle;
import com.avaya.ui.ConversationActivity;

public class CustomConversationActivity extends ConversationActivity {
 @Override
 protected void onCreate(final Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setTitle("Whatever You Want");
 getSupportActionBar().setDisplayHomeAsUpEnabled(false);
 }
}

<activity
 android:name="your.package.CustomConversationActivity"
 android:theme="@style/Theme.AvMessagingSdk
 " />

https://docs.smooch.io/api/android/io/smooch/ui/ConversationActivity.html#show-android.content.Context-String-

Avaya In-App Messaging android SDK - Development Guide

32

 </string>

Permissions

The library includes the following permissions by default:

• WRITE_EXTERNAL_STORAGE is used to take photos and to store downloaded

pictures locally to avoid needless re-downloading.

• ACCESS_FINE_LOCATION is used in order to access the customer’s location when

requested using location request buttons (see capabilities section).

If you do not intend to request the user’s location at any point, it is safe to remove

the ACCESS_FINE_LOCATION using the following override:

All other permissions are necessary to function as intended.

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>

<uses-permission android:name="android.permission.INTERNET"/>

<uses-permission android:name="android.permission.VIBRATE"/>

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"
tools:node="remove" />

Avaya In-App Messaging android SDK - Development Guide

33

Appendix A – Users Authentication
If your software or application has an existing user authentication method then you can

optionally federate those identities with Avaya IX Digital Connection by issuing a JSON web

token (JWT). A JWT is required to protect the identity and data of these users. This option

requires your app to be connected to your own secure web service. There are JWT libraries

available supporting a wide variety of popular languages and platforms.

First, you must assign a userId to each of your users. The userId will uniquely identify your

users within Avaya IX Digital Connection and the JWTs you issue serve as a signed proof that

your software or app has successfully authenticated that user.

To log in with a JWT:

1. Generate an API key for your Avaya IX Digital Connection app.

2. Implement server side code to sign new JWTs using the key ID and secret provided.

The JWT header must specify the key ID (kid). The JWT payload must include

a scope claim of appUser and a userId claim which you’ve assigned to the app user.

Make sure the userId field is formatted as a String. If you use numeric ids,

the userId must be a String representation of the number - using a number directly

will result in an invalid auth error.

3. Issue a JWT for each user. You should tie-in the generation and delivery of this JWT

with any existing user login process used by your app.

4. Initialize Avaya In-App Messaging SDK in your website or app. See instructions

for Android in this document.

A node.js sample is provided below using jsonwebtoken >= 6.0.0

A userId is a string that can have any value you like, but must be unique within a given

Avaya IX Digital Connection app. Examples of userIds include usernames, GUIDs, or

any existing ID from your own user directory. The userId should map to a unique identity

in your existing user directory. The userId should always reference an external entity; in

other words you should not reuse any id that was assigned by Avaya IX Digital

Connection as a userId. When choosing a userId you should also ideally avoid using

user properties that change, like a phone number.

You can contact your Avaya DevOps Team to generate key ID and secret for your

Avaya IX Digital Connection app.

http://jwt.io/
http://jwt.io/

Avaya In-App Messaging android SDK - Development Guide

34

5. Call AvMessagingSdk.login with your userId and jwt:

Android (Java):

var jwt = require('jsonwebtoken');

var KEY_ID = 'app_5deaa3531c7f940010cc4ba4';

var SECRET = 'BFJJ88naxc5PZNAMU9KpBNTR';

var signJwt = function(userId) {

 return jwt.sign(

 {

 scope: 'appUser',

 userId: userId

 },

 SECRET,

 {

 header: {

 alg: 'HS256',

 typ: 'JWT',

 kid: KEY_ID

 }

 }

);

};

AvMessagingSdk.login("user-id", "jwt", new AvMessagingSdkCallback() {

 @Override

 public void run(Response response) {

 if (response.getError() == null) {

 // Your code after login is complete

 } else {

 // Something went wrong during login. Your JWT might be invalid

 }

 }

});

If your API key is ever compromised you can generate a new one. Avaya IX Digital
Connection will accept a JWT as long as it contains all required fields and is signed with
any of your Avaya IX Digital Connection Conversations app’s valid API keys. Deleting an
API key will invalidate all JWTs that were signed with it.

Avaya In-App Messaging android SDK - Development Guide

35

Expiring JWTs on SDKs

If you desire to generate credentials that expire after a certain amount of time, using JWTs is

a good way to achieve this.

The exp (expiration time) property of a JWT payload is honoured by the IX Digital Connection

API. A request made with a JWT which has an exp that is in the past will be rejected.

Keep in mind that using JWTs with exp means that you will need to implement regeneration

of JWTs, which demands additional logic (Android, iOS or Web Messenger) in your software.

JWTs are required to identify your users by a custom identifier (userId) in SDKs. In this case,

JWTs are signed with an app API key with a scope of appUser, and an additional payload

property userId.

Sample JWT Structure with expiry

Header: Payload:

Note: expiry field - timestamp representing 2018-11-18T00:00:00+00:00

Users on multiple clients

You may have a single user logging in as the same userId from multiple clients. For example,

they have your app installed on both their iPhone and their iPad or multiple android devices.

You might also have Avaya IX Digital Connection integrated in both your mobile app as well

as on your web site.

Once a user has been logged in to Avaya IX Digital Connection, they will see the same

conversation across each of these clients.

Omitting the userId

Avaya IX Digital Connection will work perfectly fine without a userId. Profile information can

still be included, and the user can take advantage of all rich messaging features, but the user

will only be able to access the conversation from the client they’re currently using. Without

a userId, if the same individual opens Avaya IX Digital Connection on a new client, or runs

your web app in an incognito browser session, they will see a newly created empty

conversation when they open Avaya IX Digital Connection, and on the contact center

{

 "alg": "HS256",

 "typ": "JWT",

 "kid": "<app-key-id>"

}

{

 "scope": "appUser",

 "exp": "1542499200",

 "userId": "<user-id>"

}

Avaya In-App Messaging android SDK - Development Guide

36

(business) side they will be represented as two distinct appUsers. This will happen even if

you specify the same profile information in both cases.

A userId can also be omitted at first and added at a later time. If you deploy an update to

your app that assigns an existing user with a new userId that they didn’t have before, any

existing conversation history they have will be preserved and their messages will start being

synchronized across all clients where that userId is being used. This is particularly useful if a

user opens Avaya IX Digital Connection and starts a conversation before having logged in to

your app or website.

Switching users

If your app allows a shared client to switch between multiple user identities you can call

the login API multiple times to switch between different userIds.

Logging out

Your app may have a logout function which brings users back to a login screen. In this case

you would want to revert IX Digital Connection to a pre-login state. You can do this by calling

the logout API.

Calling logout will disconnect your user from any userId they were previously logged in with

and it will remove any conversation history stored on the client. Logging out will not disable

Avaya IX Digital Connection. While logged out, the user is free to start a new conversation

but they will show up as a different appUserId on the business end.

Android (Java):

AvMessagingSdk.logout(new AvMessagingSdkCallback() {

 @Override

 public void run(Response response) {

 if (response.getError() == null) {

 // Your code after logout is complete

 } else {

 // Something went wrong during logout

 }

 }

});

Avaya In-App Messaging android SDK - Development Guide

37

Appendix B - Managing Users

In addition to the information automatically collected and stored for each of a user’s clients,
an appUser itself can have metadata and profile information attached to it, in order to better
understand the context and the history of the user.

The appUser

In the IX Digital Connection lexicon, user (usually referred to as an app user or appUser) refers
to an end-user of your platform or a customer of your business. The following are all
examples of what IX Digital Connection refers to as an appUser:

• A visitor to your Website

• The holder of an SMS number

• A user of your mobile app

• A member of the public on Facebook Messenger

Profile information can be added at runtime with the mobile and web SDKs. There are two
types of profile information fields: structured and unstructured.

Structured Fields

Structured fields are properties that IX Digital Connection has identified as common across
many use cases, and has exposed as common properties across all users, when present. The
currently supported structured fields are:

• givenName, also referred to as firstName in some contexts, which represents the
user’s given name

• surname, also referred to as lastName in some contexts, which represents the user’s
surname

• signedUpAt, which is the date when the user first started using your service, or when
they first became a customer. If not customized, this field is automatically populated
to be the date the user was created in , which is most likely the moment when the user
messaged you for the first time.

• email, which represents the user’s email address.

Unstructured Fields

Unstructured fields, also referred to as “custom properties”, are a set of key/value pairs that
are specific to your application domain, or use case. These fields are stored under
the properties field of an appUser, and can have values of type Number, String, or Boolean.

Custom properties are limited to 4KB per users. Each custom property `key` is limited to
100B and each custom property `value` is limited to 800B. Exceeding characters will be
truncated.
An error will be returned if an appUser is in the process of being created, or updated,
and the sum of all custom properties’ sizes is over the 4KB limit.

Avaya In-App Messaging android SDK - Development Guide

38

Adding properties using the SDKs

Each of IX Digital Connections’ web and mobile SDKs support attaching properties to a user
at runtime. The details of when and how these properties are uploaded to the server is
handled automatically by the SDKs, so in general you should not need to worry about this
detail. However, the process is documented here for completeness.

On Android and iOS, when a user property is set using one of the SDK methods, the
properties are immediately serialized to disk until they can be uploaded to the server.
Changes to user properties are uploaded in batches at regular intervals while the app is in the
foreground, as well as just before the app is sent to the background, or immediately before a
message is sent by the user. If the application exits unexpectedly, or the user has intermittent
internet connection or no internet connection, the properties will remain on disk until the
upload eventually succeeds (even across app launches). If the user does not yet exist (i.e. the
user has not yet sent their first message, and the startConversation method has not been
called), the properties are still tracked and stored on disk until the user is eventually created,
and they will be uploaded as part of the user creation flow.

On Web, the user properties are stored in memory, and uploaded in batches at regular
intervals, or immediately before a message is sent by the user. If the user does not yet exist
(i.e. the user has not yet sent their first message, and the startConversation method has not
been called), the properties are still tracked and stored in memory until the user is eventually
created, and they will be uploaded as part of the user creation flow. In contrast to the Android
and iOS SDKs, the Web Messenger does not store any user property information on disk - if
the browser window is closed before the user is created, then the properties will be discarded.

import com.avaya.core.User;

User.getCurrentUser().setFirstName("John");

User.getCurrentUser().setLastName("Doe");

User.getCurrentUser().setEmail("steveb@test.com");

User.getCurrentUser().setSignedUpAt(new Date(1420070400000l));

final Map<String, Object> customProperties = new HashMap<>();

customProperties.put("premiumUser", true);

customProperties.put("numberOfPurchases", 20);

customProperties.put("itemsInCart", 3);

User.getCurrentUser().addProperties(customProperties);

The addProperties method accepts a Map containing the properties to add. This

dictionary must have keys that are type String and values that are

either String, Integer, Long, Float, Double, Boolean, or Date. If your map contains

any other data type as a value, then toString will be called on the object and the

resulting String will be added as a property.

Avaya In-App Messaging android SDK - Development Guide

39

Appendix C - Android FAQ

Why is your SDK only compatible

with Android 16+?

Android SDK supports Android API level 16

and above. At the time we made this decision,

only 0.6% of the Android Market is below this

API level.

You can ignore the limitation, but we can’t

guarantee that it will work properly and do not

officially support or test the SDK in this

configuration ourselves.

How do I set the ConversationActivity

to Portrait-only mode?

To do so, you’ll need to create your own

activity that extends

com.avaya.ui.ConversationActivity

Once you’ve created your own activity, ensure

that it’s launched when a push notification is

received.

What is Push Notification? Android SDK uses Google’s Firebase Cloud

Messaging (FCM) for Push notification which

provides a reliable and battery-efficient

connection between your server and devices

that allows you to deliver and receive

messages and notifications on iOS, Android,

and the web at no cost.

https://firebase.google.com/products/cloud-

messaging

https://developer.android.com/about/dashboards
http://stackoverflow.com/a/27336683/5534839
https://firebase.google.com/products/cloud-messaging
https://firebase.google.com/products/cloud-messaging

Avaya In-App Messaging android SDK - Development Guide

40

Appendix D – certificate configuration for file
transfer feature

You need to generate client cert using openssl. To do it you need to run the following

commands (in order). In addition, for testing it is better to have the same password (6 and more

characters):

openssl genrsa -aes256 -out client.key 2048

openssl pkey -in client.key -out client_test_fixed.key

 (after this command you can delete client.key. client_test_fixed.key which was generated

after this command should be left and renamed to client.key)

openssl req -x509 -sha256 -new -key client.key -out client.csr

(during command execution you need to answer the following questions)

Country Name (2 letter code) [AU]:

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:

Email Address []:

openssl x509 -sha256 -days 3652 -in client.csr -signkey client.key -out client.crt

