

Avaya In-App Messaging iOS SDK -
Development Guide

Release 5.0.0
September 2022

Avaya In-App Messaging iOS SDK - Development Guide
2

Table of Contents

Introduction .. 4

Capabilities ... 7

Getting Started ... 10

What’s included in the bundle? .. 10

API reference .. 10

QuickStart to your first conversation... 11

Installation .. 12

In the folder “./distribution” contains the “AvMessagingSdk.xcframework”, if already

contains the "ios-arm64_armv7_armv7s" and "ios-arm64_i386_x86_64-simulator". 12

You just need the insert the xcframework manually in your project settings. 12

After what you will be able to import header file. .. 12

Import the header file ... 12

Add Required Keys in your app’s Info.plist .. 12

Initialize in your app ... 14

Displaying the conversation interface ... 15

Starting Text ... 15

Region configuration .. 16

Login with userId and JWT ... 17

Authentication delegate .. 17

Configuring push notifications ... 19

Localization .. 21

Enabling Localization in your app .. 21

Adding more languages ... 22

Customization .. 22

Strings customization... 22

Styling the Conversation Interface .. 23

Menu items ... 24

Appendix A – Users Authentication ... 25

Appendix B- Managing Users ... 29

Appendix C – iOS FAQ .. 32

Appendix D – Localization strings .. 34

Appendix E – certificate configuration for file transfer feature .. 37

Avaya In-App Messaging iOS SDK - Development Guide
3

The Avaya Messaging iOS SDK is a highly customizable chat embeddable that
can be added to any iOS app. It supports the Avaya IX Digital Connection
API capabilities, push notifications and is fully localized.

• API reference

• Capabilities

• Getting Started

o SDK bundle

o API reference

• QuickStart to your first conversation

• Installation

• Initialize in your app

• Region configuration

• Authenticating users

• Configuring push notifications

• Rich notifications

• Localization

o Enabling Localization in your app

o Adding more languages

• Customization

o Strings customization

o Styling the Conversation Interface

o Menu items

• Appendices

o Appendix A – Users Authentication

o Appendix B - Managing Users

o Appendix C - Android FAQ

o Appendix D – Localization strings

Current version: v.5.0.0

iOS SDK

Avaya In-App Messaging iOS SDK - Development Guide
4

Introduction
This document is a development guide and contains instructions and information for

developers seeking to integrate In-app messaging iOS sdk, a highly customizable chat

embeddable that can be added to any iOS app and is supported by Avaya IX Digital

Connection platform.

What is the Avaya IX Digital Connection?

The Avaya IX Digital Connection is a software platform that enables businesses to

communicate with their customers across several popular messaging apps.

Developers can use the Avaya IX Digital Connection along with the SDK to add messaging

and conversational capabilities to their software. Avaya IX Digital Connection’s rich APIs

allow for conversation management, rich messaging, user metadata collection, account

management and more.

Businesses can also use the Avaya IX Digital Connection to connect to their customers (with
agents, bots) over messaging using Avaya contact center solution.

Who is this for?

• Product teams who want to add in-app messaging capabilities to their own software.

• Developers who want the richest in-app messaging available with a powerful, simple,

and customizable SDK.

• Businesses who want to add in-app messaging to their app, and allow the

conversation to live beyond the app and in any messaging channel.

• Bot builders who want to build a mobile app for their bot to live in using a powerful

SDK.

• Customer success teams who want to proactively engage mobile users and build

engaging relationships.

• Sales teams who want to do commerce and upsell from their mobile app.

IMPORTANT NOTE: This Development guide is applicable to iOS SDK release
v.5.0.0

Avaya In-App Messaging iOS SDK - Development Guide
5

What changed from previous release of SDK

In v.5.0.0

This major version contains a number of bug fixes and improvements including:

• Improved APIs related to setting up a conversation delegate. The delegate should

now be set by using the setConversationDelegate method on the Smooch class. It is

no longer possible to set a delegate by directly modifying a SKTConversation object.

• Fixed an issue that caused the unreadCountDidChange delegate method to not be

called in a multi-conversation setting.

• Fixed an issue that caused a "Done" button to incorrectly display in the navigation bar

on smaller devices.

• Fixed an observer-related crash that could occur infrequently when switching

between conversations on slow connections.

• Migrated to updated API documentation tooling.

In v.4.1.3

• Improved APIs related to setting up a conversation delegate. The delegate should

now be set by using the setConversationDelegate method on the Smooch class. It is

no longer possible to set a delegate by directly modifying a SKTConversation object.

• Fixed an issue that caused the unreadCountDidChange delegate method to not be

called in a multi-conversation setting.

• Fixed an issue that caused a "Done" button to incorrectly display in the navigation bar

on smaller devices.

• Fixed an observer-related crash that could occur infrequently when switching

between conversations on slow connections.

• Migrated to updated API documentation tooling.

• Fixed an issue that caused the keyboard to render over the text-input field.

• Fixed an app crash related to showing the conversation.

• Added support for Swift Package Manager.

• Fixed an issue where a crash could occur during login/logout.

• Fixed an issue where a user's location may fail to be sent.

• Fixed an issue where attempting to send an attachment could cause a crash on iPad.

• Fixed an issue where the typing indicator was not being shown.

• Fixed an issue where the SDK could block the main thread when sending messages

and presenting and dismissing the conversation screen.

• Fixed an issue where the conversation header disappeared when cancelling a Quick

Photo.

• Improved error logging in the event of a message sending failure.

• Better Message Delivery tracking - enabling integrators to know when a message

arrives on the device.

Avaya In-App Messaging iOS SDK - Development Guide
6

• We now return the participant's userExternalId when fetching the conversation

information

• Added customizations for Dark Mode.

• Fixed a bug with the composer for multi-line replies.

• Fixed a minor bug for the attachment button when using UISceneDelegate.

• Fixed a bug with the seen indicator not refreshing.

• Xcode 12 Support

• Added ability to change the colour of text in a carousel.

• Hide/Disable keyboard.

• Fixed a bug for taking quick photos in iOS 14.

• “Messages” is displayed for conversations that do not have a name assigned.

• Added the ability to send “avatarUrl” when creating a conversation.

What you’ll need

• Technical expertise in iOS development to add the SDK to your app.

Avaya In-App Messaging iOS SDK - Development Guide
7

Capabilities

The Avaya Messaging iOS SDK supports a wide variety of capabilities. Below is a detailed
view of each capability:

Text and Emoji

Plain text messages and Unicode Emojis✨

The iOS SDK displays any Unicode emoji sent
in text messages. Mobile users can use the
emoji keyboard on their device to send them.

Image

iOS SDK displays static images.

GIF

GIFs sent by the Agent (Business) as image

messages will be displayed as a static image in

the iOS SDK

GIFs sent as images by the user will also be

displayed as a static image in the

conversation.

Link

Display web links as buttons.
Transform links into clear calls to action.

Avaya In-App Messaging iOS SDK - Development Guide
8

Location
Send and receive geolocation messages

Upon sending a location, users will see a map
of that location. Tapping on the map opens
the Maps app centred on that location.

Postback

Send buttons to trigger events on your
server

Postback buttons notify the server by

webhook when clicked. The server can

then act on the click and post messages

back to the user in response to the click.

Reply

Suggest a few answers to reply to a message.
When including replies with a message, the
iOS SDK will display them at the bottom of
the conversation. Users can quickly select one
of them to send that reply.

Location Request
Request the current location of the user

Once a user taps the request button, the
iOS SDK will first ask for location
permission and then send the user's
location.

Avaya In-App Messaging iOS SDK - Development Guide
9

Compound Message
You can compose messages with multiple

actions.

Compound message allows to send text,

image and multiple buttons all in a single

message.

Carousel
Send a horizontally scrollable set of cards

that can contain text, image, and action

buttons.

Carousels support up to a maximum of 10

message items. Each message item must

include a title and at least one supported

action.

Typing Status

Display a typing indicator

The iOS SDK can show that the agent is typing

with a typing animation. The API allows to

specify an agent name and avatar. Agent is also

notified when the user is typing.

Avaya In-App Messaging iOS SDK - Development Guide
10

Getting Started
 Avaya DevConnect offers a bundle Avaya In-app messaging SDK. This bundle includes SDK
for each platform (iOS, android), API reference docs and
a basic implementation of a mobile messaging app and
Web Messenger that uses the SDK to send messages
from an android Device to your Avaya contact center
Solution.

To get started, download the bundle from Avaya

DevConnect http://www.avaya.com/devconnect

What’s included in the bundle?

./DemoApp: contains a sample application to as a QuickStart to your first conversation using iOS
Sdk. More details here.

./distribution: contains framework file (sdk) which you can use in your iOS application to add
messaging capabilities.

./docs/API_Reference:
API docs you can discover all the classes and methods available.

./docs/Development Guide: this guide.

API reference

The Avaya Messaging iOS SDK includes a client side API to initialize, customize and enable
advanced use cases of the SDK. See the iOS API reference included in SDK bundle to discover
all the classes and methods available.

http://www.avaya.com/devconnect

Avaya In-App Messaging iOS SDK - Development Guide
11

QuickStart to your first conversation
The DevConnect bundle for iOS includes a /DemoApp subfolder with a basic implementation

of a mobile messaging app that uses the Avaya Messaging iOS SDK to send messages from

an iOS Device to your contact center.

Prerequisites
To complete the steps below, you must have Xcode installed, as well as an Apple iOS Device

to run the sample mobile app (physical device or simulator).

Steps

1. Launch Xcode or Click on DemoAppSwift.xcodeproj from the bundle.

2. Ensure your iOS device is connected (or the simulator has been created/configured)

3. From the Menu, select Product > Run (or CMD+r)

4. Enter the correct Integration ID. Will be easier to use the copy-paste operation for all

fields. -> the “Init SDK” button will displayed

5. Press the “Init SDK” button. The “Start” button will displayed.

6. Press the “Start” button.

7. Send a test message!

NOTE: Also you may test the conversation with authenticate user.

Additional Steps:

1. Use the switcher - "Authenticate user" -> two new fields will display.

2. Paste the correct JWT and User ID and press "Start" button

3. Send a test message!

https://developer.apple.com/xcode/resources/

Avaya In-App Messaging iOS SDK - Development Guide
12

Installation

In the folder “./distribution” contains the “AvMessagingSdk.xcframework”, if already contains
the "ios-arm64_armv7_armv7s" and "ios-arm64_i386_x86_64-simulator".

You just need the insert the xcframework manually in your project settings.

After what you will be able to import header file.

Import the header file

Import the file into your app delegate’s .m file and any other places you plan to use it.
Examples for Objective-C and Swift:

Add Required Keys in your app’s Info.plist

The SDK may need to ask users permission to use certain features. Depending on the feature,
you must provide a description in your app’s Info.plist to explain why access is required. These
descriptions will be displayed the moment we prompt the user for permission.

Images

The SDK allows users to send images to you. To support this feature, you need to provide a
description for the following keys:

• NSCameraUsageDescription: describes the reason your app accesses the camera

(ex: Camera permission is required to send images to ${PRODUCT_NAME}).

More information available here.

• NSPhotoLibraryUsageDescription: describes the reason your app needs read access

to the photo library (ex: Photo library permission is required to send images to

${PRODUCT_NAME}). More information available here.

• NSPhotoLibraryAddUsageDescription: describes the reason your app needs write

access to the photo library (ex: Photo library permission is required to send

images to ${PRODUCT_NAME}). More information available here.

#import <AvMessagingSdk/AvMessagingSdk.h>

import AvMessagingSdk

https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW24
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW17
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW73

Avaya In-App Messaging iOS SDK - Development Guide
13

Location

The iOS SDK also allows users to send their current location. To support this feature, you
must provide a description for any of the following keys depending on your app’s use of
location services. Avaya In-app Messaging will ask the user for the location depending on the
key you provide:

• NSLocationWhenInUseUsageDescription: describes the reason for your app to

access the user’s location information while your app is in use (ex: Location services

is required to send your current location to ${PRODUCT_NAME}). This

permission is recommended if your app does not use location services and the SDK

will default to it if both keys are included. More information available here.

• NSLocationAlwaysUsageDescription: describes the reason for your app to access

the user’s location information at all times (ex: Location services is required to

send your current location to ${PRODUCT_NAME}). More information

available here.

Starting from iOS 10, these values are required. If they are not present in your app’s
Info.plist, the option to send an image will not be displayed.

If you don’t provide one of these keys, any attempt from the user to send their current
location will fail.

https://developer.apple.com/library/prerelease/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW26
https://developer.apple.com/library/prerelease/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW18

Avaya In-App Messaging iOS SDK - Development Guide
14

Initialize in your app
After following the steps above, your app is setup for working with the SDK. Before your code
can invoke its functionality, you’ll have to initialize the library using your app id.

To initialize the SDK, add the following line of code to your
applicationDidFinishLaunchingWithOptions: method:

Objective-C:

Swift:

You can contact Avaya DevOps Team to get the app Id for your Avaya IX Digital

Connection app.

[AvMessagingSdk initWithSettings: [AVASettings settingsWithAppId: @"YOUR_APP_ID"]

completionHandler:^(NSError * _Nullable error, NSDictionary * _Nullable userInfo) {

 if (error == nil) {

 // Your code after init is complete

 } else {

 // Something went wrong during initialization

 }

}];

AvMessagingSdk.initWith (AVASettings (appId: "YOUR_APP_ID")) {

(error: Error?, userInfo: [AnyHashable : Any]?) in

 if (error == nil) {

 // Your code after init is complete

 } else {

 // Something went wrong during initialization

 }

}

Make sure to replace YOUR_APP_ID with your app id.

Avaya In-App Messaging iOS SDK - Development Guide
15

Displaying the conversation interface

Once you’ve initialized the SDK, you’re ready to try it out.

Find a suitable place in your app’s interface to invoke and use the code below to display the

user interface. You can bring up whenever you think that your user will need access to help or

a communication channel to contact you. Examples below in Objective-C and Swift:

Starting Text

To prefill the text box in the conversation when opening it, simply supply a starting text string
when calling the code to display the user interface. Obj-C and Swift examples below:

NOTE: To allow the SDK integrate to UI of your application you should implement UI

using navigation controller. You may see details in DemoAppSwift.xcodeproj

[AvMessagingSdk show];

AvMessagingSdk.show()

[AvMessagingSdk showWithStartingText: @"Hi there! Can you help me please?"];

AvMessagingSdk.show (withStartingText: "Hi there! Can you help me please?")

Avaya In-App Messaging iOS SDK - Development Guide
16

Region configuration

The iOS SDK is supported in the following regions:

Region Region identifier

United States Leave unspecified

European Union eu-1

To target the EU region for example, set the region identifier in the AVASettings object:

Objective-C:

Swift:

AVASettings settings = [AVASettings settingsWithAppId: @"YOUR_APP_ID"];

settings.region = @"eu-1";

[AvMessagingSdk initWithSettings:settings completionHandler:^(NSError * _Nullable error,

NSDictionary * _Nullable userInfo) {

 if (error == nil) {

 // Your code after init is complete

 } else {

 // Something went wrong during initialization

 }

}];

let settings = AVASettings (appId: "YOUR_APP_ID")

settings.region = "eu-1"

AvMessagingSdk.init(settings) {(error: Error?, userInfo: [AnyHashable : Any]?) in

 if (error == nil) {

 // Your code after init is complete

 } else {

 // Something went wrong during initialization

 }

}

You can contact your Avaya DevOps Team to verify region setting for your Avaya IX

Digital Connection app.

Avaya In-App Messaging iOS SDK - Development Guide
17

Login with userId and JWT

After the SDK has been initialized, your user can start sending messages right away. These

messages will show up on the business side as a new appUser. However, these appUsers will

not yet be associated to any user record you might have in an existing user directory.

If your application has a login flow, or if a user needs to access the same conversation from

multiple devices, this is where the login method comes into play. You can associate users with

your own user directory by assigning them a userId. You will then issue each user

a jwt credential during the login flow. You can read more about this in the Authenticating

users section.

Authentication delegate

The iOS SDK offers an AVAAuthenticationDelegate which will be called when an invalid

authentication token has been sent to IX Digital Connection. It allows you to provide a new

token for all subsequent requests. The request that originally failed will be retried up to five

times. To set the delegate, set it in the AVASettings object when initializing the SDK. Examples

below in

Objective-C:

Swift:

When authDelegate is an instance that conforms to the AVAAuthenticationDelegate

protocol. For example:

AVASettings *settings = [[AVASettings alloc] init];

settings.authenticationDelegate = authDelegate;

[AvMessagingSdk initWithSettings:settings completionHandler: completionHandlerBlock];

let settings = AVASettings (appId: "myAppId")

settings.authenticationDelegate = authDelegate

AvMessagingSdk.initWith(settings)

Avaya In-App Messaging iOS SDK - Development Guide
18

@interface MyAuthenticationDelegate()

@end

@implementation MyAuthenticationDelegate

/**

 * Notifies the delegate of a failed request due to invalid credentials

 * @param completionHandler callback to invoke with a new token

 */

- (void)onInvalidToken:(void (^)(NSString *))completionHandler {

 // retrieve new token

 completionHandler(updatedToken);

}

@end

class AuthDelegate: NSObject, AVAAuthenticationDelegate {

 func onInvalidToken (_error: Error, handler completionHandler: @escaping

 AVAAuthenticationCompletionBlock) {

 // retrieve new token

 completionHandler(updatedToken)

 }

}

See Expiring JWTs on SDKs for more information.

Avaya In-App Messaging iOS SDK - Development Guide
19

Configuring push notifications
Push notifications are a great, unobtrusive way to let your users know that a reply to their
message has arrived.

Step 1. Enable Push Notifications and Generate the .p12 Certificate

For the steps below, you must be logged in to your Apple Developer account. If you don’t

have a developer account yet, you can enroll here.

1. Log in to Apple Developer Member Center, and navigate to the certificates list.

2. Click the + button at the top of the page to create a new certificate, and select Apple

Push Notification service SSL (Sandbox & Production).

3. Select your app ID from the dropdown and click continue.

4. Follow the instructions to generate a Certificate Signing Request (CSR) using Keychain

Access, and upload it to generate your certificate.

5. Once the certificate is ready, download it to your computer and double-click it to open

it in Keychain Access.

6. Right click on the certificate you created, and select Export "Apple Push Services:

{your-app-id}".

7. Choose a password, if desired, and save the .p12 file to your computer.

Step 2. Upload the .p12 file to Avaya IX Digital Connection

Step 3. Re-create your Provisioning Profile

Now that you have enabled push notifications for your app, you must re-create your
Provisioning Profile. You cannot use the one you’ve used in the past.

1. Go to Provisioning Profiles in the Apple Developer Member Center by clicking here.

You can contact your Avaya DevOps Team to configure the .p12 certificate to you Avaya

IX Digital Connection app.

The certificate generated with the steps above will be interpreted as a production

certificate by the Avaya IX Digital Conversation.

If you are testing push notifications with a development build of your app pushed from

XCode, you will need to specify this when you request push notification configuration as

they would need to upload your certificate with production: false instead.

https://developer.apple.com/programs/enroll/
https://developer.apple.com/account/resources/certificates/list
https://help.apple.com/developer-account/#/devbfa00fef7
https://developer.apple.com/account/resources/profiles/list

Avaya In-App Messaging iOS SDK - Development Guide
20

2. Click the + button to add a new provisioning profile and follow the on-screen

instructions.

3. Notice that once you created the new provisioning profile, it shows that “Push

Notifications” is an enabled service. Download the new profile.

4. Double click it to install it. It should now be selectable in Xcode for your app.

5. Build your app.

Step 4. Test it out!

1. Kill and restart your app.

2. Launch the Avaya iOS SDK.

3. Send a message to trigger the push notifications prompt. Important! If the user has

not yet granted notification permissions for your app, you must resend a message

after uploading the .p12 file.

4. Reply to the message from the Business System integration of your choice

You’ll receive a notification if you’re in the app, or outside the app!

You can’t receive push notifications in the Xcode simulator, you must use a physical
device.

The iOS SDK automatically handles incoming push notifications by swizzling certain

methods on your app’s UIApplicationDelegate. To disable this behavior, you can

set enableAppDelegateSwizzling to false on your AVASettings object. However, if

you choose to do so, you must follow the instructions outlined in the API documentation

to ensure that push notifications continue to be handled correctly.

Additionally, on iOS 10 and above, the SDK will handle user notification presentation

and on-tap handling by overriding the UNUserNotificationCenterDelegate for your

application. To disable this behavior, you can

set enableUserNotificationCenterDelegateOverride to false on

your AVASettings object. As above, if you choose to disable automatic handling of

notifications, you must follow the instructions outlined in the API documentation.

Avaya In-App Messaging iOS SDK - Development Guide
21

Localization
Every string you see in the SDK can be customized and localized. A few languages are

provided out of the box, but adding new languages is easy to do. When localizing strings, the

SDK looks for AvMessagingSdkLocalizable.strings in your app bundle before checking

the AvMessagingSdk bundle, enabling you to customize any strings and add support for

other languages.

Enabling Localization in your app

To display a language other than English, your app needs to first enable support for that

language. You can enable a second language in your Xcode project settings:

Once you have this, the UI will be displayed in the device language for the supported
language.

These languages are included with the iOS SDK: Arabic, English, Finnish, French, German,
Italian, Japanese, Korean, Mandarin Chinese (traditional and simplified), Persian, Portuguese
(Brazil and Portugal), Russian, Slovenian, Spanish, and Swedish.

See how to support more languages in Adding more languages.

Localization is subject to caching. If you can’t see your changes, cleaning your project,

resetting the simulator, deleting your app from your test devices are good measures.

https://docs.smooch.io/guide/native-ios-sdk/#strings-customization
https://docs.smooch.io/guide/native-ios-sdk/#adding-more-languages
https://docs.smooch.io/guide/native-ios-sdk/#adding-more-languages

Avaya In-App Messaging iOS SDK - Development Guide
22

Adding more languages

To enable other languages beside the provided ones, first copy the English

AvMessagingSdkLocalizable.strings file from the AvMessagingSdk bundle to the

corresponding .lproj folder for that language. Then, translate the values to match that

language.

Customization

Strings customization

The iOS SDK lets you customize any strings it displays via Apple’s localization mechanism. To

override one or more strings, add an empty string file

named AvMessagingSdkLocalizable.strings in your Xcode project and specify new values

for the keys you would like to override. For example, to change the “Messages” header and

the “Done” button, create a file with these contents:

The full set of keys is listed below. To enable string customization across languages, make

sure you “Localize” your AvMessagingSdkLocalizable.strings file in Xcode.

"Messages" = "My Messages";

"Done" = "I'm Done";

Avaya In-App Messaging iOS SDK - Development Guide
23

Styling the Conversation Interface

The style of the conversation user interface can be controlled through two techniques:

• Using the UIAppearance proxy of UINavigationBar to style the navigation bar’s

color and appearance.

• The AVASettings class provides access to the status bar and the color of the message

bubbles and its text.

Suppose you wanted the conversation UI to have a black navigation bar and red message

bubbles with white text. First, you’d use UINavigationBar’s appearance proxy to set up the

navigation bar. Then, you’d use AVASettings to finish styling the UI:

Objective-C:

Swift:

AVASettings* settings = [AVASettings settingsWithAppId:@"YOUR_APP_ID"];

settings.conversationAccentColor = [UIColor redColor];

settings.userMessageTextColor = [UIColor whiteColor];

settings.conversationStatusBarStyle = UIStatusBarStyleLightContent;

[[UINavigationBar appearance] setBarTintColor:[UIColor blackColor]];

[[UINavigationBar appearance] setTintColor:[UIColor redColor]];

[[UINavigationBar appearance] setTitleTextAttributes:@{ NSForegroundColorAttributeName :
[UIColor redColor] }];

var settings = AVASettings (appId: "YOUR_APP_ID")

settings.conversationAccentColor = UIColor.redColor();

settings.userMessageTextColor = UIColor.whiteColor();

settings.conversationStatusBarStyle = UIStatusBarStyle.LightContent;

UINavigationBar.appearance().barTintColor = UIColor.blackColor()

UINavigationBar.appearance().tintColor = UIColor.redColor()

UINavigationBar.appearance().titleTextAttributes = [NSForegroundColorAttributeName :
UIColor.redColor()]

Avaya In-App Messaging iOS SDK - Development Guide
24

Menu items

The iOS SDK features a tappable menu icon that allows the user

to send various message types. The types displayed in this menu

can be customized, or the menu can be hidden altogether.

If you want to control this menu, override

the allowedMenuItems array in AVASettings to add the values

of your choice.

To hide the menu completely, set the allowedMenuItems array

to nil.

Objective-C:

Swift:

AVASettings *settings = [AVASettings settingsWithAppId:@" YOUR_APP_ID "];

settings.allowedMenuItems = @[

 SKTMenuItemCamera,

 SKTMenuItemGallery,

 SKTMenuItemDocument,

 SKTMenuItemLocation

];

AVASettings *settings = [AVASettings settingsWithAppId:@"your_app_id"];

settings.allowedMenuItems = nil;

Even with menu items AVAMenuItemCamera and AVAMenuItemGallery enabled, they

may not be displayed depending on your app’s configuration, see Add Required Keys in

your app’s Info.plist for more detail.

Even with menu item AVAMenuItemDocument enabled, it will not be displayed to users

on iOS 10 or lower with iCloud drive disabled.

https://docs.smooch.io/guide/native-ios-sdk/#add-required-keys-in-your-apps-infoplist
https://docs.smooch.io/guide/native-ios-sdk/#add-required-keys-in-your-apps-infoplist

Avaya In-App Messaging iOS SDK - Development Guide
25

Appendix A – Users Authentication
If your software or application has an existing user authentication method then you can

optionally federate those identities with Avaya IX Digital Connection by issuing a JSON web

token (JWT). A JWT is required to protect the identity and data of these users. This option

requires your app to be connected to your own secure web service. There are JWT libraries

available supporting a wide variety of popular languages and platforms.

First, you must assign a userId to each of your users. The userId will uniquely identify your

users within Avaya IX Digital Connection and the JWTs you issue serve as a signed proof that

your software or app has successfully authenticated that user.

To log in with a JWT:

1. Generate an API key for your Avaya IX Digital Connection app.

2. Implement server side code to sign new JWTs using the key ID and secret provided.

The JWT header must specify the key ID (kid). The JWT payload must include

a scope claim of appUser and a userId claim which you’ve assigned to the app user.

Make sure the userId field is formatted as a String. If you use numeric ids,

the userId must be a String representation of the number - using a number directly

will result in an invalid auth error.

3. Issue a JWT for each user. You should tie-in the generation and delivery of this JWT

with any existing user login process used by your app.

4. Initialize Avaya In-App Messaging SDK in your website or app. See instructions

for Android in this document.

A node.js sample is provided below using jsonwebtoken >= 6.0.0

A userId is a string that can have any value you like, but must be unique within a given

Avaya IX Digital Connection app. Examples of userIds include usernames, GUIDs, or

any existing ID from your own user directory. The userId should map to a unique identity

in your existing user directory. The userId should always reference an external entity; in

other words you should not reuse any id that was assigned by Avaya IX Digital

Connection as a userId. When choosing a userId you should also ideally avoid using

user properties that change, like a phone number.

You can contact your Avaya DevOps Team to generate key ID and secret for your

Avaya IX Digital Connection app.

http://jwt.io/
http://jwt.io/

Avaya In-App Messaging iOS SDK - Development Guide
26

5. Call AvMessagingSdk.login with your userId and jwt for Objective-C and Swift:

var jwt = require('jsonwebtoken');
var KEY_ID = 'app_5deaa3531c7f940010cc4ba4';
var SECRET = 'BFJJ88naxc5PZNAMU9KpBNTR';

var signJwt = function(userId) {
 return jwt.sign(
 {
 scope: 'appUser',
 userId: userId
 },
 SECRET,
 {
 header: {
 alg: 'HS256',
 typ: 'JWT',
 kid: KEY_ID
 }
 }
);
};

[AvMessagingSdk login:@"user-id" jwt:@"jwt" completionHandler:^(NSError *

_Nullable error, NSDictionary * _Nullable userInfo) {

 if (error == nil) {

 // Your code after login is complete

 } else {

 // Something went wrong during login. Your JWT might be invalid

 }

}];

 AvMessagingSdk.login("user-id", jwt:"jwt") { (error:Error? ,

userInfo:[AnyHashable : Any]?) in

 if (error == nil) {

 // Your code after login is complete

 } else {

 // Something went wrong during login. Your JWT might be invalid

 }

}

If your API key is ever compromised you can generate a new one. Avaya IX Digital

Connection will accept a JWT as long as it contains all required fields and is signed with

any of your Avaya IX Digital Connection Conversations app’s valid API keys. Deleting an

API key will invalidate all JWTs that were signed with it.

Avaya In-App Messaging iOS SDK - Development Guide
27

Expiring JWTs on SDKs

If you desire to generate credentials that expire after a certain amount of time, using JWTs is

a good way to achieve this.

The exp (expiration time) property of a JWT payload is honoured by the IX Digital Connection

API. A request made with a JWT which has an exp that is in the past will be rejected.

Keep in mind that using JWTs with exp means that you will need to implement regeneration

of JWTs, which demands additional logic (Android, iOS or Web Messenger) in your software.

JWTs are required to identify your users by a custom identifier (userId) in SDKs. In this case,

JWTs are signed with an app API key with a scope of appUser, and an additional payload

property userId.

Sample JWT Structure with expiry

Header: Payload:

Note: expiry field - timestamp representing 2018-11-18T00:00:00+00:00

Users on multiple clients

You may have a single user logging in as the same userId from multiple clients. For example,

they have your app installed on both their iPhone and their iPad or multiple android devices.

You might also have Avaya IX Digital Connection integrated in both your mobile app as well

as on your web site.

Once a user has been logged in to Avaya IX Digital Connection, they will see the same

conversation across each of these clients.

Omitting the userId

Avaya IX Digital Connection will work perfectly fine without a userId. Profile information can

still be included, and the user can take advantage of all rich messaging features, but the user

will only be able to access the conversation from the client they’re currently using. Without

a userId, if the same individual opens Avaya IX Digital Connection on a new client, or runs

your web app in an incognito browser session, they will see a newly created empty

{

 "alg": "HS256",

 "typ": "JWT",

 "kid": "<app-key-id>"

}

{

 "scope": "appUser",

 "exp": "1542499200",

 "userId": "<user-id>"

}

Avaya In-App Messaging iOS SDK - Development Guide
28

conversation when they open Avaya IX Digital Connection, and on the contact center

(business) side they will be represented as two distinct appUsers. This will happen even if

you specify the same profile information in both cases.

A userId can also be omitted at first and added at a later time. If you deploy an update to

your app that assigns an existing user with a new userId that they didn’t have before, any

existing conversation history they have will be preserved and their messages will start being

synchronized across all clients where that userId is being used. This is particularly useful if a

user opens Avaya IX Digital Connection and starts a conversation before having logged in to

your app or website.

Switching users

If your app allows a shared client to switch between multiple user identities you can call

the login API multiple times to switch between different userIds.

Logging out

Your app may have a logout function which brings users back to a login screen. In this case

you would want to revert IX Digital Connection to a pre-login state. You can do this by calling

the logout API.

Calling logout will disconnect your user from any userId they were previously logged in with

and it will remove any conversation history stored on the client. Logging out will not disable

Avaya IX Digital Connection. While logged out, the user is free to start a new conversation

but they will show up as a different appUserId on the business end. Sample code for

Objective-C and Swift below:

[AvMessagingSdk logoutWithCompletionHandler:^(NSError * _Nullable error, NSDictionary

* _Nullable userInfo) {

 if (error == nil) {

 // Your code after logout is complete

 } else {

 // Something went wrong during logout

 }

}];

AvMessagingSdk.logout { (error:Error? , userInfo:[AnyHashable : Any]?) in
 if (error == nil) {
 // Your code after logout is complete
 } else {
 // Something went wrong during logout
 }
}

Avaya In-App Messaging iOS SDK - Development Guide
29

Appendix B- Managing Users
In addition to the information automatically collected and stored for each of a user’s clients,

an appUser itself can have metadata and profile information attached to it, in order to better

understand the context and the history of the user.

The appUser

In the IX Digital Connection lexicon, user (usually referred to as an app user or appUser) refers

to an end-user of your platform or a customer of your business. The following are all

examples of what IX Digital Connection refers to as an appUser:

• A visitor to your Website

• The holder of an SMS number

• A user of your mobile app

• A member of the public on Facebook Messenger

Profile information can be added at runtime with the mobile and web SDKs. There are two

types of profile information fields: structured and unstructured.

Structured Fields
Structured fields are properties that IX Digital Connection has identified as common across

many use cases, and has exposed as common properties across all users, when present. The

currently supported structured fields are:

• givenName, also referred to as firstName in some contexts, which represents the

user’s given name

• surname, also referred to as lastName in some contexts, which represents the user’s

surname

• signedUpAt, which is the date when the user first started using your service, or when

they first became a customer. If not customized, this field is automatically populated

to be the date the user was created in , which is most likely the moment when the user

messaged you for the first time.

• email, which represents the user’s email address.

Unstructured Fields
Unstructured fields, also referred to as “custom properties”, are a set of key/value pairs that

are specific to your application domain, or use case. These fields are stored under

the properties field of an appUser, and can have values of type Number, String, or Boolean.

Avaya In-App Messaging iOS SDK - Development Guide
30

Adding properties using the SDKs

Each of IX Digital Connections’ web and mobile SDKs support attaching properties to a user

at runtime. The details of when and how these properties are uploaded to the server is

handled automatically by the SDKs, so in general you should not need to worry about this

detail. However, the process is documented here for completeness.

On Android and iOS, when a user property is set using one of the SDK methods, the

properties are immediately serialized to disk until they can be uploaded to the server.

Changes to user properties are uploaded in batches at regular intervals while the app is in the

foreground, as well as just before the app is sent to the background, or immediately before a

message is sent by the user. If the application exits unexpectedly, or the user has intermittent

internet connection or no internet connection, the properties will remain on disk until the

upload eventually succeeds (even across app launches). If the user does not yet exist (i.e. the

user has not yet sent their first message, and the startConversation method has not been

called), the properties are still tracked and stored on disk until the user is eventually created,

and they will be uploaded as part of the user creation flow.

On Web, the user properties are stored in memory, and uploaded in batches at regular

intervals, or immediately before a message is sent by the user. If the user does not yet exist

(i.e. the user has not yet sent their first message, and the startConversation method has not

been called), the properties are still tracked and stored in memory until the user is eventually

created, and they will be uploaded as part of the user creation flow. In contrast to the Android

and iOS SDKs, the Web Messenger does not store any user property information on disk - if

the browser window is closed before the user is created, then the properties will be discarded.

Objective-C:

Custom properties are limited to 4KB per users. Each custom property `key` is limited to
100B and each custom property `value` is limited to 800B. Exceeding characters will be
truncated. An error will be returned if an appUser is in the process of being created, or
updated, and the sum of all custom properties’ sizes is over the 4KB limit.

Avaya In-App Messaging iOS SDK - Development Guide
31

Swift:

#import <AvMessagingSdk/AvMessagingSdk.h>

[AVAUser currentUser].firstName = @"Steve";

[AVAUser currentUser].lastName = @"Brule";

[AVAUser currentUser].email = @"steveb@channel5.com";

[AVAUser currentUser].signedUpAt = [NSDate date];

[[AVAUser currentUser] addProperties:@{

 @"premiumUser": @YES,

 @"numberOfPurchases": @20,

 @"itemsInCart": @3,

 @"couponCode": @"PREM_USR"

 }];

AVAUser.current()?.firstName = "Steve"

AVAUser.current()?.lastName = "Brule"

AVAUser.current()?.email = "steveb@channel5.com"

AVAUser.current()?.signedUpAt = NSDate() as Date

AVAUser.current()?.addProperties([

 "premiumUser": true,

 "numberOfPurchases": 20,

 "itemsInCart": 3,

 "couponCode": "PREM_USR"

])

The addProperties method accepts a Map containing the properties to add. This

dictionary must have keys that are type String and values that are

either String, Integer, Long, Float, Double, Boolean, or Date. If your map contains

any other data type as a value, then toString will be called on the object and the

resulting String will be added as a property.

Avaya In-App Messaging iOS SDK - Development Guide
32

Appendix C – iOS FAQ

How does Avaya IX Digital

Connection handle push

notifications?

We can handle push notifications in 2 ways:

If the enableAppDelegateSwizzling property of your

AVASettings object is set to YES, then Avaya IX

Digital Connection will automatically handle any

push notifications that originated from IX Digital

Connection before forwarding to your app

delegate’s didReceiveRemoteNotification method.

If you set that property to NO, then you will have to

call [AvMessagingSdk

handlePushNotification:userInfo] in

your didReceiveRemoteNotification callback. To

check the origin, you use the following code:

BOOL AvMessagingSdkNotification =

userInfo[AVAPushNotificationIdentifier] != nil

You can find official documentation about this in the

IX Digital Conversation header files, or in our API

docs:

…/Resources/Documents/Classes/AVASettings.html

#//api/name/enableAppDelegateSwizzling

…/Resources/Documents/Classes/AvMessagingSdk.

html#//api/name/setPushToken

…/Resources/Documents/Classes/AvMessagingSdk.

html#//api/name/handlePushNotification

How do I present Avaya

Messaging Conversations inside a

View Controller?

The iOS SDK provides a method in API docs to

present Avaya Messaging Conversations in a custom

ViewController:

…/Resources/Documents/Classes/AvMessagingSdk.

html#//api/name/newConversationViewController

How can I perform custom

handling when a message action

is tapped?

The delegate method

conversation:shouldHandleMessageAction: is called

whenever a user taps an AVAMessageAction. You

Avaya In-App Messaging iOS SDK - Development Guide
33

 can perform custom handling in this method, and

return false to cancel AvMessagingSdk’s default

handling of the tap. Read more about it in the iOS

API docs

…/Resources/Documents/Protocols/AVAConversati

onDelegate.html#//api/name/conversation:shouldH

andleMessageAction:

How can I determine whether or

not the conversation view

controller is active or inactive?

It’s best to implement AVAConversationDelegate in

your code and track state of the conversation view

controller this way. The two methods you’ll want to

use are described in the following links:

…/Resources/Documents/Protocols/AVAConversatio

nDelegate.html#//api/name/conversation:willShowV

iewController:

…/Resources/Documents/Protocols/AVAConversatio

nDelegate.html#//api/name/conversation:willDismis

sViewController:

Read more about it in the iOS API docs

How can I customize the iOS

SDK’s appearance?

Read more about this in our documentation.

Is it possible to switch between

app IDs during a session?

Currently, we don’t provide support for switching

between app IDs during the same application

session. You can however switch users during the

same session (by calling AvMessagingSdk.login with

a different userId).

Xcode build fails with Library not

loaded: @rpath/Frameworks/

AvMessagingSdk.framework.

How can I fix this ?

In your project build settings, make sure Runtime

Search Paths (LD_RUNPATH_SEARCH_PATHS) is

set to $(inherited), @executable_path/Frameworks.

Avaya In-App Messaging iOS SDK - Development Guide
34

Appendix D – Localization strings

/* Nav bar button, action sheet cancel button */
"Cancel" = "...";

/* Conversation title */
"Messages" = "...";

/* Conversation header. Uses CFBundleDisplayName */
"This is the start of your conversation with the %@ team. We'll stay in touch to help you get the most out of
your app.\nFeel free to leave us a message about anything that’s on your mind. We’ll get back to your
questions, suggestions or anything else as soon as we can." = "...";

/* Conversation header when there are previous messages */
"Show more..." = "...";

/* Conversation header when fetching previous messages */
"Retrieving history..." = "...";

/* Error message shown in conversation view */
"No Internet connection" = "...";

/* Error message shown in conversation view */
"Could not connect to server" = "...";

/* Error message shown in conversation view */
"An error occurred while processing your action. Please try again." = "...";

/* Error message shown in conversation view */
"Reconnecting..." = "...";

/* Error message shown in conversation view */
"Invalid file" = "...";

/* Error message shown in conversation view */
"A virus was detected in your file and it has been rejected" = "...";

/* Error message shown in conversation view. Parameter represents the max file size formatted by
NSByteCountFormatter */
"Max file size limit exceeded %@." = "...";

/* Fallback used by the in app notification when no message author name is found */
"%@ Team" = "...";

/* Conversation send button */
"Send" = "...";

/* Conversation text input place holder */
"Type a message..." = "...";

/* Conversation nav bar left button */
"Done" = "...";
/* Failure text for chat messages that fail to upload */
"Message not delivered. Tap to retry." = "...";

/* Status text for chat messages */

Avaya In-App Messaging iOS SDK - Development Guide
35

"Sending..." = "...";
/* Status text for sent chat messages */
"Delivered" = "...";

/* Status text for chat messages seen by the appMaker */
"Seen" = "...";

/* Timestamp text for recent messages */
"Just now" = "...";

/* Timestamp text for messages in the last hour */
"%.0fm ago" = "...";

/* Timestamp text for messages in the last day */
"%.0fh ago" = "...";

/* Timestamp text for messages in the last week */
"%.0fd ago" = "...";

/* Action sheet button label */
"Take Photo" = "...";

/* Action sheet button label */
"Photo & Video Library" = "...";

/* Action sheet button label */
"Use Last Photo Taken" = "...";

/* Action sheet button label */
"Share Location" = "...";

/* Photo confirmation alert title */
"Confirm Photo" = "...";

/* Action sheet button label */
"Resend" = "...";

/* Action sheet button label */
"View Image" = "...";

/* Error displayed in message bubble if image failed to download */
"Tap to reload image" = "...";

/* Error displayed as message if location sending fails */
"Could not send location" = "...";

/* Error title when user selects "use latest photo", but no photos exist */
"No Photos Found" = "...";

/* Error description when user selects "use latest photo", but no photos exist */
"Your photo library seems to be empty." = "...";

/* Error title when user attempts to upload a photo but Photos access is denied */
"Can't Access Photos" = "...";

/* Error description when user attempts to upload a photo but Photos access is denied */
"Make sure to allow photos access for this app in your privacy settings." = "...";

Avaya In-App Messaging iOS SDK - Development Guide
36

/* Error title when user attempts to take a photo but camera access is denied */
"Can't Access Camera" = "...";
/* Error description when user attempts to take a photo but camera access is denied */
"Make sure to allow camera access for this app in your privacy settings." = "...";

/* Generic error title when user attempts to upload an image and it fails for an unknown reason */
"Can't Retrieve Photo" = "...";

/* Generic error description when user attempts to upload an image and it fails for an unknown reason */
"Please try again or select a new photo." = "...";

/* Error title when user attempts to send the current location but location access is denied */
"Can't Access Location" = "...";

/* Error description when user attempts to send the current location but location access is denied */
"Make sure to allow location access for this app in your privacy settings." = "...";

/* UIAlertView button title to link to Settings app */
"Settings" = "...";

/* UIAlertView button title to dismiss */
"Dismiss" = "...";

/* Title for payment button */
"Pay Now" = "...";

/* Title for message action when payment completed */
"Payment Completed" = "...";
/*
 Instructions for entering credit card info. Parameters are as follows:
 1. Amount (e.g. 50.45)
 2. Currency (e.g. USD)
 3. App name (Uses CFBundleDisplayName)
*/
"Enter your credit card to send $%@ %@ securely to %@" = "...";

/* Error text when payment fails */
"An error occurred while processing the card. Please try again or use a different card." = "...";

/* Button label for saved credit card view */
"Change Credit Card" = "...";
/*
Information label for saved credit card view. Parameters are as follows:
1. Amount (e.g. 50.45)
2. Currency (e.g. USD)
3. App name (Uses CFBundleDisplayName)
 */
"You're about to send $%@ %@ securely to %@" = "...";
/* Title for user notification action */
"Reply" = "...";
/* Date format used for message grouping headers on the conversation screen */
"MMMM d, h:mm a" = "MMMM d, h:mm a";

/* Date format used for message timestamps on the conversation screen */
"hh:mm a" = "hh:mm a";

/* Error message when the content of a webview fails to load */
"Failed to open the page" = "...";

Avaya In-App Messaging iOS SDK - Development Guide
37

Appendix E – certificate configuration for file
transfer feature

You need to generate client cert using openssl. To do it you need to run the following

commands (in order). In addition, for testing it is better to have the same password (6 and more

characters):

openssl genrsa -aes256 -out client.key 2048

openssl pkey -in client.key -out client_test_fixed.key

 (after this command you can delete client.key. client_test_fixed.key which was generated

after this command should be left and renamed to client.key)

openssl req -x509 -sha256 -new -key client.key -out client.csr

(during command execution you need to answer the following questions)

Country Name (2 letter code) [AU]:

State or Province Name (full name) [Some-State]:

Locality Name (eg, city) []:

Organization Name (eg, company) [Internet Widgits Pty Ltd]:

Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:

Email Address []:

openssl x509 -sha256 -days 3652 -in client.csr -signkey client.key -out client.crt

