
Avaya WebRTC Connect Software Development Guide 1

Avaya WebRTC Connect Software
Development Guide

 Release 4.0.6
Issue 1.0

April 2023

Avaya WebRTC Connect Software Development Guide 2

AVAYA SOFTWARE DEVELOPMENT KIT LICENSE AGREEMENT

REVISED: October 14, 2019

READ THIS CAREFULLY BEFORE ELECTRONICALLY ACCESSING OR USING THIS PROPRIETARY
PRODUCT!

THIS IS A LEGAL AGREEMENT (“AGREEMENT”) BETWEEN YOU, INDIVIDUALLY, AND/OR THE
LEGAL ENTITY FOR WHOM YOU ARE OPENING, INSTALLING, DOWNLOADING, COPYING OR
OTHERWISE USING THE AVAYA SOFTWARE DEVELOPMENT KIT (“SDK”) (COLLECTIVELY, AS
REFERENCED HEREIN, “YOU”, “YOUR”, OR “LICENSEE”) AND AVAYA INC. OR ANY AVAYA
AFFILIATE (COLLECTIVELY, “AVAYA”). IF YOU ARE ACCEPTING THE TERMS AND CONDITIONS OF
THIS AGREEMENT ON BEHALF OF A LEGAL ENTITY, YOU REPRESENT AND WARRANT THAT YOU
HAVE FULL LEGAL AUTHORITY TO ACCEPT ON BEHALF OF AND BIND SUCH LEGAL ENTITY TO
THIS AGREEMENT. BY OPENING THE MEDIA CONTAINER, BY INSTALLING, DOWNLOADING,
COPYING OR OTHERWISE USING THE AVAYA SOFTWARE DEVELOPMENT KIT (“SDK”) OR
AUTHORIZING OTHERS TO DO SO, YOU SIGNIFY THAT YOU ACCEPT AND AGREE TO BE BOUND
BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT HAVE SUCH AUTHORITY OR DO NOT
WISH TO BE BOUND BY THE TERMS OF THIS AGREEMENT, SELECT THE "DECLINE" BUTTON AT
THE END OF THE TERMS OF THIS AGREEMENT OR THE EQUIVALENT OPTION AND YOU SHALL
HAVE NO RIGHT TO USE THE SDK.

1.0 DEFINITIONS.

1.1 “Affiliates” means any entity that is directly or indirectly controlling, controlled by, or under common
control with Avaya Inc. For purposes of this definition, “control” means the power to direct the management
and policies of such party, directly or indirectly, whether through ownership of voting securities, by contract
or otherwise; and the terms “controlling” and “controlled” have meanings correlative to the foregoing.

1.2 “Avaya Software Development Kit” or “SDK” means Avaya technology, which may include Software,
Client Libraries, Specification Documents, Software libraries, application programming interfaces (“API”),
Software tools, Sample Application Code and Documentation.

1.3 “Client Libraries” mean any enabler code specifically designated as such and included in a SDK. Client
Libraries may also be referred to as “DLLs”, and represent elements of the SDK required at runtime to
communicate with Avaya products or other SDK elements.

1.4 “Change In Control” shall be deemed to have occurred if any person, entity or group comes to own or
control, directly or indirectly, beneficially or of record, voting securities (or any other form of controlling
interest) which represent more than fifty percent (50%) of the total voting power of the Licensee.

1.5 “Derivative Work(s)” means any translation (including translation into other computer languages), port,
compiling of Source Code into object code, combination with a pre-existing work, modification, correction,
addition, extension, upgrade, improvement, compilation, abridgment or other form in which an existing
work may be recast, transformed or adapted or which would otherwise constitute a derivative work under
the United States Copyright Act. Permitted Modifications will be considered Derivative Works.

1.6 “Documentation” includes programmer guides, CDs, manuals, materials, and information appropriate
or necessary for use in connection with the SDK. Documentation may be provided in machine-readable,
electronic or hard copy form.

Avaya WebRTC Connect Software Development Guide 3

1.7 “Intellectual Property” means any and all: (i) rights associated with works of authorship throughout the
world, including copyrights, neighboring rights, moral rights, and mask works, (ii) trademark and trade
name rights and similar rights, (iii) trade secret rights, (iv) patents, algorithms, designs and other industrial
property rights, (v) all other intellectual and industrial property rights (of every kind and nature throughout
the world and however designated) whether arising by operation of law, contract, license, or otherwise,
and (vi) all registrations, initial applications, renewals, extensions, continuations, divisions or reissues
thereof now or hereafter in force (including any rights in any of the foregoing).

1.8 “Permitted Modification(s)” means Licensee’s modifications of the Sample Application Code as needed
to create applications, interfaces, workflows or processes for use with Avaya products.

1.9 “Specification Document” means any notes or similar instructions in hard copy or machine readable
form, including any technical, interface and/or interoperability specifications that define the requirements
and conditions for connection to and/or interoperability with Avaya products, systems and solutions.

1.10 “Source Code” means human readable or high-level statement version of software written in the
source language used by programmers and includes one or more programs. Source Code programs may
include one or more files, such as user interface markup language (.mxml), action script (.as), precompiled
Flash code (.swc), java script (.js), hypertext markup language (.html), active server pages (.asp), C# or
C# .Net source code (.cs), java source code (.java), java server pages (.jsp), java archives (.jar), graphic
interchange format (.gif), cascading style sheet (.css), audio files (.wav) and extensible markup language
(.xml) files.

1.11 “Sample Application Code” means Software provided for the purposes of demonstrating functionality
of an Avaya product through the Avaya Software Development Kit.

1.12 “Software” means data or information constituting one or more computer or apparatus programs,
including Source Code or in machine-readable, compiled object code form.

2.0 LICENSE GRANT.

2.1 SDK License.

A. Provided Licensee pays to Avaya the applicable license fee (if any), Avaya hereby grants Licensee
a limited, non-exclusive, non-transferable license (without the right to sublicense, except as set forth
in 2.1B(iii)) under the Intellectual Property of Avaya and, if applicable, its licensors and suppliers to
(i) use the SDK solely for the purpose of Licensee's internal development efforts to develop
applications, interfaces, value-added services and/or solutions, workflows or processes to work in
conjunction with Avaya products; (ii) to package Client Libraries for redistribution with Licensee’s
complementary applications that have been developed using this SDK, subject to the terms and
conditions set forth herein; (iii) use Specification Documents solely to enable Licensee’s products,
services and application solutions to exchange messages and signals with Avaya products, systems
and solutions to which the Specification Document(s) apply; (iv) modify and create Derivative Works
of the Sample Application Code, Specification Documents and Documentation solely for internal
development of applications, interfaces, workflows or processes for use with Avaya products,
integration of such applications, interfaces, workflows and processes with Avaya products and
interoperability testing of the foregoing with Avaya products; and (v) compile or otherwise prepare
for distribution the Sample Application Code with Permitted Modifications, into an object code or
other machine-readable program format for distribution and distribute the same subject to the
conditions set forth in Section 2.1B.

B. The foregoing license to use Sample Application Code is contingent upon the following: (i)
Licensee must ensure that the modifications made to the Sample Application Code as permitted in
clause (iv) of Section 2.1A are compatible and/or interoperable with Avaya products and/or integrated
therewith, (ii) Licensee may distribute Licensee’s application that has been created using this SDK,
provided that such distribution is subject to an end user pursuant to Licensee’s current end user
license agreement (“Licensee EULA”) that is consistent with the terms of this Agreement and, if
applicable, any other agreement with Avaya (e.g., the Avaya DevConnect Program Agreement), and

Avaya WebRTC Connect Software Development Guide 4

is equally as protective as Licensee’s standard software license terms, but in no event shall the
standard of care be less than a reasonable degree of care, and (iii) Licensee ensures that each end
user who receives Client Libraries or Sample Application Code with Permitted Modifications has all
necessary licenses for all underlying Avaya products associated with such Client Libraries or Sample
Application Code.

Your Licensee EULA must include terms concerning restrictions on use, protection of proprietary
rights, disclaimer of warranties, and limitations of liability. You must ensure that Your End Users
using applications, interfaces, value-added services and/or solutions, workflows or processes that
incorporate the API, Client Libraries, Sample Code or Permitted Modifications adhere to these terms,
and You agree to notify Avaya promptly if You become aware of any breach of the terms of Licensee
EULA that may impact Avaya. You will take all reasonable precautions to prevent unauthorized
access to or use of the SDK and notify Avaya promptly of any such unauthorized access or use.

C. Licensee acknowledges and agrees that it is licensed to use the SDK only in connection with
Avaya products (and if applicable, in connection with services provided by or on behalf of Avaya).

D. With respect to Software that contains elements provided by third party suppliers, Licensee may
install and use the Software in accordance with the terms and conditions of the applicable license
agreements, such as “shrinkwrap” or “click-through” licenses, accompanying or applicable to the
Software.

2.2 No Standalone Product. Nothing in this Agreement authorizes or grants Licensee any rights to distribute or

otherwise make available to a third party the SDK, in whole or in part, or any Derivative Work in source or object

code format on a standalone basis other than the modifications permitted in Section 2.1B of this Agreement.

2.3 Proprietary Notices. Licensee shall not remove any copyright, trade mark or other proprietary notices
incorporated in the copies of the SDK, Sample Application Code and redistributable files in Licensee’s
possession or control or any modifications thereto. Redistributions in binary form or other suitable program
format for distribution, to the extent expressly permitted, must also reproduce Avaya’s copyright,
trademarks or other proprietary notices as incorporated in the SDK in any associated Documentation or
“splash screens” that display Licensee copyright notices.

2.4 Third-Party Components. You acknowledge certain software programs or portions thereof included in
the SDK may contain software distributed under third party agreements (“Third Party Components”), which
may contain terms that expand or limit rights to use certain portions of the SDK (“Third Party Terms”).
Information identifying the copyright holders of the Third Party Components and the Third Party Terms
that apply is available in the attached Schedule 1 (if any), SDK, Documentation, or on Avaya’s web site

at: http://support.avaya.com/Copyright (or such successor site as designated by Avaya). The open
source software license terms provided as Third Party Terms are consistent with the license rights granted
in this Agreement, and may contain additional rights benefiting You, such as modification and distribution
of the open source software. The Third Party Terms shall take precedence over this Agreement, solely
with respect to the applicable Third Party Components, to the extent that this Agreement imposes greater
restrictions on You than the applicable Third Party Terms. Licensee is solely responsible for procuring
any necessary licenses for Third Party Components, including payment of licensing royalties or other
amounts to third parties, for the use thereof.

2.5 Copies of SDK. Licensee may copy the SDK only as necessary to exercise its rights hereunder.

2.6a No Reverse Engineering. Licensee shall have no rights to any Source Code for any of the software
in the SDK, except for the explicit rights to use the Source Code as provided to Licensee hereunder.
Licensee agrees that it shall not cause or permit the disassembly, decompilation or reverse engineering
of the Software. Notwithstanding the foregoing, if the SDK is rightfully located in a member state of the
European Union and Licensee needs information about the Software in the SDK in order to achieve
interoperability of an independently created software program with the Software in the SDK, Licensee will
first request such information from Avaya. Avaya may charge Licensee a reasonable fee for the provision
of such information. If Avaya refuses to make such information available, then Licensee may take steps,
such as reverse assembly or reverse compilation, to the extent necessary solely in order to achieve

http://support.avaya.com/Copyright

Avaya WebRTC Connect Software Development Guide 5

interoperability of the Software in the SDK with an independently created software program. To the extent
that the Licensee is expressly permitted by applicable mandatory law to undertake any of the activities
listed in this section, Licensee will not exercise those rights until Licensee has given Avaya twenty (20)
days written notice of its intent to exercise any such rights.

2.6.b License Restrictions. To the extent permissible under applicable law, Licensee agrees not to: (i)
publish, sell, sublicense, lease, rent, loan, assign, convey or otherwise transfer the SDK; (ii) distribute,
disclose or allow use the SDK, in any format, through any timesharing service, service bureau, network or
by any other means; (iii) distribute or otherwise use the Software in the SDK in any manner that causes
any portion of the Software that is not already subject to an OSS License to become subject to the terms
of any OSS License; (iv) link the Source Code for any of the software in the SDK with any software licensed
under the Affero General Public License (Affero GPL) v.3 or similar licenses; (v) access information that
is solely available to root administrators of the Avaya products, systems, and solutions; (vi) develop
applications, interfaces, value-added services and/or solutions, workflows or processes that causes
adverse effects to Avaya and third-party products, services, solutions, such as, but not limited to, poor
performance, software crashes and cessation of their proper functions; and (vii) develop applications,
interfaces, value-added services and/or solutions, workflows or processes that blocks or delays
emergency calls; (viii) emulate an Avaya SIP endpoint by form or user interface design confusingly similar
as an Avaya product ; (ix) reverse engineer Avaya SIP protocol messages; or (x) permit or encourage any
third party to do any of (i) through (x), inclusive, above.

2.7 Responsibility for Development Tools. Licensee acknowledges that effective utilization of the SDK
may require the use of a development tool, compiler and other software and technology of third parties,
which may be incorporated in the SDK pursuant to Section 2.4. Licensee is solely responsible for procuring
such third party software and technology and the necessary licenses, including payment of licensing
royalties or other amounts to third parties, for the use thereof.

2.8 U.S. Government End Users. The SDK shall be classified as "commercial computer software" and the
Documentation is classified as "commercial computer software documentation" or "commercial items,"
pursuant to FAR 12.212 or DFAR 227.7202, as applicable. Any use, modification, reproduction, release,
performance, display or disclosure of the SDK or Documentation by the Government of the United States
shall be governed solely by the terms of the Agreement and shall be prohibited except to the extent
expressly permitted by the terms of the Agreement.

2.9 Limitation of Rights. No right is granted to Licensee to sublicense its rights hereunder. All rights not
expressly granted are reserved by Avaya or its licensors or suppliers and, except as expressly set forth
herein, no license is granted by Avaya or its licensors or suppliers under this Agreement directly, by
implication, estoppel or otherwise, under any Intellectual Property right of Avaya or its licensors or
suppliers. Nothing herein shall be deemed to authorize Licensee to use Avaya's trademarks or trade
names in Licensee's advertising, marketing, promotional, sales or related materials.

2.10 Independent Development.

2.10.1 Licensee understands and agrees that Avaya, Affiliates, or Avaya’s licensees or suppliers may
acquire, license, develop for itself or have others develop for it, and market and/or distribute applications,
interfaces, value-added services and/or solutions, workflows or processes similar to that which Licensee
may develop. Nothing in this Agreement shall restrict or limit the rights of Avaya, Affiliates, or Avaya’s
licensees or suppliers to commence or continue with the development or distribution of such applications,
interfaces, value-added services and/or solutions, workflows or processes.

2.10.2 Nonassertion by Licensee. Licensee agrees not to assert any Intellectual Property related to the
SDK or applications, interfaces, value-added services and/or solutions, workflows or processes developed
using the SDK against Avaya, Affiliates, Avaya’s licensors or suppliers, distributors, customers, or other
licensees of the SDK.

2.11 Feedback and Support. Licensee agrees to provide any information, comments, problem reports,
enhancement requests and suggestions regarding the performance of the SDK (collectively, “Feedback”)
via any public or private support mechanism, forum or process otherwise indicated by Avaya. Avaya

Avaya WebRTC Connect Software Development Guide 6

monitors applicable mechanisms, forums, or processes but is under no obligation to implement any of
Feedback, or be required to respond to any questions asked via the applicable mechanism, forum, or
process. Licensee hereby assigns to Avaya all right, title, and interest in and to Feedback provided to
Avaya.

2.12(a) Fees and Taxes. To the extent that fees are associated with the license of the SDK, Licensee
agrees to pay to Avaya or pay directly to the applicable government or taxing authority, if requested by
Avaya, all taxes and charges, including without limitation, penalties and interest, which may be imposed
by any federal, state or local governmental or taxing authority arising hereunder excluding, however, all
taxes computed upon Avaya’s net income. If You move any Software, including the SDK, and as a result
of such move, a jurisdiction imposes a duty, tax, levy or fee (including withholding taxes, fees, customs or
other duties for the import and export of any such Software), then You are solely liable for, and agree to
pay, any such duty, taxes, levy or other fees.

2.12(b) Audit. Avaya shall have the right, at its cost and expense, to inspect and/or audit (i) by remote
polling or other reasonable electronic means at any time and (ii) in person during normal business hours
and with reasonable notice Licensee’s books, records, and accounts, to determine Licensee’s compliance
with this Agreement. In the event such inspection or audit uncovers non-compliance with this Agreement,
then without prejudice to Avaya’s termination rights hereunder, Licensee shall promptly pay Avaya any
applicable license fees. Licensee agrees to keep a current record of the location of the SDK.

2.13 No Endorsement. Neither the name Avaya, Affiliates nor the names of contributors may be used to
endorse or promote products derived from the Avaya SDK without specific prior written permission from
Avaya.

2.14 High Risk Activities. The Avaya SDK is not fault-tolerant, and is not designed, manufactured or
intended for use or resale as on-line control equipment or in hazardous environments requiring failsafe
performance, such as in the operation of nuclear facilities, aircraft navigation or aircraft communications
systems, mass transit, air traffic control, medical or direct life support machines, dedicated emergency call
handling systems or weapons systems, in which the failure of the Avaya SDK could lead directly to death,
personal injury, or severe physical or environmental damage ("high risk activities"). If Licensee uses the
Avaya SDK for high risk activities, Licensee does so at Licensee’s own risk and Licensee assumes all
responsibility and liability for such use to the maximum extent such limitation or exclusion is permitted by
applicable law. Licensee agrees that Avaya and its suppliers will not be liable for any claims or damages
arising from or related to use of the Avaya SDK for high risk activities to the maximum extent such limitation
or exclusion is permitted by law.

2.15 No Virus. Licensee warrants that (i) the applications, interfaces, value-added services and/or
solutions, workflows or processes Licensee develops using this SDK will not contain any computer
program file that includes time code limitations, disabling devices, or any other mechanism which will
prevent the Avaya product (including other software, firmware, hardware), services and networks from
being functional at all times (collectively “Time Bombs”); and (ii) the applications, interfaces, value-added
services and/or solutions, workflows or processes Licensee develops using this SDK will be free of
computer viruses, malicious or other harmful code, black boxes, malware, trapdoors, and other
mechanisms which could: a) damage, destroy or adversely affect Avaya product, or services and/or end
users; b) allow remote/hidden attacks or access through unauthorized computerized command and
control; c) spy (network sniffers, keyloggers), and d) damage or erase such applications, interfaces, value-
added services and/or solutions, workflows or processes developed using this SDK or data, or any
computer files or systems of Avaya, Affiliates, and/or end users (collectively “Virus”). In addition to any
other remedies permitted in the Agreement, if Licensee breaches its warranties under this Section,
Licensee will, at its expense, take remedial action to eliminate any Time Bombs and/or Viruses and prevent
re-occurrence (including implementing appropriate processes to prevent further occurrences) as well as
provide prompt, reasonable assistance to Avaya to materially reduce the effects of the Time Bomb and/or
Virus.

Avaya WebRTC Connect Software Development Guide 7

2.16 Disclaimer. Any software security feature is not a guaranty against malicious code, deleterious
routines, and other techniques and tools employed by computer “hackers” and other third parties to create
security exposures. Compromised passwords represent a major security risk. Avaya encourages You to
create strong passwords using three different character types, change Your password regularly and refrain
from using the same password regularly. You must treat such information as confidential. You agree to
notify Avaya immediately upon becoming aware of any unauthorized use or breach of Your user name,
password, account, API Key, or other credentials as provided by Avaya for use of the SDK, or subscription.
You are responsible for ensuring that Your networks and systems are adequately secured against
unauthorized intrusion or attack and regularly back up of Your data and files in accordance with good
computing practices.

2.17 Third Party Licensed Software

A. “Commercial Third Party Licensed Software” is software developed by a business with the purpose
of making money from the use of that licensed software. “Freeware Licensed Software” is software
which is made available for use, free of charge and for an unlimited time, but is not Open Source
Licensed Software. “Open Source Software" or "OSS" is as defined by the Open Source Initiative
(“OSI”) https://opensource.org/osd and is software licensed under an OSI approved license as set
forth at https://opensource.org/licenses/alphabetical (or such successor site as designated by OSI).
These are collectively referred to herein as “Third Party Licensed Software”.

B. Licensee represents and warrants that Licensee, including any employee, contractor,
subcontractor, or consultant engaged by Licensee, is to the Licensee’s knowledge, in compliance and
will continue to comply with all license obligations for Third Party Licensed Software used in the
Licensee application created using the SDK including providing to end users all information required
by such licenses as may be necessary. LICENSEE REPRESENTS AND WARRANTS THAT, TO THE
LICENSEE’S KNOWLEDGE, THE OPEN SOURCE LICENSED SOFTWARE EMBEDDED IN OR
PROVIDED WITH LICENSEE APPLICATION OR SERVICES DOES NOT INCLUDE ANY OPEN
SOURCE LICENSED SOFTWARE CONTAINING TERMS REQUIRING ANY INTELLECTUAL
PROPERTY OWNED OR LICENSED BY AVAYA OR END USERS TO BE (A) DISCLOSED OR
DISTRIBUTED IN SOURCE CODE OR OBJECT CODE FORM; (B) LICENSED FOR THE PURPOSE
OF MAKING DERIVATIVE WORKS; OR (C) REDISTRIBUTABLE ON TERMS AND CONDITION
NOT AGREED UPON BY AVAYA OR END USERS.

C. Subject to any confidentiality obligations, trade secret or other rights or claims of Licensee
suppliers, Licensee will respond to requests from Avaya or end users relating to Third Party
Licensed Software associated with Licensee's use of Third Party Licensed Software. Licensee will
cooperate in good faith by furnishing the relevant information to Avaya or end users and the
requester within two (2) weeks from the time Avaya or end user provided the request to Licensee.

3. OWNERSHIP.

3.1 As between Avaya and Licensee, Avaya or its licensors or suppliers shall own and retain all Intellectual
Property rights, in and to the SDK and any corrections, bug fixes, enhancements, updates, improvements,
or modifications thereto and Licensee hereby irrevocably transfers, conveys and assigns to Avaya, its
licensors and its suppliers all of its right, title, and interest therein. Avaya or its licensors or suppliers shall
have the exclusive right to apply for or register any patents, mask work rights, copyrights, and such other
proprietary protections with respect thereto. Licensee acknowledges that the license granted under this
Agreement does not provide Licensee with title or ownership to the SDK, but only a right of limited use
under the terms and conditions of this Agreement.

3.2 Grant Back License to Avaya. Licensee hereby grants to Avaya an irrevocable, perpetual, non-
exclusive, sublicensable, royalty-free, fully paid up, worldwide license under any and all of Licensee's
Intellectual Property rights related to any Permitted Modifications, to (i) use, make, sell, execute, adapt,
translate, reproduce, display, perform, prepare derivative works based upon, distribute (internally and
externally) and sublicense the Permitted Modifications and their derivative works, and (ii) sublicense others
to do any, some, or all of the foregoing.

Avaya WebRTC Connect Software Development Guide 8

4.0 SUPPORT.

4.1 No Avaya Support. Avaya will not provide any support for the SDK provided under this Agreement or
for any Derivative Works, including, without limitation, modifications to the Source Code or applications
built by Licensee using the SDK. Avaya shall have no obligation to provide support for the use of the SDK,
or Licensee's application, services or solutions which may or may not include redistributable Client
Libraries or Sample Application Code, to any third party to whom Licensee delivers such applications,
services or solutions. Avaya further will not provide fixes, patches or repairs for any defects that might
exist in the SDK or the Sample Application Code provided under this Agreement. In the event that Licensee
desires support services for the SDK, and, provided that Avaya offers such support services (in its sole
discretion), Licensee will be required to enter into an Avaya DevConnect Program Agreement or other
support agreement with Avaya.

4.2 Licensee Obligations. Licensee acknowledges and agrees that it is solely responsible for developing
and supporting any applications, interfaces, value-added services and/or solutions, workflows or
processes developed under this Agreement, including but not limited to (i) developing, testing and
deploying such applications, interfaces, value-added services and/or solutions, workflows or processes;
(ii) configuring such applications, interfaces, value-added services and/or solutions, workflows or
processes to interface and communicate properly with Avaya products; and (iii) updating and maintaining
such applications, interfaces, value-added services and/or solutions, workflows or processes as necessary
for continued use with the same or different versions of end user and/or third party licensor products, and
Avaya products.

5.0 CONFIDENTIALITY.

5.1 Protection of Confidential Information. Licensee acknowledges and agrees that the SDK and any other
Avaya technical information obtained by it under this Agreement (collectively, “Confidential Information”)
is confidential information of Avaya. Licensee shall take all reasonable measures to maintain the
confidentiality of the Confidential Information. Licensee further agrees at all times to protect and preserve
the SDK in strict confidence in perpetuity, and shall not use such Confidential Information other than as
expressly authorized by Avaya under this Agreement, nor shall Licensee disclose any Confidential
Information to third parties without Avaya's written consent. Licensee further agrees to immediately 1)
cease all use of all Confidential Information (including copies thereof) in Licensee's possession, custody,
or control; 2) stop reproducing or distributing the Confidential Information; and 3) destroy the Confidential
Information in Licensee’s possession or under its control, including Confidential Information on its
computers, disks, and other digital storage devices upon termination of this Agreement at any time and
for any reason. Upon request, Licensee will certify in writing its compliance with this Section. The
obligations of confidentiality shall not apply to information which (a) has entered the public domain except
where such entry is the result of Licensee's breach of this Agreement; (b) prior to disclosure hereunder
was already rightfully in Licensee's possession; (c) subsequent to disclosure hereunder is obtained by
Licensee on a non-confidential basis from a third party who has the right to disclose such information to
the Licensee; (d) is required to be disclosed pursuant to a court order, so long as Avaya is given adequate
notice and the ability to challenge such required disclosure.

5.2 Press Releases. Any press release or publication regarding this Agreement is subject to prior written
approval of Avaya.

6.0 NO WARRANTY.

The SDK and Documentation are provided “AS-IS” without any warranty whatsoever. AVAYA
SPECIFICALLY AND EXPRESSLY DISCLAIMS ANY WARRANTIES OR CONDITIONS, STATUTORY
OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, NONINFRINGEMENT AND SATISFACTORY QUALITY. AVAYA DOES
NOT WARRANT THAT THE SDK AND DOCUMENTATION ARE SUITABLE FOR LICENSEE'S USE,
THAT THE SDK OR DOCUMENTATION ARE WITHOUT DEFECT OR ERROR, THAT OPERATION
WILL BE UNINTERRUPTED, OR THAT DEFECTS WILL BE CORRECTED. FURTHER, AVAYA MAKES

Avaya WebRTC Connect Software Development Guide 9

NO WARRANTY REGARDING THE RESULTS OF THE USE OF THE SDK AND DOCUMENTATION.
NEITHER AVAYA NOR ITS SUPPLIERS MAKE ANY WARRANTY, EXPRESS OR IMPLIED, THAT THE
SDK OR DOCUMENTATION IS SECURE, SECURITY THREATS AND VULNERABILITIES WILL BE
DETECTED OR SOFTWARE WILL RENDER AN END USER’S OR LICENSEE’S NETWORK OR
PARTICULAR NETWORK ELEMENTS SAFE FROM INTRUSIONS AND OTHER SECURITY
BREACHES.

7.0 CONSEQUENTIAL DAMAGES WAIVER.

EXCEPT FOR PERSONAL INJURY CLAIMS, AVAYA SHALL NOT BE LIABLE FOR ANY INCIDENTAL,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH, ARISING OUT OF
OR RELATING TO THIS AGREEMENT OR USE OF THE SDK, OR FOR THE LOSS OR CORRUPTION
OF DATA, INFORMATION OF ANY KIND, BUSINESS, PROFITS, OR OTHER COMMERCIAL LOSS,
HOWEVER CAUSED, AND WHETHER OR NOT AVAYA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

8.0 LIMITATION OF LIABILITY.

EXCEPT FOR PERSONAL INJURY CLAIMS, IN NO EVENT SHALL AVAYA'S TOTAL LIABILITY TO
LICENSEE IN CONNECTION WITH, ARISING OUT OF OR RELATING TO THIS AGREEMENT EXCEED
FIVE HUNDRED DOLLARS ($500). THE PARTIES AGREE THAT THE LIMITATIONS SPECIFIED IN
THIS SECTION WILL APPLY EVEN IF ANY LIMITED REMEDY PROVIDED IN THIS AGREEMENT IS
FOUND TO HAVE FAILED OF ITS ESSENTIAL PURPOSE.

9.0 INDEMNIFICATION.

Licensee shall indemnify and hold harmless Avaya, Affiliates and their respective officers, directors,
agents, suppliers, customers and employees “Indemnified Parties”) from and against all claims, demand,
suit, actions or proceedings (“Claims”) and damages, losses, liabilities, costs, expenses, and fees
(including fees of attorneys and other professionals) (“Damages”) based upon an allegation pertaining to
wrongful use, misappropriation, or infringement of a third party’s Intellectual Property right arising from or
relating to Licensee’s use of the SDK, alone or in combination with other software, such as operating
systems and codecs, and the, direct or indirect, use, distribution or sale of any software, Derivative Works
or other products (including but not limited to applications, interfaces, and application programming
interfaces) developed utilizing the SDK.

Licensee shall defend, indemnify and hold harmless the Indemnified Parties from and against all Claims
and Damages arising out of or related to: (i) personal injury (including death); (ii) damage to any person
or tangible property caused, or alleged to be caused by Licensee or Licensee’s application created by
using the SDK; (iii) the failure by Licensee or Licensee’s application created by using the SDK to comply
with the terms of this Agreement or any applicable laws; (iv) the breach of any representation, or warranty
made by Licensee herein; or (v) Licensee’s breach of any obligation under the Licensee EULA.

10.0 TERM AND TERMINATION.

10.1 This Agreement will continue through December 31st of the current calendar year. The Agreement
will automatically renew for one (1) year terms, unless terminated as specified in Section 10.2 or 10.3
below.

10.2 Either party shall have the right to terminate the Agreement, upon thirty (30) days written notice to
the other party.

10.3 Notwithstanding language to the contrary, Avaya may terminate this Agreement immediately, upon
written notice to Licensee for breach of Section 2 (License Grant), Section 5 (Confidentiality) or Section
12 (Compliance with Laws). Avaya may also terminate this Agreement immediately by giving written notice
if a Change In Control should occur or if Licensee becomes insolvent, or voluntary or involuntary
proceedings by or against Licensee are instituted in bankruptcy or under any insolvency law, or a receiver
or custodian is appointed for Licensee, or proceedings are instituted by or against Licensee for corporate

Avaya WebRTC Connect Software Development Guide 10

reorganization or the dissolution of Licensee, which proceedings, if involuntary, have not been dismissed
within thirty (30) days after the date of filing, or Licensee makes an assignment for the benefit of its
creditors, or substantially all of the assets of Licensee are seized or attached and not released within sixty
(60) days thereafter, or if Licensee has ceased or threatened to cease to do business in the regular course.

10.4 Upon termination or earlier termination of this Agreement, Licensee will immediately cease a) all uses
of the Confidential Information; b) Licensee agrees to destroy all adaptations or copies of the Confidential
Information stored in any tangible medium including any document or work containing or derived (in whole
or in part) from the Confidential Information, and certify its destruction to Avaya upon termination of this
License. Licensee will promptly cease use of, distribution and sales of Licensee products that embody
any such Confidential Information, and destroy all Confidential Information belonging to Avaya as well as
any materials that embody any such Confidential Information. All licenses granted will terminate.

10.5 The rights and obligations of the parties contained in Sections 2.3, 2.6, 2.7, 2.10, 2.11, 2.12, 3, and
5 through 18 shall survive any expiration or termination of this Agreement.

11.0 ASSIGNMENT.

Avaya may assign all or any part of its rights and obligations hereunder. Licensee may not assign this
Agreement or any interest or rights granted hereunder to any third party without the prior written consent
of Avaya. The term "assign" includes, but is not limited to, any transaction in which there is a Change In
Control or reorganization of Licensee pursuant to a merger, sale of assets or stock. This Agreement shall
terminate immediately upon occurrence of any prohibited assignment.

12.0 COMPLIANCE WITH LAWS.

Licensee shall comply with all applicable laws and regulations, including without limitation those applicable
to data privacy, intellectual property, trade secret, fraud, music performance rights and the export or re-
export of technology and will not export or re-export the SDK or any other technical information provided
under this Agreement in any form in violation of the export control laws of the United States of America
and of any other applicable country. For more information on such export laws and regulations, Licensee
may refer to the resources provided in the websites maintained by the U.S. Commerce Department, the
U.S. State Department and the U.S. Office of Foreign Assets Control.

13.0 WAIVER.

The failure to assert any rights under this Agreement, including, but not limited to, the right to terminate in
the event of breach or default, will not be deemed to constitute a waiver of the right to enforce each and
every provision of this Agreement in accordance with their terms.

14.0 SEVERABILITY.

If any provision of this Agreement is determined to be unenforceable or invalid, this Agreement will not be
rendered unenforceable or invalid as a whole, and the provision will be changed and interpreted so as to
best accomplish the objectives of the original provision within the limits of applicable law.

15.0 GOVERNING LAW AND DISPUTE RESOLUTION.

15.1 Governing Law. This Agreement and any dispute, claim or controversy arising out of or relating to
this Agreement (“Dispute”), including without limitation the formation, interpretation, breach or termination
of this Agreement, or any issue regarding whether a Dispute is subject to arbitration under this Agreement,
will be governed by New York State laws, excluding conflict of law principles, and the United Nations
Convention on Contracts for the International Sale of Goods.

15.2 Dispute Resolution. Any Dispute will be resolved in accordance with the provisions of this Section
15. The disputing party shall give the other party written notice of the Dispute in accordance with the notice
provision of this Agreement. The parties will attempt in good faith to resolve each controversy or claim

Avaya WebRTC Connect Software Development Guide 11

within 30 days, or such other longer period as the parties may mutually agree, following the delivery of
such notice, by negotiations between designated representatives of the parties who have dispute
resolution authority.

15.3 Arbitration of Non-US Disputes. If a Dispute that arose anywhere other than in the United States
or is based upon an alleged breach committed anywhere other than in the United States cannot be settled
under the procedures and within the timeframe set forth in Section 15.2, it will be conclusively determined
upon request of either party by a final and binding arbitration proceeding to be held in accordance with the
Rules of Arbitration of the International Chamber of Commerce by a single arbitrator appointed by the
parties or (failing agreement) by an arbitrator appointed by the President of the International Chamber of
Commerce (from time to time), except that if the aggregate claims, cross claims and counterclaims by any
one party against the other party exceed One Million US Dollars at the time all claims, including cross
claims and counterclaims are filed, the proceeding will be held in accordance with the Rules of Arbitration
of the International Chamber of Commerce by a panel of three arbitrator(s) appointed in accordance with
the Rules of Arbitration of the International Chamber of Commerce. The arbitration will be conducted in
the English language, at a location agreed by the parties or (failing agreement) ordered by the arbitrator(s).
The arbitrator(s) will have authority only to award compensatory damages within the scope of the
limitations of Section 8 and will not award punitive or exemplary damages. The arbitrator(s) will not have
the authority to limit, expand or otherwise modify the terms of this Agreement. The ruling by the
arbitrator(s)) will be final and binding on the parties and may be entered in any court having jurisdiction
over the parties or any of their assets. The parties will evenly split the cost of the arbitrator(s)’ fees, but
Avaya and Customer will each bear its own attorneys' fees and other costs associated with the arbitration.
The parties, their representatives, other participants and the arbitrator(s) will hold the existence, content
and results of the arbitration in strict confidence to the fullest extent permitted by law. Any disclosure of
the existence, content and results of the arbitration will be as limited and narrowed as required to comply
with the applicable law. By way of illustration, if the applicable law mandates the disclosure of the monetary
amount of an arbitration award only, the underlying opinion or rationale for that award may not be
disclosed.

15.4 Choice of Forum for US Disputes. If a Dispute by one party against the other that arose in the
United States or is based upon an alleged breach committed in the United States cannot be settled under
the procedures and within the timeframe set forth in Section 15.2, then either party may bring an action or
proceeding solely in either the Supreme Court of the State of New York, New York County, or the United
States District Court for the Southern District of New York. Except as otherwise stated in Section 15.3
each party consents to the exclusive jurisdiction of those courts, including their appellate courts, for the
purpose of all actions and proceedings arising out of or relating to this Agreement.

15.5 Injunctive Relief. Nothing in this Agreement will be construed to preclude either party from seeking
provisional remedies, including, but not limited to, temporary restraining orders and preliminary injunctions
from any court of competent jurisdiction in order to protect its rights, including its rights pending arbitration,
at any time. The parties agree that the arbitration provision in Section 15.3 may be enforced by injunction
or other equitable order, and no bond or security of any kind will be required with respect to any such
injunction or order.

15.6 Time Limit. Actions on Disputes between the parties must be brought in accordance with this Section
within 2 years after the cause of action arises.

16.0 IMPORT/EXPORT CONTROL.

Licensee is advised that the SDK is of U.S. origin and subject to the U.S. Export Administration Regulations
(“EAR”). The SDK also may be subject to applicable local country import/export laws and regulations.
Diversion contrary to U.S. and/or applicable local country law and/or regulation is prohibited. Licensee
agrees not to directly or indirectly export, re-export, import, download, or transmit the SDK to any country,
end user or for any use that is contrary to applicable U.S. and/or local country regulation or statute
(including but not limited to those countries embargoed by the U.S. government). Licensee represents that
any governmental agency has not issued sanctions against Licensee or otherwise suspended, revoked or
denied Licensee's import/export privileges. Licensee agrees not to use or transfer the SDK for any use
relating to nuclear, chemical or biological weapons, or missile technology, unless authorized by the U.S.
and/or any applicable local government by regulation or specific written license. Additionally, Licensee is

Avaya WebRTC Connect Software Development Guide 12

advised that the SDK may contain encryption algorithm or source code that may not be exported to
government or military end users without a license issued by the U.S. Bureau of Industry and Security and
any other country’s governmental agencies, where applicable.

17.0 AGREEMENT IN ENGLISH.

The parties confirm that it is their wish that the Agreement, as well as all other documents relating hereto,
including all notices, have been and shall be drawn up in the English language only. Les parties aux
présentes confirment leur volonté que cette convention, de même que tous les documents, y compris tout
avis, qui s'y rattachent, soient rédigés en langue anglaise.

18.0 ENTIRE AGREEMENT.

This Agreement, its exhibits, schedules and other agreements or documents referenced herein, constitute
the full and complete understanding and agreement between the parties and supersede all
contemporaneous and prior understandings, agreements and representations relating to the subject
matter hereof. No modifications, alterations or amendments shall be effective unless in writing signed by
both parties to this Agreement.

19. REDISTRIBUTABLE CLIENT FILES.

The list of SDK client files that can be redistributed, if any, are in the SDK in a file called Redistributable.txt.

Avaya WebRTC Connect Software Development Guide 13

Schedule 1 to Avaya SDK License Agreement
Third Party Notices

1. CODECS: WITH RESPECT TO ANY CODECS IN THE SDK, YOU ACKNOWLEDGE AND
AGREE YOU ARE RESPONSIBLE FOR ANY AND ALL RELATED FEES AND/OR ROYALTIES, IF ANY.
IT IS YOUR RESPONSIBILITY TO CHECK.

THE H.264 (AVC) CODEC IS LICENSED UNDER THE AVC PATENT PORTFOLIO LICENSE FOR

THE PERSONAL USE OF A CONSUMER OR OTHER USES IN WHICH IT DOES NOT RECEIVE

REMUNERATION TO: (I) ENCODE VIDEO IN COMPLIANCE WITH THE AVC STANDARD ("AVC

VIDEO") AND/OR (II) DECODE AVC VIDEO THAT WAS ENCODED BY A CONSUMER ENGAGED IN

A PERSONAL ACTIVITY AND/OR WAS OBTAINED FROM A VIDEO PROVIDER LICENSED TO

PROVIDE AVC VIDEO. NO LICENSE IS GRANTED OR SHALL BE IMPLIED FOR ANY OTHER USE.

ADDITIONAL INFORMATION FOR THE H.264 (AVC) CODEC MAY BE OBTAINED FROM MPEG LA,

L.L.C. SEE

HTTP://WWW.MPEGLA.COM

http://www.mpegla.com/

Avaya WebRTC Connect Software Development Guide 14

Table of Contents

Introduction ... 17
Target audience ... 17
Related resources ... 17

Documentation 17
Support 17

Objectives .. 18
Capabilities 19

Prerequisites and constraints ... 19
Reference Clients ... 19

Downloading the Reference Clients and SDKs 20
Using the Reference Clients 20

Backwards Compatibility .. 20
Changes in 4.0.5 release ... 21
Changes in 4.0.4 release ... 21
Changes in 4.0.1.0 release .. 21
Changes in 4.0.0.0 .. 22
Changes in 3.7.0.1-1 Android Patch ... 23
Changes in 3.6.1.0-1 iOS/Android Patch .. 23
Changes in 3.5.0.1 .. 23
Changes in 3.5.0.0 .. 23

Android 24
iOS 25
JavaScript 26

Creating an Application: Generic Elements .. 27
Authorization tokens .. 27

Avaya Aura Web Gateway Authorization service 27
Custom Web Service Retrieving an Authorization Token 28
Getting a Token from the Sample Token Generation Service 30

Attributes .. 31
Basic API Design ... 31
Context .. 32
Topic .. 32
User Interface design .. 33

Writing an Android application ... 34
Setting up the project ... 34
Initialize the SDK .. 35
Creating Work .. 36

Adding Services 36
Adding Interaction Context 36
Adding an Audio Interaction 37
Setting platform type for an Audio Interaction (Oceana/Elite) 37
Adding a Video Interaction 39
Setting platform type for a Video Interaction (Oceana/Elite) 39
Application background mode behaviour 43

Writing an iOS application .. 44

Avaya WebRTC Connect Software Development Guide 15

iOS Version Specifics and IPv6 .. 44
iOS Version Changes 44
Testing IPv6 44

Supported Build Architectures .. 44
iOS 13 45
Swift Support 45
XCode 11 45

Setting up the project ... 45
Initialize the SDK .. 48
Creating Work .. 49

Adding Interaction Context 49
Adding an Audio Interaction 50
Setting platform type for an Audio Interaction (Oceana/Elite) 50
Adding a Video Interaction 51
Setting platform type for a Video Interaction (Oceana/Elite) 52
Application background mode behaviour 55

Writing a JavaScript application .. 56
Setting up the project ... 56
Initialize the SDK .. 56
Creating Work .. 57

Adding Services 57
Adding Resources 57
Adding Interaction Context 57
Adding an Audio Interaction 57
Setting platform type for an Audio Interaction (Oceana/Elite) 58
Adding a Video Interaction 61
Setting platform type for a Video Interaction (Oceana/Elite) 61

Known Issues and limitations ... 64
HTTPS and certificates .. 64
Edge DTMF Function ... 64
JavaScript readAudio/readVideoDetails .. 64
JavaScript webGatewayUrlPath .. 64

Appendix A – Configuring Screen Pops .. 65

Appendix B – Avaya WebRTC Connect Enumerations .. 66
Interaction State 66
Video resolution preferences for Javascript 66
Video resolution preferences and orientations for Android 66
Video resolution preferences and orientations for iOS 67
Camera Type 67
CallQuality 68

Appendix C – iOS Version Updates .. 69
iOS 10 and above 69
iOS 11 and above 69

Appendix D – Recommended Sequence for Ending Interactions .. 70

Appendix E – Migration plan from AMV 3.x to Avaya WebRTC Connect 4.0 71
This document will help the developer to upgrade from AMV 3.X to Avaya WebRTC Connect and
understand the Avaya WebRTC Connect APIs. ... 71

Avaya WebRTC Connect Software Development Guide 16

Notes ... 81

Avaya WebRTC Connect Software Development Guide 17

Introduction
This document is the developer guide accompanying the Avaya WebRTC Connect SDK. It
contains instructions and information for developers seeking to build and test Web Voice and
Video enabled applications on Android, iOS and JavaScript platforms.

 IMPORTANT: From Avaya Oceana™ 3.4.0.1 the Web Voice and Video customer
client SDKs have been renamed to OceanaCustomerWebVoiceVideo for all three
platforms. Please refer to the “Changes from 3.4.0.1” and “Backwards Compatibility”
sections for further information and changes.

 IMPORTANT: This SDK is an update to the existing OceanaSDK and now
support for Elite platform has been added as well. As a solution it has been
renamed to Avaya WebRTC Connect SDK.

Target audience
This document is targeted at experienced Android, iOS and JavaScript developers intending to
create applications, which utilize the Avaya WebRTC Connect APIs and interact with Avaya
Oceana™ and Avaya Workspaces for Elite infrastructure to originate WebRTC Voice and Video

interactions with the contact centre agents.
Developers have to build these applications using their own resources and deploy them against
their Avaya Oceana™ and Elite environment.

Related resources
Documentation
The following table lists the related documents for Avaya WebRTC Connect. Download the
documents from the Avaya Support website at https://support.avaya.com

Title Description

Avaya Oceana™ Solution
Description

Describes Avaya Oceana™
characteristics and capabilities, including
feature descriptions and interoperability

Deploying Avaya Oceana™ Solution Details the specifics of installing and
configuring the Avaya Oceana™ solution.

Avaya Workspaces Elite Solution
Description

Describes Avaya Workspaces Elite
Solution characteristics and capabilities,
including feature descriptions and
interoperability

Deploying Avaya Workspaces for
Elite

Details the specifics of installing and
configuring the Avaya Oceana™ solution

Support
Visit the Avaya Support website at for the most up-to-date documentation, product notices, and
knowledge articles. You can also search for release notes, downloads, and resolutions to issues.
Use the online service request system to create a service request. Chat with live agents to get
answers to questions or request an agent to connect you to a support team if an issue requires
additional expertise.

https://support.avaya.com/
https://support.avaya.com/

Avaya WebRTC Connect Software Development Guide 18

Objectives
The objective of this document is to enable appropriately skilled developers to develop browser
and mobile applications similar to the sample reference clients provided as a part of the Avaya
WebRTC Connect for Android, iOS and JavaScript.
This document includes an overview of the Avaya WebRTC Connect infrastructure, design as
well as pointers and insights into project related details.

Avaya WebRTC Connect Software Development Guide 19

Capabilities
The Avaya WebRTC Connect solution allows developers to enable and enrich their applications
with voice and video capabilities across multiple platforms.

The most straightforward use case is a simple help button located on a screen or as a menu
option, which can start a Voice/Video interaction into Avaya Oceana™ and Elite.

However, it is possible to set up more nuanced use cases for enabling an application with
Voice/Video. For example, an attribute set could be built to match a specific pool of contact centre
agents based on the page of a website that the customer is viewing.

The customer might be viewing a support page for a smartphone, and so the attributes would
route to an agent with the “support” and “smartphone” attributes.

Ultimately developers may analyse how Avaya WebRTC Connect functionality may be integrated
with planned or existing web and mobile applications.

Prerequisites and constraints
• Developers must possess the appropriate developer environments and tools and be

familiar with their usage.

• For mobile development, developers will require the knowledge and system
permissions/provisioning certificates etc. required to install their custom-built applications
onto their Android and iOS devices.

• For JavaScript development, developers will require a web application server and the
ability to deploy their applications and all associated resources to the web application
server.

• The supported web browsers are:
o Chrome stable versions 77 to 84.
o Firefox stable versions 77 to 79.
o Microsoft Edge Chromium version 83.

• The supported iOS versions are 10.X to 16.X

• The supported Android versions are 8.X to 13.X

• High-quality network connections with sufficient bandwidth are required for voice and
video calls.

• Some familiarity with Contact Centre concepts is assumed and knowledge of Avaya
Oceana™ and Elite components and systems will be beneficial.

• This document does not provide guidance on exception handling, logging, or other
crosscutting programming practices, which should be implemented in developed
applications according to developer preference and applicable standards.

 IMPORTANT: Avaya doesn't recommend nor support the development of application
on CSDK where users of your application will be dependent on your application as
their primary means of communication in emergency situation

Reference Clients
A separate Avaya WebRTC Connect application is available for each of the Android, iOS and
JavaScript platforms. For each of these platforms, a reference client project is available which
demonstrates how to use each function in the SDK. On Android, an Android Studio project is
provided. On iOS, the reference client is an Objective-C based XCode project. The JavaScript
reference client is provided as a HTML5 project, ready to be hosted on a web server.

Avaya WebRTC Connect Software Development Guide 20

Downloading the Reference Clients and SDKs
SDKs and other developer resources are hosted on the Avaya DevConnect portal. Visit the portal
and then select Avaya WebRTC Connect from the Product & Resources mega menu. Base-level
registered membership and a login is required to download resources. Here is the direct link:
Avaya WebRTC Connect.

Using the Reference Clients
The reference clients require a fully operational Web Voice and Video deployment of the Avaya
Oceana™ OR Avaya Aura Elite solution to function correctly and provide the full range of
capabilities.

• To use the Android reference client, unzip the relevant archive retrieved in the previous
section, and install the AvayaWebRTCConnectReferenceClient.apk on your supported
Android phone or tablet.

• To use the iOS reference client, unzip the relevant archive retrieved in the previous
section on an Apple Mac, and double click on the .xcodeproj file. This will open the
XCode project and the reference client can now be built from within XCode.

• To use the JavaScript reference client, unzip the relevant archive retrieved in the
previous section, and copy the folder to your web server. The JavaScript reference
client should now be reachable on your web server.

More information on how to build your own applications using the Avaya WebRTC Connect is
available in the platform-specific sections below.

Backwards Compatibility
It is strongly recommended to align the AvayaWebRTCConnect SDKs version with that of the

Oceana™ and Avaya Aura Elite solution version installed in your production environment due to
various updates and bug fixes that are applied to the SDKs.

The table below displays the backwards compatibility of the AvayaWebRTCConnect SDKs:

OceanaCusto
merWebVoice

Video
SDK Version

3.5.0.0 3.5.0.1 3.6.0.0 3.7.0.1

< 3.5.0.0 Incompatible Incompatible Incompatible Incompatible

3.5.0.0 Compatible Compatible Compatible Compatible

3.5.0.1 Compatible Compatible Compatible Compatible

3.6.0.0 Compatible Compatible Compatible Compatible

3.6.1.0 Compatible Compatible Compatible Compatible

3.7.0.1 Compatible Compatible Compatible Compatible

3.8.0.0 Compatible Compatible Compatible Compatible

AvayaWebRTCConnect
SDK

Avaya Oceana 3.7 Avaya Oceana 3.8 Avaya Aura Elite 3.8

4.0.6 Incompatible
(See Note below)

Compatible Compatible

4.0.5 Incompatible
(See Note below)

Compatible Compatible

4.0.4 Incompatible
(See Note below)

Compatible Compatible

4.0.1.0 Incompatible
(See Note below)

Compatible Compatible

4.0 Incompatible
(See Note below)

Compatible Compatible

https://devconnectprogram.com/
https://www.devconnectprogram.com/site/global/products_resources/webrtc_connect/overview/index.gsp

Avaya WebRTC Connect Software Development Guide 21

NOTE: For Avaya WebRTC Connect 4.0 to work with Avaya Oceana 3.7, a patch is in
preparation. Please see the upcoming patch announcement.

Changes in 4.0.6 release

JavaScript

• Updated lodash library version to 4.17.21

Changes in 4.0.5 release
iOS

• Updated for compatibility with XCode 14 and iOS SDK 16.

Android

• Updated for compatibility with Android SDK 33.

Changes in 4.0.4 release
iOS

• Frameworks are now converted to XCFramework format which support both simulator
and device. More details under Supported Build Architectures.

• Logging delegate exposed to access the logs framework logs. More details under Logging.

Changes in 4.0.1.0 release
Android

• The border width and rounded corners for local video are now configurable.
videoCornerRadius and videoBorderWidth attributes have been added to
VideoSurfaceView to control the corner style and border for local video.

• CallQuality is the new enum added.

• AudioInteractionListener and VideoInteractionListener interface have been updated to
add onInteractionQualityChanged(CallQuality quality) method that continuously returns
the CallQuality on an active call.

iOS

• The issue for displaying empty video screen until agent answers the call is resolved. Now
the remote video view does not render the blank stream.

• AOCallQuality is the new enum added.

• AOAudioInteractionDelegate and AOVideoInteractionDelegate interface have been
updated to add onInteractionQualityChanged:(AOCallQuality) quality method that
continuously returns the AOCallQuality on an active call.

JS

• CallQuality is the new enum added.

Avaya WebRTC Connect Software Development Guide 22

• AudioInteraction interface has been updated to add
onAudioInteractionCallQuality(CallQuality quality) and VideoInteraction interface has
been updated to add method onVideoInteractionCallQuality(CallQuality quality) that
continuously returns the CallQuality on an active call.

Changes in 4.0.0.0
• The SDK has been renamed to AvayaWebRTCConnect.

• Updated the APIs to set video capture resolutions and video capture orientation in iOS
and Android. Also added APIs to get available video capture resolutions.

• AvayaWebRTCConnect supports audio/video interactions with Avaya Oceana and
Avaya Aura Elite platforms. Using ‘setPlatformType’ API, the platform can be set before
placing audio or video interaction.

• The APIs have been aligned across all three platforms. See below for more information
on platform specific changes as a result.

• Sample reference clients for all platforms have been updated with Audio and Video
Statistics parameters to be shown during a call.

Android

• audioInteraction.setPlatformType(platformType) is a new function available on the
interaction object.

• videoInteraction.setPlatformType(platformType) is a new function available on the
interaction object.

• videoDevice.setVideoCaptureResolutionWithCaptureOrientation(videoCapturePreferen
ce, videoCaptureOrientation) is a new function available on the
com.avaya.ocs.Services.Device.Video.VideoDevice object to set the camera capture
resolution with Orientation.

• VideoCapturePreference is a new enum for providing resolution setting to the
VideoDevice.

• VideoCaptureOrientation is a new enum for providing orientation setting to the
VideoDevice.

• videoDevice.getVideoCapturePreference is new API to get the camera capture resolution
as a VideoCapturePreference object.

• videoDevice.getVideoCaptureOrientation is new API to get the camera capture resolution
as a VideoCaptureOrientation object.

iOS

• [audioInteraction setPlatformType :]; is new API to set the platform type for Audio
interaction.

• [videoInteraction setPlatformType :]; is new API to set the platform type for Video
interaction.

• +(NSMutableArray*) getSupportedCameraCaptureResolutionPrefes; is new API which
returns a list of Video Resolution preferences that are supported by the device.

• (void setVideoCaptureResolutionWithCaptureOrientation: (AOVideoCapturePreference)
resolutionPreference orientationPreference : (AOVideoCaptureOrientation)
orientationPreference; is new API to set the camera capture resolution with Orientation.

• AOVideoCapturePreference is a new enum for providing resolution setting to the
AOVideoDevice.

• AOVideoCaptureOrientation is a new enum for providing orientation setting to the
AOVideoDevice.

• -(AOVideoCapturePreference) getVideoCapturePreference; Is new API to get the
camera capture resolution.

Avaya WebRTC Connect Software Development Guide 23

• -(AOVideoCaptureOrientation) getVideoCaptureOrientation; Is new API to get the
camera capture orientation.

Javascript

• work.createAudioInteraction(OceanaCustomerWebVoiceVideo.Services.Work.Platform
Type platformType) is an update to the existing function available on the work object.

• work.createVideoInteraction(OceanaCustomerWebVoiceVideo.Services.Work.Platform
Type platformType) is an update to the existing function available on the work object.

• audioInteraction.holdCall(boolean) is a new function available on the interaction object.

• audioInteraction.isCallHeld() is a new function available on the interaction object.

• audioInteraction.setPlatformType() is a new function available on the interaction object.

• videoInteraction.holdCall(boolean) is a new function available on the interaction object.

• videoInteraction.isCallHeld() is a new function available on the interaction object.

• videoInteraction.setPlatformType() is a new function available on the interaction object.

Changes in 3.7.0.1-1 Android Patch
• For Android platform, issue related to setting trusted CA’s using subdomain configuration

under network-security-config has been resolved.

Changes in 3.6.1.0-1 iOS/Android Patch
• For Android and iOS client platforms, a new interaction callback ‘onDiscardComplete’ is

available on the Audio and Video Interaction objects.
See platform API documentation provided along with Avaya WebRTC Connect SDK and
Android/iOS sections in this document for more detailed information.

Changes in 3.5.0.1
• For Android and iOS client platforms, a new optional property ‘webGatewayUrlPath’ is

available on the WebGatewayConfiguration object. See platform API documentation
provided along with Avaya WebRTC Connect SDK for more detailed information.

Changes in 3.5.0.0
• For all three client platforms the SDK has been renamed in 3.5.0.0 to

OceanaCustomerWebVoiceVideo.

• The APIs have been aligned across all three platforms. See below for more information
on platform specific changes as a result.

• A new property ‘Topic’ is available on the Work object for all platforms. See ‘Topic’ section
for more information.

Avaya WebRTC Connect Software Development Guide 24

Android
• .aar file renamed to oceanacustomerwebvoicevideo.aar.

• libacbjnglpeerconnection_so.so dependency is no longer required.

• Requesting an authorization token has changed. See “Creating an Application: Generic
Elements” for more information.

• OceanaCustomerServices class has been renamed to
OceanaCustomerWebVoiceVideo.

• OceanaCustomerWebVoiceVideo constructor accepts a new ClientConfiguration object.

• ClientConfiguration object contains the Config object and a new
WebGatewayConfiguration object.

• acceptAllCertificates method has been removed.

• In the Work class, createAudioInteraction(context); now accepts Application instead of
ApplicationContext.

• In the Work class, createVideoInteraction(context); now accepts Application instead of
ApplicationContext.

• New property Topic is available on the Work object.

• Enum DTMFType renamed to DTMFTone.

• videoInteraction.mute(boolean); has been renamed to
videoInteraction.muteAudio(boolean);

• videoInteraction.isMuted(); has been renamed to videoInteraction.isAudioMuted();

• videoInteraction.readAudioDetails(AudioDetailsCallback) is a new method available on
the interaction.

• videoInteraction.readVideoDetails(VideoDetailsCallback) is a new method available on
the interaction.

• VideoSurface and VideoSurfaceImpl have been removed and replaced with
VideoSurfaceView object.

• videoDevice.setLocalVideoView(videoSurface); and
videoDevice.setRemoteVideoView(videoSurface); has been replaced by
videoDevice.setVideoSurface(viewGroup);

• videoDevice.getSupportedCameraCaptureResolutions(cameraType); no longer accepts
CameraType as a parameter.

• audioInteraction.mute(boolean); has been renamed to
audioInteraction.muteAudio(boolean);

• audioInteraction.isMuted(); has been renamed to audioInteraction.isAudioMuted();

• audiointeraction.readAudioDetails(AudioDetailsCallback) is a new method available on
the interaction.

Avaya WebRTC Connect Software Development Guide 25

iOS
• .framework file renamed to AvayaWebRTCConnect.framework.

• AvayaClientSDK.framework dependency replaced by AvayaClientServices.framework
dependency.

• New dependency required: RVVideoCodec.framework.

• Requesting an authorization token has changed. See “Creating an Application: Generic
Elements” for more information.

• AOOceanaCustomerServices class has been renamed to
AOOceanaCustomerWebVoiceVideo.

• initWithIsSecure: method in AOOceanaCustomerWebVoiceVideo class has been
replaced by: initWithClientConfiguration:clientConfiguration;

• New Configuration objects available – AOClientConfiguration which contains new
objects: AOConfiguration and AOWebGatewayConfiguration.

• Optional method urlPath previously in AOOceanaCustomerServicesClass has been
moved to AOConfiguration class.

• acceptAllCertificates method has been removed.

• New property Topic is available on the Work object.

• [videoInteraction start:delegate]; has changed to [videoInteraction start];

• [videoInteraction end:delegate]; has changed to [videoInteraction end];

• [videoInteraction sendDTMF:tone andPlayAudio:bool]; has changed to [videoInteraction
sendDTMF:tone];

• [videoInteraction readVideoDetailsWithCompletionHandler:handler] is a new method
available on the interaction.

• [videoInteraction readAudioDetailsWithCompletionHandler:handler] is a new method
available on the interaction.

• [audioInteraction start:delegate]; has changed to [audioInteraction start];

• [audioInteraction end:delegate]; has changed to [audioInteraction end];

• [audioInteraction sendDTMF:tone andPlayAudio:bool]; has changed to [audioInteraction
sendDTMF:tone];

• [audioInteraction readAudioDetailsWithCompletionHandler:handler] is a new method
available on the interaction.

• [aoDevice getAvailableResolutions]; has changed to: [aoDevice
getSupportedCameraCaptureResolutions];

• [aoDevice setResolution:resolution]; has changed to: [aoDevice
setCameraCaptureResolution:resolution];

• [aoDevice setCameraType:type]; has changed to: [aoDevice selectCamera:type];

• AOVideoResolution enum has additional values.

Avaya WebRTC Connect Software Development Guide 26

JavaScript
• .js file renamed to OceanaCustomerWebVoiceVideo.js

• Requesting an authorization token has changed. See “Creating an Application: Generic
Elements” for more information.

• OceanaCustomerServices object has been renamed to
OceanaCustomerWebVoiceVideo.

• OceanaCustomerWebVoiceVideo now accepts a new config object which consists of
Configuration and WebGatewayConfiguration.

• A new function, Topic, is available on the Work object.

• Enum DTMFDigit has been renamed to DTMFTone.

• videoInteraction.mute(boolean); function has been renamed to
videoInteraction.muteAudio(boolean);

• videoInteraction.isMuted(); function has been renamed to
videoInteraction.isAudioMuted();

• videoInteraction.readAudioDetails(callback) is a new function available on the interaction
object.

• videoInteraction.readVideoDetails(callback) is a new function available on the interaction
object.

• videoDevice.setLocalVideoView(view); function has been renamed to
videoDevice.setLocalView(view);

• videoDevice.setRemoteVideoView(view); function has been renamed to
videoDevice.setRemoteView(view);

• audioInteraction.mute(boolean); function has been renamed to
audioInteraction.muteAudio(boolean);

• audioInteraction.isMuted(); function has been renamed to
audioInteraction.isAudioMuted();

• audioInteraction.readAudioDetails(callback) is a new function available on the interaction
object.

Avaya WebRTC Connect Software Development Guide 27

Creating an Application: Generic
Elements
Certain objects and concepts are shared across all three SDKs. The shared elements are
discussed in this section.

Authorization tokens
Avaya Aura Web Gateway provides the Web Voice and Video functionality. As such, Avaya Aura
Web Gateway authorization token is required for all three client types – Android, iOS and
JavaScript.

Avaya Aura Web Gateway Authorization service
The Avaya Aura Web Gateway authorization service is a HTTP-based service that provides
authenticated clients with authorization tokens, which are necessary to create a call using the
Avaya Aura Web Gateway Server. Clients (be they Android, iOS or JavaScript based) should
never communicate with the authorization service directly. Avaya Aura Web Gateway will
authorize requests only if they are presented with a valid client certificate that is trusted by the
Avaya Aura Web Gateway and the client certificate FQDN must match one of those in the
trusted hosts list.

These tokens are only valid for a short period of time, by which the client has to connect to the
system and make a call. The token does not limit the call duration, it is just required to
authorize the client to connect to the system, i.e. to validate a session. Once connected, there
will be a default time of 120 seconds to initiate a call (this value can be overridden in the token
request). If the session terminates, the client will have to request a new token in order to initiate
another call.

The Avaya WebRTC Connect client application should call your own authentication service
(Step 1 below), which will authenticate the client (Step 2), and then the authentication service
should request the token from the Avaya Aura Web Gateway Server authorization service
directly (Step 3) before responding to the client with the token.

Avaya WebRTC Connect Software Development Guide 28

Custom Web Service Retrieving an Authorization Token

Any web service that needs to create a token should delegate to the Avaya Aura Web Gateway

to create the token.

The URL to access the token service is as follows:

https://<AAWGSERVER_ADDRESS>/csa/resources/tokens

To retrieve a session token, a HTTP POST must be performed on this interface, providing

JSON in the following format:

{
 "use":””csaGuest”,

 “calledNumber”:<string>,

 “callingNumber”:<string>,

 “displayName”:<string>,

 “expiration”:”20000”
}

With the following content type:

 application/vnd.avaya.csa.tokens.v1+json

Where the parameters are defined as follows:

• use – Mandatory field provided when creating the token. It indicates the type of token
that will be generated. The only type of token allowed is “csaGuest”.

• calledNumber – Optional field also known as “Destination Address”. This is the number
to dial to, the SIP call will be originated to this number. This number will be included in
the username of the SIP URI, both in the request URI and the To URI. If not provided it
will be encrypted as null. If null, then the token is valid to call any number.

• callingNumber – Optional field, also referred to as “From Address” or “UserName”. This
is the number from which the call is made. If this is not provided, a random
callingNumber is generated for the call. It is included in the username of the From SIP
URI.

• displayName – Optional field. This is the friendly display name of the caller. This value
will be included in the display name of the From URI. If this is not provided, then it will
be empty.

• expiration – Optional field. This is the length of time the token is valid for in
milliseconds, i.e. the time by which the client must connect to the system and make a
call after receiving a token, not the call duration. If this is not specified in the request, a
default value of 120 seconds will be used.

Avaya WebRTC Connect Software Development Guide 29

 Note: The callingNumber (also known as From Address) is used as a customers’
unique identifier when initiating a Web Voice/Video call into the Contact Centre.
Features such as Customer Journey, which use this identifier to link a customer’s
journey across multiple sessions, will be misrepresented if this value is hardcoded in
the application. Therefore, a unique from address per customer is highly
recommended. For instance, on mobile devices with cellular capabilities the
userName value could use the telephone number associated with a SIM card.

Success Response

Status Body

200 OK {

 “encryptedToken” = <string>

}

Failure Responses
Status Description

400 Bad Request “use”: “csaGuest” is omitted or incorrect

Avaya WebRTC Connect Software Development Guide 30

Getting a Token from the Sample Token Generation Service
A sample token generation service is provided that in turn calls the Avaya Aura Web Gateway
authorization service. It can be used by clients to request tokens and can be enabled on any
deployed Avaya Aura Web Gateway System. The sample token generation service should not
be used in a production environment, it is for testing and debug purposes only.

Please refer to the “Deploying Avaya Oceana™ Solution” and “Deploying Avaya Workspaces for
Elite” guide for steps required to deploy the sample token generation service on the Avaya Aura
Web Gateway.

A sample token-generation-service.war is also included in the DevConnect bundle which can be
deployed on any webserver. This is an unsupported reference token service whose purpose is
to act as a guide for developing a custom authentication service.
This token-generation-service.war must be deployed on a server which is configured with an
FQDN that can be resolved by the Avaya Aura Web Gateway server and must have a valid
server certificate for that FQDN.

Furthermore, when starting the application server, Java's network libraries must be configured
with a keystore that contains the server certificate, e.g. launched with the following parameters:

-Djavax.net.ssl.keyStore=/path/to/server/cert/keystore.jks
-Djavax.net.ssl.keyStorePassword=PasswordForKeystore

The FQDN for the token server must be added to the trusted nodes list on Avaya Aura Web
Gateway, and the CA of the server's certificate must be added to the Avaya Aura Web Gateway
trust store.

As this test authentication service is intended to enable the analysis of integrating Avaya
WebRTC Connect with existing or planned enterprise applications, no actual authentication is
employed for token generation.

Therefore, the sample token generation service does not perform any validation. It passes the
parameters provided onward to the actual authorization web service which generates the token
to be returned. In a production scenario, the sample token generation service is replaced with a
customer-developed web service which carries out whatever authentication is required by the
enterprise’s own business rules. If this authentication succeeds, it continues the process by
requesting a token from the authorization web service, then returning the generated token to the
client requesting the Web Voice/Video call.

The Avaya WebRTC Connect SDK APIs do not enforce any requirements for the implementation
of this token request, it can be sent using whatever code and practices are preferred by the
individual developer and appropriate to the platform (examples can be found in the provided
reference clients).

 Note:
The reference clients can be configured (‘Token Config’ sections in each reference client)
to point to the sample token generation service if it is deployed on the Avaya Aura
Gateway server as per the “Deploying Avaya Oceana™ Solution” OR “Deploying Avaya
Workspaces for Elite ”guide. It can be also be configured to point to a custom webserver
if the sample token-generation-service.war is deployed on a webserver.

The entire returned token should be stored in an in-memory location or variable. It must later be
set as a property on an interaction object (which precedes starting the call) and will also be
required to invalidate the token.

Avaya WebRTC Connect Software Development Guide 31

When considering integration of Avaya WebRTC Connect with an enterprise application, it is
important to understand the capabilities granted by the token. After the token is set as a property
on an interaction, the user has the capability to make a call. The start() method can be called
once per token. This means a token is valid for one call only. A new token is required to make a
subsequent call.

Attributes
Before the API design is explored it is important to explain the concept of an attribute and how
the Oceana™ Customer Web Voice/Video SDK uses attributes in the Avaya Oceana™ solution.

Attributes describe characteristics of the customer request. These attributes act on the routing
rules when selecting the optimum resource to handle the request. The following are examples of
attributes:

Language : English; Service : Sales
Language : Spanish; Service : Support

Attributes in the Avaya Oceana™ solution are used by Work Assignment. The Work Assignment
Engine in Oceana™ finds the most suitable resource for a work item. It uses attribute-based
Work and Resource matching. For more information on Work Assignment and its attribute-based
matching feature consult “Avaya Work Assignment Snap-in Reference” available on Avaya
DevConnect.
Please note that Elite platform does not support attributes settings.

Basic API Design
Although there are minor platform-influenced differences between the three APIs, the basic
model or flow is fundamentally the same across them.

1. First, an authorization token must be obtained, as per the previous section.
2. Secondly, a Avaya WebRTC Connect SDK object is initialized.
3. Thirdly, a Work object is initialized from the Avaya WebRTC Connect SDK object.

Attributes are set on the Work object after it is initialized.
4. Fourthly, an Interaction object is initialized from the Work object. The authorization

token is set as a property on the interaction object. This is the conceptual “call” object in
the API and includes the start() and end() methods necessary for calls.

This basic model is shown below:

 Note: the exact terminology for these objects differs across APIs due to varying
platform standards.

Avaya WebRTC Connect SDK is the top-level class, which configures the endpoints and gives
access to other API elements. Work groups interactions under a work request identifier and
attaches attributes to the particular work request to match the best contact centre resource for
the interactions.

Finally, Interaction models the actual calls themselves and has call-related methods such as
start and end. The Interaction objects have various callbacks available to notify an application of
call events, which are discussed in detail later.

 Note: The Avaya WebRTC Connect APIs are designed to allow interactions to
originate from applications which may also serve other purposes. For example, an

Avaya WebRTC
Connect SDK

Work Interaction

Avaya WebRTC Connect Software Development Guide 32

online banking application might also include a “Live Help” button to request help from
an agent.

Therefore, the recommended practice is to postpone the process until the user clicks
the “Live Help” button. At that point (and not before), applications enabled with the
Avaya WebRTC Connect SDK should start execution with the above steps.

Context
The Avaya WebRTC Connect SDK APIs allow for context to be set programmatically when
making a call. Context is a string encapsulating some business logic, such as a customer
reference number or an Order ID.

For example, if a user is browsing a shopping application, and clicks a call button while looking
at a product, the product ID could be set as context to be retrieved when the call is presented to
the agent, where a Screen Pop could show the same product page, allowing an agent to
immediately see the product a customer is calling about.

The generic syntax is:

work.setContext(context);

Please consult the relevant section for the platform you will be developing against for the exact
API call.

For more information on configuring Screen Pops, please consult “Appendix A - Configuring
Screen Pops”.

Topic
The Avaya WebRTC Connect SDK API allows for a Topic to be set programmatically when
making a call. Topic is a string which can encapsulate any subject matter, such as the topic of
discussion for the interaction.

For example, if a user is browsing a shopping application and clicks a call button while looking
at their billing information, “billing” could be set as the topic to be retrieved when the call is
presented to the agent. This is seen in the Customer Journey widget on the Workspaces browser
client, if Customer Journey is configured in your Oceana™ or Elite solution.

An agent can select “billing” from the “Select Topic” dropdown in the Customer Journey widget
on an active interaction and the agent can see all the previous interactions when that customer
contacted the contact center about that specific topic.
The generic syntax is:

work.setTopic(topic);

Please consult the relevant section for the platform you will be developing against for the exact
API call.

Avaya WebRTC Connect Software Development Guide 33

User Interface design
The Avaya WebRTC Connect reference clients typically follow a multi-screen design. A click-to-
call screen is followed by an in-call screen.

Developers should be cognisant of the state of the various controls that make up a Web
Voice/Video application – for example, “call” buttons should be disabled after a call is initiated,
and not enabled again until the call is ended. The following simple matrix shows some sample
control states in various app screens for a voice call:

Control / type Before Call During Call After Call

Make Web Voice
Call

Button Y Y

Call State / Timer Label Y

Mute Audio Button Y

Send DTMF Button Y

Hang Up Button Y

The following simple matrix shows some sample control states in various app screens for a video
call:

Control / type Before Call During Call After Call

Make Web Video
Call

Button Y Y

Call State / Timer Label Y

Mute Audio Button Y

Mute Video Button Y

Enable Video Button Y

Send DTMF Button Y

Hang Up Button Y

 Note: This is not a definitive list. Depending on specific requirements, not all

controls will apply in all cases. In some cases, other controls will be needed.

Avaya WebRTC Connect Software Development Guide 34

Writing an Android application
Setting up the project
Android developers can use their preferred Development Environments, such as Android Studio
to build Avaya WebRTC Connect SDK enabled applications. The reference client provided with
Avaya WebRTC Connect SDK was created using Android Studio and the steps that follow reflect
that.

Please consult the section “Downloading the Reference Clients and SDKs” for information on
where to download the relevant resources.

1. Create a new project in Android Studio as shown below.
2. Include the Avaya WebRTC Connect (oceanacustomerwebvoicevideo.aar) in the

projects libs directory.
3. Open the app/build.gradle file and add a reference to the above aar e.g.

 repositories {

 dirs 'libs'

 }

 dependencies {

 implementation(name: 'oceanacustomerwebvoicevideo', ext: 'aar')

 implementation ‘io.netty:netty-all:4.1.17.Final’

 }

4. In order to allow your project to access the required features on Android devices,
include the following permissions in the AndroidManifest.xml file

• android.permission.INTERNET

• android.permission.RECORD_AUDIO

• android.permission.MODIFY_AUDIO_SETTINGS

• android.permission.CAMERA

Avaya WebRTC Connect Software Development Guide 35

Initialize the SDK
When the application has detected the user is attempting to initiate an interaction into the contact
centre, the Avaya WebRTC Connect SDK can be instantiated as follows:

OceanaCustomerWebVoiceVideo client = new OceanaCustomerWebVoiceVideo(clientConfiguration);

Where clientConfiguration is an instance of the ClientConfiguration class which contains the

following configuration objects:

ClientConfiguration clientConfiguration = new ClientConfiguration();

Config – This object is specific to Avaya Oceana and not applicable for Avaya Aura Elite. It
contains configuration properties for connecting to the AvayaMobileCommunications snap-in:

• setRestUrl – hostname or IP address of the AvayaMobileCommunications cluster.

• setPort – port to connect to the AvayaMobileCommunications cluster with, defaults to

443.

• setSecure – set to true for HTTPs; set to false for HTTP protocol to connect to the

AvayaMobileCommunications cluster with.

• setUrlPath – optional, this allows the URL path to be configured when connecting to

the AvayaMobileCommunications cluster. See API documentation provided along with
Avaya WebRTC Connect SDK for more information.

Config config = new Config();Or Config config = new Config(“amc-

cluster.avaya.com”);

config.setRestUrl(“amc-cluster.avaya.com”);

config.setSecure(true);

config.setPort(443);

clientConfiguration.setConfig(config);

WebGatewayConfiguration – contains configuration properties for connecting to the Avaya
Aura Web Gateway Server:

• setWebGatewayAddress – hostname of the Avaya Aura Web Gateway server.

• setPort – port to connect to the Avaya Aura Web Gateway server with.

• setSecure – the protocol to connect to the Avaya Aura Web Gateway server with, set to

true for HTTPs, set to false to use HTTP.

• webGatewayUrlPath – optional, this allows the URL path to be configured when

connecting to the Avaya Aura Web Gateway server. See API documentation for more
information.

Getter methods are also provided for the above setter methods.
For example:

WebGatewayConfiguration webGatewayConfiguration = new WebGatewayConfiguration();

webGatewayConfiguration.setWebGatewayAddress(“aawg-fqdn”);

webGatewayConfiguration.setPort(8443);

webGatewayConfiguration.setSecure(true);

clientConfiguration.setWebGatewayConfiguration(webGatewayConfiguration);

Avaya WebRTC Connect Software Development Guide 36

Creating Work
Next a Work object can be derived from the Avaya WebRTC Connect SDK object as follows:

 Work work = client.createWork();

The Work API provides a mechanism to populate the Oceana™ / Elite interaction schema.
This interaction schema data is available for use by the Engagement Designer workflow engine
(as can be seen in the Web Voice/Video workflow) and is used in requests to Work Assignment
for resource selection.
For more information consult the API documentation provided along with Avaya WebRTC
Connect SDK.

A Work object must be assigned services or resources for Oceana™ / Elite to be able to handle
the work request. If both are provided, Work Assignment will try to assign the work to the provided
resources. If the resources are unable to be assigned the work, Work Assignment will use the
provided services to assign or queue the work.

Adding Services

List<Service> services = new ArrayList<>();

Service service = new Service();

service.setAttributes(attributes);

service.setPriority(5);

services.add(service);

work.setServices(services);

This code snippet creates a collection of services. Next a service is created and given attributes
and a priority. Finally, the service is added to the services collection and set on the Work object.

Adding Resources

List<Resource> resources = new ArrayList<>();

Resource resource = new Resource();

resource.setNativeResourceId(“agent6220”);

resource.setSourceName(“CM”);

resources.add(resource);

work.setResources(resource);

This code snippet creates a collection of resources. Next a resource is created and given a
resource id and source name. Finally, the resource is added to the resources collection and set
on the Work object.

Adding Interaction Context
Optional context may be added to a work request as described in the section “Creating an
Application: Generic Elements - Context”
To set a context on the work object, invoke the following method:

 work.setContext(context);

Where context is a string encapsulating some business logic, such as a customer reference

number or an Order ID.

Avaya WebRTC Connect Software Development Guide 37

Adding an Audio Interaction
A voice call can be created by deriving an AudioInteraction from the Work object, as shown

here:

AudioInteraction interaction = work.createAudioInteraction(application,listener);

Where application is the current Android application context. listener is the

OnAudioDeviceChangeListener object

Setting platform type for an Audio Interaction (Oceana/Elite)

The Avaya WebRTC Connect can be used for Oceana and Elite interactions. Once Audio
interaction’s object is created, set the platform type as follows:

• setPlatformType(com.avaya.ocs.Services.Work.Enums.PlatformType

platformType) // PlatformType.OCEANA or PlatformType.ELITE

The default platform type is com.avaya.ocs.Services.Work.Enums.PlatformType.OCEANA

Audio Interaction Callbacks
The Audio Interaction class provides registerListener() and unregisterListener()

methods. This offers the ability to register a class which implements the following interaction
status callbacks.
These callbacks are available in the AudioInteractionListener interface.

These are:

• onInteractionInitiating() – Called when the out-going request to initiate an

interaction has been sent.

• onInteractionRemoteAlerting() – Called when the interaction has received ring back

information from the signalling network.

• onInteractionActive() – Called when the interaction has been established.

• onInteractionEnded() – Called when the call on this interaction is ended. This

callback method is called when the interaction is either locally or remotely ended.

• onInteractionHeld()–Sent when the interaction is on put hold.

• onInteractionUnheld()–Sent when the interaction is unheld

• onInteractionHeldRemotely()–Sent when the interaction is put on hold remotely.

• onInteractionUnheldRemotely()–Sent when the interaction is unheld remotely.

• onInteractionAudioMuteStatusChanged(Boolean muted) – Called when the

interaction’s audio is muted or unmuted.

• onInteractionFailed(InteractionError error) – Called when an error occurred

establishing the interaction

• onDiscardComplete() – Called when the interaction has finished discarding
• onInteractionQualityChanged(CallQuality quality) - Called when a

interaction's quality state changes. Note that this API callback is called
every few seconds to return the current quality.

•

Starting an Audio Interaction
Before an Audio Interaction can be initiated, an Avaya Aura Web Gateway authorization token
must be obtained as detailed in the “Creating an Application: Generic Elements - Authorization
Tokens” section. Once a token has been obtained, it must be set on the Audio Interaction object:

 interaction.setAuthorizationToken(token);

Once the requisite Audio Interaction properties have been set, an Audio Interaction can be
initiated by invoking:

Avaya WebRTC Connect Software Development Guide 38

 interaction.start();

Optionally, before starting the interaction, interaction.muteAudio(muted) can be called. This

takes a Boolean indicating if the customer’s audio stream should be silenced or active when the

interaction starts. If this is not set, the audio stream will be active by default.

Optionally, an interaction can be sent to the specified destination rather than the Avaya
Oceana™ or Avaya Elite Web Voice/Video default routing number.

For example:

 interaction.setDestinationAddress(destination);

Where destination is a string representing a remote SIP address.

During an Audio interaction
There are a number of actions that can take place on the Audio Interaction object during an
active interaction.

These include:

• sendDTMF(digit) – sends the specified DTMF tone (an enumeration DTMFDigit is

provided).

• muteAudio(muted) – takes a Boolean indicating if the audio stream should be silenced.

The method isAudioMuted() indicates the current mute state.

• readAudioDetails(AudioDetailsCallback) – This asynchronous method returns

detailed information about the audio channel associated with the call.

• hold() – Holds an active call.

• unhold() - Unholds an active call.

• readAudioDetails(audioDetailsCallback) - This asynchronous method

returns detailed information about the audio channel associated with the call.

• getCallType – Returns the CallType information associated with the call.

Running interactions can be interrogated for state. The state consists of two elements.

• The first indicates the time the interaction has been in-progress for (in milliseconds)
since start() was called.

 interaction.getInteractionTimeElapsed();

The second indicates the abstract “state” of the interaction, returning a value from the
InteractionState enum in Appendix C.

 interaction.getInteractionState();

Ending an Audio Interaction
The end() method will terminate the active interaction.

 interaction.end()

The discard() method will shutdown the SDK instance after the interaction has ended.

 interaction.discard()

 Note:
For more detailed information on the recommended sequence for handling an interaction
ending, see ‘Appendix D – Recommended Sequence for Ending Interactions’

Avaya WebRTC Connect Software Development Guide 39

Adding a Video Interaction
A video call can be created by deriving a VideoInteraction from the Work object, as shown

here:

VideoInteraction interaction = work. createVideoInteraction (application,listener);

Where application is the current Android application context. listener is the

OnAudioDeviceChangeListener object

Setting platform type for a Video Interaction (Oceana/Elite)

The Avaya WebRTC Connect can be used for Oceana and Elite interactions. Once Video
interaction’s object is created, set the platform type as follows:

• setPlatformType(com.avaya.ocs.Services.Work.Enums.PlatformType

platformType) // PlatformType.OCEANA or PlatformType.ELITE

The default platform type is com.avaya.ocs.Services.Work.Enums.PlatformType.OCEANA

Using VideoDevice class, one can set/change the following APIs:

• selectCamera(cameraType) – Select which camera type to be used for the video

interaction.

• switchCamera()– Switch from the front to the rear camera or vice-versa.

• setVideoCaptureResolutionWithCaptureOrientation(videoCapturePreferen

ce,videoCaptureOrientation)- Sets the resolution and orientation for the video

call.
• getVideoCapturePreference -Returns the current video capture resolution

preference.

• getVideoCaptureOrientation - Returns the current video capture orientation

preference.
• VideoCaptureOrientation.values() - Returns the available orientation values.

• VideoCapturePreference.values() - Returns the available resolution values.

Setting up local and remote video views.
Local video view : In the XML layout create com.avaya.ocs.Services.Device.Video.VideoSurfaceView view
with app:videoDirection="Transmit" app:videoStyle="MovableCorner"
Remote video view : In the XML layout create com.avaya.ocs.Services.Device.Video.VideoSurfaceView
view with app:videoDirection=" Receive" app:videoStyle="Fixed"

Laying out the video views
On the Android platform, a ViewGroup is created to represent the area available for video views,

and two views of the type com.avaya.ocs.Services.Device.Video.VideoSurfaceView should

be created inside it, one to represent the local video, and one to represent the remote video.

This layout can be created either in your layout/video_view.xml, or through code.

Use the videoDirection attribute on the VideoSurfaceView object to assign a video direction to

the view:

 app:videoDirection="Receive" for the remote video stream

Avaya WebRTC Connect Software Development Guide 40

 app:videoDirection="Transmit" for the local video stream

There are two styles of view surface, Movable Corner and Fixed.

• A Movable Corner view will snap to one of the corners of parent ViewGroup which contains

the view, and can be dragged into a different corner by the user.

• A Fixed view is stationary and cannot be moved.

Use the videoStyle attribute on the VideoSurfaceView object to assign a style to the view:
 app:videoStyle="Fixed" for the remote video stream

 app:videoStyle="MovableCorner" for the local video stream

Use the videoCornerRadius attribute on the VideoSurfaceView (Local) object to assign a
rounded corner to the local video stream
 app:videoCornerRadius="32" for the local video stream. Value should be an integer. For

best results set value in multiples of 8. For a rectangular corner set this value to 0.
Use the videoBorderWidth attribute on the VideoSurfaceView (Local) object to assign a border
to the local video stream
 app:videoBorderWidth="2" for the local video stream. Value should be an integer. You

can set it as 1,2,3 etc. For no border set this value to 0.

 Note:
The local video view currently only supports the Movable Corner style.

Setup the Video Device
Before initiating a Video Interaction, it is necessary to setup the video device. On the Android
platform this tells the Avaya Oceana Customer Web Voice/Video SDK where to display the video
media stream and which camera and resolution to use.

The device object is created from the interaction object as shown here:

 VideoDevice device = interaction.getVideoDevice();

A ViewGroup which contains the local and remote video views can then be set on the device

object, for example:

 device.setVideoSurface(mainLayout);

where mainLayout is an object of type ViewGroup, as described In the Laying out the video

views section above.

See Appendix B for information on enumerations.

Video Interaction Callbacks
The Video Interaction class provides registerListener() and unregisterListener()

methods. This offers the ability to register a class which implements the following interaction
status callbacks. These callbacks are available in the VideoInteractionListener interface.

These are:

• onInteractionInitiating() – Called when the out-going request to initiate an

interaction has been sent.

Avaya WebRTC Connect Software Development Guide 41

• onInteractionRemoteAlerting() – Called when the interaction has received ring back

information from the signalling network.

• onInteractionActive() – Called when the interaction has been established.

• onInteractionEnded() – Called when the call on this interaction is ended. This

callback method is called when the interaction is either locally or remotely ended.

• onInteractionHeld()–Sent when the interaction is on put hold.

• onInteractionUnheld()–Sent when the interaction is unheld

• onInteractionHeldRemotely()–Sent when the interaction is put on hold remotely.

• onInteractionUnheldRemotely()–Sent when the interaction is unheld remotely.

• onInteractionAudioMuteStatusChanged(Boolean muted) – Called when the

interaction’s audio is muted or unmuted.

• onInteractionVideoMuteStatusChanged(Boolean muted) – Called when the

interaction’s video is muted or unmuted.

• onInteractionVideoEnabledStatusChanged(Boolean enabled) – Called when the

interaction’s video is enabled or disabled.

• onVideoInteractionFailed(InteractionError Error) – Called when an error

occurred establishing the interaction.

• onDiscardComplete() – Called when the interaction has finished discarding.

• onInteractionQualityChanged(CallQuality quality) - Called when a
interaction's quality state changes. Note that this API callback is called
every few seconds to return the current quality.

•

Starting a Video Interaction
Before a Video Interaction can be initiated, an Avaya Aura Web Gateway authorization token
must be obtained as detailed in the “Creating an Application: Generic Elements - Authorization
Tokens” section. Once a token has been obtained it must be set on the Interaction object:

 interaction.setAuthorizationToken(token);

Once the requisite Video Interaction properties have been set, the interaction can be initiated by
invoking:

 interaction.start();

Optionally, before starting a video interaction the following methods can be invoked; muteAudio,

muteVideo, enableVideo. All the aforementioned methods take a Boolean indicating the state of

the customer’s audio or video media stream. Audio and video will be actively streamed by default.

The interaction can be sent to a specified destination rather than the Avaya Oceana™ Web
Voice/Video default routing number.

For example:

 interaction.setDestinationAddress(destination);

where destination is a string representing a remote SIP address.

During a Video interaction
There are a number of actions that can take place on the Video Interaction object while the
interaction is active.

These include:

Avaya WebRTC Connect Software Development Guide 42

• sendDTMF(digit) – sends the specified DTMF tone (an enumeration DTMFDigit is

provided).

• muteAudio(muted) – takes a Boolean indicating if the audio stream should be silenced

or active. The method isAudioMuted() indicates the current mute state.

• muteVideo(muted) – takes a Boolean indicating if the video stream should be silenced

or active. The method isVideoMuted() indicates the current mute state.

• enableVideo(enabled) – takes a Boolean indicating if the video stream should be

enabled or disabled. The method isVideoEnabled() indicates the current video state.

• readAudioDetails(AudioDetailsCallback) – This asynchronous method returns

detailed information about the audio channel associated with the call.

• readVideoDetails(VideoDetailsCallback) – This asynchronous method returns

detailed information about the video channel associated with the call.

• hold() – Holds an active call.

• unhold() - Unholds an active call.

• readAudioDetails(audioDetailsCallback) - This asynchronous method

returns detailed information about the audio channel associated with the call.

• getCallType – Returns the CallType information associated with the call.

•
Video Interactions can be interrogated for state. The state consists of two elements.

• The first indicates the time the interaction has been in-progress for (in milliseconds)
since start() was called.

interaction.getInteractionTimeElapsed();

• The second indicates the abstract “state” of the interaction, returning a value from the
InteractionState enum in Appendix B.

interaction.getInteractionState();

Ending a Video Interaction
The end() method will terminate the active interaction.

 interaction.end();

The discard() method will shutdown the SDK instance after the interaction has ended.

 interaction.discard()

 Note:
For more detailed information on the recommended sequence for handling an interaction
ending, see ‘Appendix D – Recommended Sequence for Ending Interactions’

Connection Listener Callbacks
The audio and video interaction classes provide registerConnectionListener() and

unregisterConnectionListener() methods. This offers the ability to register a class which

implements the following interaction connectivity callbacks. These callbacks are available in the
ConnectionListener interface.

• interactionServiceConnected() – Called when the signalling path for an interaction

is available.

• onInteractionServiceConnecting() – Called when the signalling path for an

interaction is attempting to reconnect after an outage, expect limited call capabilities
and the media path to remain active.

Avaya WebRTC Connect Software Development Guide 43

• onInteractionServiceDisconnectedWithError(InteractionError

interactionError) – Called when the signalling path for an interaction has failed or is

unavailable.

Application background mode behaviour
When the user presses the Home button, presses the power button, or the system launches
another application, the foreground application transitions first to an inactive state, and then to a
background state.
If you are currently streaming video from your application, this will stop when the application goes
into background mode.
It is an application developer's responsibility to consider both functional and privacy implications
when transitioning to background mode.

 Note: The application background behaviour of Android is different to that of iOS,
please see the iOS section for more details.

 Note: Please consult the API documentation provided with the Android Avaya

WebRTC Connect SDK for a complete list of available methods.

Avaya WebRTC Connect Software Development Guide 44

Writing an iOS application
iOS Version Specifics and IPv6

iOS Version Changes
For information regarding new requirements introduced for iOS version updates, please refer to:
Appendix C – iOS Version Updates.

Testing IPv6
Apple require that apps submitted to the Apple store support IPv6-only networks, and this should
be tested during development; see:

https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Concept
ual/NetworkingOverview/UnderstandingandPreparingfortheIPv6Transition/Understandin
gandPreparingfortheIPv6Transition.html

Apple laptops and desktops support providing a NAT64 Wi-Fi hotspot, as long as you are able
to connect to your network through another interface such as an Ethernet cable - for details on
enabling this, see the Test for IPv6 DNS64/NAT64 Compatibility Regularly section in the above
link.

 Note:
Apple sometimes requires testing an app in full during submission, in which case a
public NAT64 is required.

For more information on setting up your Oceana™ solution for IPv6, please refer to “Support for
IPv6 addresses” section in “Avaya Session Border Controller for Enterprise Overview and
Specification” available on DevConnect.

Supported Build Architectures
The Avaya WebRTC Connect SDK supports being compiled and run with both an iOS simulator
and iOS physical devices.

The OceanaCustomerWebVoiceVideo.xcframework, AvayaClientServicesLite.xcframework,
AvayaClientMedia.xcframework and RVVideoCodec.xcframework are universal frameworks and
can be used for running the application on both simulator and device. These frameworks can be
found in the AvayaWebRTCConnectSDK.zip of the OceanaWebVoiceVideo SDK bundle
obtained from DevConnect.

See “Setting up the project” section for details on how to add these dependencies to a project.
If you are using Xcode 13, we suggest using the iPhone 13 pro max option as the targeted
simulator.

The supported build architectures for the iphonesimulator
AvayaCustomerWebVoiceVideo.framework are x86_64 and Apple Silicone arm64.

For running on actual device, use the option “<connected_iPhone>” as the targeted physical
device.

As recommended by Apple, the underlined CSDK and the OceanaCustomerWebVoiceVideo
SDK are supports only 64bit architectures. Use arm64 and arm64e as Valid Architectures in build
settings of the project.

 Note:

https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/NetworkingOverview/UnderstandingandPreparingfortheIPv6Transition/UnderstandingandPreparingfortheIPv6Transition.html
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/NetworkingOverview/UnderstandingandPreparingfortheIPv6Transition/UnderstandingandPreparingfortheIPv6Transition.html
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/NetworkingOverview/UnderstandingandPreparingfortheIPv6Transition/UnderstandingandPreparingfortheIPv6Transition.html

Avaya WebRTC Connect Software Development Guide 45

Due to audio and video requirements for OceanaCustomerWebVoiceVideo, developers
must use a physical device rather than an emulator for testing during development.

 Note:
The iOS Reference Client included with the SDK bundle should build out of the box with
both the iPhone simulator and actual device.

iOS 13

As recommended by Apple, the underlined CSDK and the AvayaWebRTCConnect SDK are
supports only 64bit architectures. Use arm64 and arm64e as Valid Architectures in build settings
of the project.

Swift Support
The current AvayaWebRTCConnect SDK release has been tested for support with the Swift
programming language (Swift Version 5.1). You can make Audio/Video interactions in the
application developed in swift.

XCode 11

AvayaWebRTCConnect SDK does not support bitcode. You must disable bitcode support in your
project or the compiler will throw an error. To disable bitcode, navigate to your build settings, and
in the search, box enter “bitcode”. There will be a setting labelled “Enable Bitcode”, and this
should be set to NO.

Setting up the project

Developers of iOS apps can use Apple XCode versions 11 and above.
Please consult the section “Downloading the Reference Clients and SDKs” for information on
where to download the relevant resources.

To set up a project including the Avaya WebRTC Connect SDK, you first need to create a new
project and add iOS native frameworks to it:

1. Open XCode and choose to create a Single View Application, giving your project an
appropriate name.

Avaya WebRTC Connect Software Development Guide 46

2. Click General tab and expand the ‘Frameworks, Libraries and embedded content’
section by clicking on the title.

3. Click the + button, the file explorer displays.
4. Select the following iOS native dependencies from the iOS folder:

 • Foundation.framework
 • MessageUI.framework

These are system frameworks so do not embed them. The dependencies you selected are now
displayed in the Linked Frameworks and Libraries section. Please refer the image below showing
all added frameworks.

Avaya WebRTC Connect Software Development Guide 47

Now, you need to add the Avaya WebRTC Connect SDK framework to your project.

1. Select your project and click the General tab.
2. Expand the ‘Frameworks, Libraries and embedded content’ section by clicking on the

title.
3. Click the + button. When the file explorer displays, click Add Other.
4. Navigate to the OceanaCustomerWebVoiceVideo.xcframework in the downloaded sdk

bundle, select it and click OK.
5. Make sure ‘Do not embed’ option is selected for it otherwise Xcode will complain for

embedding a static library.

As the Avaya WebRTC Connect SDK framework has a dependency on the AvayaClient SDK,
which is packaged as part of the Avaya WebRTC Connect SDK, this also needs to be added to
the Linked Frameworks and Libraries section.
To do this:

1. Select your project and click the General tab.
2. Expand the ‘Frameworks, Libraries and embedded content’ section by clicking on the

title.
3. Click the + button. When the file explorer displays, click Add Other.
4. Navigate to the Avaya WebRTC Connect SDK folder.
5. Navigate to the Frameworks folder and select AvayaClientMedia.xcframework,

RVVideoCodec.xcframework, and AvayaClientMedia.xcframework.
6. Click open.
7. These 3 frameworks need to be embedded and signed.
8. The OceanaCustomerWebVoiceVideo and other SDKs has now been added to the

project.

9. To add background mode, go to Project -> Signing & Capabilities -> Background
Modes, select following option: Audio, AirPlay, and Picture in Picture & Voice over IP.

Avaya WebRTC Connect Software Development Guide 48

Initialize the SDK
The Avaya WebRTC Connect SDK can be instantiated as follows:

oceanaCustomerWebVoiceVideo = [[AOOceanaCustomerWebVoiceVideo alloc]

 initWithClientConfiguration:clientConfiguration]];

Where clientConfiguration is an instance of AOClientConfiguration class which

contains the following configuration objects: The AOClientConfiguration object is required

for Oceana platform. Set AOClientConfiguration’s object only if the interaction would be

for Oceana platform.

AOConfiguation – This is specific to Avaya Oceana and not applicable to Avaya Aura Elite. This
object contains configuration properties for connecting to the AvayaMobileCommunications
snap-in:

• restUrl – hostname or IP address of the AvayaMobileCommunications cluster.

• port – port to connect to the AvayaMobileCommunications cluster with, defaults to 443.

• isSecure – the protocol to connect to the AvayaMobileCommunications cluster with, set

to true for HTTPs, set to false to use HTTP.

• urlPath – optional, this allows the URL path to be configured when connecting to the

AvayaMobileCommunications cluster. See API documentation for more information.

AOWebGatewayConfiguration – contains configuration properties for connecting to the
Avaya Aura Web Gateway server:

• webGatewayAddress – hostname of the Avaya Aura Web Gateway server.

• port – port to connect to the Avaya Aura Web Gateway server with.

• isSecure – the protocol to connect to the Avaya Aura Web Gateway server with, set to

true for HTTPs, set to false to use HTTP.

• webGatewayUrlPath – optional, this allows the URL path to be configured when

connecting to the Avaya Aura Web Gateway server. See API documentation for more
information.

The AOCustomerWebVoiceVideo object then grants access to the following:

• Getting the current version of the Avaya WebRTC Connect SDK:

oceanaCustomerWebVoiceVideo.versionNumber;

Avaya WebRTC Connect Software Development Guide 49

Creating Work
Next a Work object can be derived from the Oceana™ / Elite Customers Web Voice/Video object
as follows:

 work = oceanaCustomerWebVoiceVideo.createWork;

The Work API provides a mechanism to populate the Oceana™ / Elite interaction schema. This
interaction schema data is available for use by the Engagement Designer workflow engine (as
can be seen in the Web Voice/Video workflow) and is used in requests to Work Assignment for
resource selection.
For more information consult the API documentation.

A Work object must be assigned services or resources for Oceana™ / Elite to be able to handle
the work request. If both are provided, Work Assignment will try to assign the work to the provided
resources. If the resources are unable to be assigned the work, Work Assignment will use the
provided services to assign or queue the work.

Adding Services

NSMutableArray *services = [[NSMutableArray alloc] init];

AOService *service = [[AOService alloc] init];

service.attributes = attributes;

service.priority = @”5”;

[services addObject:service];

work.serviceMap = serviceMap;

This code snippet creates an array of services. Next a service is created and given attributes
and a priority. Finally, the service is added to the services array and set on the Work object.

Adding Resources

NSMutableArray *resources = [[NSMutableArray alloc] init];
AOResource *resource = [[AOResource alloc] init];

resource.nativeResourceId = @”12345”;
resource.sourceName = @“CM”;

[resources.addObject:resource];

work.resourceMap = resources;

This code snippet creates an array of resources. Next a resource is created and given a
resource id and source name. Finally, the resource is added to the resources array and set on
the Work object.

Adding Interaction Context
Optional context may be added to a work request as described in the section “Creating an
Application: Generic Elements - Context”
To set context on the work object, invoke the following method:

 work.context = contextID

Where contextID is a string encapsulating some business logic, such as a customer reference
number or an Order ID.

Avaya WebRTC Connect Software Development Guide 50

Adding an Audio Interaction
The last object required is the AOAudioInteraction, which encapsulates the WebRTC voice call
itself. Interactions are derived from the Work object and after providing all the required params
to the Audio Interaction object, you can start the Audio interactions as follows:

aoAudioInteraction = aoWork.createAudioInteraction;

aoAudioInteraction.authorizationToken = token;
aoAudioInteraction.delegate = audioDelegate;
aoAudioInteraction.connectionListenerDelegate = connectionDelegate;

Setting platform type for an Audio Interaction (Oceana/Elite)
The Avaya WebRTC Connect can be used for Oceana and Elite interactions. Once Audio
interaction’s object is created, set the platform type as follows:

 [aoAudioInteraction setPlatforType:<AOPlatformType>]; //

AOPlatformType_OCEANA or AOPlatformType_ELITE

The default platform type is AOPlatformType_OCEANA

Audio Interaction Delegate Methods
There is a delegate available on the AOAudioInteraction object that can be used to register for
callbacks which provide status information about the AOAudioInteraction that is attempting to be
established, or has already been established.
A list of all AOAudioInteraction callbacks that can be registered are:

• interactionInitiating— Sent when the interaction is requesting a session from the Avaya
Mobile Communications snap-in.

• interactionRemoteAlerting— Sent when the interaction begins alerting at the remote
end..

• interactionActive - Sent when the interaction has been established.

• interactionEnded— Sent when the interaction has ended.

• interactionFailed:NSError error— Sent when the interaction has failed. The error
parameter is used to indicate the type of failure that occurred.

• interactionAudioMuteStatusChanged:BOOL muted—Called when the session's
audio is muted or unmuted, as indicated by the BOOL.

• discardComplete— Sent when the interaction has finished discarding.

• holdComplete— Sent when the interaction is on hold.

• unholdComplete— Sent when the interaction has unheld

• remoteHoldComplete — Sent when the interaction is on remotely hold.

• remoteUnholdComplete — Sent when the interaction has remotely unheld.

• onInteractionQualityChanged:(AOCallQuality) : Called when a interaction's quality
state changes. Note that this API callback is called every few seconds to return the
current quality.

Starting an Audio Interaction
Once the requisite Audio Interaction properties have been set, an Audio Interaction can be
initiated by invoking:

 [aoAudioInteraction start];

Optionally, an interaction can be sent to the specified destination rather than the Avaya
Oceana™ WebRTC voice routing number. For example:

Avaya WebRTC Connect Software Development Guide 51

 aoAudioInteraction.destination = @”1234”;

Where destination is a string representing a remote SIP address.

During an Audio Interaction
There are a number of actions that can take place on the Audio Interaction object during an
active interaction.

• - (void) start; // Initiate an audio interaction.

• - (void) end; // End the active audio interaction.

• - (void) discard; // Shutdown the SDK after the interaction has ended.

• - (void)muteAudio:(BOOL)mute; // Mutes or unmutes the interaction's audio.

• - (void)holdWithCompletionHandler:(void (^)(NSError *))handler; //Hold active call

• - (void)unholdWithCompletionHandler:(void (^)(NSError *))handler; //Unhold active call

• - (long)getInteractionTimeElapsed; //Gets time elapsed of the current interaction.

• - (void)sendDTMF:(AODTMFTone)tone; // Sends the specified DTMF tone. @param
tone The tone to transmit.

• - (AOInteractionState)getInteractionState; // Returns the current interaction state

• - (void)readAudioDetailsWithCompletionHandler:(void (^)(AOAudioDetails
*audioDetails))handler; // Reads detailed information about the audio channel
associated with the call. @param handler A block to be called to with audio details in
AOAudioDetails.

• - (void)readCallTypeWithCompletionHandler:(void (^)(NSString
*csCallTypeString))handler; // Reads Call Type information associated with the call.
param handler A block to be called to with Call Type in NSString.

• - (AOInteractionState)getInteractionState; //Returns the current interaction state

For more information, please check the APIDoc and the Reference Client Source code.

Ending an Audio Interaction
To end an interaction in progress, the end method should be called on the Audio Interaction
object, for example:

 [audioInteraction end];

The discard() method will shutdown the SDK instance after the interaction has ended.

 [audioInteraction discard];

 Note:
For more detailed information on the recommended sequence for handling an interaction
ending, see ‘Appendix D – Recommended Sequence for Ending Interactions’

Adding a Video Interaction
The last object required is the AOVideoInteraction, which encapsulates the WebRTC video call
itself. Interactions are derived from the Work object and after providing all the required params
to the Audio Interaction object, you can start the Audio interactions as follows:

aoVideoInteraction = aoWork.createVideoInteraction;

aoVideoInteraction.authorizationToken = token;
aoVideoInteraction.delegate = audioDelegate;
aoVideoInteraction .connectionListenerDelegate = connectionDelegate;

Avaya WebRTC Connect Software Development Guide 52

AOVideoDevice* device = video.videoDevice;

Setting platform type for a Video Interaction (Oceana/Elite)
The Avaya WebRTC Connect can be used for Oceana and Elite interactions. Once Audio
interaction’s object is created, set the platform type as follows:

 [aoVideoInteraction setPlatforType:<AOPlatformType>]; //

AOPlatformType_OCEANA or AOPlatformType_ELITE

The default platform type is AOPlatformType_OCEANA

Using AOVideoDevice class, one can set/change the following APIs:

• (void) selectCamera: (AOCameraType) cameraType; // Select which

camera type to be used for the video interaction.

• -(void) switchCamera;// Switch from the front to the rear camera or vice-

versa.

• -(void) setRemoteView:(UIView*) remote; //Set the VideoSurface to

be used to render the remote video stream.

• -(void) setLocalView:(UIView*) local; //Set the VideoSurface to be

used to render the local video stream.

• +(NSMutableArray*)

getSupportedCameraCaptureResolutionPrefes; // Returns a list of

Video Resolution preferences that are supported by the device.

• (void) setVideoCaptureResolutionWithCaptureOrientation :

(AOVideoCapturePreference) resolutionPreference

orientationPreference : (AOVideoCaptureOrientation)

orientationPreference; //Set the camera capture resolution with

Orientation.

• -(AOVideoCapturePreference) getVideoCapturePreference;// Get

the camera capture resolution.

• - (AOVideoCaptureOrientation) getVideoCaptureOrientation; //

Get the camera capture Orientation.

Video Interaction Delegate Methods
There is a delegate available on the AOAudioInteraction object that can be used to register for
callbacks which provide status information about the AOAudioInteraction that is attempting to be
established or has already been established.
A list of all AOAudioInteraction callbacks that can be registered are:

• interactionInitiating— Sent when the interaction is requesting a session from the Avaya
Mobile Communications snap-in.

• interactionRemoteAlerting— Sent when the interaction begins alerting at the remote
end..

• interactionActive - Sent when the interaction has been established.

• interactionEnded— Sent when the interaction has ended.

• interactionFailed:NSError error— Sent when the interaction has failed. The error
parameter is used to indicate the type of failure that occurred.

• interactionAudioMuteStatusChanged:BOOL muted—Called when the session's
audio is muted or unmuted, as indicated by the BOOL.

Avaya WebRTC Connect Software Development Guide 53

• -(void)interactionVideoMuteStatusChanged:(BOOL)isMuted; //Sent when

the interaction's video is muted or unmuted. @param isMuted The new video mute state.

• - (void)interactionVideoEnabledStatusChanged:(BOOL)isEnabled;

//Sent when the interaction's video is enabled or disabled. @param isEnabled The new video
state.

• discardComplete— Sent when the interaction has finished discarding.

• holdComplete— Sent when the interaction is on hold.

• unholdComplete— Sent when the interaction has unheld

• remoteHoldComplete — Sent when the interaction is on remotely hold.

• remoteUnholdComplete — Sent when the interaction has remotely unheld

• onInteractionQualityChanged:(AOCallQuality) : Called when a interaction's quality
state changes. Note that this API callback is called every few seconds to return the
current quality.

• .

Starting a Video Interaction
Once the requisite Video Interaction properties have been set, an Video Interaction can be
initiated by invoking:

 [aoVideoInteraction start];

Optionally, an interaction can be sent to the specified destination rather than the Avaya
Oceana™ WebRTC video routing number. For example:

 aoVideoInteraction.destination = @”1234”;

Where destination is a string representing a remote SIP address.

During a Video Interaction
There are several actions that can take place on the Video Interaction object during an active
interaction.

• -(void) start; //Initiate a video interaction.

• - (void)end; //End the active video interaction.

• - (void) discard; //Shutdown the SDK after the interaction has ended.

• - (void)muteAudio:(BOOL)mute; //Mutes or unmutes the interaction's audio.

@param mute The new audio mute state.

• - (void)muteVideo:(BOOL)mute; //Mutes or unmutes the interaction's video.

@param mute The new video mute state.

• - (void)holdWithCompletionHandler:(void (^)(NSError *))handler;

//Hold active call

• - (void)unholdWithCompletionHandler:(void (^)(NSError *))handler;

//Unhold active call

• - (void) enableVideo:(BOOL)enable; //Enables or disables the interaction's

video. @param enable The new video state.

• - (long)getInteractionTimeElapsed; //Gets time elapsed of the current

interaction.

• - (void)sendDTMF:(AODTMFTone)tone; //Sends the specified DTMF tone.

@param tone The tone to transmit.

• - (AOInteractionState)getInteractionState; //Returns the current

interaction state.

Avaya WebRTC Connect Software Development Guide 54

• - (void)readVideoDetailsWithCompletionHandler:(void (^)(AOVideoDetails
*videoDetails))handler; // Reads list of AOVideoDetails objects representing details of all
video streams in the interaction. @param handler A block to be called to with video details
in AOVideoDetails.

• - (void)readAudioDetailsWithCompletionHandler:(void

(^)(AOAudioDetails *audioDetails))handler; // Reads detailed information

about the audio channel associated with the call. @param handler A block to be called
to with audio details in AOAudioDetails.

- (void)readCallTypeWithCompletionHandler:(void (^)(NSString *csCallTypeString))handler;
//Reads Call Type information associated with the call. @param handler A block to be called to
with Call Type in NSString.

Ending a Video Interaction
To end an interaction in progress, the end method should be called on the Video Interaction
object, for example:

 [videoInteraction end:videoDelegate];

The discard() method will shutdown the SDK instance after the interaction has ended.

 [videoInteraction discard];

 Note:
For more detailed information on the recommended sequence for handling an interaction
ending, see ‘Appendix D – Recommended Sequence for Ending Interactions’

Connection Listener Delegate
There is a delegate available for both the AudioInteraction and VideoInteraction classes that

can be used to register for callbacks which provide connectivity information on the interaction. A
list of all ConnectionListener callbacks that can be registered are:

• interactionServiceConnected - Called when the signalling path for an interaction is

available.

• onInteractionServiceConnecting – Called when the signalling path for an interaction

is attempting to reconnect after an outage, expect limited call capabilities and the media
path to remain active.

• onInteractionServiceDisconnectedWithError:NSError error – Called when the

signalling path for an interaction has failed or is unavailable.

 Note:
Please consult the API documentation provided with the iOS Avaya WebRTC
Connect SDK for a complete list of available methods.

Logging
The AvayaWebRTC sdk exposes a AOLoggerDelegate which has below method.

- (void)didPrintLog:(CSLogLevel)level withTag:(NSString * _Nullable)tag

message:(NSString * _Nonnull)message ;

In this method you get access to the log messages printed from the sdk. You can implement this
delegate method in your app and use these log messages for saving them to the file in addition
to their getting to the console.

Avaya WebRTC Connect Software Development Guide 55

Application background mode behaviour
When the user presses the Home button, presses the Sleep/Wake button, or the system
launches another application, the foreground application transitions to an inactive state and then
to a background state.
If you are currently streaming video from your application, this is suspended when the application
goes into background mode.
The video streaming is automatically resumed when the application returns to the foreground.
Audio continues to be streamed when an application goes into background mode.
It is an application developer's responsibility to consider both functional and privacy implications,
and to decide whether their application should mute audio and video when transitioning to
background mode.
If you mute the video when in background mode, you must unmute in order to resume
capture/streaming.

 Note: The application background behaviour of iOS is different to that of Android, see
the Android section for specific Android details.

Avaya WebRTC Connect Software Development Guide 56

Writing a JavaScript application
Setting up the project
Developers can use their preferred Development Environments or HTML editors to build
JavaScript apps. One consideration unique to the JavaScript application (as opposed to the
mobile apps) is that it must be deployed on a web server. The sample app provided with the SDK
was developed using a NodeJS express webserver and tested on a JBoss Application Server.

Please consult the section “Downloading the Reference Clients and SDKs” for information on
where to download the relevant resources.

To commence writing a Web Voice and Video enabled JavaScript application, the Avaya
WebRTC Connect SDK must be made available via HTML script tags in the code of the
application:

 <script src=”OceanaCustomerWebVoiceVideo.js"></script>

Note: Please note that minimum version for jQuery is 3.3.1 for the

application to work.

Initialize the SDK
When the application has detected the user is attempting to initiate an interaction into the contact
centre. The Avaya WebRTC Connect SDK can be instantiated as follows:

 var client = new OceanaCustomerWebVoiceVideo(clientConfiguration);

Where clientConfiguration is a JavaScript object literal with the following properties:

Configuration – This is specific to Avaya Oceana and not applicable for Avaya Aura Elite. This
object contains configuration properties for connecting to the AvayaMobileCommunications
snap-in:

• restUrl – hostname or IP address of the AvayaMobileCommunications cluster.

• port – port to connect to the AvayaMobileCommunications cluster with, defaults to 443.

• secure – the protocol to connect to the AvayaMobileCommunications cluster with, set to

true for HTTPs, set to false to use HTTP.

• urlPath – optional, this allows the URL path to be configured when connecting to the

AvayaMobileCommunications cluster. See API documentation for more information.

WebGatewayConfiguration – contains configuration properties for connecting to the Avaya
Aura Web Gateway server:

• webGatewayAddress – hostname of the Avaya Aura Web Gateway server.

• port – port to connect to the Avaya Aura Web Gateway server with.

• secure – the protocol to connect to the Avaya Aura Web Gateway server with, set to

true for HTTPs, set to false to use HTTP.

Avaya WebRTC Connect Software Development Guide 57

Creating Work
Next a Work object can be derived from the Customer object as follows:

 var work = client.createWork();

The Work API provides a mechanism to population the Oceana / Elite interaction schema. This
interaction schema data is available for use by the Engagement Designer workflow engine (as
can be seen in the Web Voice/Video workflow) and is used in requests to Work Assignment for
resource selection.
For more information consult the API documentation.

A Work object must be assigned services or resources for Oceana / Elite to be able to handle the

work request. If both are provided, Work Assignment will try to assign the work to the provided
resources. If the resources are unable to be assigned the work, Work Assignment will use the
provided services to assign or queue the work.

Adding Services

var service = new OceanaCustomerWebVoiceVideo.Services.Work.Schema.Service();

service.setAttributes(attributes);

service.setPriority(5);

work.setServices([service]);

This code snippet creates a service and given attributes and a priority. The service is added to
the services collection and set on the Work object.

Adding Resources

var resource = new OceanaCustomerWebVoiceVideo.Services.Work.Schema.Resource();
resource.setNativeResourceId(“agent6220”);
resource.setSourceName(“CM”);

work.setResources([resource]);

This code snippet creates a resource, given a resource id and source name. The resource is
added to the resources collection and set on the Work object.

Adding Interaction Context
Optional context may be added to a work request as described in the section “Creating an
Application: Generic Elements - Context”
To set a context on the work object, invoke the following method:

 work.setContext(context);

Where context is a string encapsulating some business logic, such as a customer reference

number or an Order ID.

The last object required is the interaction which encapsulates the Web Voice/Video call itself.

Adding an Audio Interaction
A voice call can be created by deriving an AudioInteraction from the Work object, as shown

here:

Avaya WebRTC Connect Software Development Guide 58

 var interaction =

work.createAudioInteraction(OceanaCustomerWebVoiceVideo.Services.Work.PlatformTyp

e platformType) // PlatformType.OCEANA or PlatformType.ELITE

Setting platform type for an Audio Interaction (Oceana/Elite)

The Avaya WebRTC Connect can be used for Oceana and Elite interactions. Instead of setting
the platformType in createAudioInteraction() method, you can also pass the PlatformType once
Audio interaction’s object is created as follows:

setPlatformType(OceanaCustomerWebVoiceVideo.Services.Work.PlatformType

platformType) // PlatformType.OCEANA or PlatformType.ELITE

The default platform type is com.avaya.ocs.Services.Work.Enums.PlatformType.OCEANA
Please note that you can skip this API call if you already passed the PlatformType in
createAudioInteraction()

Audio Interaction Callbacks
The Audio Interaction class provides callbacks that can be used to register for interaction status
information.

These are:

• onAudioInteractionServiceConnected() – Called when the signalling path for an

interaction is available.

• onAudioInteractionServiceConnecting() – Called when the signalling path for an

interaction is attempting to reconnect after an outage, expect limited call capabilities
and the media path to remain active.

• onAudioInteractionServiceDisconnected() – Called when the signalling path for an

interaction has failed or is unavailable.

• onAudioInteractionInitiating() – Called when the out-going request to initiate an

interaction has been sent.

• onAudioInteractionRemoteAlerting() – Called when the interaction has received ring

back information from the signalling network.

• onAudioInteractionEstablished() – Called when the interaction has been

established.

• onAudioInteractionEnded() – Called when the call on this interaction is ended. This

callback method is called when the interaction is either locally or remotely ended.

• onAudioInteractionAudioMuteStatusChanged(Boolean muted) – Called when the

interaction’s audio is muted or unmuted.

• onAudioInteractionFailed(InteractionError Error) – Called when an error

occurred establishing the interaction.

• onAudioInteractionHoldStatusChanged(Boolean isHeld) – Called when the

interaction is held or unheld.

• onAudioInteractionCallQuality:(CallQuality callQuality) : Called when a interaction's
quality state changes. Note that this API callback is called every few
seconds to return the current quality.

•

Starting an Audio Interaction
Before an Audio Interaction can be initiated, an Avaya Aura Web Gateway authorization token
must be obtained as detailed in the “Creating an Application: Generic Elements - Authorization
Tokens” section. Once a token has been obtained it must be set on the Interaction object:

Avaya WebRTC Connect Software Development Guide 59

interaction.setAuthorizationToken(token);

Once the requisite Audio Interaction properties have been set, the Interaction can be initiated by
invoking:

interaction.start();

Optionally, before starting an interaction, muteAudio can be called.

The aforementioned method takes a Boolean indicating the state of the customer’s audio. Audio

will be streamed by default.

The interaction can be sent to a specified destination rather than the Avaya Oceana™ / Elite

Web Voice/Video default routing number.
For example:

interaction.setDestinationAddress(destination);

where destination is a string representing a remote SIP address.

Avaya WebRTC Connect Software Development Guide 60

During an Audio interaction
There are a number of actions that can take place on the Audio Interaction object while the
interaction is active.

These include:

• sendDTMF(digit) – sends the specified DTMF tone (an enumeration DTMFDigit is

provided).

• muteAudio(muted) – takes a Boolean indicating if the audio stream should be silenced

or active. The method isAudioMuted() indicates the current mute state. This method

can also be invoked before calling start().

• readAudioDetails(callback) - This asynchronous function returns detailed

information about the audio channel associated with the call

• holdCall(isHeld) – Takes a Boolean indicating if the call is to be held or unheld The

method isCallHeld() indicates the current hold state.

Audio Interactions can be interrogated for state. The state consists of two elements.

• The first indicates the time the interaction has been in-progress for (in milliseconds)
since start() was called.

interaction.getInteractionTimeElapsed();

• The second indicates the abstract “state” of the interaction, returning a value from the
InteractionState enum in Appendix B.

interaction.getInteractionState();

Ending an Audio Interaction
The end() method will terminate the active interaction.

interaction.end();

Avaya WebRTC Connect Software Development Guide 61

Adding a Video Interaction
A video call can be created by deriving a VideoInteraction from the Work object, as shown

here:

var interaction =

work.createVideoInteraction(OceanaCustomerWebVoiceVideo.Services.Work.PlatformTyp

e platformType) // PlatformType.OCEANA or PlatformType.ELITE

Setting platform type for a Video Interaction (Oceana/Elite)

The Avaya WebRTC Connect can be used for Oceana and Elite interactions. Instead of setting
the platformType in createVideoInteraction() method, you can also pass the PlatformType once
Video interaction’s object is created as follows:

setPlatformType(OceanaCustomerWebVoiceVideo.Services.Work.PlatformType

platformType) // PlatformType.OCEANA or PlatformType.ELITE

The default platform type is com.avaya.ocs.Services.Work.Enums.PlatformType.OCEANA.
Please note that you can skip this API call if you already passed the PlatformType in
createVideoInteraction()

Setup the Video Device
Before initiating a Video Interaction, it is necessary to setup the video device. On the JavaScript
platform this tells the browser where to display the video media stream and which camera
resolution to use.

The device object is created from the interaction object as shown here:

 var device = interaction.getVideoDevice();

The views representing the local and remote video steams can then be set on the device object,
for example:

device.setLocalView(localVideoId);

device.setRemoteView(remoteVideoId);

 Note: If you are using a VIDEO tag to display the local video view, you must

remember to set the attribute “muted” on the video if you do not want the user to hear
the output of their own microphone, for example:
<video id=”local-video-view” muted></video>

The following method on the device object can be used to set the cameras capture resolution:

device.setCameraCaptureResolution(CameraResolution.RESOLUTION_640x480);

For a full list of available resolutions, please refer to Appendix B: Avaya WebRTC Connect
Enumerations Enumerations.

Video Interaction Callbacks
The Video Interaction class provides callbacks that can be used to register for interaction status
information.

These are:

• onVideoInteractionServiceConnected() – Called when the signalling path for an

interaction is available.

Avaya WebRTC Connect Software Development Guide 62

• onVideoInteractionServiceConnecting() – Called when the signalling path for an

interaction is attempting to reconnect after an outage, expect limited call capabilities
and the media path to remain active.

• onVideoInteractionServiceDisconnected() – Called when the signalling path for an

interaction has failed or is unavailable.

• onVideoInteractionInitiating() – Called when the out-going request to initiate an

interaction has been sent.

• onVideoInteractionRemoteAlerting() – Called when the interaction has received ring

back information from the signalling network.

• onVideoInteractionEstablished() – Called when the interaction has been

established.

• onVideoInteractionEnded() – Called when the call on this interaction is ended. This

callback method is called when the interaction is either locally or remotely ended.

• onVideoInteractionAudioMuteStatusChanged(Boolean muted) – Called when the

interaction’s audio is muted or unmuted.

• onVideoInteractionVideoMuteStatusChanged(Boolean muted) – Called when the

interaction’s video is muted or unmuted.

• onVideoInteractionVideoEnabledStatusChanged(Boolean enabled) – Called when

the interaction’s video is enabled or disabled.

• onVideoInteractionFailed(InteractionError Error) – Called when an error

occurred establishing the interaction.

• onVideoInteractionHoldStatusChanged(Boolean isHeld) – Called when the

interaction is held or unheld.

• onVideoInteractionCallQuality:(CallQuality callQuality) : Called when a interaction's
quality state changes. Note that this API callback is called every few
seconds to return the current quality.

•

Starting a Video Interaction
Before a Video Interaction can be initiated, an Avaya Mobile Video authorization token must be
obtained as detailed in the “Creating an Application: Generic Elements - Authorization Tokens”
section. Once a token has been obtained it must be set on the Interaction object:

interaction.setAuthorizationToken(token);

Once the requisite Video Interaction properties have been set, the interaction can be initiated by
invoking:

interaction.start();

Optionally, before starting a interaction, the following methods can be called; muteAudio,
muteVideo, enableVideo.

All the aforementioned methods take a Boolean indicating the state of the customers audio or

video media stream. Audio and video will be streamed by default.

The interaction can be sent to a specified destination rather than the Avaya Oceana™ Web
Voice/Video default routing number.

For example:

interaction.setDestinationAddress(destination);

where destination is a string representing a remote SIP address.

Avaya WebRTC Connect Software Development Guide 63

During a Video interaction
There are a number of actions that can take place on the Video Interaction object while the
interaction is active.

These include:

• sendDTMF(digit) – sends the specified DTMF tone (an enumeration DTMFDigit is

provided).

• muteAudio(muted) – takes a Boolean indicating if the audio stream should be silenced.

The method isAudioMuted() indicates the current mute state. This method can also be

invoked before calling start().

• muteVideo(muted) – takes a Boolean indicating if the video stream should be silenced

or active. The method isVideoMuted() indicates the current mute state. This method

can also be invoked before calling start().

• enableVideo(enabled) – takes a Boolean indicating if the video stream should be

enabled or disabled. The method isVideoEnabled() indicates the current video state.

This method can also be invoked before calling start().

• readAudioDetails(callback) - This asynchronous function returns detailed

information about the audio channel associated with the call.

• readVideoDetails(callback) - This asynchronous function returns detailed

information about the video channel associated with the call.

• holdCall(isHeld) – Takes a Boolean indicating if the call is to be held or unheld The

method isCallHeld() indicates the current hold state.

Video Interactions can be interrogated for state. The state consists of two elements.

• The first indicates the time the interaction has been in-progress for (in milliseconds)
since start() was called.

interaction.getInteractionTimeElapsed();

• The second indicates the abstract “state” of the interaction, returning a value from the
InteractionState enum in Appendix B.

interaction.getInteractionState();

Ending a Video Interaction
The end() method will terminate the active interaction.

interaction.end();

 Note: Please consult the API documentation provided with the JavaScript Avaya
WebRTC Connect SDK for a complete list of available methods.

Avaya WebRTC Connect Software Development Guide 64

Known Issues and limitations
HTTPS and certificates
In order to use HTTPS to connect to Avaya Mobile Communications and Avaya Aura Web
Gateway, client PCs and mobile devices need certificates from the target servers to be installed
and trusted. In general, self-signed certificates are used in a test/lab scenario, but external
devices will not trust self-signed certificates by default.

Certificates should be signed by a reputable third part Certificate Authority (CA), and these
certificates will not need to be trusted manually.

For more information consult the Avaya Mobile Communications chapters in the “Deploying
Avaya Oceana™ Solution” available on . Navigate to “Support by Product” > “Documents”.
Search “Avaya Oceana Solution” with the “Installation, Upgrades & Config” filter applied.

Edge DTMF Function
JavaScript sendDTMF(tone) function does not work on Microsoft Edge, so it should be disabled
if the customer is using the Edge browser.

JavaScript readAudio/readVideoDetails
JavaScript readAudioDetails(callback) and readVideoDetails(callback) functions return a

subset of the results in comparison to their Android and iOS equivalent.

JavaScript webGatewayUrlPath
In the JavaScript WebGatewayConfiguration object, it does not offer the ability to configure the
webGatewayUrlPath which is a property present in Android and iOS.

Avaya WebRTC Connect Software Development Guide 65

Appendix A – Configuring Screen Pops
For more detailed information on Screen Pop configuration, please refer to the “Configuring
screen pop parameters” section found in the “Configuring Avaya Control Manager” document,
available on . Navigate to “Support by Product” > “Documents”. Search component “Contact
Center Control Manager” and apply the filter “Installation, Upgrades & Config”.

The required configuration to Screen Pop on the Context value is as follows:

1. Browse to Avaya Control Manager (ACM), url: https://<ACM_FQDN>/ACCCMPortal/.
2. From the ACM home page, browse to: Configuration / Avaya Oceana / ScreenPop

Configuration.
3. Select a Screen Pop, edit and ensure the intrinsic selected is Prompted Digits when

configuring the Screen Pop parameters in ACM. Prompted Digits is populated with the
value set via the setContext() method call on the Work API.

4. In ACM, browse to: Configuration / Avaya Oceana / Server Details. Select a server, edit
and select the System Properties tab in the edit menu.

5. Set the Context Store Prompted Digits Key field to CollectedDigits as this is the name of
the key within Context Store where Prompted Digits are stored.

Avaya WebRTC Connect Software Development Guide 66

Appendix B – Avaya WebRTC Connect
Enumerations

Interaction State
The InteractionState in JavaScript and Android or AOInteractionState in iOS is an

enumeration indicating the current state of an interaction available by calling
getInteractionState() on an interaction object.

State Description
IDLE Indicates the interaction is uninitialized.
INITIATING Indicates the outgoing interaction is being created (no response yet).
REMOTE_ALERTING Indicates the interaction is ringing on the remote side.
ESTABLISHED Indicates the interaction is established and media is active.
ENDING Indicates the interaction is shutting down.
ENDED Indicates the interaction has shutdown.
FAILED Indicates the interaction failed to initialize or if a failure was

encountered mid-call.

Video resolution preferences for Javascript
The CameraResolution in Javascript is an enumeration indicating the supported camera

capture resolution preference for that device by calling a getter method on a VideoDevice object
and VideoCaptureOrientation is an enumeration indicating the supported camera capture

orientation.

Resolution Preferences
 RESOLUTION_416x240

 RESOLUTION_640x360

 RESOLUTION_848x480

 RESOLUTION_1280x720

 RESOLUTION_1920x1080

Video resolution preferences and orientations for Android
The VideoCapturePreference in Android is an enumeration indicating the supported camera

capture resolution preference for that device and VideoCaptureOrientation is an

enumeration indicating the supported camera capture orientation.

Resolution Preferences
VideoCapturePreference_Min

VideoCapturePreference_270p

VideoCapturePreference_360p

VideoCapturePreference_540p

VideoCapturePreference_Max

Video Capture Orientation
VideoCaptureOrientation_LandscapeOnly

VideoCaptureOrientation_LandscapeOrPortrait

Avaya WebRTC Connect Software Development Guide 67

Video resolution preferences and orientations for iOS
The AOVideoCapturePreference in iOS is an enumeration indicating the supported camera

capture resolution resolutions for that device by calling a getter method on a Video Device object
and AOVideoCaptureOrientation is an enumeration indicating the supported camera

capture orientation.

Resolution Preferences
AOVideoCapturePreference_Min

AOVideoCapturePreference_270p

AOVideoCapturePreference_360p

AOVideoCapturePreference_540p

AOVideoCapturePreference_Max

Video Capture Orientation
AOVideoCaptureOrientation_LandscapeOnly

AOVideoCaptureOrientation_LandscapeOrPortrait

Camera Type
The CameraType in JavaScript and Android or AOCameraType in iOS is an enumeration

indicating the camera types that can be selected for that device by calling a getter method on a
Video Device object.
Camera Type only applies on the Android and iOS platforms.

Camera Type
FRONT

BACK

Avaya WebRTC Connect Software Development Guide 68

CallQuality
The CallQuality in JavaScript, Android iOS is an enumeration indicating the ongoing

audio/video call quality. The call quality is continuously calculated in the background based on
the Call Quality parameters and emitted via the SDKs InteractionListener interface.

CallQuality
EXCELLENT

GOOD

FAIR

POOR

BAD

Avaya WebRTC Connect Software Development Guide 69

Appendix C – iOS Version Updates

iOS 10 and above
In iOS 10, Apple extended the scope of their privacy control. You are now required to ask to use
permission to access user private data and, in the case of an Avaya WebRTC Connect
application, permission to use the Microphone and Camera. Go to your application’s Info.plist
file and add the following keys:

Privacy – Microphone Usage Description, along with a suitable description.
Privacy – Camera Usage Description, along with a suitable description.

Now the user will get prompted to allow their microphone permissions. If this addition is not
made when running iOS 10 and later, the application will crash when requesting to use the
microphone or camera.

iOS 11 and above
In iOS 11, Apple has stopped supporting 32-bit applications. Therefore, Apple recommends
setting the Architectures in Build Settings to:
Standard architectures (armv7, arm64) - $(ARCHS_STANDARD)

The Avaya WebRTC Connect SDK supports 64-bit applications.

Avaya WebRTC Connect Software Development Guide 70

Appendix D – Recommended Sequence
for Ending Interactions

On Android and iOS, the following sequence is recommended to end the interaction and
terminate the SDK cleanly after each interaction:

When an interaction is ended, either by the agent ending the call, the user ending the call, or
because an error is encountered. It is recommended to call the discard() method available on

the AudioInteraction and VideoInteraction objects from the following callbacks:

• onInteractionEnded()

• onInteractionFailed(InteractionError error)

The discard() function has a corresponding onDiscardComplete() callback which fires when

the SDK has finished terminating successfully.

It is recommended to leverage this onDiscardComplete() callback to transition from the active

‘in-call’ screen to the previous ‘Make Call’ screen.

So only when the onDiscardComplete() is fired, the user is then transitioned away from the

active ‘in-call’ screen.

This sequence of behaviour can be observed in the corresponding OceanaReferenceClients
supplied for Android and iOS:

Interaction Ends -> onInteractionEnded() / OnInteractionFailed(error) is fired -> discard() is
called -> onDiscardComplete() is fired -> Application transitions from active in call screen

Avaya WebRTC Connect Software Development Guide 71

Appendix E – Migration plan from AMV
3.x to Avaya WebRTC Connect 4.0

This document will help the developer to upgrade from
AMV 3.X to Avaya WebRTC Connect and understand
the Avaya WebRTC Connect APIs.

This document describes the migration from AMV 3.x to Avaya WebRTC Connect at the API level.
The developer can understand the counter APIs from Avaya's WebRTC 4.0 and can get a clear
understanding of how to update the APIs to achieve the same feature or functionality.

• Token Generation Service:-

The Authentication Token is used to register the user anonymously. It is the Application layer
functionality as the authentication service would be implemented by a consumer application. In AMV
3.X, a GET method is used to get the authentication token and in Avaya WebRTC 4.0, the POST
method is used. As this is an HTTPs web service, an iOS developer can use iOS APIs
like NSMutableURLRequest or NSURLSession or third party libraries like AFNetworking and
Alamofire.
Here is the web service used to get the Authentication token. The web services can be different as
per the implementations and lab configurations.

AMV 3.X Avaya WebRTC Connect

<http/https>://<SERVER>:<PORT>/avayatest/auth

?displayName=<DISPLAY_NAME>&userName=USER_NAME

GET

<http/https>://<Token-

SERVER>:<PORT>/token-

generation-

service/token/getEncryptedToken

POST

• Audio Call:

 Before making any audio call, in AMV 3.X an Audio only session needs to be created with the help
of CPUser class. In WebRTC 4.0, all these tasks can be done by AOVAudioInteraction Class.
This is how the Audio-only session is created in AMV 3.x.

Steps to initiate the
 Audio Only Session

Objective AMV 3.X APIs

Create CPUser Object To handle user-level
 features
 like create a session,
 terminate a session, etc

CPAudioOnlyUser *cpUser
=
[[CPAudioOnlyClientPlatfor
m clientPlatform] user];

Create CPDevice Object To handle the AudioPath
(phone or scpeaker)

CPDevice *cpDevice =
[[CPAudioOnlyClientPlatfor
m clientPlatform] device];

Avaya WebRTC Connect Software Development Guide 72

Set the Authorization Token
to the user

This API is used to set the
authorization token to the
user

cpUser.authorizationToken
= token;

Set the delegate to the
CPUser object

To achieve forward
message passing
mechanism for lately
created objects. (an
CPAudioOnlyUserDelegate
object)

cpUser.delegate =
userDelegate;

Create
CPAudioOnlySession
Object

This object is used to
start/end call, mute/unmute
audio, send DTMF tone, etc

cpSession = [cpUser
createSession];

Set User to User
information/ ContextID

To pass user to user
information

[cpSession
setContextId:uui];

Set a remote address. Set the remote address to
the Audio Only Session.

[cpSession
setRemoteAddress:remote
Address];

Set Audio Only Session
Delegate

To achieve forward
message passing
mechanism for lately
created objects. (an
CPAudioOnlySessionDeleg
ate object)

[cpSession
setDelegate:delegate];

In Avaya WebRTC Connect 4.0 following steps need to be followed to create an audio
interaction.

Steps to create

Audio Interaction

Objective Avaya WebRTC Connect 4.0

APIs

Create

AOClientConfigurat

ion Object

AOClientConfiguration's object

is used to instantiate the

AOOceanaCustomerWebVoiceV

ideo. AOClientConfiguration has

two properties,

AOWebGatewayConfiguration's

webGatewayConfiguration &

AOConfiguration's

configuration.

AOWebGatewayConfiguration

is used to set the AAWG server

details and AOConfiguration is

used to set AMC (Oceana

Platform server details)

AOClientConfiguration

*clientConfig =

[[AOClientConfiguration

alloc]init];

AOWebGatewayConfiguration*

webGatewayConfig =

[[AOWebGatewayConfiguratio

n alloc]init];

webGatewayConfig.webGatewa

yAddress = [AppSettings

getAAWGServerAddress];

webGatewayConfig.port =

[AppSettings

getAAWGServerPort];

webGatewayConfig.isSecure =

Avaya WebRTC Connect Software Development Guide 73

Steps to create

Audio Interaction

Objective Avaya WebRTC Connect 4.0

APIs

[AppSettings isAawgSecure];

webGatewayConfig.webGatewa

yUrlPath = [AppSettings

getAAWGRestUrl];

clientConfig.webGatewayConfi

guration = webGatewayConfig;

AOConfiguration* config =

[[AOConfiguration alloc]init];

config.restUrl = [AppSettings

getServer];

config.port = [AppSettings

getPort];

config.isSecure = [AppSettings

useSecureLogin];

config.urlPath = [AppSettings

getAMCRestUrl];

clientConfig.configuration =

config;

Create

AOOceanaCustomer

WebVoiceVideo's

Object

This is the entry point of the

Avaya WebRTC SDK 4.0 To

instantiate Audio/Video

interactions, the

AOOceanaCustomerWebVoiceV

ideo's object needs to be created.

AOOceanaCustomerWebVoice

Video *customerWebVoice =

[[AOOceanaCustomerWebVoic

eVideo

alloc]initWithClientConfigurati

on:clientConfig];

Create and setup

AOWork's Object.

To set the routing strategy, local,

services, topic, etc the

AOWork's object needs to be

created. These are the routing

strategies used to route the call.

These parameters can be

provided with the Lab details.

AOWork* work =

customerWebVoice.createWork

;

work.context =

<context_string>;

work.topic = <topic>

work.locale = <local>;

work.routingStrategy =

<routing_strategy>;

work.services = <services>;

work.resources = <resources>;

//If available

Create

AOAudioInteraction

's object

To make an audio

call, AOAudioInteraction's

object needs to be created.

AOAudioInteraction

*audioInteraction =

work.createAudioInteraction;

Avaya WebRTC Connect Software Development Guide 74

At this point, the audio interaction object is created. Now to place the audio call, we need to start
the Audio interaction and before that, some properties need to be set like Platform
Type(Oceana/Elite), delegate, connectionListenerDelegate, and destination address.

This is how the Audio call/interaction is started in AMV 3.X and Avaya WebRTC Connect with all
the Audio Call Features.

•

Audio Call Features AMV 3.X Avaya WebRTC 4.0

Start Call/Interaction [cpSession start]; [audioInteraction start];

End Call [cpSession end]; [audioInteraction end];

Discard the call [cpUser

terminate];

[audioInteraction discard];

Mute/Un-mute Audio [cpSession

muteAudio:

bool_value];

[audioInteraction muteAudio: bool_value

];

Get if the active call is

mute or not

Hold Call [cpSession hold]; [audioInteraction holdWithCompletionH

andler:^(NSError *error){}];

Resume Call [cpSession

resume];

[audioInteraction unholdWithCompletio

nHandler:^(NSError *error){}];

Get Time Elapsed [cpSession

getCallTimeElaps

ed];

[audioInteraction getInteractionTimeEla

psed];

Get Current Call Sate CPSessionState

state =

cpSession.state;

[audioInteraction getInteractionState];

Steps to create

Audio Interaction

Objective Avaya WebRTC Connect 4.0

APIs

Set

up AOAudioInteract

ion's object

The properties like

setPlatformType(Oceana/Elite),

delegate,

connectionListenerDelegate, and

destination address.

audioInteraction.delegate =

audioDelegate; audioInteraction

.connectionListenerDelegate =

connectionDelegate; audioInter

action.destinationAddress =

<remote_address>

Avaya WebRTC Connect Software Development Guide 75

Audio Call Features AMV 3.X Avaya WebRTC 4.0

Send DTMF tone [cpSession

sendDTMF:tone

andPlayAudio:YE

S]; // And

[cpSession

sendDTMF:tone];

[audioInteraction sendDTMF:tone];

Send hands-free Audio

(phone-speaker)

[cpDevice

setHandsfreeAudi

o:<bool_value>];

This can be handled at the Application

layer. Use iOS' AVRoutePickerView to

change the Audio routes.

Get Call Quality. In AMV

3.X, the

CPBaseSession's didChan

geQuality API gives the

current call quality

whereas, in Avaya

WebRTC 4.0, the call

quality can be determined

by readAudioDetailsWith

CompletionHandler API

which

returns AOAudioDetails's

object.

Implement

CPBaseSession's

-

(void)session:(CP

BaseSession

*)session

didChangeQuality

: (int)quality;

[audioInteraction readAudioDetailsWith

CompletionHandler:^(AOAudioDetails

*audioDetails) {}];

• Video Call:

 Before making any video call, in AMV 3.X a session needs to be created with the help of CPUser
class. In Avaya WebRTC Connect , all these tasks can be done by AOVideoInteraction Class.
This is how the Audio-only session is created in AMV 3.x.

Steps to

initiate the

Video

Session

Objective AMV 3.X APIs

Create

CPDevice

Object

To handle the AudioPath (phone or

scpeaker), Video mute/unmute, set

remote and local video rendering

view etc

CPDevice *cpDevice =

[[CPClientPlatform clientPlatform]

device];

Create

CPSession's

Object

This object is used to start/end call,

mute/unmute audio, send DTMF

tone, etc

CPSession *cpSession = [cpUser

createSession];

Create

CPUser

Object

To handle user-level features like

create a session, terminate a session,

etc

CPUser *cpUser =

[[CPClientPlatform clientPlatform]

user];

Avaya WebRTC Connect Software Development Guide 76

Steps to

initiate the

Video

Session

Objective AMV 3.X APIs

Set a remote

address.

Set the remote address to the Audio

Only Session.

[cpSession

setRemoteAddress:remoteAddress];

Set Session

Delegate

To achieve forward message passing

mechanism for lately created

objects. (a CPSessionDelegate

object)

[cpSession setDelegate:delegate];

Set the

Authorization

Token to the

user

This API is used to set the

authorization token to the user

cpUser.authorizationToken =

token;

Set the

delegate to

the CPUser

object

To achieve forward message passing

mechanism for lately created

objects. (an

CPAudioOnlyUserDelegate object)

cpUser.delegate = userDelegate;

Set up

CPDevice

Object

Set camera, orientation, local and

remote rendering views etc.

device.localVideoView =

localVideoView;

device.remoteVideoView =

remoteVideoView;

device.cameraType =

CPCameraTypeFront;

device.cameraOrientation =

CPCameraOrientation_<value>

Set User to

User

information/

ContextID

To pass user to user information [cpSession setContextId:uui];

In Avaya WerbRTC 4.0 following steps need to be followed to create a video interaction.

Steps to create Video

Interaction

Objective Avaya WebRTC Connect APIs

Create

AOClientConfiguration

Object

AOClientConfiguration'

s object is used to

instantiate the

AOOceanaCustomerWe

bVoiceVideo.

AOClientConfiguration

has two properties,

AOClientConfiguration *clientConfig

= [[AOClientConfiguration

alloc]init];

AOWebGatewayConfiguration*

webGatewayConfig =

[[AOWebGatewayConfiguration

Avaya WebRTC Connect Software Development Guide 77

Steps to create Video

Interaction

Objective Avaya WebRTC Connect APIs

AOWebGatewayConfig

uration's

webGatewayConfigurat

ion &

AOConfiguration's

configuration.

AOWebGatewayConfig

uration is used to set the

AAWG server details

and AOConfiguration is

used to set AMC

(Oceana Platform

server details)

alloc]init];

webGatewayConfig.webGatewayAdd

ress = [AppSettings

getAAWGServerAddress];

webGatewayConfig.port =

[AppSettings getAAWGServerPort];

webGatewayConfig.isSecure =

[AppSettings isAawgSecure];

webGatewayConfig.webGatewayUrl

Path = [AppSettings

getAAWGRestUrl];

clientConfig.webGatewayConfigurati

on = webGatewayConfig;

AOConfiguration* config =

[[AOConfiguration alloc]init];

config.restUrl = [AppSettings

getServer];

config.port = [AppSettings getPort];

config.isSecure = [AppSettings

useSecureLogin];

config.urlPath = [AppSettings

getAMCRestUrl];

clientConfig.configuration = config;

Create

AOOceanaCustomerWe

bVoiceVideo's Object

This is the entry point

of the Avaya WebRTC

SDK 4.0 To instantiate

Audio/Video

interactions, the

AOOceanaCustomerWe

bVoiceVideo's object

needs to be created.

AOOceanaCustomerWebVoiceVideo

*customerWebVoice =

[[AOOceanaCustomerWebVoiceVide

o

alloc]initWithClientConfiguration:cli

entConfig];

Create and setup

AOWork's Object.

To set the routing

strategy, local, services,

topic, etc the AOWork's

object needs to be

created. These are the

routing strategies used

to route the call.

AOWork* work =

customerWebVoice.createWork;

work.context = <context_string>;

work.topic = <topic>

work.locale = <local>;

work.routingStrategy =

<routing_strategy>;

work.services = <services>;

work.resources = <resources>; //If

available

Avaya WebRTC Connect Software Development Guide 78

Steps to create Video

Interaction

Objective Avaya WebRTC Connect APIs

These parameters can

be provided with the

Lab details.

Create

AOVideoInteraction's

object

To make an audio call,

AOVideoInteraction's

object needs to be

created.

AOVideoInteraction

*videoInteraction =

work.createVideoInteraction;

Set up

AOVideoInteraction's

object

The properties like

setPlatformType(Ocean

a/Elite), delegate,

connectionListenerDele

gate, and destination

address.

videoInteraction.delegate =

videoDelegate;

audioInteravideoInteractionction.con

nectionListenerDelegate =

connectionDelegate; videoInteraction.

destinationAddress =

<remote_address>

Create

AOVideoDevice's

Object

To change the video

capture resolution,

orientation, camera

type(front-back), set

remote and local

rendering views.

AOVideoDevice *device

= videoInteraction.videoDevice;

At this point, the video interaction object is created. Now to place the video call, we need to start the
video interaction and before that, some properties need to be set like PlatformType(Oceana/Elite),
delegate, connectionListenerDelegate, and destination address.

This is how the video call/interaction is started in AMV 3.X and Avaya WebRTC Connect with all the
video Call Features.

Video Call Features AMV 3.X Avaya WebRTC 4.0

Start Call/Interaction [cpSession start]; [videoInteraction start];

End Call [cpSession end]; [videoInteraction end];

Discard the call [cpUser

terminate];

[videoInteraction discard];

Mute/Un-mute Audio [cpSession

muteAudio:

bool_value];

[videoInteraction muteAudio:

bool_value];

Avaya WebRTC Connect Software Development Guide 79

Video Call Features AMV 3.X Avaya WebRTC 4.0

Mute/Un-mute Video [session

muteVideo: bool_

value];

[videoInteraction muteVideo: bool_value

];

Enable/Disable Video [session

enableVideo:bool

_value];

[videoInteraction enableVideo:bool_valu

e];

Set Camera type

(Front/Back)

device.cameraTyp

e =

CPCameraType_

<type>;

[device selectCamera:<camera_type>];

Switch Camera. device.cameraTyp

e

= CPCameraType

_<new_type>;

[device switchCamera];

Set video capture

resolution.

device.cameraCap

tureResolution =

<resolution>;

[device

setVideoCaptureResolutionWithCapture

Orientation:<video_record_preference>

orientationPreference:<video_orientation

_preference>];

Set video capture

orientation.

device.cameraOri

entation =

CPCameraOrienta

tion_<value>

[device

setVideoCaptureResolutionWithCapture

Orientation:<video_record_preference>

orientationPreference:<video_orientation

_preference>];

Get video capture

resolution.

CPVideoResoluti

on object =

device.cameraCap

tureResolution;

AOVideoCapturePreference object =

getVideoCapturePreference;

Get video capture

orientation.

CPCameraOrienta

tion

object =

device.cameraOri

entation;;

AOVideoCaptureOrientation object =

getVideoCaptureOrientation;

Hold Call [cpSession hold]; [videoInteraction holdWithCompletionH

andler:^(NSError *error){}];

Resume Call [cpSession

resume];

[videoInteraction unholdWithCompletion

Handler:^(NSError *error){}];

Avaya WebRTC Connect Software Development Guide 80

Video Call Features AMV 3.X Avaya WebRTC 4.0

Get Time Elapsed [cpSession

getCallTimeElaps

ed];

[videoInteraction getInteractionTimeElap

sed];

Get Current Call Sate CPSessionState

state =

cpSession.state;

[videoInteraction getInteractionState];

Send DTMF tone [cpSession

sendDTMF:tone

andPlayAudio:YE

S]; // And

[cpSession

sendDTMF:tone];

[videoInteraction sendDTMF:tone];

Send hands-free Audio

(phone-speaker)

[cpDevice

setHandsfreeAudi

o:<bool_value>];

This can be handled at the Application

layer. Use iOS' AVRoutePickerView to

change the Audio routes.

Get Call Quality. In AMV

3.X, the CPBaseSession's

didChangeQuality API

gives the current call

quality whereas, in Avaya

WebRTC 4.0, the call

quality can be determined

by readAudioDetailsWith

CompletionHandler API

which

returns AOAudioDetails

object

& readVideoDetailsWith

CompletionHandler API

which

returns AOVideoDetails o

bject.

Implement

CPBaseSession's

-

(void)session:(CP

BaseSession

*)session

didChangeQuality

: (int)quality;

[videoInteraction readAudioDetailsWith

CompletionHandler:^(AOAudioDetails

*audioDetails) {}];

[video

readVideoDetailsWithCompletionHandle

r:^(AOVideoDetails *videoDetails) {}];

Avaya WebRTC Connect Software Development Guide 81

Notes
• The sendDTMF operation takes an enumeration as an argument. This enumeration

provides values for DTMF keys 0-9, *, #, and A-D. However, A-D are not supported in
the current release of Avaya Oceana™.

• On Android, if the buildToolsVersion is less than 26.0, you will receive the following error
when adding Java 1.8 target compatibility - “Jack is required to support Java 8 language
features. Either enable Jack or remove sourceCompatibility
JavaVersion.VERSION_1_8”. In order to remove this error, either specify
buildToolsVersion 26 or newer or add the following to your build.gradle file:

 defaultConfig {
 jackOptions {
 enabled true
 }
 }

