

Avaya Web Messenger - Development

Guide

Release 2.3.2
September 2022

Avaya Web Messenger - Development Guide
2

Table of Contents

Introduction .. 4

Capabilities ... 5

Getting Started ... 9

What’s included in the bundle? .. 9

API reference .. 9

Browser support ... 10

Installation .. 11

Step 1: Include the Web Messenger on your web page ... 11

Step 2: Initialize with your new app ID ... 11

Region configuration .. 12

Login with userId and JWT ... 12

Customization .. 13

Embedded mode .. 13

Strings customization... 13

Date localization ... 14

Display Style ... 15

Button Size ... 15

Fixed Intro ... 15

Colors .. 16

Business profile ... 16

Background Image ... 16

Sound notification .. 17

Browser storage.. 17

Menu items ... 18

Filtering and transforming messages .. 18

Whitelisting Domains ... 21

Content Security Policy .. 22

Appendix A – Users Authentication ... 23

Appendix B - Managing Users .. 27

Appendix C - Web Messenger FAQ .. 29

Appendix D – certificate configuration for file transfer feature .. 31

Avaya Web Messenger - Development Guide
3

The Avaya Web Messenger is a highly customizable messaging widget that can
be added to any web page. It supports the Avaya IX Digital Connection
API capabilities.

• Introduction

• Capabilities

• Getting Started

o SDK bundle

o API reference

• Browser Support

• Installation

• Region Configuration

• Authenticating users

• Customization

• Filtering and transforming

messages

• Whitelisting Domains

• Content Security Policy

• Appendices

o Appendix A – Users Authentication

o Appendix B - Managing Users

o Appendix C - Android FAQ

Current version: v2.3.2

Web Messenger

Avaya Web Messenger - Development Guide
4

Introduction
This document is a development guide and contains instructions and information for

developers seeking to integrate Web messenger, a highly customizable messaging widget

supported by Avaya IX Digital Connection platform.

What is the Avaya IX Digital Connection?

The Avaya IX Digital Connection is a software platform that enables businesses to

communicate with their customers across several popular messaging apps.

Developers can use the Avaya IX Digital Connection along with the SDK to add messaging

and conversational capabilities to their software. Avaya IX Digital Connection’s rich APIs

allow for conversation management, rich messaging, user metadata collection, account

management and more.

Businesses can also use the Avaya IX Digital Connection to connect to their customers (with
agents, bots) over messaging using an Avaya contact center solution.

Who is this for?

• Product teams who want to add web messaging capabilities to their own software.

• Developers who want the richest web messenger available with a powerful, simple,

and customizable SDK.

• Bot builders who want to build a web-based bots using a powerful SDK.

• Businesses who want to add chat to their website, and allow the conversation to live

beyond the browser and in any messaging channel.

• Customer success teams who want to proactively engage web visitors and build

engaging relationships.

• Sales teams who wants to do commerce and upsell from their website.

What you’ll need

• Some technical skills and access to your website code.

IMPORTANT NOTE: This Development guide is applicable to Web Messenger
release v2.3.2

Avaya Web Messenger - Development Guide
5

Capabilities

Web Messenger supports a wide variety of capabilities. Below is a detailed view of each
capability:

Text and Emoji

Plain text messages and Unicode Emojis✨

Web Messenger displays any Unicode emoji
sent in text messages. Mobile users can use
the emoji keyboard on their device to send
them. Web Messenger does not include a
visual emoji selector at the moment.

Image

Display static images.

GIF

GIFs sent via both the API and the Web
Messenger will be animated. The Web
messenger does not include a GIF picker.

Link

Display web links as buttons, Transform
links into clear calls to action.

Avaya Web Messenger - Development Guide
6

Location
Send and receive geolocation messages

Users will see the message rendered as text
with a Google Maps link of the location.
Location messages include longitude and
latitude coordinates in the API.

Postback

Send buttons to trigger events on your

server.

Postback buttons notify the server by

webhook when clicked. The server can

then act on the click and post messages

back to the user in response to the click.

Reply

You can suggest a few answers to reply to a

message.

When including replies with a message, Web
Messenger will display them at the bottom of
the conversation. Users can quickly select one
of them to send that reply.

Location Request
Request the current location of the user

Once a user taps the request button, Web

Messenger will first ask for location

permission and then send the user's

location.

Avaya Web Messenger - Development Guide
7

Compound Message
You can compose messages with multiple

actions.

Compound message allows to send text,
image and multiple buttons all in a single
message.

Carousel
Send a horizontally scrollable set of cards

that can contain text, image, and action

buttons.

Carousels support up to a maximum of 10

message items. Each message item must

include a title and at least one supported

action.

Typing Status
Display a typing indicator. Web Messenger can show that the agent is typing with a typing

animation. The API allows to specify an agent name and avatar.

Avaya Web Messenger - Development Guide
8

Badge for unread messages

When the user receives new messages, a badge containing the count of unread messages

is displayed in the header of the Web Messenger if the user’s view is not at the bottom of

the conversation.

The badge is removed when the messages are marked as read with the following user

actions:

• Scroll to bottom of conversation

• Focus or type in the chat input

• Click on the Web Messenger header or badge

• Click on the Web Messenger widget

• Send a message from a linked channel

Note that unless the user sends a message from a linked channel, no other user actions
may remove the badge while the user is viewing the settings.

Avaya Web Messenger - Development Guide
9

Getting Started
Avaya DevConnect offers a bundle Avaya In-app messaging SDK. This bundle includes SDK
for each platform (iOS, android), API reference docs and
a basic implementation of a mobile messaging app and
Web Messenger that uses the SDK to send messages
from an android Device to your Avaya contact center
Solution.

To get started, download the bundle from Avaya

DevConnect http://www.avaya.com/devconnect

What’s included in the bundle?

./distribution: contains a cdnPackage you can configure
for your environment and host.

./distribution/HOWTODEPLOY.md: contains
instructions on how to use configure script to generate
cdnPackage for your environment.

./distribution/files/docs/README.md:
Instructions on how to integrate the library on a
website will be available in the `README.md` file
inside the generated folder.

API reference

README.md this will help you discover all
the setting and options along with sample
code for features described in the guide.

Location:
/../bundle/web/distribution/README.md

The bundle includes everything you need to build and host the library for your
environment (CDN) and further documentation to integrate Web Messenger to your
website.

http://www.avaya.com/devconnect

Avaya Web Messenger - Development Guide
10

Browser support
Web Messenger supports all popular browsers.

Desktop

• Chrome: Latest and one major version behind
• Edge: Latest and one major version behind
• Firefox: Latest and one major version behind
• Internet Explorer: 11+
• Safari: Latest and one major version behind

Mobile

• Stock browser on Android 4.1+
• Safari on iOS 8+

Other browsers

Web Messenger is likely compatible with other and older browsers but only the above
versions have been tested and are supported.

The Web Messenger is optimized to be rendered within a viewport for mobile devices.
User experience may be degraded without a viewport.

<meta name="viewport" content="width=device-width, initial-scale=1">

Avaya Web Messenger - Development Guide
11

Installation
The easiest way you can include the Web Messenger on your web page is using the Script Tag

method

Step 1: Include the Web Messenger on your web page

Add the sample code snippet (from API Reference) towards the end of the head section on

your HTML page and replace <integration-id> with your integration ID.

Step 2: Initialize with your new app ID

Once the script has been included on your web page, you’re almost done. Simply initialize the
Web Messenger using the code snippet in the API Reference

Keeping up to date

Web Messenger is updated periodically, you will need to update to the new version available

via Avaya DevConnect. Each version is posted with corresponding release notes.

You can contact Avaya DevOps Team to get the integration ID for Web Messenger

Integration to your Avaya IX Digital Connection app.

Avaya Web Messenger - Development Guide
12

Region configuration
Web messenger is supported in the following regions:

Name Region identifier

United States Leave unspecified

European Union eu-1

To target the EU region for example the region identifier is passed
to AvMessagingSdk.init():

Login with userId and JWT

After the Web Messenger is initialized, your user can start sending messages right away.

These messages will show up on the business side under a new appUser. However, these

appUsers will not yet be associated to any user record you might have in an existing user

directory.

If your application has a login flow, or if a user needs to access the same conversation from

multiple devices, this is where the login method comes into play. You can associate users with

your own user directory by assigning them a userId. You will then issue each user

a jwt credential during the login flow. You can read more about this in the Authenticating

users section.

Authentication delegate

The Web Messenger offers an onInvalidAuth which will be called when an invalid
authentication token has been sent to IX Digital Connection. It allows you to provide a new
token for all subsequent requests. The request that originally failed will be retried up to five
times.

See Expiring JWTs on SDKs for more information.

Refer to API Reference docs for more details and sample code

You can contact your Avaya DevOps Team to verify region setting for your Avaya IX

Digital Connection app.

Refer to API Reference docs for more details and sample code

Avaya Web Messenger - Development Guide
13

Customization
The Web Messenger includes a set of built-in customization options which you can leverage
in two ways.

Embedded mode

Supported by the AvMessagingSdk.init method.

To embed the widget in your existing markup, you need to pass embedded: true when

calling AvMessagingSdk.init. By doing so, you are disabling the auto-rendering mechanism

and you will need to call AvMessagingSdk.render manually. This method accepts a DOM

element which will be used as the container where the widget will be rendered.

Strings customization

Supported by the AvMessagingSdk.init method.

The Web Messenger lets you customize any strings it displays by overwriting its keys. Simply

add the customText key in your AvMessagingSdk.init call and specify new values for the

keys used in. You can find all available keys in API Reference. If some text is between {}, or if

there is an html tag such as <a>, it needs to stay in your customized text.

For example:

You can contact Avaya DevOps Team to verify settings for your Avaya IX Digital

Connection app or you can do the settings using AvMessagingSdk.init

Please note that the settings included in the AvMessagingSdk.init method override
the settings set remotely. Changes to Web Messenger settings may take up to 15
seconds to take effect.

Refer to API Reference docs for more details and sample code

The embedded widget will take full width and height of the container. You must give
it a height, otherwise, the widget will collapse.

Avaya Web Messenger - Development Guide
14

Date localization

Supported by the AvMessagingSdk.init method.

When using strings customization to translate the interface, you will also want to have Web

Messenger show the date and time in the right language. To do this, simply pass locale at

initialization time. You might also want to override the timestamp format to match your

language. You can learn more about formats in API Reference.

AvMessagingSdk.init({

 integrationId: '<integration-id>',

 customText: {

 headerText: 'How can we help?',

 inputPlaceholder: 'Type a message...',

 sendButtonText: 'Send'

 }

}).then(….);

AvMessagingSdk.init({

 integrationId: '<integration-id>',

 locale: 'fr-CA'

 customText: {

 // ...

 conversationTimestampHeaderFormat: 'Do MMMM YYYY, hh:mm',

 // ...

 }

}).then(….);

The locale options is using the language-COUNTRY format. Language codes can be

found here and country codes here. The country part is optional, and if a country is either

not recognized or supported, it will fallback to using the generic language. If the

language isn't supported, it will fallback to en-US. A list of supported locale can be

found on date-fns Github repository.

The locale option only affects date and time localization. It doesn't translate the

interface as Web Messenger doesn't provide built-in translations. Translating the

interface can be achieved through Strings customization.

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://github.com/date-fns/date-fns/tree/master/src/locale

Avaya Web Messenger - Development Guide
15

Display Style

Supported by the AvMessagingSdk.init method or Avaya DevOps Support.

The Web Messenger can be displayed as a button or as a tab. The default style is
the button mode.

When the display style is a button, you have the option of selecting your own button icon.

The image must be at least 200 x 200 pixels and must be in either JPG, PNG, or GIF format.

Button Size

You can customize the size of the button by setting a buttonWidth and buttonHeight. When

not provided, the button will have a default size of 58 x 58 pixels.

AvMessagingSdk.init

Specify the displayStyle, buttonIconUrl, buttonWidth and buttonHeight in the call

to AvMessagingSdk.init

Fixed Intro

Supported by the AvMessagingSdk.init method or Avaya DevOps Support.

You can set the introduction pane to fixed mode by setting fixedIntroPane to true. When set,
the pane will be pinned at the top of the conversation instead of scrolling with it. The default
value is false.

AvMessagingSdk.init({

 integrationId: '<integration-id>',

 // ...

 displayStyle: 'button',

 buttonIconUrl: 'https://myimage.png',

 buttonWidth: '90',

 buttonHeight: '90'

 // ...

}).then(….);

Refer to API Reference docs for more details and sample code

Avaya Web Messenger - Development Guide
16

Colors

Supported by the AvMessagingSdk.init method or Avaya DevOps Support.

The supported color customizations are:

• The Brand Color customizes the color of the messenger header. It is also used for the
color of the button or tab in idle state, as well as the color of the default app icon. If no
color is specified, the brand color will default to #65758e.

• The Conversation Color customizes the color of customer messages and actions in
the footer. If no color is specified, the conversation color will default to #0099ff.

• The Action Color changes the appearance of links and buttons in your messages. It is
also used for the ‘Send’ button when it is in active state. If no color is specified, the
action color will default to #0099ff.

Business profile

Supported by the AvMessagingSdk.init method or Avaya DevOps Support.

You can customize your business branding

with

the businessName and businessIconUrl

settings.

For the businessIconUrl setting, the image

must be at least 200 x 200 pixels and must

be in either JPG, PNG, or GIF format.

Background Image

Supported by the AvMessagingSdk.init method or Avaya DevOps Support.

Refer to API Reference docs for more details and sample code

If the branding settings are not set, they fall back to the app's settings. The app name is
used as the businessName, and the app icon is used as the businessIconUrl.

Refer to API Reference docs for more details and sample code

Avaya Web Messenger - Development Guide
17

You can customize the background image in your SDK with the backgroundImageUrl setting.
The image will be displayed at its full size, and tiled if it is not large enough to fill the
conversation.

Sound notification

Supported by the AvMessagingSdk.init method or Avaya DevOps Support.

By default, a sound notification will be played when a new message comes in and the window
is not in focus.

To disable this feature, you need to add the soundNotificationEnabled option to
the AvMessagingSdk.init call, like this:

Browser storage

Supported by the AvMessagingSdk.init method.

By default, the Web Messenger will store the identity of anonymous users in
the localStorage of the browser.

Using the localStorage will persist the user identity throughout browser sessions (including
page reloads and browser restarts). To clear the user identity once the browser is closed,
use sessionStorage instead. Learn more

Refer to API Reference docs for more details and sample code

AvMessagingSdk.init({

 integrationId: '<integration-id>',

 // ...

 soundNotificationEnabled: false // Add this line to your init call

 // ...

}).then(….);

AvMessagingSdk.init({

 integrationId: '<integration-id>',

 browserStorage: 'sessionStorage' // Add this line to your init call

 // ...

}).then(….);

https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API

Avaya Web Messenger - Development Guide
18

Menu items

Supported by the AvMessagingSdk.init method.

The Web Messenger features a menu that allows the user to send various message types. The

types displayed in this menu can be customized, or the menu can be hidden altogether.

If you want to control this menu, add

the menuItems option to the

AvMessagingSdk.init call:

To hide the menu completely, override
the menuItems option as follows:

Filtering and transforming messages
The Web Messenger allows you to filter and transform messages by using

the beforeDisplay delegate. To set a delegate, use the setDelegate method.

This may be useful if you want to conditionally filter specific messages or transform their

structure. See the Message Schema section to learn more on the message properties that you

can access and modify. You may also want to set your own properties using

the beforeSend delegate.

AvMessagingSdk.init({

 integrationId: '<integration-id>',

 menuItems: {

 imageUpload: true,

 fileUpload: true,

 shareLocation: true

 },
 // ...

}).then(….);

AvMessagingSdk.init({

 integrationId: '<integration-id>',

 menuItems: { },

 // ...

}).then(….);

Refer to API Reference docs for more details and sample code

Avaya Web Messenger - Development Guide
19

Filtering messages

The following example sets a beforeDisplay delegate method to check if a message has been

marked as archived in the metadata for a specific conversation (this can be done using

the beforeSend delegate method as well). If the field isArchived is true, we instruct the SDK

to hide the message by returning null. If not, we simply return the original message

unmodified.

Transforming business messages

The following example sets a default author name on messages for a specific conversation

that lacks one if they are originating from the business. We first check if the message is sent

by the appMaker and if a name has been specified. If not, we set it and return the modified

message.

const delegate = {

 beforeDisplay(message, data) {

 if (data.conversation._id === '<conversation-id>' && message.metadata &&

 message.metadata.isArchived) {

 return null;

 }

 return message;

 }

};

AvMessagingSdk.init({

 integrationId: '<integration-id>',

 delegate

});

const delegate = {

 beforeDisplay(message, data) {

 if (data.conversation._id === '<conversation-id>' && message.role === 'appMaker'

 && !message.name) {

 message.name = 'Acme Bank';

 }

 return message;

 }

};

AvMessagingSdk.init({

 integrationId: '<integration-id>',

 delegate

});

Avaya Web Messenger - Development Guide
20

Transforming user messages

The following example adds the URL of the page the user is visiting while messaging a

business for a specific conversation. This can be useful when users navigate within a site while

messaging. We first check if the message role is appUser and then add a currentUrl attribute

in the metadata property.

Transforming postback

The following example adds the URL of the page the user is visiting while actioning a

postback for a specific conversation. This can be useful to tailor the reaction to the postback

in accordance to the current page. We add a currentUrl attribute in the metadata property.

const delegate = {

 beforeSend(message, data) {

 if (data.conversation._id === '<conversation-id>' && message.role === 'appUser') {

 message.metadata = {

 ...message.metadata,

 currentUrl: window.location.href

 };

 }

 return message;

 }

};

AvMessagingSdk.init({

 integrationId: '<integration-id>',

 delegate

});

const delegate = {
 beforePostbackSend(postback, data) {
 if (data.conversation._id === '<conversation-id>') {
 postback.metadata = {
 ...postback.metadata,
 currentUrl: window.location.href
 };
 }
 return postback;
 }
};

AvMessagingSdk.init({

 integrationId: '<integration-id>',

 delegate

});

Avaya Web Messenger - Development Guide
21

Whitelisting Domains
By default, the Web Messenger can be initialized from any domain with the use of

the integrationId. To limit domains where Web messenger can be used, you can use

the originWhitelist setting.

When the originWhitelist is set, It restrict the access to only the origins listed in the array by

implementing Cross Origin Resource Sharing (CORS). More specifically, it will look at

the Origin header for every HTTP request and block it if the Origin is not part of

the originWhitelist array.

Notes:
• localhost is supported as a valid hostname in the origin, so you can test when doing

local development.
• Wildcard subdomains are not currently supported, so you need to list all of your

supported domains individually.

You can contact your Avaya DevOps Team for originWhitelist setting request

An origin is defined as the combination of the protocol, hostname and, optionally, a
port (e.g. https://avaya.com).

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Origin

Avaya Web Messenger - Development Guide
22

Content Security Policy
If your deployment requires CSP compatibility, add the following meta tag to your
configuration.

Note that an equivalent configuration can be done server side.

Note that your CSP configuration should also include any domains used to host images or
files sent in messages. If you require blob: to be excluded for img-src, you must disable the
image upload feature via the init settings function.

<meta
 http-equiv="Content-Security-Policy"
 content="
 connect-src
 wss://*.{{YOUR_DOMAIN_NAME}}
 https://*.{{YOUR_DOMAIN_NAME}};
 font-src
 https://*.{{YOUR_DOMAIN_NAME}};
 script-src
 https://*.{{YOUR_DOMAIN_NAME}};
 style-src
 https://*.{{YOUR_DOMAIN_NAME}};
 img-src
 blob:
 https://*.{{YOUR_DOMAIN_NAME}};"
/>

Refer to API Reference docs for more details and sample code

https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

Avaya Web Messenger - Development Guide
23

Appendix A – Users Authentication
If your software or application has an existing user authentication method then you can

optionally federate those identities with Avaya IX Digital Connection by issuing a JSON web

token (JWT). A JWT is required to protect the identity and data of these users. This option

requires your app to be connected to your own secure web service. There are JWT libraries

available supporting a wide variety of popular languages and platforms.

First, you must assign a userId to each of your users. The userId will uniquely identify your

users within Avaya IX Digital Connection and the JWTs you issue serve as a signed proof that

your software or app has successfully authenticated that user.

To log in with a JWT:

1. Generate an API key for your Avaya IX Digital Connection app.

2. Implement server side code to sign new JWTs using the key ID and secret provided.

The JWT header must specify the key ID (kid). The JWT payload must include

a scope claim of appUser and a userId claim which you’ve assigned to the app user.

Make sure the userId field is formatted as a String. If you use numeric ids,

the userId must be a String representation of the number - using a number directly

will result in an invalid auth error.

3. Issue a JWT for each user. You should tie-in the generation and delivery of this JWT

with any existing user login process used by your app.

4. Initialize Avaya In-App Messaging SDK in your website or app. See instructions

for Web Messenger in this document.

A node.js sample is provided below using jsonwebtoken >= 6.0.0

A userId is a string that can have any value you like, but must be unique within a given

Avaya IX Digital Connection app. Examples of userIds include usernames, GUIDs, or

any existing ID from your own user directory. The userId should map to a unique

identity in your existing user directory. The userId should always reference an external

entity; in other words you should not reuse any id that was assigned by Avaya IX Digital

Connection as a userId. When choosing a userId you should also ideally avoid using

user properties that change, like a phone number.

You can contact your Avaya DevOps Team to generate key ID and secret for your

Avaya IX Digital Connection app.

http://jwt.io/
http://jwt.io/

Avaya Web Messenger - Development Guide
24

5. Call AvMessagingSdk.login with your userId and jwt:

Web (JavaScript):

var jwt = require('jsonwebtoken');

var KEY_ID = 'app_5deaa3531c7f940010cc4ba4';

var SECRET = 'BFJJ88naxc5PZNAMU9KpBNTR';

var signJwt = function(userId) {

 return jwt.sign(

 {

 scope: 'appUser',

 userId: userId

 },

 SECRET,

 {

 header: {

 alg: 'HS256',

 typ: 'JWT',

 kid: KEY_ID

 }

 }

);

};

AvMessagingSdk.login('user-id', 'jwt').then(

 function() {

 // Your code after login is complete

 },

 function(err) {

 // Something went wrong during login. Your JWT might be invalid

 }

);

If your API key is ever compromised you can generate a new one. Avaya IX Digital
Connection will accept a JWT as long as it contains all required fields and is signed with
any of your Avaya IX Digital Connection Conversations app’s valid API keys. Deleting an
API key will invalidate all JWTs that were signed with it.

Avaya Web Messenger - Development Guide
25

Expiring JWTs on SDKs

If you desire to generate credentials that expire after a certain amount of time, using JWTs is

a good way to achieve this.

The exp (expiration time) property of a JWT payload is honoured by the IX Digital Connection

API. A request made with a JWT which has an exp that is in the past will be rejected.

Keep in mind that using JWTs with exp means that you will need to implement regeneration

of JWTs, which demands additional logic (Android, iOS or Web Messenger) in your software.

JWTs are required to identify your users by a custom identifier (userId) in SDKs. In this case,

JWTs are signed with an app API key with a scope of appUser, and an additional payload

property userId.

Sample JWT Structure with expiry

Header: Payload:

Note: expiry field - timestamp representing 2018-11-18T00:00:00+00:00

Users on multiple clients
You may have a single user logging in as the same userId from multiple clients. For example,

they have your app installed on both their iPhone and their iPad or multiple android devices.

You might also have Avaya IX Digital Connection integrated in both your mobile app as well

as on your web site.

Once a user has been logged in to Avaya IX Digital Connection, they will see the same

conversation across each of these clients.

Omitting the userId
Avaya IX Digital Connection will work perfectly fine without a userId. Profile information can

still be included, and the user can take advantage of all rich messaging features, but the user

will only be able to access the conversation from the client they’re currently using. Without

a userId, if the same individual opens Avaya IX Digital Connection on a new client, or runs

your web app in an incognito browser session, they will see a newly created empty

conversation when they open Avaya IX Digital Connection, and on the contact center

{

 "alg": "HS256",

 "typ": "JWT",

 "kid": "<app-key-id>"

}

{

 "scope": "appUser",

 "exp": "1542499200",

 "userId": "<user-id>"

}

Avaya Web Messenger - Development Guide
26

(business) side they will be represented as two distinct appUsers. This will happen even if

you specify the same profile information in both cases.

A userId can also be omitted at first and added at a later time. If you deploy an update to

your app that assigns an existing user with a new userId that they didn’t have before, any

existing conversation history they have will be preserved and their messages will start being

synchronized across all clients where that userId is being used. This is particularly useful if a

user opens Avaya IX Digital Connection and starts a conversation before having logged in to

your app or website.

Switching users
If your app allows a shared client to switch between multiple user identities you can call

the login API multiple times to switch between different userIds.

Logging out
Your app may have a logout function which brings users back to a login screen. In this case

you would want to revert IX Digital Connection to a pre-login state. You can do this by calling

the logout API.

Calling logout will disconnect your user from any userId they were previously logged in with

and it will remove any conversation history stored on the client. Logging out will not disable

Avaya IX Digital Connection. While logged out, the user is free to start a new conversation

but they will show up as a different appUserId on the business end.

Web (JavaScript):

AvMessagingSdk.logout().then(

 function() {

 // Your code after logout is complete

 },

 function(err) {

 // Something went wrong during logout

 }

);

Avaya Web Messenger - Development Guide
27

Appendix B - Managing Users

In addition to the information automatically collected and stored for each of a user’s clients,
an appUser itself can have metadata and profile information attached to it, in order to better
understand the context and the history of the user.

The appUser

In the IX Digital Connection lexicon, user (usually referred to as an app user or appUser) refers
to an end-user of your platform or a customer of your business. The following are all
examples of what IX Digital Connection refers to as an appUser:

• A visitor to your Website

• The holder of an SMS number

• A user of your mobile app

• A member of the public on Facebook Messenger

Profile information can be added at runtime with the mobile and web SDKs. There are two
types of profile information fields: structured and unstructured.

Structured Fields
Structured fields are properties that IX Digital Connection has identified as common across
many use cases, and has exposed as common properties across all users, when present. The
currently supported structured fields are:

• givenName, also referred to as firstName in some contexts, which represents the
user’s given name

• surname, also referred to as lastName in some contexts, which represents the user’s
surname

• signedUpAt, which is the date when the user first started using your service, or when
they first became a customer. If not customized, this field is automatically populated
to be the date the user was created in , which is most likely the moment when the user
messaged you for the first time.

• email, which represents the user’s email address.

Unstructured Fields
Unstructured fields, also referred to as “custom properties”, are a set of key/value pairs that
are specific to your application domain, or use case. These fields are stored under
the properties field of an appUser, and can have values of type Number, String, or Boolean.

Custom properties are limited to 4KB per users. Each custom property `key` is limited to
100B and each custom property `value` is limited to 800B. Exceeding characters will be
truncated. An error will be returned if an appUser is in the process of being created, or
updated, and the sum of all custom properties’ sizes is over the 4KB limit.

Avaya Web Messenger - Development Guide
28

Adding properties using the SDKs

Each of IX Digital Connections’ web and mobile SDKs support attaching properties to a user
at runtime. The details of when and how these properties are uploaded to the server is
handled automatically by the SDKs, so in general you should not need to worry about this
detail. However, the process is documented here for completeness.

On Android and iOS, when a user property is set using one of the SDK methods, the
properties are immediately serialized to disk until they can be uploaded to the server.
Changes to user properties are uploaded in batches at regular intervals while the app is in the
foreground, as well as just before the app is sent to the background, or immediately before a
message is sent by the user. If the application exits unexpectedly, or the user has intermittent
internet connection or no internet connection, the properties will remain on disk until the
upload eventually succeeds (even across app launches). If the user does not yet exist (i.e. the
user has not yet sent their first message, and the startConversation method has not been
called), the properties are still tracked and stored on disk until the user is eventually created,
and they will be uploaded as part of the user creation flow.

On Web, the user properties are stored in memory, and uploaded in batches at regular
intervals, or immediately before a message is sent by the user. If the user does not yet exist
(i.e. the user has not yet sent their first message, and the startConversation method has not
been called), the properties are still tracked and stored in memory until the user is eventually
created, and they will be uploaded as part of the user creation flow. In contrast to the Android
and iOS SDKs, the Web Messenger does not store any user property information on disk - if
the browser window is closed before the user is created, then the properties will be discarded.

Web Messenger (JavaScript):

AvMessagingSdk.updateUser({

 givenName: 'Steve',

 surname: 'Brule',

 email: 'steveb@channel5.com',

 signedUpAt: Date.now(),

 properties: {

 premiumUser: true,

 numberOfPurchases: 20,

 itemsInCart: 3,

 couponCode: 'PREM_USR'

 }

});

The addProperties method accepts a Map containing the properties to add. This
dictionary must have keys that are type String and values that are
either String, Integer, Long, Float, Double, Boolean, or Date. If your map contains
any other data type as a value, then toString will be called on the object and the
resulting String will be added as a property.

Avaya Web Messenger - Development Guide
29

Appendix C - Web Messenger FAQ

How can I automatically open the Web

Messenger on my website?

You can use the function open() function

of the Web Messenger. Simply call this

function after you initialize on your web

page.

How can I customize the texts that are
displayed on the Web Messenger?

Customizing labels is easy, see string

customization for more details. You can

find the list of all customizable strings in

the api docs.

How can I customize the Web Messenger? You have two ways for changing the

appearance of the widget:

• Use our built in style selector in the

dashboard.

• Fork the Web Messenger and

change whatever aspects you like.

How can I reset an anonymous

conversation on the web (for testing)?

On the dev console, navigate

to Application tab > Local storage >

your website and clear the entries.

How can I embed the Web Messenger in a

container of my website?

You can embed the Web Messenger by

using this function.

The Web Messenger doesn’t display well

on mobile. How can I fix that?

Make sure you have this code in your

HTML file:

<meta name="viewport"

content="width=device-width, initial-

scale=1, maximum-scale=1">

How can I update the user data? You can update any information that you

want on the user by using

the updateUser() method. described here.

Why is my profile picture not updating? Did you enable “Use app icon and a single

team name for all messages” on the

Avaya IX Digital Connection settings?

Avaya Web Messenger - Development Guide
30

If you did, the image may be persisted in

your cache. Refresh it and try again.

Or contact Avaya DevOps Team.

Nothing shows up when I add script? There’s a couple of quick checks that you

can do if our script doesn’t load:

1. Make sure you separate the 2

scripts we provide

2. Make sure your integration ID

doesn’t contain “copy”

If that doesn’t do the trick, note that there

are a couple of libraries we conflict with

currently: mootools, requirejs & Prototype

js. Make sure that you’re not using one of

them.

How can I insert your widget in a

container?

You can embed anywhere on your

webpage now by following the

instructions of the docs.

How do I disable the sound notifications? You can follow these instructions to

disable the sound notifications.

Can I put the Web Messenger on two

different websites, and also change the

header?

Yes, you can place the web chat on as

many sites as you like. To change the

header, just set a

different introductionText property in

your AvMessagingSdk.init call on each

site.

Avaya Web Messenger - Development Guide
31

Appendix D – certificate configuration for file
transfer feature

You need to generate client cert using openssl. To do it you need to run the following

commands (in order). In addition, for testing it is better to have the same password (6 and more

characters):

openssl genrsa -aes256 -out client.key 2048

openssl pkey -in client.key -out client_test_fixed.key

 (after this command you can delete client.key. client_test_fixed.key which was generated

after this command should be left and renamed to client.key)

openssl req -x509 -sha256 -new -key client.key -out client.csr

(during command execution you need to answer the following questions)

Country Name (2 letter code) [AU]:

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:

Email Address []:

openssl x509 -sha256 -days 3652 -in client.csr -signkey client.key -out client.crt

