
Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

IP Office™ Platform
Description of WebRTC SDK API

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

© 2025 AVAYA Avaya LLC. All Rights Reserved.
Notice

While reasonable efforts have been made to ensure that the information in this document is
complete and accurate at the time of printing, Avaya assumes no liability for any errors. Avaya
reserves the right to make changes and corrections to the information in this document without
the obligation to notify any person or organization of such changes.

Documentation disclaimer

“Documentation” means information published by Avaya in varying mediums which may
include product information, operating instructions and performance specifications that Avaya
may generally make available to users of its products and Cloud Services. Documentation
does not include marketing materials. Avaya shall not be responsible for any modifications,
additions, or deletions to the original published version of documentation unless such
modifications, additions, or deletions were performed by Avaya. End User agrees to indemnify
and hold harmless Avaya, Avaya's agents, servants and employees against all claims,
lawsuits, demands and judgments arising out of, or in connection with, subsequent
modifications, additions or deletions to this documentation, to the extent made by End User.

Link disclaimer

Avaya is not responsible for the contents or reliability of any linked websites referenced within
this site or documentation provided by Avaya. Avaya is not responsible for the accuracy of any
information, statement or content provided on these sites and does not necessarily endorse
the products, services, or information described or offered within them. Avaya does not
guarantee that these links will work all the time and has no control over the availability of the
linked pages.

Warranty

Avaya provides a limited warranty on Avaya hardware and software. Refer to your sales
agreement to establish the terms of the limited warranty. In addition, Avaya’s standard
warranty language, as well as information regarding support for this product while under
warranty is available to Avaya customers and other parties through the Avaya Support
website:
https://support.avaya.com/helpcenter/getGenericDetails?detailId=C20091120112456651010
under the link “Warranty & Product Lifecycle” or such successor site as designated by Avaya.
Please note that if You acquired the product(s) from an authorized Avaya Channel

Partner outside of the United States and Canada, the warranty is provided to You by said
Avaya Channel Partner and not by Avaya.

“Cloud Cloud Service” means a cloud service subscription that You acquire from either Avaya
or an authorized Avaya Channel Partner (as applicable) and which is described further in the
applicable Service Description or other service description documentation regarding the
applicable cloud service. If You purchase a Cloud Service subscription, the foregoing limited

https://support.avaya.com/helpcenter/getGenericDetails?detailId=C20091120112456651010

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

warranty may not apply but You may be entitled to support services in connection with the
Cloud Service as described further in your service description documents for the applicable
Cloud Service. Contact Avaya or Avaya Channel Partner (as applicable) for more information.

Cloud Service

THE FOLLOWING APPLIES IF YOU PURCHASE A CLOUD SERVICE SUBSCRIPTION
FROM AVAYA OR AN AVAYA CHANNEL PARTNER (AS APPLICABLE), THE TERMS OF
USE FOR CLOUD SERVICES ARE AVAILABLE ON THE AVAYA WEBSITE,
https://www.avaya.com/en/legal/license-terms/ UNDER THE LINK “Avaya Terms of Use for
Cloud Services” OR SUCH SUCCESSOR SITE AS DESIGNATED BY AVAYA, AND ARE
APPLICABLE TO ANYONE WHO ACCESSES OR USES THE CLOUD SERVICE. BY
ACCESSING OR USING THE CLOUD SERVICE, OR AUTHORIZING OTHERS TO DO SO,
YOU, ON BEHALF OF YOURSELF AND THE ENTITY FOR WHOM YOU ARE DOING SO
(HEREINAFTER REFERRED TO INTERCHANGEABLY AS “YOU” AND “END USER”),
AGREE TO THE TERMS OF USE. IF YOU ARE ACCEPTING THE TERMS OF USE ON
BEHALF A COMPANY OR OTHER LEGAL ENTITY, YOU REPRESENT THAT YOU HAVE
THE AUTHORITY TO BIND SUCH ENTITY TO THESE TERMS OF USE. IF YOU DO NOT
HAVE SUCH AUTHORITY, OR IF YOU DO NOT WISH TO ACCEPT THESE TERMS OF
USE, YOU MUST NOT ACCESS OR USE THE CLOUD SERVICE OR AUTHORIZE ANYONE
TO ACCESS OR USE THE CLOUD SERVICE. YOUR USE OF THE CLOUD SERVICE
SHALL BE LIMITED BY THE NUMBER AND TYPE OF LICENSES PURCHASED UNDER
YOUR CONTRACT FOR THE CLOUD SERVICE, PROVIDED, HOWEVER, THAT FOR
CERTAIN CLOUD SERVICES IF APPLICABLE, YOU MAY HAVE THE OPPORTUNITY TO
USE FLEX LICENSES, WHICH WILL BE INVOICED ACCORDING TO ACTUAL USAGE
ABOVE THE CONTRACT LICENSE LEVEL. CONTACT AVAYA OR AVAYA’S CHANNEL
PARTNER FOR MORE INFORMATION ABOUT THE LICENSES FOR THE APPLICABLE
CLOUD

SERVICE, THE AVAILABILITY OF ANY FLEX LICENSES (IF APPLICABLE), PRICING AND
BILLING INFORMATION, AND OTHER IMPORTANT INFORMATION REGARDING THE
CLOUD SERVICE.

Licenses

THE SOFTWARE LICENSE TERMS AVAILABLE ON THE AVAYA WEBSITE,
https://www.avaya.com/en/legal/license-terms/, UNDER THE LINK “AVAYA SOFTWARE
LICENSE TERMS (Avaya Products)” OR SUCH SUCCESSOR SITE AS DESIGNATED BY
AVAYA, ARE APPLICABLE TO ANYONE WHO DOWNLOADS, USES AND/OR INSTALLS
AVAYA SOFTWARE, PURCHASED FROM AVAYA LLC, ANY AVAYA AFFILIATE, OR AN
AVAYA CHANNEL PARTNER (AS APPLICABLE) UNDER A COMMERCIAL AGREEMENT
WITH AVAYA OR AN AVAYA CHANNEL PARTNER. UNLESS OTHERWISE AGREED TO
BY AVAYA IN WRITING, AVAYA DOES NOT EXTEND THIS LICENSE IF THE SOFTWARE
WAS OBTAINED FROM ANYONE OTHER THAN AVAYA, AN AVAYA AFFILIATE OR AN
AVAYA CHANNEL PARTNER; AVAYA RESERVES THE RIGHT TO TAKE LEGAL ACTION
AGAINST YOU AND ANYONE ELSE USING OR SELLING THE SOFTWARE WITHOUT A
LICENSE. BY INSTALLING, DOWNLOADING OR USING THE SOFTWARE, OR

https://www.avaya.com/en/legal/license-terms/
https://www.avaya.com/en/legal/license-terms/

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

AUTHORIZING OTHERS TO DO SO, YOU, ON BEHALF OF YOURSELF AND THE ENTITY
FOR WHOM YOU ARE INSTALLING, DOWNLOADING OR USING THE SOFTWARE
(HEREINAFTER REFERRED TO INTERCHANGEABLY AS “YOU” AND “END USER”),
AGREE TO THESE TERMS AND CONDITIONS AND CREATE A BINDING CONTRACT
BETWEEN YOU AND AVAYA LLC OR THE APPLICABLE AVAYA AFFILIATE (“AVAYA”).

Copyright

Except where expressly stated otherwise, no use should be made of materials on this site, the
Documentation, Software, Cloud Service, or hardware provided by Avaya. All content on this
site, the documentation, Cloud Service, and the product provided by Avaya including the
selection, arrangement and design of the content is owned either by Avaya or its licensors and
is protected by copyright and other intellectual property laws including the sui generis rights
relating to the protection of databases. You may not modify, copy, reproduce, republish,
upload, post, transmit or distribute in any way any content, in whole or in part, including any
code and software unless expressly authorized by Avaya. Unauthorized reproduction,
transmission, dissemination, storage, and or use without the express written consent of Avaya
can be a criminal, as well as a civil offense under the applicable law.

Virtualization

The following applies if the product is deployed on a virtual machine. Each product has its own
ordering code and license types. Note that each Instance of a product must be separately
licensed and ordered. For example, if the end user customer or Avaya Channel Partner would
like to install two Instances of the same type of products, then two products of that type must
be ordered.

Third Party Components

“Third Party Components” mean certain software programs or portions thereof included in the
Software or Cloud Service may contain software (including open source software) distributed
under third party agreements (“Third Party Components”), which contain terms regarding the
rights to use certain portions of the Software (“Third Party Terms”). As required, information
regarding distributed Linux OS source code (for those products that have distributed Linux OS
source code) and identifying the copyright holders of the Third Party Components and the
Third Party Terms that apply is available in the products, Documentation or on Avaya’s website
at: https://www.avaya.com/en/legal/third-party-terms/ or such successor site as designated by
Avaya.
The open source software license terms provided as Third Party Terms are consistent with the
license rights granted in these Software License Terms, and may contain additional rights
benefiting You, such as modification and distribution of the open source software. The Third
Party Terms shall take precedence over these Software License Terms, solely with respect to
the applicable Third Party Components to the extent that these Software License Terms
impose greater restrictions on You than the applicable Third Party Terms.

The following applies if the H.264 (AVC) codec is distributed with the product. THIS PRODUCT
IS LICENSED UNDER THE AVC PATENT PORTFOLIO LICENSE FOR THE PERSONAL

https://www.avaya.com/en/legal/third-party-terms/

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

USE OF A CONSUMER OR OTHER USES IN WHICH IT DOES NOT RECEIVE
REMUNERATION TO (i) ENCODE VIDEO IN COMPLIANCE WITH THE AVC STANDARD
(“AVC VIDEO”) AND/OR (ii) DECODE AVC VIDEO THAT WAS ENCODED BY A
CONSUMER ENGAGED IN A PERSONAL ACTIVITY AND/OR WAS OBTAINED FROM A
VIDEO PROVIDER LICENSED TO PROVIDE AVC VIDEO. NO LICENSE IS GRANTED OR
SHALL BE IMPLIED FOR ANY OTHER USE. ADDITIONAL INFORMATION MAY BE
OBTAINED FROM VIA LICENSING ALLIANCE. SEE https://www.via-la.com/.

Service Provider

THE FOLLOWING APPLIES TO AVAYA CHANNEL PARTNER’S HOSTING OF AVAYA
PRODUCTS OR SERVICES. THE PRODUCT OR CLOUD SERVICE MAY USE THIRD
PARTY COMPONENTS SUBJECT TO THIRD PARTY TERMS AND REQUIRE A SERVICE
PROVIDER TO BE INDEPENDENTLY LICENSED DIRECTLY FROM THE THIRD PARTY
SUPPLIER. AN AVAYA CHANNEL PARTNER’S HOSTING OF AVAYA PRODUCTS MUST
BE AUTHORIZED IN WRITING BY AVAYA AND IF THOSE HOSTED PRODUCTS USE OR
EMBED CERTAIN THIRD PARTY SOFTWARE, INCLUDING BUT NOT LIMITED TO
MICROSOFT SOFTWARE OR CODECS, THE AVAYA CHANNEL PARTNER IS REQUIRED
TO INDEPENDENTLY OBTAIN ANY APPLICABLE LICENSE AGREEMENTS, AT THE
AVAYA CHANNEL PARTNER’S EXPENSE, DIRECTLY FROM THE APPLICABLE THIRD
PARTY SUPPLIER.

WITH RESPECT TO CODECS, IF THE AVAYA CHANNEL PARTNER IS HOSTING ANY
PRODUCTS THAT USE OR EMBED THE G.729 CODEC, H.264 CODEC, OR H.265 CODEC,
THE AVAYA CHANNEL PARTNER ACKNOWLEDGES AND AGREES THE AVAYA
CHANNEL PARTNER IS RESPONSIBLE FOR ANY AND ALL RELATED FEES AND/OR
ROYALTIES. THE G.729 CODEC IS LICENSED BY Sangoma Technologies Corporation SEE
https://www.asterisk.org/products/add-ons/g729-codec/. THE H.264 (AVC) CODEC IS
LICENSED UNDER THE AVC PATENT PORTFOLIO LICENSE FOR THE PERSONAL USE
OF A CONSUMER OR OTHER USES IN WHICH IT DOES NOT RECEIVE REMUNERATION
TO: (I) ENCODE VIDEO IN COMPLIANCE WITH THE AVC STANDARD (“AVC VIDEO”)
AND/OR (II) DECODE AVC VIDEO THAT WAS ENCODED BY A CONSUMER ENGAGED IN
A PERSONAL ACTIVITY AND/OR WAS OBTAINED FROM A VIDEO PROVIDER LICENSED
TO PROVIDE AVC VIDEO. NO LICENSE IS GRANTED OR SHALL BE IMPLIED FOR ANY
OTHER USE. ADDITIONAL INFORMATION FOR H.264 (AVC) AND H.265 (HEVC) CODECS
MAY BE OBTAINED FROM VIA LICENSING ALLIANCE. SEE https://www.via-la.com/.

Compliance with Laws

Customer acknowledges and agrees that it is responsible for complying with any applicable
laws and regulations, including, but not limited to laws and regulations related to call recording,
data privacy, intellectual property, trade secret, fraud, and music performance rights, in the
country or territory where the Avaya product is used.

Preventing Toll Fraud

“Toll Fraud” is the unauthorized use of your telecommunications system by an unauthorized

https://www.via-la.com/
https://www.asterisk.org/products/add-ons/g729-codec/
https://www.via-la.com/

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

party (for example, a person who is not a corporate employee, agent, subcontractor, or is not
working on your company's behalf). Be aware that there can be a risk of Toll Fraud associated
with your system and that, if Toll Fraud occurs, it can result in substantial additional charges
for your telecommunications services.

Avaya Toll Fraud intervention

If You suspect that You are being victimized by Toll Fraud and You need technical assistance
or support, call Technical Service Centre Toll Fraud Intervention Hotline at +1-800-643-2353
for the United States and Canada. For additional support telephone numbers, see the Avaya
Support website: https://support.avaya.com or such successor site as designated by Avaya.

Security Vulnerabilities

Information about Avaya’s security support policies can be found in the Security Policies and
Support section of https://support.avaya.com/security. Suspected Avaya product security
vulnerabilities are handled per the Avaya Product Security Support Flow
(https://support.avaya.com/css/P8/documents/100161515).

Downloading Documentation

For the most current versions of Documentation, see the Avaya Support website:
https://support.avaya.com, or such successor site as designated by Avaya.

Contact Avaya Support

See the Avaya Support website: https://support.avaya.com for product or Cloud Service
notices and articles, or to report a problem with your Avaya product or Cloud Service. For a list
of support telephone numbers and contact addresses, go to the Avaya Support website:
https://support.avaya.com (or such successor site as designated by Avaya), scroll to the
bottom of the page, and select Contact Avaya Support

https://support.avaya.com/
https://support.avaya.com/security.
https://support.avaya.com/css/P8/documents/100161515
https://support.avaya.com/
https://support.avaya.com/
https://support.avaya.com/

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

Contents

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

1 Introduction

Purpose
This document forms part of the SDK for the WebRTC API. An example application is
included in the SDK to demonstrate/exercise the interface detailed here. This document
provides detailed information about the WebRTC SDK API for IP Office Release 12.2

Intended Audience
This document is for Dev Connect partners developing or integrating web portals or
apps to have IP Office based WebRTC functionality integrated in it.

Document Changes

Issu e Date Descriptio n

1.0 July 19, 2015 Initial draft

1.1

Dec 22, 2016

Addition of new optional APIs to get the media devices,
select the media devices and attach the video media
strea m s to video media elements.
Addition of new optional events to indicate video
strea m availability and media device list availability.

1.2

Jan 4, 2017

Addition of new API to get Far- end’s full- name
Addition of new optional event to indicate audio strea m
availability.

1.3 March 9, 2017 Addition of new API to get the subject of the call or
subject of the meeting if any

1.4 May 25, 2017 Changes in the param e t e r s passed to onCallTerminat e
function

1.5

June 21, 2017

Addition of new API to get altern a t e server details and
changes in set Configur a t ion API and an optional event
to indicate authe ntication token renewal result.

1.6

July 11, 2017

Addition of a section on Resiliency, new properties
passed via callback_on Registr a t ion St a t e C h a n g e d
event, changes in return object of make call API during
resiliency

1.7

August 11, 2017

Modification in the param e t e r s passed to
onRegistra t ion Sta t e C h a n g e d and
onAuth Token Re n e w e d callback functions. Addition of
new API to enable login via resiliency token.

1.8 Septe m b e r 14, 2017 Added Certificate Require m e n t s for Resiliency.
Added require m e n t of hosting Example web page on

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

 Web Server.

1.9

October 13, 2017

Addition of new API to gener a t e new application
instance ID. Modification in the configura t ion object
passed as first para m e t e r to setConfigura t ion API.

1.10 October 31, 2017 Update Client referenc e s

1.11 Novembe r 15, 2017 Added new APIs to get and set stun settings any- time
after the call to login()

1.12

Decemb e r 28,2017

User licensing information included in Licensing
(1.5. 2).
Additional information included for addVideo (4.2. 13).

1.13

July 13, 2018

Clarify that lack of Safari browser support in WebRTC
SDK means no support for iOS at this time (1.4, 2.1)
Update d behavior of ICE candidate gathering during
make Call (4.2. 1)

1.14

Novembe r 19, 2018

SDK zip file update d to resolve two issues below.
• Hold Unhold at Called party end fails from Chrome

version 69 or later
• In some cases of video call the called party is not

getting audio- video strea m events
Call out that WebRTC Gateway resiliency is supporte d
from R11 and later only (1.8).

1.15 January 3, 2019 Update supporte d releases for each API in section 4

1.16 Februa ry 27, 2019 Chrome 72 WebRTC impleme nt a t ion changes update d
in SDK

1.17

April 22, 2019

Removed restriction of 6 characte r s of TLD in FQDN
Playing of messa ge provided by remote end in ring
back stage

1.18 May 23, 2019 Fix Missing Video Window after resum e from hold

1.19 Aug 21, 2019 Update d known issues on Firefox

1.20 Dec 20, 2019 Support three concur r e n t calls to allow consultative
transfer of second call.

1.21 Oct 21, 2020
Support for unified SDP
Support for DTLS1. 2.

1.22 Aug 01, 2025
Support for IP Office 12.2

Background
WebRTC is a set of open standards that enables Real-Time Communications (RTC) for
web browsers without any plugins.
WebRTC provides an opportunity to enable rich, high quality, RTC applications to be
developed for the browser, mobile platforms and allow them all to communicate via a
common set of protocols.
WebRTC Gateway for IP Office 12.2 provides capability for IP Office users to have
voice, video calling capabilities via WebRTC supported browsers (Chrome and Firefox

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

only – not Internet Explorer, Edge or Safari) across multiple platforms.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

Note that Apple requires use of Safari browser for WebRTC support on iOS; the
WebRTC SDK does not yet include Safari support – so there is no support for iOS with
the WebRTC SDK at this time. Also note that DTMF is only supported with Chrome
browser – not with Firefox.
Avaya WebRTC library SDK (AWL SDK) for IP Office is simple JavaScript SDK for
adding Softphone functionality for Web based applications, with built in documentation

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

API

Availability
Avaya IP Office WebRTC SDK API is available for IP Office Release 12.2 with

• IP Office Server Edition
• IP Office Select and
• IP Office Preferred Edition
• Powered By Avaya 3.0 (partner hosted IP Office)

and requires that the WebRTC Gateway be deployed.
WebRTC gateway is bundled with Primary and Linux Application server of IP Office,
with the following dependencies

• Server Edition and Select contains application server along with IP Office, so no
need to install the application server.

• IP500v2 (only on Preferred Edition) – need to install Linux Application Server
separately.

Note
Avaya IP Office WebRTC SDK API Functionality is not supported with (Avaya hosted)
Avaya IP Office Cloud releases.

Licensing
There is no license required for WebRTC API.
The associated IP Office users must have Power User or Office Worker profiles to use
WebRTC.

What’s New in this release
The reference document is updated with details of supported IP Office releases for each
API in section 4.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

Connectivity
Avaya IP Office WebRTC SDK communicates with WebRTC Gateway ONLY over

• HTTPS Web Socket channels for signaling over port 9443
• DTLS-SRTP channels for Media on 56000-58000 (default)

The WebRTC gateway runs as a service at the HTTPS Web Socket port 9443.

Note
The one-X server and WebRTC gateway must be running to use WebRTC
functionalities.

WebRTC Gateway Signalling Port
The following TCP ports need to be opened in the firewall /corporate router, in case if
web clients reside in public internet.

Release Port Network/Application Protocol Description
12.2 9443 TCP/HTTPS/Web Socket WebRTC Signaling

The above-mentioned port is fixed and there is no provision to change. The URLs are
Web Socket Secure URLs (wss) and are active only when one-X server is running.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

WebRTC Gateway Media Port
The below UDP ports need to be opened in the firewall/corporate router in case of
clients resides in public internet.

Release Port Network/Application

Protocol
Description

12.2 56000-
58000(default)

(Configurable-not to be
overlapped with IP Office
media endpoint range)

UDP/DTLS-SRTP WebRTC Media

Certificate Requirements
To improve the security of the WebRTC Gateway link, users should perform the
following steps prior to using the client application.

Step 1: Obtain the CA certificate that signed the identity certificate of the WebRTC Gateway
server.
Step 2: Install the obtained certificate into Browser’s Certificate store and trust the
certificate.
Note

1) If certificate is not installed, Web Client will not be able to connect to gateway
2) The gateway does not support mutual authentication and hence, does not require

client’s certificate
3) The gateway uses the same certificate which one-X portal uses
4) The CA certificate can be obtained from Web Control Portal
5) See Avaya IP Office™ Platform Security Guidelines for more information
6) Browser required to install and trust CA Certificates of both Primary and

Secondary one-X for Resiliency

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

WebRTC Resilience
WebRTC Gateway resiliency has a dependency on one-X Portal Resiliency, which is an
IP Office Select feature – so WebRTC Gateway resiliency is supported on Select only
and from IP Office R11 and later only. The backup WebRTC Gateway is installed by
default on the Server Edition Secondary server, providing resiliency for WebRTC
clients.
When the Primary WebRTC Gateway service is not available, failover occurs and the
Backup WebRTC Gateway becomes active. Clients automatically recognize that the
primary WebRTC Gateway is not available and log in to the backup WebRTC Gateway.
Logged in users are automatically logged in to the backup WebRTC Gateway.
When the primary WebRTC Gateway is once again available, WebRTC users are
automatically failed back to Primary WebRTC Gateway. The backup WebRTC Gateway
redirects login requests to the primary WebRTC Gateway.

Resiliency API

disableResiliency
In a WebRTC Resiliency enabled deployment, the Client application shall
enable or disable automatic failover and failback by setting parameter

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

“disableResiliency” as “false” or “true”. Refer section setConfiguration (arg1,
callback_onConfigChanged, callback_onRegistrationStateChanged,
callback_onCallStateChanged) for more details.

getAlternateServerConfig()
In a WebRTC Resiliency enabled deployment, the Client application can query
the Alternate Server details, to manually carry out failover and failback options.
Refer section getAlternateServerConfig() for more details.

Resiliency Events
In a WebRTC Resiliency enabled deployment, the Client application shall
display or act on appropriate resiliency events. Refer sections
callback_onRegistrationStateChanged and callback_onAuthTokenRenewed for
details.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

2 Getting Started
The WebRTC SDK is a collection of JavaScript application programming interfaces
(APIs), sample applications and documentation that enable developers to build
JavaScript (ECMAScript) based web client/applications.

 Avaya distributes the SDK as a zip file, namely “awl.zip”. Unzip the
downloaded “awl.zip” file to a local drive. The directory structure and the
contents will appear as below once unzip is complete.

 The "Doc" directory contains AWL SDK API usage guide (help documentation)

in html format, namely “index.html”. The “index.html” is the start page to get
started using AWL SDK API. This file is best viewed with Google chrome
browser and when launched the webpage shows the summary of the
WebRTC SDK module, pre-requisite and mandatory steps to follow when
using this AWL SDK file and the list of telephony and non- telephony API’s.
Detailed explanation with examples is available when clicked on the
respective API. The same is available in pdf format which is titled as
“Avaya_WebRTCSDK_Reference.pdf”.

 The “Example” directory has contents of a sample web page implementing

the AWL SDK API in it and shall be referred in addition to the documentation
part. The “Example” directory contains “sdk-testpage” folder. The “sdk-
testpage” directory contains “js” folder and index.html. The file “index.html” is
best viewed with Google chrome browser and is required to be hosted on
Web Server. Include the third-party JQuery library using the HTML <script>
tag in “index.html” as follows:

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

The “js” folder contains the SDK and the “sdktest.js”. The example client code
defines a configuration object. The developer shall modify the Gateway IP
address and add the port (if necessary) as follows.
var cfg = {

serviceType: "phone",
enableVideo: true,
Gateway: {ip: "192.0.2.0", port: “9443”},
Stunserver: {ip: "", port: "3478"},
Turnserver: {ip: "", port: "3478", user: "", pwd: ""},
AppData: {applicationID: "",applicationUA: "", appInstanceID:””},
disableResiliency: false
};

The application calls the logIn and logOut APIs allowing the user to register and de-
register to Avaya IP Office, respectively. After successful registration, it allows the user
to make two calls in succession by calling the makeCall API. The developer shall modify
the arguments passed to this API as per the requirement. The application requires to be
hosted on local or external web server (for example “Apache Tomcat”). The application
allows the user to hold, unhold, pauseVideo, resumeVideo, mute, unmute and dropCall
by calling the respective Telephony APIs.

 File “awl.min.js” represents the complete AWL SDK and developers shall
keep this in their web client/application to avail Avaya IP Office WebRTC
functionalities.

Supported Browsers
Latest versions of Google Chrome and Firefox browsers are enabled with built-in
WebRTC support by default.
Note that Apple requires use of Safari browser for WebRTC support on iOS; the
WebRTC SDK does not yet include Safari support – so there is no support for iOS with
the WebRTC SDK at this time. Hold and Resume of Video Calls using Firefox browsers
result in Audio Call.
Note: Make sure that browsers have permission to access media devices, mic and
camera

Tools
Developers shall use JS/HTML5 editors like the ones listed below to view or develop a
web client/application with AWL SDK.

 Eclipse IDE for JavaScript
 Brackets
 Sublime Text

Avaya IP Office WebRTC SDK Overview
Avaya IP Office WebRTC SDK Open API is provided for web client application
integration using JavaScript language and this API can be used to develop or integrate
web pages for consuming the telephony features provided by Avaya IP Office.
Avaya IP Office WebRTC SDK is a JavaScript based minified SDK ("awl.min.js") which
takes care of WebRTC functionalities for different WebRTC enabled browsers (latest

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

versions of Chrome and Firefox) as well handles signaling between the WebRTC
Gateway and the web browser client using a secure web socket connection.
The SDK provides Avaya IP Office WebRTC SDK Open API interface, which upon
instantiation can be used to invoke the following APIs listed below in order to consume
the telephony features provided by Avaya IP Office. The details about these APIs and
the parameters passed in them are best described in below sections.

Non Telephony API
1. isWebRTCSupported()
2. getSdkVersion()
3. setConfiguration (arg1, callback_onConfigChanged,

callback_onRegistrationStateChanged, callback_onCallStateChanged)
4. setConfiguration (arg1, callback_onConfigChanged,

callback_onRegistrationStateChanged, callback_onCallStateChanged,
onAuthTokenRenewed)

5. enableLogging()
6. setDomElements(arg1)
7. getDeviceList(callback_onDeviceListRequested)
8. setDeviceIds(arg1)
9. logIn(arg1, arg2, arg3, arg4)
10. logOut()
11. isloggedIn()
12. setLogObject (arg1)
13. disableLogging()
14. playVideo(arg1)
15. pauseVideo(arg1)
16. getAlternateServerConfig()
17. tokenLogIn(arg1, arg2, arg3, arg4)
18. generateAppInstanceID ()
19. getStunConfiguration ()
20. setStunConfiguration (arg1)

Telephony API
1. makeCall (arg1, arg2)
2. answerCall (arg1)
3. rejectCall (arg1)
4. dropCall (arg1)
5. cancelCall (arg1)
6. doHold (arg1)
7. doUnHold (arg1)
8. doMute (arg1)
9. doUnMute (arg1)
10. sendDTMF (arg1 , arg2)
11. transferCall (arg1 , arg2 , arg3)
12. getStats (arg1)
13. addVideo (arg1)
14. removeVideo (arg1)

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

15. setMediaStream (arg1 , arg2 , arg3 , arg4)

Network Test API
1. createLoopBackConnection ()
2. endLoopBackConnection ()
3. getLoopBackStats ()

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

1 Guidelines for using the SDK API
To experience Avaya IP Office WebRTC audio/video calls, following mandatory
guidelines have to be met first, before using any other non-Telephony or Telephony
API.

Pre-requisites
WebRTC is available with IP Office Server Edition, IP Office Select and IP Office
Preferred Edition and to access WebRTC, the associated users must have Power User
or Office Worker profiles.
The WebRTC Gateway IP address should be reachable from the web application which
is integrated with the SDK.

Mandatory steps
1. Include Avaya IP Office WebRTC SDK file “awl.min.js” in the JavaScript include

list

2. Create an AWL.Client instance as this will be used to access all the non-telephony and
telephony SDK API in section Detailed Description of API.

3. Set all the configuration (i.e., Populate serviceType("phone" or "agent"), enableVideo,
Gateway IP address(Mandatory), Stun/Turn(Optional) server details, application data
and disableResiliency details as in the following object literal notation template('cfg'))
element(arg1) along with the four callback functions arg2, arg3, arg4 and arg5 which
would be triggered upon any configuration changes, registration/un-registration state
changes, call state changes and token renewal(if resiliency is not disabled)
respectively.
All these except arg5 are mandatory arguments to be passed while invoking
setConfiguration API. Out of all these fields in arg1 template, mandatory data to be filled
is Gateway IP address or FQDN in order to setup communication with the Avaya IP
Office WebRTC Gateway.
If the serviceType property is set as Phone service (i.e., "phone"), it provides client to be
used as Avaya IP Office extension, with its own UI, whereas if set as Agent service (i.e.,
"agent") it is better suited for scenarios where the telephony operations are controlled by
CTI application, for example in Avaya IP Office Contact Center agent extensions

For the AppData, appInstanceID is the instance Id of the application and should be
unique for each instantiation of application or AWL SDK. The appInstanceID can be
obtained from AWL SDK utility API, generateAppInstanceID().The appInstanceID is a
mandatory configuration and should be done by every AWL SDK based applications.
The applicationID and applicationUA are optional configurations to be used by third-party
application developers using AWL SDK. The applicationUA represents application name

Example:

var myWebRTC = new AWL.client();

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

Example:
var cfg = {

serviceType: "phone",
enableVideo: false,
Gateway: {ip: "192.0.2.0", port: "9443"},
Stunserver: {ip: "", port: "3478"},
Turnserver: {ip: "", port: "3478", user: "", pwd: ""},
AppData: {applicationID : "", applicationUA : "",appInstanceID : ""

},
disableResiliency : false

};

myWebRTC.setConfiguration(cfg, onConfigChanged,
onRegistrationStateChanged, onCallListener, onAuthTokenRenewed);

/*
Where,

cfg: arg1
onConfigChanged: callback_onConfigChanged
onRegistrationStateChanged: callback_onRegistrationStateChanged
onCallListener: callback_onCallStateChanged
onAuthTokenRenewed: callback_onAuthTokenRenewed

*/

Example:

myWebRTC.logIn('6501', '********');

arg1 arg2

registered with Avaya and applicationID represents the application identity key obtained
from Avaya after the application registered with Avaya.
Note:

1. Client Application must set the remembered/persisted appInstanceID again,
when AWL SDK is re-instantiated during Fail-over or Fail-back.

2. applicationID and applicationUA are reserved for future usage.

By default, resiliency is supported at SDK. To disable resiliency support at SDK,
applications have to set the disableResiliency property to true while passing the
configuration parameter to setConfiguration API. If disableResiliency is set true, then
AWL SDK will not renew the authentication token before it expires. Also, autologin using
token during failover and failback will not be supported and the applications have to go
for manual login during failover and failback.

The above API call invokes the configuration change callback function which was
passed as 'callback_on Config Chan g e d ' earlier with the result and reason
associated with it.

4. Invoke login API with the Avaya IP Office SIP username and password as the WebRTC

client's username and password in the logIn API.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

The above API call invokes the registration state change callback function which was
passed as 'callback_on Registr a t ion St a t e C h a n g e d ' earlier with the result and
reason associated with it.

5. Once the login (i.e., Registration) is reported successful, all the telephony API can be

invoked to make or receive calls and other on call relevant features. During call state
changes or for an incoming call 'callback_onCallStateChanged' will get triggered.

6. After successful login, if resiliency support at SDK is not disabled by the client, then the

authentication token received from the gateway will be used for autologin to alternate
server during failover and failback. Also, the authentication token will be renewed by the
SDK before its expiry.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

2 Detailed description of API

Non-Telephony API

isWebRTCSupported()
This API returns a Boolean result indicating whether the browser (on which this API is called)
has WebRTC capability support or not.
Arguments Passed and their description: None
Return type: Boolean

True indicates that the browser supports WebRTC API.
False indicates that the browser does not support WebRTC API.

getSdkVersion()

This API returns the Avaya IP Office WebRTC SDK version number being used
Arguments Passed and their description: None
Return type: String

setConfiguration (arg1, callback_onConfigChanged,

callback_onRegistrationStateChanged, callback_onCallStateChanged)
This API is used to set configuration parameters in an object literal notation pattern ('cfg'
parameter as in below example) and three callback functions which would triggered
upon any configuration changes, registration/un-registration state changes and call
state changes. This API should be called before doing logIn API call. ALL THE
ARGUMENTS TO BE PASSED ARE MANDATORY while invoking setConfiguration
API. For the first argument to be passed, the serviceType ("phone" or "agent"),
enableVideo (true or false), Gateway IP address or FQDN (Mandatory), Stun/Turn
(Optional) server details are to be filled as in the following object literal notation template
('cfg'), along with the three callback functions callback_onConfigChanged,
callback_onRegistrationStateChanged and callback_onCallStateChanged which would
be triggered upon any configuration changes, registration/un-registration state changes
and call state changes respectively. Out of all these fields in arg1 template, mandatory
data to be filled is the Gateway IP address in order to setup communication with the
Avaya IP Office WebRTC Gateway.
If the serviceType property is set as Phone service (i.e., "phone"), it provides client to be
used as Avaya IP Office extension, with its own UI whereas, if set as Agent service (i.e.,
"agent") it is better suited for scenarios where the telephony operations are controlled
by CTI application.

Example:
var cfg = {

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

Note: The set Configuration API call invokes the configuration change callback function
which was passed as 'callback_on Config Chan g e d ' earlier with the result and reason
associated with it.

serviceType: "phone",
enableVideo: false,
Gateway: {ip: "192.0.2.0", port: "9443"},
Stunserver: {ip: "", port: "3478"},
Turnserver: {ip: "", port: "3478", user: "", pwd: ""}

};

myWebRTC.setConfiguration(cfg, onConfigChanged, onRegistrationStateChanged,
onCallListener);

/*

cfg: arg1
onConfigChanged: callback_onConfigChanged
onRegistrationStateChanged: callback_onRegistrationStateChanged
onCallListener: callback_onCallStateChanged

*/

Example of 'callback_onCallStateChanged' class template:

var onCallListener = function(){
var _onNewIncomingCall = function(callId, callObj, autoAnswer){

// application logic here
}
var _onCallStateChange = function(callId, callObj, event){

// application logic here
}
var _onCallTerminate = function(callId, reason){

// application logic here
}
var _onLoopBackNotification = function(notification){

}

var _onVideoStreamsAvailable = function(callId, localStream,
remoteStream){

// application logic here
}

var _onAudioStreamsAvailable = function(callId, localStream,
remoteStream){

// application logic here
}

return{
onNewIncomingCall: _onNewIncomingCall,
onCallStateChange: _onCallStateChange,
onCallTerminate: _onCallTerminate,
onLoopBackNotification: _onLoopBackNotification,
onVideoStreamsAvailable: _onVideoStreamsAvailable,
onAudioStreamsAvailable: _onAudioStreamsAvailable

};
}

var callback_onCallStateChanged= new _onNewIncomingCall();

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

Arguments Passed and their description:
 arg1 - object literal notation pattern as in above example 'cfg' var.
 callback_onConfigChanged - callback function that would get triggered
whenever configurations are modified (In above example, 'onConfigChanged'
represents this parameter)
 callback_onRegistrationStateChanged - callback function that would get
triggered whenever there's a change in the registration state (In above example,
'onRegistrationStateChanged' represents this parameter)
 callback_onCallStateChanged - callback function object that would trigger
'onCallStateChange' function (when a call state occurs) or 'onNewIncomingCall'
function (when there is a new incoming call arrives) or 'onCallTerminate' function(to
indicate the call terminate reason, when an established call terminates) or
'onLoopBackNotification' function(notifications and alarms to be handle at
application logic) or ‘onVideoStreamsAvailable’ function (when both local and
remote video streams are available) or ‘onAudioStreamsAvailable’ function (when
both local and remote audio streams are available) and this requires a module
reveal pattern template to be used as in above example showing
'callback_onCallStateChanged's class template.

Return type: None

setConfiguration (arg1, callback_onConfigChanged,

callback_onRegistrationStateChanged, callback_onCallStateChanged,
onAuthTokenRenewed)

This API is used to set configuration parameters in an object literal notation pattern ('cfg'
parameter as in below example) and four callback functions which would triggered upon
any configuration changes, registration/un-registration state changes, call state changes
and authentication token renewal. This API should be called before doing logIn API
call. FIRST FOUR ARGUMENTS TO BE PASSED ARE MANDATORY while invoking
setConfiguration API. For the first argument to be passed, the serviceType ("phone" or
"agent"), enableVideo (true or false), Gateway IP address or FQDN (Mandatory),
Stun/Turn (Optional) server details, Application data and disableResiliency details are to
be filled as in the following object literal notation template ('cfg'), along with the four
callback functions callback_onConfigChanged, callback_onRegistrationStateChanged,
callback_onCallStateChanged and onAuthTokenRenewed which would be triggered
upon any configuration changes, registration/un-registration state changes, call state
changes and token renewal respectively. Out of all these fields in arg1 template,
mandatory data to be filled is the Gateway IP address in order to setup communication
with the Avaya IP Office WebRTC Gateway.

If the serviceType property is set as Phone service (i.e., "phone"), it provides client to be
used as Avaya IP Office extension, with its own UI whereas, if set as Agent service (i.e.,
"agent") it is better suited for scenarios where the telephony operations are controlled
by CTI application.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

Example:
var cfg = {

serviceType: "phone",
enableVideo: false,
Gateway: {ip: "192.0.2.0", port: "9443"},
Stunserver: {ip: "", port: "3478"},
Turnserver: {ip: "", port: "3478", user: "", pwd: ""},
AppData: {applicationID : "", applicationUA : "", appInstanceID : "" },
disableResiliency : false

};

myWebRTC.setConfiguration(cfg, onConfigChanged, onRegistrationStateChanged,
onCallListener, onAuthTokenRenewed);

/*

cfg: arg1
onConfigChanged: callback_onConfigChanged
onRegistrationStateChanged: callback_onRegistrationStateChanged
onCallListener: callback_onCallStateChanged
onAuthTokenRenewed: callback_onAuthTokenRenewed

*/

Example of 'callback_onCallStateChanged' class template:

var onCallListener = function(){
var _onNewIncomingCall = function(callId, callObj, autoAnswer){

// application logic here
}
var _onCallStateChange = function(callId, callObj, event){

// application logic here
}
var _onCallTerminate = function(callId, reason){

// application logic here
}
var _onLoopBackNotification = function(notification){

}

For the AppData, appInstanceID is the instance Id of the application and should be
unique for each instantiation of application or AWL SDK. The appInstanceID can be
obtained from AWL SDK utility API generateAppInstanceID(). The appInstanceID is a
mandatory configuration and should be done by every AWL SDK based applications.

The applicationID and applicationUA are optional configurations to be used by third-
party application developers using AWL SDK. The applicationUA represents application
name registered with Avaya and applicationID represents the application identity key
obtained from Avaya after the application registered with Avaya.

Note:

1. Client application must set the remembered/persisted appInstanceID again,
when AWL SDK is re-instantiated during Fail-over or Fail-back

2. applicationID and applicationUA are reserved for future usage.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

Note: The set Configuration API call invokes the configuration change callback function
which was passed as 'callback_on Config Chan g e d ' earlier with the result and reason
associated with it.

Arguments Passed and their description:

 arg1 - object literal notation pattern as in above example 'cfg' var.
 callback_onConfigChanged - callback function that would get triggered
whenever configurations are modified (In above example, 'onConfigChanged'
represents this parameter)
 callback_onRegistrationStateChanged - callback function that would get
triggered whenever there's a change in the registration state (In above example,
'onRegistrationStateChanged' represents this parameter)
 callback_onCallStateChanged - callback function object that would trigger
'onCallStateChange' function (when a call state occurs) or 'onNewIncomingCall'
function (when there is a new incoming call arrives) or 'onCallTerminate' function(to
indicate the call terminate reason, when an established call terminates) or
'onLoopBackNotification' function(notifications and alarms to be handle at
application logic) or ‘onVideoStreamsAvailable’ function (when both local and
remote video streams are available) or ‘onAudioStreamsAvailable’ function (when
both local and remote audio streams are available) and this requires a module
reveal pattern template to be used as in above example showing
'callback_onCallStateChanged's class template.
 callback_onAuthTokenRenewed - callback function that would get triggered
whenever authentication token renewal succeeds or fails (In above example,
'onAuthTokenRenewed’ represents this parameter)

Return type: None

var _onVideoStreamsAvailable = function(callId, localStream,
remoteStream){

// application logic here
}

var _onAudioStreamsAvailable = function(callId, localStream,
remoteStream){

// application logic here
}

return{
onNewIncomingCall: _onNewIncomingCall,
onCallStateChange: _onCallStateChange,
onCallTerminate: _onCallTerminate,
onLoopBackNotification: _onLoopBackNotification,
onVideoStreamsAvailable: _onVideoStreamsAvailable,
onAudioStreamsAvailable: _onAudioStreamsAvailable

};
}

var callback_onCallStateChanged= new _onNewIncomingCall();

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

Example:

var cfg = {
localVideo : "", /*should pass the video tag's id value here and

this tag would be used to attach the local video stream to the user
interface*/

remoteVideo : "" /*should pass the video tag's id value here and
this tag would be used to attach the remote video stream to the user
interface*/

};

myWebRTC.setDomElements(cfg);

arg1

enableLogging()
This API enables browser console logging for displaying SDK API logs
Arguments Passed and their description: None
Return type: None

setDomElements(arg1)

This API used to set HTML5 video media DOM elements (i.e., video tag IDs passed in arg1)
which would be used to attach WebRTC video streams of local and remote video by the SDK
during a video call. ALL THE PARAMETERS TO BE PASSED ARE MANDATORY. This API
should be used only when a pair of DOM elements (local & remote) is fixed across multiple calls
to show local & remote video stream in it, i.e. DOM elements should be set before any call
happens. At any point of call, the active call's stream will be attached to the DOM element and it
will be re-used if the active call session changes. If the application requires dynamic video
stream control to attach it to the DOM element on fly, "onVideoStreamsAvailable" callback
approach should be used which works per call basis.

Note: The setDomElements API call invokes the configuration change callback function which
was passed as 'callback_onConfigChanged' earlier in setConfiguration API with the result
and reason associated with it.
Arguments Passed and their description:

 arg1 Object - object literal notation pattern as in above example 'cfg' var.
Return type: None

getDeviceList(callback_onDeviceListRequested)
This API used to get all the available media devices attached to the system.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

Example:

var dIds = {
audioInputID : "", - should pass the audio input device id value here
videoInputID: "", - should pass the video input device id value here
audioOutputID: "", - should pass the audio output device id value here and

this tag would be used to attach the remote audio stream to the user interface
defaultId : true

};
myWebRTC.setDeviceIds(dIds);

arg1

Note: The getDeviceList API call would invoke the callback function which is passed as
mandatory parameter of this API.
Arguments Passed and their description:
callback_onDeviceListRequested Object - callBack function which will be invoked once

all the devices information is found.
Return type: None

setDeviceIds(arg1)
This API used to set Media Devices obtained by getDeviceList API call.

Arguments Passed and their description:
arg1 Object - object literal notation pattern as in above example 'dIds' var.
Return type: None

logIn(arg1, arg2, arg3, arg4)
WebRTC gateway expects IP Office user name or extension and user’s password from
the AWL SDK. The gateway sends authentication request to IP Office with the client
provided credentials. The client will be notified about the result of the authentication
request once it gets the response from IP Office. WebRTC gateway acts as proxy for
the client and initiates IP Office user authentication request on-behalf of client.
Notes:

1) The IP Office user name refers to Name field in IP Office Manager
2) The IP Office extension refers to Extension field under User section in IP Office

Manager
3) The Password refers to User’s password. Not Login Code.

This API registers the WebRTC client as SIP user with the supplied arguments to IP
Office and it takes the user extension (arg1) and password (arg2) as input arguments
for internal authentication.
Note: The logIn API call invokes the registration state change callback function which
was passed as 'callback_onRegistrationStateChanged' earlier in setConfiguration API

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

with the result and reason associated with it. If resiliency is supported and enabled, then
after successful login, authentication token will be passed to registration state change
callback function.
Arguments Passed and their description:

 arg1 String - SIP user extension
 arg2 String - Respective user(i.e., arg1) password
 arg3 String – (Optional)Flag to instruct the Gateway that allow SIP login even if

extension is taken over by other client of same service type. The value must be
either "true" or "false".
There cannot be two clients of same service type logged into the same extension
simultaneously. When an extension is logged into by a client and another client
of the same service type attempts to take the same extension, then the latter
client can instruct the Gateway to either allow the SIP login by logging out the
former client. To do this, client should pass 'true' or 'false' for the parameter arg3
in logIn.
If "true", Gateway proceeds for SIP login even if there is any logged in client for
the same extension.
If "false", Gateway checks if any client has already logged into the same
extension (arg1), proceeds for SIP login only if there is no already logged in
client. If there is any already logged in client, Gateway returns error code and
reason string containing the already logged in client's user agent.

• arg4 String – (Optional)Flag to instruct the gateway that the 'password'(arg2) is a
'token' not password.
If this argument is 'true', Gateway treats the 'arg2' as token.
If this argument is 'false', Gateway treats the 'arg2' as password.
Default setting for arg4 is ‘false’.

Return type: None

logOut()

This API unregisters the WebRTC client (which is registered earlier as SIP user using
logIn API) from Avaya IP Office
Note: The logIn API call invokes the registration state change callback function which
was passed as 'callback_onRegistrationStateChanged' earlier in setConfiguration API
with the result and reason associated with it
Arguments Passed and their description: None
Return type: None

isloggedIn()
This API is used to check if the client is currently registered or not

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

Example: myWebRTC.setLogObject($log);

arg1

Arguments Passed and their description: None
Return type: Boolean
True indicates that the WebRTC user extension is already registered to Avaya IP Office
False indicates that the WebRTC user extension is not registered to Avaya IP Office.

setLogObject (arg1)

This API enables SDK logging to use any JS framework provided logging object instead of
console logging unless this API is used; default logging will be console logging.

Arguments Passed and their description:
 arg1 Object - Logging Object

Return type: None

disableLogging()
This API disables browser console logging for displaying SDK API logs
Arguments Passed and their description: None
Return type: None

playVideo(arg1)
This API is to play the previously paused local video stream.
Caution: Playing local video stream will have video played effect on all the video calls only on

9.1 version where-as from 10.0 version the local video stream shall be controllable against each
call param arg1 is mandatory if used with 10.0 and later build versions
Arguments Passed and their description:

 arg1 String - call ID parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: Boolean
True indicates the API call is successful.
False indicates the API call failed.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

pauseVideo(arg1)
This API is used to pause the local video stream.
Caution: Pausing local video stream will have video paused effect on all the video calls only on
9.1 versions whereas from 10.0 version it shall be controllable against each call param arg1 is
mandatory if used with 10.0 and later build versions
Arguments Passed and their description:

 arg1 String - call ID parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: Boolean
True indicates the API call is successful.
False indicates the API call failed.

getAlternateServerConfig()
This API returns the alternate server details if resiliency is supported and enabled at the server.
Arguments Passed and their description: None
Return type: Object
This return object contains the alternate server details like IP address, domain, port and server
type. If the returned object is null, then resiliency is either not supported or not enabled at the
server.

tokenLogIn(arg1, arg2, arg3, arg4)
This API registers the WebRTC client as SIP user with the supplied arguments to Avaya
IP office and it takes userextension(arg1), authentication token(arg2), type of
authentication token(arg3) as mandatory arguments.
The authentication token can be of two types: RESILIENCY and ESNA
The client should obtain esna token from the one-x server for a user name (Please refer
the one-x open API documentations for details). When gateway receives esna token
based authentication request, gateway contacts one-x server to obtain the IP Office
user’s password corresponding to the token. If gateway obtains the password, it initiates
regular IP Office user authentication over SIP channel.
The client can obtain resiliency token from AWL SDK.It first obtains the resiliency token
from the response object passed in the registration state change callback function
'callback_onRegistrationStateChanged' when it successfully logs in to resilient server
with user password via the logIn API. The client has to update the resiliency token

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

whenever it is renewed. It can obtain the renewed token via the response object passed
in authentication token renewed callback function 'callback_onAuthTokenRenewed'.
Arguments Passed and their description:

 arg1 String - SIP user extension
 arg2 String - Authentication token
 arg3 String – Type of the authentication token. The supported token types are

RESILIENCY and ESNA.
 arg4 String – (Optional)Flag to instruct the Gateway that allow SIP login even if

extension is taken over by other client of same service type. The value must be
either "true" or "false".
There cannot be two clients of same service type logged into the same extension
simultaneously. When an extension is logged into by a client and another client
of the same service type attempts to take the same extension, then the latter
client can instruct the Gateway to either allow the SIP login by logging out the
former client. To do this, client should pass 'true' or 'false' for the parameter arg3
in logIn.
If "true", Gateway proceeds for SIP login even if there is any logged in client for
the same extension.
If "false", Gateway checks if any client has already logged into the same
extension (arg1), proceeds for SIP login only if there is no already logged in
client. If there is any already logged in client, Gateway returns error code and
reason string containing the already logged in client's user agent.

Return type: None

generateAppInstanceID ()

This is utility API used to generate the application instance ID.
Note:
a) This API generates new appInstanceID for each invocation.
b) SDK will not persist the generated appInstanceID.
Arguments Passed and their description: None
Return type: String

getStunConfiguration ()

This API returns the STUN server configurations.
Arguments Passed and their description: None
Return type: Object
This return object contains the STUN server details like Stun server IP address/FQDN
and port.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

setStunConfiguration (arg1)

This API is used to configure STUN server details by the application any-time after call
to login(). Subsequent calls shall use new STUN server details.

Arguments Passed and their description:
arg1 Object - object literal notation pattern as in above example 'stunServer' var.
Return type: String

Possible results that could be passed are:
AWL_MSG_SET_STUN_CONFIG_SUCCESS
AWL_MSG_SET_STUN_CONFIG_FAILED

Telephony API

makeCall (arg1, arg2)
This API is used to dial out by passing the terminating DN (arg1) and the call type being either
audio or video (arg2) and is responsible for creating WebRTC PeerConnection, Offer generation
and other call setup signaling.

Arguments Passed and their description:

 arg1 String - extension number to be dialed
 arg2 String - call Type (whether "video" or "audio" call)

Return type: Object
This return object represents the current call session's call object using which below subsequent
APIs can be invoked to retrieve information’s at different phases of the call.
1. getCallId() - Returns the unique call id used in this particular call session
2. getCallState() - Returns the current call state
3. getFarEndNumber() - Returns the Far End’s number
4. getFarEndName() – Returns the Far End’s full-name
5. getSipUri() - Returns the SipUri in string format

Example of return string format:

Example:
var stunServer = {ip: "example.com", port: "3478"};
var result = myWebRTC.setStunConfiguration(stunServer);

arg1

if(result === "AWL_MSG_SET_STUN_CONFIG_SUCCESS"){
console.log("Successfully configured STUN settings");

}else{
console.log("Could not configure STUN settings. Re-check the values");

}

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

"sip:4001@192.0.2.0:5060"
6. getSubject() – Returns the subject of the call if provided in the meeting
7. isAutoAnswer() - indicates whether the call is auto answered(true) and this is meaningful only
when the call object acts as recipient
8. isVideoCall() - indicates whether the call is video type(true) or not(false). This could be useful
particularly when there is an incoming call.

Note: The farEndName returned via getFarEndName() API will henceforth not contain the
subject of the call if any, as it can be obtained using getSubject() API.

When resiliency is supported and enabled , if the client is either in failing over, failing back or
reconnecting state, then call will not be made and make Call API returns null

Note:

SDK waits for completion of gathering ICE candidates in all the network interfaces or a timeout
of 10 seconds to initiate call. Applications shall provide progress indication to User after invoking
makeCall (arg1, arg2)

answerCall (arg1)
This API Answers an incoming call by creating WebRTC PeerConnection, answer SDP
generation and other signaling messages. This API takes care of answering the call either as an
audio/video call based on the incoming call type and whether video is enabled locally using
setDomElements API.

Arguments Passed and their description:

 arg1 String - callId parameter(obtained through the callback functions
'onNewIncomingCall' or 'onCallStateChange')

Return type: None

rejectCall (arg1)
This API is to reject an incoming call and also resets the call session object properties.
Arguments Passed and their description:

 arg1 String - callId parameter(obtained through the callback functions
'onNewIncomingCall' or 'onCallStateChange')

Return type: None

mailto:4001@192.0.2.0:5060

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

dropCall (arg1)
This API disconnects a connected existing audio/video call and resets the call session object
properties.
Arguments Passed and their description:

 arg1 String - callId parameter(obtained through the callback functions
'onNewIncomingCall' or 'onCallStateChange')

cancelCall (arg1)
This API is to cancel a dialed call before the call is answered and also resets the call session
object properties
Arguments Passed and their description:

 arg1 String - callId parameter(this can be obtained using the call object
which is returned with makeCall API call)

Return type: None

doHold (arg1)
This API pushes a call to hold state for an audio/video call.
Arguments Passed and their description:

 arg1 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: None

doUnHold (arg1)
This API retrieves a call from held to active state for an audio/video call.
Arguments Passed and their description:

 arg1 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: None

doMute (arg1)
This API pushes the WebRTC mic to mute state.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

Arguments Passed and their description:
 arg1 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: Boolean
True indicates the API call is successful.
False indicates the API call failed

doUnMute (arg1)
This API pushes the WebRTC mic to unmute state from mute condition.
Arguments Passed and their description:

 arg1 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: Boolean
True indicates the API call is successful.
False indicates the API call failed

sendDTMF (arg1 , arg2)
This API generates a DTMF Tone based on ‘arg2’ value and sends it across to the connected
peer. DTMF Tones will be generated only when DTMF support is negotiated during a call (i.e.,
Between Browser and the peer endpoint) and only Chrome browser (latest version) supports
DTMF tone generation.
Arguments Passed and their description:

 arg1 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)
 arg2 Char - It should be one of possible ITU-T supported DTMF
Tones(which are ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘0’, ‘*’, ‘#’).

Return type: None
Note
sendDTMF() API is not supported in Firefox browser

transferCall (arg1 , arg2 , arg3)
This API is used to transfer call by dialing out a new call or merging two existing calls.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

Arguments Passed and their description:
 arg1 String - extension or callId of the call to be transferred
 arg2 String - CallId of the existing call
 arg3 String - type of transfer (attended/Unattended)

Return type: None

getStats (arg1)
This API is used to get the Call-Statistics of that particular call which can be accessed using the
returned array reference.
Arguments Passed and their description:

 arg1 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: Array

addVideo (arg1)
This API is used to upgrade an ongoing audio call stream to an audio+video stream.
Arguments Passed and their description:

 arg1 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: Boolean
Note: addVideo functionality is available in Chrome Browser version 64 or later; it is not
supported with Firefox.

removeVideo (arg1)
This API is used to downgrade an ongoing audio+video call stream to an audio only stream.
Arguments Passed and their description:

 arg1 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)

Return type: Boolean

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

Example:

myWebRTC.createLoopBackConnection();

setMediaStream (arg1 , arg2 , arg3 , arg4)
This API is to dynamically attach the video media streams with HTML5 video media
Elements provided by the application. All the parameters are mandatory. It is mandatory
for the application to call this API if DOM elements are not initially set using
setDomElements API.
Arguments Passed and their description:

 arg1 String - domElement parameter is HTML5 video media Element’s ID
or HTML5 video media element to which the stream has to be attached
 arg2 String - Stream parameter which is obtained by the call object which
is returned with makeCall API or using the stream parameter obtained by the call
state change callback function ‘onVideoStreamsAvailable’
 arg3 String - callId parameter(obtained by the call state change callback
functions 'onNewIncomingCall' or 'onCallStateChange' or using the call object
which is returned with makeCall API call)
 arg4 String - domType parameter which indicates the stream type i.e.
“localVideo” or “remoteVideo”

Return type: None

Network Test API

createLoopBackConnection ()
This API serves for network stability assessment and is accomplished by creating a WebRTC
loopback connection between the browser and the WebRTC gateway for audio and data (if
respective flags are set to TRUE) streams separately. This provides an easy way to assess the
ability of customer network by doing on demand network assessment as well as a long lived,
constant check of the network.
Arguments Passed and their description: None
Return type: None

Note: The createLoopBackConnection API call invokes the callback function which was passed as
'callback_onCallStateChanged' earlier in setConfiguration API with result(either
'CONST.AWL_MSG_LOOPBACK_CONN_SUCCESSFULL' or
'CONST.AWL_MSG_LOOPBACK_CONN_FAILED' or 'AWL_MSG_LOOPBACK_CONN_LINK_ISSUE'
and reason associated with it.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

endLoopBackConnection ()

This API terminates the network assessment loop back connection towards the WebRTC
gateway.
Arguments Passed and their description: None
Return type: None

getLoopBackStats ()

This API generates and updates the below statistical parameters based on which network
analyzer application shall determine the network stability. These parameters are accessible
using the returned array reference.

1. 'nowPLoss' - packet lost count in each second
2. 'totPSent' - Total Packets Sent
3. 'totPLost' - Total Packets Lost
4. 'nowRTT' - Current Round Trip delay(RTT)
5. 'totPLossPercent' - Percentage of packet lost so far
6. 'maxRTT' - Peak Round trip delay
7. 'minRTT' - Min Round trip delay
8. 'avgRTT' - Average Round trip delay
9. 'totJitter' - Jitter Received (total)
10. 'nowPLossPercent' - Observed packet Loss percentage in each second

Arguments Passed and their description: None
Return type: Array

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

3 Properties
Below are the possible resultant (string constants – response .result) properties that
could be passed in any of the call-back function events
AWL_MSG_CALL_CONNECTED String – Indicates that the call is currently in
CONNECTED state
AWL_MSG_CALL_DISCONNECTED String - Indicates that the call is currently in
DISCONNECTED state
AWL_MSG_CALL_FAILED String - Indicates the call has FAILED for some reason
AWL_MSG_CALL_FAREND_UPDATE String - Indicates that during a call, far end’s
number is UPDATED
AWL_MSG_CALL_HELD String - Indicates that the call is currently in HELD state
AWL_MSG_CALL_IDLE String - Indicates that a call object current state is IDLE and
is available for dialing outgoing call or receiving an incoming call
AWL_MSG_CALL_INCOMING String - Indicates an INCOMING call state
AWL_MSG_CALL_MAXCAP_REACHED String - Indicates that the current call is
denied due to maximum allowed concurrent call limit of three is reached already
AWL_MSG_CALL_PROGRESSING String - Indicates that the call is progressing with
early media. When early media received from gateway, call is connected temporarily
and User may need to enter account code in this state.
AWL_MSG_CALL_RINGING String - Indicates that the far end is in RINGING state
AWL_MSG_CALL_TRANSFER_FAILED String - Indicates that the call TRANSFER
FAILED and Existing call connection will be retained. This is same as
AWL_MSG_CALL_CONNECTED state except the transfer failure notification.
AWL_MSG_DEVICEACCESS_FAILURE String - Indicates logIn (arg1, arg2) API call
failure due to audio (Mic) or video (Camera) device access failure and this could be a
possible result value of the response object (i.e., resp.result) passed in the configuration
change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_DUPLICATE_LOGIN String - Indicates a duplicate logIn (arg1, arg2)
request is received when the SIP extension is already registered and this could be a
possible result value of the response object (i.e., resp.result) passed in the registration
state change callback function 'callback_onRegistrationStateChanged'.

AWL_MSG_FAIL_BACK_FAILED String - indicates that fail-back is not successful and this
could be a possible result value of the response object(i.e., resp.result) passed in the configuration
change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_FAIL_BACK_SUCCESS String - indicates that client has successfully failed back
and this could be a possible result value of the response object(i.e., resp.result) passed in the
configuration change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_FAIL_OVER_FAILED String - indicates that fail-over is not successful and this
could be a possible result value of the response object(i.e., resp.result) passed in the configuration
change callback function 'callback_onRegistrationStateChanged'
AWL_MSG_FAIL_OVER_SUCCESS String - indicates that client has successfully failed over
and this could be a possible result value of the response object(i.e., resp.result) passed in the
configuration change callback function 'callback_onRegistrationStateChanged'

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

AWL_MSG_FAILING_BACK String - indicates that client is failing back to alternate server and
this could be a possible result value of the response object(i.e., resp.result) passed in the configuration
change callback function 'callback_onRegistrationStateChanged'
AWL_MSG_FAILING_OVER String - indicates that client is failing over to alternate server and
this could be a possible result value of the response object(i.e., resp.result) passed in the configuration
change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_LINK_ISSUE_DETECTED String - Indicates there is a link issue between
the SDK and WebRTC Gateway (i.e., no keep alive message received for about
180seconds from WebRTC Gateway) and this could be a possible result value of the
response object (i.e., resp.result) passed in the registration state change callback
function 'callback_onRegistrationStateChanged'. This shall be further used in UI to
display link issue and also let take corrective action.
AWL_MSG_LOGGEDOUT String - Indicates logOut () API call is successful and this
could be a possible result value of the response object (i.e., resp.result) passed in the
configuration change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_LOGIN_FAILED String - Indicates logIn (arg1, arg2) API call failure and
this could be a possible result value of the response object (i.e., resp.result) passed in
the configuration change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_LOGIN_GW_NOTCONFIGURED String - Indicates logIn(arg1, arg2) API
call failure due to gateway IP address not configured correctly and this could be a
possible result value of the response object(i.e., resp.result) passed in the configuration
change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_LOGIN_EMPTYPASSWORD String - Indicates logIn(arg1, arg2) API call
failure due to empty password and this could be a possible result value of the response
object(i.e., resp.result) passed in the configuration change callback function
'callback_onRegistrationStateChanged'.
AWL_MSG_LOGIN_EMPTYTOKEN String - Indicates tokenLogIn(arg1, arg2, arg3)
API call failure due to empty token and this could be a possible result value of the
response object(i.e., resp.result) passed in the configuration change callback function
'callback_onRegistrationStateChanged'.
AWL_MSG_LOGIN_EMPTYUSERNAME String - Indicates logIn(arg1, arg2) or
tokenLogIn(arg1, arg2, arg3) API call failure due to empty username and this could be a
possible result value of the response object(i.e., resp.result) passed in the configuration
change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_LOGIN_INVALID_TOKENTYPE String - Indicates tokenLogIn(arg1, arg2,
arg3) API call failure due to invalid token type and this could be a possible result value
of the response object(i.e., resp.result) passed in the configuration change callback
function 'callback_onRegistrationStateChanged'
AWL_MSG_LOGIN_INVALID_TOKENTYPE
AWL_MSG_LOGIN_SUCCESS String - Indicates logIn (arg1, arg2) API call is
successful and this could be a possible result value of the response object (i.e.,
resp.result) passed in the configuration change callback function
'callback_onRegistrationStateChanged'.
AWL_MSG_LOGIN_WEBSOCKET_FAILURE String - Indicates logIn(arg1, arg2) API
call failure or registration failure due to web socket connectivity failure and this could be
a possible result value of the response object(i.e., resp.result) passed in the
configuration change callback function 'callback_onRegistrationStateChanged'.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

AWL_MSG_LOOPBACK_CONN_CLOSED String - Indicates that the loop back is
closed
AWL_MSG_LOOPBACK_CONN_FAILED String - Indicates that the loop back
connection to WebRTC gateway failed
AWL_MSG_LOOPBACK_CONN_LINK_ISSUE String - Indicates that a established
loop back connection has link issue detected
AWL_MSG_LOOPBACK_CONN_SUCCESSFULL String - Indicates that the loop back
connection to WebRTC gateway is created successfully
AWL_MSG_LOOPBACK_STATS_FAILURE String - Indicates failure while fetching
stats on the loop back connection
AWL_MSG_RECONNECTING String - Indicates that connection to the server is lost
and the client is attempting to reconnect to the server. This could be a possible result
value of the response object(i.e., resp.result) passed in the configuration change
callback function 'callback_onRegistrationStateChanged'
AWL_MSG_RELOGGED_IN String - Indicates that client is re-logged in to the server
and this could be a possible result value of the response object(i.e., resp.result) passed
in the configuration change callback function 'callback_onRegistrationStateChanged'.
AWL_MSG_SETCONFIG_FAILED String - Indicates API call of setConfiguration
(arg1, arg2, arg3, arg4) has failed and this could be a possible result value of the
response object (i.e., resp.result) passed in the configuration change callback function
'callback_onConfigChanged'.
AWL_MSG_SETCONFIG_SUCCESS String - Indicates API call of setConfiguration
(arg1, arg2, arg3, arg4) is successful and this could be a possible result value of the
response object (i.e., resp.result) passed in the configuration change callback function
‘callback_onConfigChanged’.
AWL_MSG_SETDOM_FAILED String - Indicates API call of setDomElements (arg1)
has failed and this could be a possible result value of the response object (i.e.,
resp.result) passed in the configuration change callback function
'callback_onConfigChanged'.
AWL_MSG_SETDOM_SUCCESS String - Indicates API call of setDomElements
(arg1) is successful and this could be a possible result value of the response object (i.e.,
resp.result) passed in the configuration change callback function
'callback_onConfigChanged'.
AWL_MSG_TOKEN_RENEW_FAILED String - Indicates failure while renewing the
authentication token and this could be a possible result value of the response object
(i.e., resp.result) passed in the configuration change callback function
'callback_onAuthTokenRenewed’.
AWL_MSG_TOKEN_RENEW_SUCCESS String - Indicates that authentication token
is successfully renewed and this could be a possible result value of the response object
(i.e., resp.result) passed in the configuration change callback function
'callback_onAuthTokenRenewed’.
AWL_MSG_WEBRTC_NOTSUPPORTED String - Indicates that the browser does not
support WebRTC API and this could be a possible return value for isWebRTCSupported
API call

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

AWL_MSG_WEBRTC_SUPPORTED String - Indicates that the browser does support
WebRTC API and this could be a possible return value for isWebRTCSupported API
call
Below are the string constants that could be passed as arguments in tokenLogIn API:
RESILIENCY String - This could be a possible argument value of the authentication
type (i.e., authType) passed in the tokenLogIn(arg1, arg2, arg3).
ESNA String - This could be a possible argument value of the authentication type
(i.e., authType) passed in the tokenLogIn(arg1, arg2, arg3) API.
AWL_MSG_SET_STUN_CONFIG_FAILED String - Indicates API call of
setStunConfiguration (arg1) has failed.
AWL_MSG_SET_STUN_CONFIG_SUCCESS String - Indicates API call of
setStunConfiguration (arg1) is successful.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

AWL_MSG_SETCONFIG_SUCCESS
AWL_MSG_SETCONFIG_FAILED
AWL_MSG_SETDOM_SUCCESS
AWL_MSG_SETDOM_FAILED

function onConfigChanged (resp) {
console.log('\n onConfigChanged :: RESULT = ' + resp.result);
console.log('\n onConfigChanged :: reason = ' + resp.reason);

}

Example:
var resp = {

result: "",
reason: ""

};

3 Events

callback_onConfigChanged

This callback function parameter (as arg2 parameter) used in setConfiguration API and this has
to be implemented at the application level. This would be invoked whenever configuration
change or DOM Element change is attempted using setConfiguration API and this callback
function will be triggered with response object(arg1) containing a result(arg1.result) and
reason(arg1.reason) for the configuration change attempted with set Configuration API call.
Possible result (string constants - resp.result) that could be passed in this callback function is

Below example is a sample implementation of 'callback_on Config Chan g e d ’ (i.e.,
onConfigChanged)' function at the application level:

Event Payload:

resp Object - This object can be used to retrieve result and reason properties further. All
the properties are string constants.

callback_onRegistrationStateChanged

This callback function is the parameter (as arg3 parameter) used in setConfiguration API and
this has to be implemented at the application level. This callback function will be triggered
whenever there's a change in the registration/un-registration state or when there is a web
socket connectivity failure. The response object (arg1) would contain a result (arg1.result) and
reason (arg1.reason). When resiliency is supported and enabled, the response object would
also contain authentication token (arg1.authToken) on successful login/fail-over/fail-back.
Possible result (string constants – response result) that could be passed in this callback function
is

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

Below example is a sample implementation of 'callback_on Registr a t ion St a t e C h a n g e d '
(i.e., onRegistrationStateChanged) function at the application level:

Event Payload:
 resp Object - This object could be used to retrieve result and reason
properties further. These two properties are string constants. When resiliency is
supported and enabled, the resp object will have authToken property on successful
login/failover/failback. ‘authToken’ is an object which can be used to retrieve token
and expiry properties.

callback_onCallStateChanged

This is the callback function's instance that is used in setConfiguration API (as arg4
parameter) and this has to be implemented at the application level. This callback function's
instance will be used to invoke onNewIncomingCall function by the SDK itself whenever there is
a new incoming call or if any change in the call state happens the SDK will invoke
onCallStateChange function. This implementation has to follow the revealing Model Pattern as
in the below example implementation to implement the following functions.

AWL_MSG_LOGIN_EMPTYUSERNAME
AWL_MSG_LOGIN_EMPTYPASSWORD
AWL_MSG_LOGIN_EMPTYTOKEN
AWL_MSG_LOGIN_GW_NOTCONFIGURED
AWL_MSG_LOGIN_SUCCESS
AWL_MSG_LOGIN_FAILED
AWL_MSG_LOGIN_WEBSOCKET_FAILURE
AWL_MSG_LINK_ISSUE_DETECTED
AWL_MSG_DEVICEACCESS_FAILURE
AWL_MSG_LOGGEDOUT
AWL_MSG_FAILING_OVER
AWL_MSG_FAILING_BACK
AWL_MSG_FAIL_OVER_SUCCESS
AWL_MSG_FAIL_BACK_SUCCESS
AWL_MSG_FAIL_OVER_FAILED
AWL_MSG_FAIL_BACK_FAILED
AWL_MSG_RECONNECTING
AWL_MSG_RELOGGED_IN
AWL_MSG_LOGIN_INVALID_TOKENTYPE

function onRegistrationStateChanged(resp){
console.log('\n onRegistrationStateChange :: RESULT = ' + resp.result);
console.log('\n onRegistrationStateChange :: reason = ' + resp.reason);
if(resp.result === "AWL_MSG_LOGIN_SUCCESS") {

var authToken = resp.authToken.token;
var expiryTime = resp.authToken.expiry;
//logic code

}
else{

//logic code
}

}

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

1. getCallId()
2. getCallState()
3. getFarEndNumber()
4. getFarEndName()
5. getSipUri()
6. getSubject()
7. isAutoAnswer()
8. isVideoCall()

onNewIncomingCall(arg1, arg2, arg3)

This application level implemented function would be invoked by the SDK whenever there's an
incoming call to this client and this function's parameters are described below.

 arg1 - this is the unique call ID used in the current call session. This has to be stored at
the application level in order to track a call session and this has to be passed as an
argument in all the telephony APIs (except make Call API) further.

 arg2 - this is the call object used in the current call session. With this, application can get

additional call information like call ID, current call state, far end’s full-name, far end’s
number, subject of the call or subject of the meeting if any, whether the call is auto
answered by the SDK itself and whether a video call is attempted or received with below
APIs respectively.

 arg3 - this is the autoAnswer flag, if setup to true indicates the call is auto answered by

the SDK itself and if set to false, it is left to the application to take the control of the call
session further.

onCallStateChange(callId, callObject, currentCallState)

This application level implemented function would be invoked by the SDK whenever there's a
change in the call state and this function's parameters are described below.

 arg1 - this is the unique call ID used in the current call session. This has to be stored at
the application level in order to track a call session and this has to be passed as an
argument in all the telephony API’s (except make Call API) further.

 arg2 - this is the call object used in the current call session. With this, application can get
additional call information like call ID, current call state, far end’s full-name, far end’s
number, subject of the call or subject of the meeting if any, whether the call is auto

1. onNewIncomingCall(arg1, arg2, arg3)
2. onCallStateChange(arg1, arg2, arg3)
3. onCallTerminate(arg1, arg2)
4. onLoopBackNotification(arg1)
5. onVideoStreamsAvailable(arg1, arg2, arg3)
5. onAudioStreamsAvailable(arg1, arg2, arg3)

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

1. getCallId()
2. getCallState()
3. getFarEndNumber()
4. getFarEndName()
5. getSipUri()
6. getSubject()
7. isAutoAnswer()
8. isVideoCall()

AWL_MSG_CALL_IDLE
AWL_MSG_CALL_CONNECTED
AWL_MSG_CALL_DISCONNECTED
AWL_MSG_CALL_FAILED
AWL_MSG_CALL_INCOMING
AWL_MSG_CALL_RINGING
AWL_MSG_CALL_HELD
AWL_MSG_CALL_FAREND_UPDATE
AWL_MSG_CALL_MAXCAP_REACHED

answered by the SDK itself and whether a video call is attempted or received with below
API’s respectively.

 arg 3 - this reflects the current call state of that particular call.

Below are possible call state values (String constant) that this parameter 'arg3' can hold:

onCallTerminate(arg1, arg2)

This application level implemented function would be invoked by the SDK whenever a call
disconnects and this function takes following parameters:

 arg1 - this is the call ID of the object used in the current call session.

 arg2 - string indicating the call termination reason.

Application shall clean up objects for this call after receiving this onCallTerminate event .

onLoopBackNotification(arg1)
This application level implemented function would be invoked by the SDK during relay service
and notifies any of the below predefined alarms (string) arg1 - this is a notification alarm
parameter. With this, application can get information about the loopback connection status.
Below are possible predefined alarm values (String constant) that this parameter 'arg1' can
hold: AWL_MSG_LOOPBACK_CONN_SUCCESSFULL
AWL_MSG_LOOPBACK_CONN_FAILED
AWL_MSG_LOOPBACK_CONN_LINK_ISSUE
AWL_MSG_LOOPBACK_CONN_CLOSED
AWL_MSG_LOOPBACK_STATS_FAILURE

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

var CallListener = function () {
var _onNewIncomingCall = function (callId, callObj, autoAnswer) {

console.log("onNewIncomingCall : getFarEndNumber =
"+callObj.getFarEndNumber());

console.log("onNewIncomingCall : getSipUri = "+callObj.getSipUri());
console.log("onNewIncomingCall : autoAnswer = "+autoAnswer);

onVideoStreamsAvailable(callId, localStream, remoteStream)

This application level implemented function will be invoked by the SDK whenever local
and remote video streams are available and the application has registered for this
event. This callback function is invoked only once per call i.e. when the call is connected
for the first time. After retrieving the media streams, it is mandatory for the application to
attach the streams to the respective DOM elements using setMediaStream API. This
event is not triggered if setDomElements API is called initially as WebRTC video
streams of local and remote video would be attached to the respective DOM elements
(set in setDomElements API) by the SDK. The application should register to this
callback if it requires dynamic video stream control to attach it to the DOM element on
fly i.e., DOM elements need not be fixed across multiple calls to show local and remote
video streams. But if the application requires a pair of DOM elements(local & remote) to
be fixed across multiple calls i.e., to have the active call’s stream to be attached to the
DOM element at any point of call, then the application shall use setDomElements API to
set the HTML5 video media DOM elements.

 callId - this is the call id of the call object used in the current call session

 localStream - local video stream

 remoteStream - remote video stream

onAudioStreamsAvailable(callId, localStream, remoteStream)

This application level implemented function will be invoked by the SDK whenever local
and remote audio streams are available and the application has registered for this
event. The audio streams are already attached to the DOM elements by the SDK. This
callback is provided for notification purpose only and not for audio play. This callback
function is invoked only once per call i.e., when the call is connected for the first time.

 callId - this is the call id of the call object used in the current call session

 localStream - local audio stream

 remoteStream - remote audio stream

Below example is a sample implementation of 'callback_onCallStateChanged(i.e.,
onCallListener)' function at the application level:

Example:

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

if (callObj1 === null) {
callObj1 = callObj;
callmap[callObj1.getCallId()] = callObj1;

}
};

var _onCallStateChange = function (callId, callObj, event) {

if (typeof(callmap[callObj.getCallId()]) === 'undefined') {
if (callObj1 === null) {

callObj1 = callObj;
callmap[callObj1.getCallId()] = callObj1;

}
}
if (callObj.getCallId() === callObj1.getCallId()) {

switch (callObj1.getCallState()) {
case "AWL_MSG_CALL_IDLE":
// state specific handling code
break;
case "AWL_MSG_CALL_CONNECTED":
// state specific handling code
break;
case "AWL_MSG_CALL_RINGING":
// state specific handling code
break;
case "AWL_MSG_CALL_DISCONNECTED":
// state specific handling code
break;
case "AWL_MSG_CALL_FAILED":
// state specific handling code
break;
case "AWL_MSG_CALL_INCOMING":
// state specific handling code
break;
case "AWL_MSG_CALL_HELD":
// state specific handling code
case "AWL_MSG_CALL_FAREND_UPDATE":
// state specific handling code (For example update far end DN

and sipUri information)
break;
default:

}
}

}

var _onCallTerminate = function(callId, reason){

//application logic to display call terminate reason
}

var _onLoopBackNotification = function(notification){

//application logic to handle notifications and alarms from the loopback
connection

}

var _onVideoStreamsAvailable = function(callId, localStream, remoteStream){

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

function onDeviceListRequested(deviceList){
if(deviceList.length !== 0){

$.each(deviceList, function (index, value) {
if(value[0] === "audioinput"){

//logic code
}else if(value[0] === "videoinput"){

//logic code
}else if(value[0] === "audiooutput"){

//logic code
}

});
}

}

callback_onDeviceListRequested

This callback function parameter (as arg1 parameter) is used in getDeviceList API and this has
to be implemented at the application level. This would be invoked whenever information of all
the devices is found as requested using getDeviceList API and this callback function will be
triggered with response object(arg1) containing a list of media devices and their information i.e.
ID and label of all the media devices.

Below example is a sample implementation of 'callback_on Device List Reque s t e d ’ (i.e.,
onDeviceListRequested)' function at the application level:

Example:

Event Payload:

resp Object - This object could be used to retrieve the ID and label of all the
media devices.

//application logic to handle the retrieved streams
}

var _onAudioStreamsAvailable = function(callId, localStream, remoteStream){

//application logic to handle the retrieved streams
}

return{

onNewIncomingCall: _onNewIncomingCall,
onCallStateChange: _onCallStateChange,
onCallTerminate: _onCallTerminate,
onLoopBackNotification: _onLoopBackNotification,
onVideoStreamsAvailable: _onVideoStreamsAvailable,
onAudioStreamsAvailable: _onAudioStreamsAvailable

};

};

var onCallListener = new CallListener();

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

Below example is a sample implementation of 'callback_onAuthTokenRenewed' (i.e.,
onAuthTokenRenewed) function at the application level:

function onAuthTokenRenewed(resp){
console.log('\n onAuthTokenRenewed :: RESULT = ' + resp.result);
console.log('\n onAuthTokenRenewed :: reason = ' + resp.reason);
if(resp.result === "AWL_MSG_TOKEN_RENEW_SUCCESS"){

if(typeof(resp.authToken)!=="undefined" && resp.authToken!== null){
var token = resp.authToken.token;
var expiry = resp.authToken.expiry;
//logic code

}
}else{

//logic code
}

}

AWL_MSG_TOKEN_RENEW_SUCCESS
AWL_MSG_TOKEN_RENEW_FAILED

callback_onAuthTokenRenewed

This callback function parameter (as arg5 parameter) used in setConfiguration API and this has
to be implemented at the application level. This would be invoked when resiliency is enabled
(resiliency support is enabled at server and not disabled by the client application) and renewal
of authentication token succeeds or fails. If the token renewal fails, then auto login using token
will not be supported during failover and failback and the applications have to either relogin or
go for manual login during failover and failback. This callback function will be triggered with
response object(arg1) containing a result(arg1.result) and reason(arg1.reason). The response
object will also contain the authentication token(arg1.authToken) when the token renewal
succeeds. The authentication token is an object containing the token(arg1.authToken.token)
and its expiration time(arg1.authToken.expiry). Possible result (string constants - resp.result)
that could be passed in this callback function is

Event Payload:
 resp Object - This object could be used to retrieve result and reason
properties further. These two properties are string constants. When token renewal
is successful, this response object will also contain ‘authToken’ property.
‘authToken’ is an object which can be used to retrieve token and expiry properties.

Description of IP Office WebRTC SDK API IP
Office™ Platform 173944 Issue 1.22 (01-Aug-2025)

4 Terms and Acronyms
Acronyms Description
API Application Programming Interface
CA Certificate Authority
CTI Computer Telephony Integration
DN Directory Number
DTMF Dual-Tone Multi-Frequency
HTTP Hyper Text Transfer Protocol
IPO IP Office
ITU-T International Telecommunication Union - Telecommunications

section
RTT Round Trip Time
SDK Software Development Kit
SDP Session Description Protocol
UDP User Datagram Protocol
UI User Interface
URL Uniform Resource Locator
DTLS Datagram Transport Layer Security
WebRTC Web Real-Time Communication

	Contents
	Purpose
	Intended Audience
	Document Changes
	API
	Availability
	Note
	Licensing
	What’s New in this release

	Connectivity
	Note
	WebRTC Gateway Signalling Port
	WebRTC Gateway Media Port

	Certificate Requirements
	Note

	WebRTC Resilience
	Resiliency API
	disableResiliency
	getAlternateServerConfig()
	Resiliency Events

	2 Getting Started
	Supported Browsers
	Tools
	Avaya IP Office WebRTC SDK Overview
	Non Telephony API
	Telephony API
	Network Test API

	1 Guidelines for using the SDK API
	Pre-requisites
	Mandatory steps

	2 Detailed description of API
	Non-Telephony API
	isWebRTCSupported()
	Arguments Passed and their description: None

	getSdkVersion()
	setConfiguration (arg1, callback_onConfigChanged, callback_onRegistrationStateChanged, callback_onCallStateChanged)
	Arguments Passed and their description:

	setConfiguration (arg1, callback_onConfigChanged, callback_onRegistrationStateChanged, callback_onCallStateChanged, onAuthTokenRenewed)
	Arguments Passed and their description:

	enableLogging()
	setDomElements(arg1)
	Arguments Passed and their description:

	getDeviceList(callback_onDeviceListRequested)
	Arguments Passed and their description:

	setDeviceIds(arg1)
	Arguments Passed and their description:

	logIn(arg1, arg2, arg3, arg4)
	Notes:
	Arguments Passed and their description:

	logOut()
	isloggedIn()
	Return type: Boolean

	setLogObject (arg1)
	Arguments Passed and their description:

	disableLogging()
	playVideo(arg1)
	Arguments Passed and their description:
	Return type: Boolean

	pauseVideo(arg1)
	Arguments Passed and their description:
	Return type: Boolean

	getAlternateServerConfig()
	Arguments Passed and their description: None

	tokenLogIn(arg1, arg2, arg3, arg4)
	Arguments Passed and their description:

	generateAppInstanceID ()
	Note:
	getStunConfiguration ()
	setStunConfiguration (arg1)
	Arguments Passed and their description:
	Return type: String

	Telephony API
	makeCall (arg1, arg2)
	Arguments Passed and their description:
	Return type: Object

	answerCall (arg1)
	Arguments Passed and their description:

	rejectCall (arg1)
	Arguments Passed and their description:

	dropCall (arg1)
	Arguments Passed and their description:

	cancelCall (arg1)
	Arguments Passed and their description:

	doHold (arg1)
	Arguments Passed and their description:

	doUnHold (arg1)
	Arguments Passed and their description:

	doMute (arg1)
	Arguments Passed and their description:
	Return type: Boolean

	doUnMute (arg1)
	Arguments Passed and their description:
	Return type: Boolean

	sendDTMF (arg1 , arg2)
	Arguments Passed and their description:
	Return type: None

	transferCall (arg1 , arg2 , arg3)
	Arguments Passed and their description:

	getStats (arg1)
	Arguments Passed and their description:

	addVideo (arg1)
	Arguments Passed and their description:
	Return type: Boolean

	removeVideo (arg1)
	Arguments Passed and their description:

	setMediaStream (arg1 , arg2 , arg3 , arg4)
	Arguments Passed and their description:

	Network Test API
	createLoopBackConnection ()
	Arguments Passed and their description: None Return type: None

	endLoopBackConnection ()
	getLoopBackStats ()

	3 Properties
	3 Events
	callback_onConfigChanged
	callback_onRegistrationStateChanged
	Event Payload:

	callback_onCallStateChanged
	onNewIncomingCall(arg1, arg2, arg3)
	onCallStateChange(callId, callObject, currentCallState)
	onVideoStreamsAvailable(callId, localStream, remoteStream)
	onAudioStreamsAvailable(callId, localStream, remoteStream)
	Example:

	callback_onDeviceListRequested
	Example:

	callback_onAuthTokenRenewed
	Event Payload:

