AVAYA

IP Office™ Platform

Description of MTCTI-3 API Introduced in
Release 11.1.0.0

Version 1.1

AVAYA

AVAYA SOFTWARE DEVELOPNENT KIT LICENSE AGREEMENT
REVISED: 1, 2025

© 2025 AVAYA Avaya LLC. All Rights Reserved.
Notice

While reasonable efforts have been made to ensure that the information in this document is complete and accurate at the time of printing, Avaya
assumes no liability for any errors. Avaya reserves the right to make changes and corrections to the information in this document without the
obligation to notify any person or organization of such changes.

Documentation disclaimer

“Documentation” means information published by Avaya in varying mediums which may include product information, operating instructions and
performance specifications that Avaya may generally make available to users of its products and Cloud Services. Documentation does not include
marketing materials. Avaya shall not be responsible for any modifications, additions, or deletions to the original published version of
documentation unless such modifications, additions, or deletions were performed by Avaya. End User agrees to indemnify and hold harmless
Avaya, Avaya's agents, servants and employees against all claims, lawsuits, demands and judgments arising out of, or in connection with,
subsequent modifications, additions or deletions to this documentation, to the extent made by End User.

Link disclaimer

Avaya is not responsible for the contents or reliability of any linked websites referenced within this site or documentation provided by Avaya.
Avaya is not responsible for the accuracy of any information, statement or content provided on these sites and does not necessarily endorse the
products, services, or information described or offered within them. Avaya does not guarantee that these links will work all the time and has no
control over the availability of the linked pages.

Warranty

Avaya provides a limited warranty on Avaya hardware and software. Refer to your sales agreement to establish the terms of the limited warranty.
In addition, Avaya’s standard warranty language, as well as information regarding support for this product while under warranty is available to
Avaya customers and other parties through the Avaya Support website:
https://support.avaya.com/helpcenter/getGenericDetails?detailld=C20091120112456651010 under the link “Warranty & Product Lifecycle” or
such successor site as designated by Avaya. Please note that if You acquired the product(s) from an authorized Avaya Channel

Partner outside of the United States and Canada, the warranty is provided to You by said Avaya Channel Partner and not by Avaya.

“Cloud Cloud Service” means a cloud service subscription that You acquire from either Avaya or an authorized Avaya Channel Partner (as
applicable) and which is described further in the applicable Service Description or other service description documentation regarding the
applicable cloud service. If You purchase a Cloud Service subscription, the foregoing limited warranty may not apply but You may be entitled to
support services in connection with the Cloud Service as described further in your service description documents for the applicable Cloud Service.
Contact Avaya or Avaya Channel Partner (as applicable) for more information.

Cloud Service

THE FOLLOWING APPLIES IF YOU PURCHASE A CLOUD SERVICE SUBSCRIPTION FROM AVAYA OR AN AVAYA CHANNEL PARTNER (AS APPLICABLE),
THE TERMS OF USE FOR CLOUD SERVICES ARE AVAILABLE ON THE AVAYA WEBSITE,

https://www.avaya.com/en/legal/license-terms/ UNDER THE LINK “Avaya Terms of Use for Cloud Services” OR SUCH SUCCESSOR SITE AS
DESIGNATED BY AVAYA, AND ARE APPLICABLE TO ANYONE WHO ACCESSES OR USES THE CLOUD SERVICE. BY ACCESSING OR USING THE CLOUD
SERVICE, OR AUTHORIZING OTHERS TO DO SO, YOU, ON BEHALF OF YOURSELF AND THE ENTITY FOR WHOM YOU ARE DOING SO (HEREINAFTER
REFERRED TO INTERCHANGEABLY AS “YOU” AND “END USER”), AGREE TO THE TERMS OF USE. IF YOU ARE ACCEPTING THE TERMS OF USE ON
BEHALF A COMPANY OR OTHER LEGAL ENTITY, YOU REPRESENT THAT YOU HAVE THE AUTHORITY TO BIND SUCH ENTITY TO THESE TERMS OF USE.
IF YOU DO NOT HAVE SUCH AUTHORITY, OR IF YOU DO NOT WISH TO ACCEPT THESE TERMS OF USE, YOU MUST NOT ACCESS OR USE THE CLOUD
SERVICE OR AUTHORIZE ANYONE TO ACCESS OR USE THE CLOUD SERVICE. YOUR USE OF THE CLOUD SERVICE SHALL BE LIMITED BY THE NUMBER
AND TYPE OF LICENSES PURCHASED UNDER YOUR CONTRACT FOR THE CLOUD SERVICE, PROVIDED, HOWEVER, THAT FOR CERTAIN CLOUD
SERVICES IF APPLICABLE, YOU MAY HAVE THE OPPORTUNITY TO USE FLEX LICENSES, WHICH WILL BE INVOICED ACCORDING TO ACTUAL USAGE
ABOVE THE CONTRACT LICENSE LEVEL. CONTACT AVAYA OR AVAYA’S CHANNEL PARTNER FOR MORE INFORMATION ABOUT THE LICENSES FOR THE
APPLICABLE CLOUD

SERVICE, THE AVAILABILITY OF ANY FLEX LICENSES (IF APPLICABLE), PRICING AND BILLING INFORMATION, AND OTHER IMPORTANT INFORMATION
REGARDING THE CLOUD SERVICE.

Licenses

THE SOFTWARE LICENSE TERMS AVAILABLE ON THE AVAYA WEBSITE, https://www.avaya.com/en/legal/license-terms/, UNDER THE LINK “AVAYA

SOFTWARE LICENSE TERMS (Avaya Products)” OR SUCH SUCCESSOR SITE AS DESIGNATED BY AVAYA, ARE APPLICABLE TO ANYONE WHO
DOWNLOADS, USES AND/OR INSTALLS AVAYA SOFTWARE, PURCHASED FROM AVAYA LLC, ANY AVAYA AFFILIATE, OR AN AVAYA CHANNEL
PARTNER (AS APPLICABLE) UNDER A COMMERCIAL AGREEMENT WITH AVAYA OR AN AVAYA CHANNEL PARTNER. UNLESS OTHERWISE AGREED TO
BY AVAYA IN WRITING, AVAYA DOES NOT EXTEND THIS LICENSE IF THE SOFTWARE WAS OBTAINED FROM ANYONE OTHER THAN AVAYA, AN
AVAYA AFFILIATE OR AN AVAYA CHANNEL PARTNER; AVAYA RESERVES THE RIGHT TO TAKE LEGAL ACTION AGAINST YOU AND ANYONE ELSE USING
OR SELLING THE SOFTWARE WITHOUT A LICENSE. BY INSTALLING, DOWNLOADING OR USING THE SOFTWARE, OR AUTHORIZING OTHERS TO DO
SO, YOU, ON BEHALF OF YOURSELF AND THE ENTITY FOR WHOM YOU ARE INSTALLING, DOWNLOADING OR USING THE SOFTWARE (HEREINAFTER
REFERRED TO INTERCHANGEABLY AS “YOU” AND “END USER”), AGREE TO THESE TERMS AND CONDITIONS AND CREATE A BINDING CONTRACT
BETWEEN YOU AND AVAYA LLC OR THE APPLICABLE AVAYA AFFILIATE (“AVAYA”).

Copyright

Except where expressly stated otherwise, no use should be made of materials on this site, the Documentation, Software, Cloud Service, or
hardware provided by Avaya. All content on this site, the documentation, Cloud Service, and the product provided by Avaya including the selection,
arrangement and design of the content is owned either by Avaya or its licensors and is protected by copyright and other intellectual property laws
including the sui generis rights relating to the protection of databases. You may not modify, copy, reproduce, republish, upload, post, transmit or
distribute in any way any content, in whole or in part, including any code and software unless expressly authorized by Avaya. Unauthorized
reproduction, transmission, dissemination, storage, and or use without the express written consent of Avaya can be a criminal, as well as a civil
offense under the applicable law.

Virtualization

The following applies if the product is deployed on a virtual machine. Each product has its own ordering code and license types. Note that each
Instance of a product must be separately licensed and ordered. For example, if the end user customer or Avaya Channel Partner would like to
install two Instances of the same type of products, then two products of that type must be ordered.

Third Party Components

“Third Party Components” mean certain software programs or portions thereof included in the Software or Cloud Service may contain software
(including open source software) distributed under third party agreements (“Third Party Components”), which contain terms regarding the rights
to use certain portions of the Software (“Third Party Terms”). As required, information regarding distributed Linux OS source code (for those
products that have distributed Linux OS source code) and identifying the copyright holders of the Third Party Components and the Third Party
Terms that apply is available in the products, Documentation or on Avaya’s website at: https://www.avaya.com/en/legal/third-party-terms/ or
such successor site as designated by Avaya.

The open source software license terms provided as Third Party Terms are consistent with the license rights granted in these Software License
Terms, and may contain additional rights benefiting You, such as modification and distribution of the open source software. The Third Party Terms
shall take precedence over these Software License Terms, solely with respect to the applicable Third Party Components to the extent that these
Software License Terms impose greater restrictions on You than the applicable Third Party Terms.

The following applies if the H.264 (AVC) codec is distributed with the product. THIS PRODUCT IS LICENSED UNDER THE AVC PATENT PORTFOLIO
LICENSE FOR THE PERSONAL USE OF A CONSUMER OR OTHER USES IN WHICH IT DOES NOT RECEIVE REMUNERATION TO (i) ENCODE VIDEO IN
COMPLIANCE WITH THE AVC STANDARD (“AVC VIDEO”) AND/OR (ii) DECODE AVC VIDEO THAT WAS ENCODED BY A CONSUMER ENGAGED IN A
PERSONAL ACTIVITY AND/OR WAS OBTAINED FROM A VIDEO PROVIDER LICENSED TO PROVIDE AVC VIDEO. NO LICENSE IS GRANTED OR SHALL BE
IMPLIED FOR ANY OTHER USE. ADDITIONAL INFORMATION MAY BE OBTAINED FROM VIA LICENSING ALLIANCE. SEE https://www.via-la.com/.

Service Provider

THE FOLLOWING APPLIES TO AVAYA CHANNEL PARTNER’S HOSTING OF AVAYA PRODUCTS OR SERVICES. THE PRODUCT OR CLOUD SERVICE MAY
USE THIRD PARTY COMPONENTS SUBJECT TO THIRD PARTY TERMS AND REQUIRE A SERVICE PROVIDER TO BE INDEPENDENTLY LICENSED DIRECTLY
FROM THE THIRD PARTY SUPPLIER. AN AVAYA CHANNEL PARTNER’S HOSTING OF AVAYA PRODUCTS MUST BE AUTHORIZED IN WRITING BY AVAYA
AND IF THOSE HOSTED PRODUCTS USE OR EMBED CERTAIN THIRD PARTY SOFTWARE, INCLUDING BUT NOT LIMITED TO MICROSOFT SOFTWARE
OR CODECS, THE AVAYA CHANNEL PARTNER IS REQUIRED TO INDEPENDENTLY OBTAIN ANY APPLICABLE LICENSE AGREEMENTS, AT THE AVAYA
CHANNEL PARTNER’S EXPENSE, DIRECTLY FROM THE APPLICABLE THIRD PARTY SUPPLIER.

WITH RESPECT TO CODECS, IF THE AVAYA CHANNEL PARTNER IS HOSTING ANY PRODUCTS THAT USE OR EMBED THE G.729 CODEC, H.264 CODEC,
OR H.265 CODEC, THE AVAYA CHANNEL PARTNER ACKNOWLEDGES AND AGREES THE AVAYA CHANNEL PARTNER IS RESPONSIBLE FOR ANY AND
ALL RELATED FEES AND/OR ROYALTIES. THE G.729 CODEC IS LICENSED BY Sangoma Technologies Corporation SEE
https://www.asterisk.org/products/add-ons/g729-codec/. THE H.264 (AVC) CODEC IS LICENSED UNDER THE AVC PATENT PORTFOLIO LICENSE FOR
THE PERSONAL USE OF A CONSUMER OR OTHER USES IN WHICH IT DOES NOT RECEIVE REMUNERATION TO: (I) ENCODE VIDEO IN COMPLIANCE
WITH THE AVC STANDARD (“AVC VIDEO”) AND/OR (II) DECODE AVC VIDEO THAT WAS ENCODED BY A CONSUMER ENGAGED IN A PERSONAL
ACTIVITY AND/OR WAS OBTAINED FROM A VIDEO PROVIDER LICENSED TO PROVIDE AVC VIDEO. NO LICENSE IS GRANTED OR SHALL BE IMPLIED
FOR ANY OTHER USE. ADDITIONAL INFORMATION FOR H.264 (AVC) AND H.265 (HEVC) CODECS MAY BE OBTAINED FROM VIA LICENSING ALLIANCE.
SEE https://www.via-la.com/.

https://www.via-la.com/
https://www.via-la.com/

Compliance with Laws

Customer acknowledges and agrees that it is responsible for complying with any applicable laws and regulations, including, but not limited to laws
and regulations related to call recording, data privacy, intellectual property, trade secret, fraud, and music performance rights, in the country or
territory where the Avaya product is used.

Preventing Toll Fraud

“Toll Fraud” is the unauthorized use of your telecommunications system by an unauthorized party (for example, a person who is not a corporate
employee, agent, subcontractor, or is not working on your company's behalf). Be aware that there can be a risk of Toll Fraud associated with your
system and that, if Toll Fraud occurs, it can result in substantial additional charges for your telecommunications services.

Avaya Toll Fraud intervention

If You suspect that You are being victimized by Toll Fraud and You need technical assistance or support, call Technical Service Centre Toll Fraud
Intervention Hotline at +1-800-643-2353 for the United States and Canada. For additional support telephone numbers, see the Avaya Support
website: https://support.avaya.com or such successor site as designated by Avaya.

Security Vulnerabilities

Information about Avaya’s security support policies can be found in the Security Policies and Support section of

https://support.avaya.com/security. Suspected Avaya product security vulnerabilities are handled per the Avaya Product Security Support Flow
(https://support.avaya.com/css/P8/documents/100161515).

Downloading Documentation

For the most current versions of Documentation, see the Avaya Support website: https://support.avaya.com, or such successor site as designated
by Avaya.

Contact Avaya Support
See the Avaya Support website: https://support.avaya.com for product or Cloud Service notices and articles, or to report a problem with your

Avaya product or Cloud Service. For a list of support telephone numbers and contact addresses, go to the Avaya Support website:
https://support.avaya.com (or such successor site as designated by Avaya), scroll to the bottom of the page, and select Contact Avaya Support

https://support.avaya.com/css/P8/documents/100161515

Contents

OVEIVIBW ...ttt ettt ettt e e ettt e s ettt e e e se et e e s me et e e e s e et e e e an e et e e s s e e e e e s s s e eeeeass e e e e s mn e e e e smseeeesanseeeesannneeesannneeenan 8
{010 1=« S PO PPN 8
LT o= 1 <P PP 9
T oo [¥To1 4 To] o FOUU O TP PSP P RO USTTOUPR 9
YRV (oM =T @e T o) =W T - 4o o PSPPSR 10
[Tol=Y o Y[o T~ S TP P PRSPPI 11
TrANSPOIT OPTIONS eeiiiiiiiiiiittte et ee ettt et e e s sttt e e e e s s s btbeeeeeeesssaassbaaaeeeesssaasseseaaeeeesssasssssaaeeeeesssanssseaaeeessnnsnnssnns 11
ol uo ol D I<TYol g To] u o] PRSPt 12
Y LT 1= PP PPPPPPPPPPTPPPPPPRE 12
IVIESSAZE .ttt nnan 12

U] ool o] 1 o] o USRS 13
SUDSCIIDE <.ttt ettt ettt s e e bt e s a bt e s bt e e bt e e s a bt e s bt e e sabeesabeeesabeesabeesnbe e s bee e bbeeanbeeebeeenares 13

=0 [T =T oo o] N 15
1o 1 A R 15

1 o 1 47Xl R 16

[oo IR TIY U] ool o] 4T o R 17

Y] oIy ol T o1 A oY Y=Y Vol TP 19
SUDSCIIDE FOI PrESENCE ...ttt ettt b et sttt et et e esbe e saeesabesabe e bt e bt e sbeeeaeeenteenrean 19
SUDSCIIDE FOI LINES.....nniineieeeeteet ettt ettt b e b e bt s at e et e et e e be e sheesabesabesabeebe e beesbeesmeeenbeennean 24

N oy A} AV =T o To T Y YRR 25
SUDSCIIDE USEI ...ttt ettt sttt sttt b e e bt e s b et sat e s at e e teesbeesheesabesabeeabe e bt e bt esmeesateenbeenrean 28
SUDSCIIDE QUUEBUE ...ttt ettt ettt sttt b e bt e s b et s ae e e ateeate e beesheesabesabeeabe e bt eabeenbeeemeeenbeensean 34

Call CONTrOl NOTIFICATIONSeutiiteeteeete ettt ettt st st e b e bt e b e s be e sae e eae e et e enbeenbeesaeesanenas 39
Modifying the SUDSCIIPLIONuiiiiiece et e e st e e e et a e e e e ata e e e esbaeeesansbaeeennsreeenan 43
CallControl explicitly fFOr QUEUE CallSueiiiiiiie et e e re e e et e e e eabre e e e sabaeeeenraeeeenareeas 48
ACtions 0N QUEUED CallSooviiiiiieee ettt e s st e s r e 49
BINATransfer t0 @ CallflOWoouiiiiiiiee ettt et sb e b e e 50
BlindTransfer to @ MeetMe CONFEIENCE.........oiiiiiiieiieieee ettt 51
BlindTransfer to a conference requIiring PIN @CCESS......cuuuiiiiiiieeeiiiieee ettt e esiree e esre e e estae e s estseeeesaraeeennsreeeean 52
BlindTransfer t0 @ fUNCLIONAl QUEBUE.........oii it e e et a e e s aae e e e e aa e e e seassaeeeeareeeean 53

Ty oY oo [T TP TSROSO P OO PRSPPI 54
FEATUIES AVAIIADIE ...ttt ettt s e st e e s bt e s be e e s at e e s be e e sabe e s beeeneeesareeeenres 56

DT g'oT o101 | PR 56

[[o] [(6 || IO TP P PPN 58
(0101 o] e [| | BTSSP PP URUPOPION 59
BINATIANSTEE ...ttt sttt et e bt e s bt e e ae e et e et e et e e sb e e sheesatesar e e b e e beebeenes 59
(20T [T Tot AT P PP RSP URUPOPION 60
DAL ettt e h e bt s h ettt s bt e bt e bt e b e e b et eh et ea et et e e b e e nh e e nheesaeesaneebe e beereenes 61
2 TP TP OO PRSPPSO 62
Y0 o = 1 01 =] oSSR 62
Y= U] o1 o | SRR 63
(@eTa0T o] [L=l = [0 =] PP UPP 64
(@eT00] o] (1 L=T o] o {1 = Tl PP 65
ACATOCONTEIENCEe ettt ettt ettt ettt ettt e s bt e sbe e e s te e s bt e e sabeesabeesabeeesabeesabbeeasbeesaseeesabeesabeesnsaessaeanns 66
MEMDEIFUNCEION ... ettt ettt e st e st e e s bt e e bt e e s bt e e sabeesabeessteesabeeebbeesabeesaneeesaseess 67
< o I T S PP PTPTPTPPPPPPPPPTPPPRt 68
SEEACCOUNTCOE ..ottt ettt ettt ettt sat e sttt e sa bt e s bt e s beeesabeesabb e e steesabaeesabeesabeessbeesabaesaseeennbeesanenesares 68
SEENOTES ..t e s e e e s e e e e e e s b et e e e e e s e s nrnee 69
PUSNTOECS00 ... e ettt sttt ettt st st st st e bt e bt e s b e e s ae e st e et e e b e e sbeesbeesanesanesaneeneenneenes 69
CT=T T = | =T D =) £ PP PSP PPPPPRRE 70
) T o (0o Te =Y il oo FO ST P VS OP PR PRR PR 70
FN I =T o - Nt 70
FOPCECIEAN ...ttt ettt et e bt e s bt e sat e sat e s ab e et e e bt e bt e eae e eaeeeabeea b e ebeesbeesheesaeesabeeabeebeebeenes 71
SEEAULNCOME. ...ttt sttt e b e bt e sb et s at e sat e e beeebeesheesatesabesabeebe e beeabeesaeeenteennean 72
CallRECOIINGON/Off ...ttt et et et e bt e et e e e ete e e et e e e abeeeebeeesabeeebeeeeabeesabeeesabeeeteeeasseesnseeenares 72
PEIVACYON/OFF ...ttt ettt e e e et e e et e e e e be e e e abeeeebeeeeaaeeebeeestbeesateseasseesbesenteeesnbeeensseesnreean 73
IVIUTEON/ Off ettt ettt et et e e et eeee s e e e s e teeeeessaaaaseaaeeeesssaaasseaeaeeesssasasseaaeeeesssasasseaaeeeesssasasneaneees 74
=] o o o o 1 1Y Nt 74
[T o T TR P U POTOUS 75
Alternative CONNECTION METNOMSooiuiiiiiie et st e e st e s be e e s bt e e sneeesareesnenesaneean 76
N O TAMUING. .ttt ettt e e e e ettt e e e e tteeeeettteeeaeaataeaeeassaeaeeassaesasassasaesanssesesanssaeesanssesasanssseesansseeesansrananan 76
LIMITES 1ttt e s b e e s b s e e s b e e e s s b s e e s s ra e e e saes 76
VeErsion COMPAtIDIILYccicieeeiiiiiie e e e e e e e et e e e e rabe e e e s bt eeeeeabeeeeesnsteeeesasteeeesnsteeeanasens 76
RESHIENT SOIUTIONS. ...ttt ettt s e sttt e e b e s bt e s st e et e et e et e e sbeesbeesanesane s b e e neenes 76
WAt this MEANS.....cieiiiiieie ettt b et sttt et et esbeesatesat e s bt e bt e beeabeesmeeeneeenneen 76
T 11T g -]] o S 76
DTSV [T o T 0 [T o (o To) USSRt 76

Y] 1Y/ o] 1o T S P TPPPPPPPPPPPPPRE 77

Getting started With the Proto filE. ... e e e e bee e s et ae e e eabae e e earaeas 78

Cot AN VISUBL STUAIO. ¢ttt ettt st sttt et e b e s b e sae e et e et e ebeesbeesaeesanenas 78
JAVA it e s s e e s s a e e s 81
NV ol T o SN 81
Establishing @ WebsoCKEt CONNECLION.......ccccuiiiiiciee ettt e e et e e e e tte e e e sate e e e snteeeesantaeeessraeeesnnes 81
T AT 1Y Lo - I« I PR RTRNE 82
T = LT T T o] @ 1 ol T PRSPt 82

(00 F= T g Yl S 1y o] o PR URR 83

Overview

This document details a protocol that is supported on IP Office since Release 11.1.0.0. It is designed
for ContactCenter-type applications (one application per solution, rather than one application per
user), though you can have more than one application connected at a time.

The login credentials are service user credentials rather than telephone user credentials, reflecting
that it is a system service.

This interface allows an application to observe call activity on users and queues. Also, to get
presence activity on the solution.

For users
You can manipulate some user configuration, perform some call control on users.
For queues

You can manage queue membership, change queue service mode and manipulate calls in queues.
Calls in queues can be observed and manipulated even after the call is answered.

This interface is offered by way of Protocol buffers over a websocket. The websocket is rendered
directly by IP Office and does not require any additional components (such as oneX portal) to be
installed.

Context

MTCTI3 is an alternative to 3™ Party TAPI on IP Office. The 3™ party TAPI API for IP Office is limited to
Windows only and is not available in secure environments. All functionality that was available on IP
Office 3™ party TAPI should also be available over MTCTI3, and MTCTI3 includes many additional
features.

MTCTI3 is a bit more complex to use, as the Asynchronous nature of the connection to IP Office must
be handled by the application. So, for example if “UnPark” is called on TAPI, the interface returns the
result (SUCCESS with handle)/FAIL. On MTCTI3, you send an UnPark request and must handle the
fact that the result is not available immediately.

In some deployments, it would be possible to have a 3™ party TAPI application and a MTCTI3
application both connected to the same PBX. They are not incompatible, and they would work
cooperatively.

The MTCTI3 interface allows the application to view IP Office users and Queues, to make live
changes to the configuration of Users and Queues related to telephony functionality, and to view
and manipulate telephone calls. The single interface can and is expected to handle multiple calls to
several users at the same time.

The MTCTI3 interface is feature-rich but can be used for very simple functions like monitoring the
Do-not-disturb setting for a user or noting the calling number for incoming calls.

A MTCTI3 application would typically maintain lists of lists. A list of users (and/or queues) and a list
of live calls for each user or queue. The lists must be kept updated by Notify messages received
asynchronously from IP Office.

Each Notify of a call change is a complete snapshot of the call, and the application needs to compare
the new data with the old data to see what, if anything, has changed. This snapshot concept is
important. The application does not necessarily see all the transitions of a call, only the current state
of a call. So an incoming call which is auto-answered or answered quickly may never be seen in the
RINGING state. Applications should not rely on seeing all transient states.

Most calls on IP Office go to/from users or to queues. However, there are some calls that do not —
they may go directly to an Auto-attendant or be routed directly out of another trunk. These calls are
not visible to the MTCTI3 application.

MTCTI3 is authenticated by secure methods and is trusted with powerful controls. There are no
configuration items on IP Office to constrain the MTCTI3 from accessing users or queues, so the
writer of the application needs to provide the constraint where appropriate.

Even though this APl document starts with a description of the Presence subscription, it is expected
that most applications will be using Lines, User and Queue subscriptions, and may not use Presence
at all.

Use cases

A simple use case for MTCTI3 without even subscribing to Call Control is to monitor a set of users on
IP Office to see whether they are in Do Not Disturb, or Available to receive calls.

A more complex use case would be to observe a group of users to see how busy they are, and which
calls they are making and receiving.

A highly functional use case would be for the MTCTI3 application to take control of a Queue and
distribute all calls arriving at that queue to appropriate Agents.

A Contact center application may be in the business of rendering a business-specific desktop Ul to a
set of Agents or Supervisors. If this application connected to IP Office over MTCTI3, it could add
telephony controls to the Agents desktop, to set Available/Not available, Answer calls (by controlling
their desk phone or soft-phone), Make calls.

Introduction

Third party developers would be expected to develop applications using this document as a
reference.

The MTCTI3 interface to IP Office is a protocol definition only. The 1% competence required of the
engineer is to take the protocol definition and make an interface. The work required depends on the
platform, language and environment of the application that wishes to use MTCTI3. For some
languages, and environments (example JavaScript on Angular), the framework has methods to
consume the protocol definition file directly into managed objects. For other languages, the
engineer will want to source a ‘proto’ file compiler, and protobuf encoding and decoding source
code. This is what you would expect to have to do as the MTCTI3 application is expected to be a

server application, not a desktop application. Information on how to do this is provided in later
chapter “Getting started with the proto file”.

Additionally, once you have the encoding and decoding of messages, you need to be able to connect
to IP Office over a secure websocket. Each development environment has a different
implementation of websockets, and the engineer must be able to create a websocket to the IP Office
web service, authenticate, and then send and receive messages over the websocket.

MTCTI3 requires authentication in the websocket handshake, which is not necessarily available on all
HTML5 browser websocket implementations.

The developer needs to have a basic understanding of Users and Queues on IP Office as these are
what are being manipulated.

The protocol will work in stand-alone or in SCN environments.

There are several pre-requisites required on the IP Office for the application to successfully connect
to an IP Office.

- The IP Office must have sufficient CTI-link pro licences installed for the size of the SCN.

- The IP Office must have “Avaya HTTP Clients only” flag disabled.

- For an SCN solution, the queues that the application is to monitor/control should be configured
on the primary PBX, and the application should connect to the primary PBX.

- If connecting to secondary PBX for resilience, the secondary PBX will also require CTI-Link PRO
licences. The MTCTI3 on the secondary will not report calls on the primary queues unless the
primary queues are failed over, but all user calls and user status are fully accessible on either
system.

There needs to be configured a Service user + password, who has access rights to “Enhanced TSPI

Access” service.

Service User Configuration
First configure a Service group, with access rights to the “Enhanced TSPI Access” service:

%7 Avaya IP Office Manager - Security Administration - — O >

Eile Edit View Help

=]
Security Settings Rights Groups (19) Rights Group: MTCTI3 Group % <
=l "1 Security Name Group Detals Configuration Security Administration System Status Telephony |4 [¢
- General Administrator G
= System (1) " min! rGor roup |P Office Service Rights
£ Senvices (7) oo Enhanced TSPI Access
B 1\] Fights Groups (1) peratoriaroup [] Devlink3
-l Service Users (10) vers [LocationAPI
MTCTI2 Group
< >

OK Cancel Help

Ready)

Then create serviceUser account which is a member of this group:

% Avaya IP Office Manager - Security Administration - = [u] X
File Edit View Help
]
Security Settings Service Users (10) Service User: TestApplication X =
=-Q i.?cunty Service User Name ~ Account Status ~ Groups Service User Details
General)
*% System (1) Administrator Enabled Administrator Gro Name ‘Te stApplication
£ Services (7) [
128 Rights Groups (19) TestApplication Enabled MTCTI3 Group; Pesmiod Charge SemCacle
o SEcE s (10) Account Status | Enabled v
<None> v
No Account Expiry
< November 2018 4
Mon Tue Wed Thu Fri Sat Sun
AccountBxpiy || 20 30 31 1 2 3 4
5 6 7 8 9 10 1
2 13 14 15 16 17 18
19 20 2 3 4 25
% 27 28 29 30 1 2
3 4 5 6 7 8 9
[Today: 21/11/2018
Rights Group Membership
[System Admin =
iD Maint Admin
|[] Business Partner
] Customer Admin
] Maintainer
‘l:] Directory Group
[] COM Admin
[] Call Reporter
MTCTI3 Group v|
< 5 oK Cancel Help
)

Ready

Licensing

MTCTI3 uses the same licensing as other CTl interfaces on IPOffice:

e The CSTA OpenAPI which can be accessed from oneX portal
e Devlink3 interface
e 3"party TAPI

A fully licensed system allows all these CTl interfaces to work.

Note that there is no partial functionality for a partially licensed system. You need the full set of
licences for your deployment, but that allows the application to monitor all users on the SCN from

the single connection.

Also note that if you are developing a resilient solution with separate MTCTI3 connections to Primary
and Secondary, you need the full set of licences on both Primary and Secondary.

Standalone IP Office

Network of up to 5 IP Offices (including this one)
Network of up to 20 IP Offices (including this one)
Unlimited Network of IP Offices

1 x CTILink Pro licence
2 x CTILink Pro licence
3 x CTILink Pro licence
4 x CTILink Pro licence

Transport Options
This protocol is available over web-socket only. This protocol is one of several web services that IP
Office can deliver. You can only connect to this service over HTTPS. The HTTP variant is disabled on
all deployments. This web service is “tpkt/openapi”.

The HTTPS service port for IP Office web services defaults to 443 in most environments. However, it
is configurable on the Security settings and may be different on cloud deployments.

The credentials required to access the web service will be Service User Name and Service User
Password.

These are normally encoded in the Authorization header of the simplified HTTP request
below(shown here with the content masked out)

GET /tpkt/openapi HTTP/1.1
Connection: Upgrade

Authorization: Basic ***xkkkkkkkkkssx
Upgrade: websocket

Sec-WebSocket-Key:
Sec-WebSocket-Protocol: openapi
Sec-WebSocket-Version: 13

Once connected, the payload carried over the Websocket protocol is framed protocol-buffers in
either direction

4 octets 0x1 = Framed protocol buffer

N octets Protocol buffer payload

Protocol Description

The protocol buffer schema is obtained by compiling the file “ipo_mtcti3.proto”. This file format is
proto3.

For a description of the language, you can search for: “google protocol buffers version 3” on the
internet. It is a google sponsored language and messaging format.

The way to use this protocol is for the client (the application) to subscribe to a number of services,
and the application will the receive notifications on the subscribed services. The client can also send
“SubscribeCmd” messages on subscriptions to execute changes.

Each subscription can optionally time out unless refreshed. This is generally the choice of the client
application, except in the case of presence subscriptions which must have a specified timeout to
refresh.

Message

Message

Message is the base message of the mtcti-3 protocol and all other service level messages are
encapsulated within the Message.

message Message

{

oneof payload

{
RequestResponse response = 1;
GeneralCmd generalcmd = 2;
Subscribe subscribe = 3;
SubscribeCmd subscibecmd = 4;
SubscribeEnd subscribeend = 5;
SubscribeTerminated subscribeterminated = 6;
GeneralData generaldata = 7;
Notify notify = 8;
NotifyAck notifyack =9;

}

}

One of the payloads should be set in the Message.

Fields Description Direction
response Set the payload for response to the Request IP Office =» App
subscribe Set the payload for Subscribe Request App = IP Office
subscribecmd Set the payload for SubscribeCmd Request App => IP Office
subscribeend Set the payload for SubscribeEnd request App = IP Office
subscribeterminated Set the payload for SubscribeTerminated event IP Office =» App
notify Set the payload for Notify message IP Office =» App
notifyack Set the payload for Notify Ack message App = IP Office
generalemd App issues a context-less command App = 1P Office
generaldata Response to the generalemd IP Office = App

Subscriptions

This section covers how the client should subscribe for the different services, send updates, receive
notifications in the subscription. Also ending subscription from the client and Server.

This section covers Subscribe, RequestResponse, Notify and NotifyAck messages.

Subscribe

This message enables the client to subscribe for one of the subscriptions.

message Subscribe

{
int32 requestid = 1;
int32 subscribe_id = 2;
int32 timeout = 3;
string label = 4;
oneof payload

{

SubscribePresence presence = 10;
Subscribelines lines = 40;

SubscribeUser user = 41;

SubscribeQueue queue = 42;
SubscribeParkServer parkserver =43;
SubscribeRefreshWrapper refreshwrapper = 45;

}
}
Fields Description
requestid ID for the particular Request
subscribe_id ID for the particular Subscription
timeout Expiry value for the particular subscription
label Label for the particular subscription
One of the payloads
presence Set the payload for the Presence subscription
lines Set the payload for the lines subscription
user Set the payload for an individual user subscription
queue Set the payload for an individual queue subscription
parkserver Set the payload for the parkserver subscription
refreshwrapper Set the payload for the refreshwrapper subscription
Subscribe_id

Subscription message should contain the “subscribe_id” and one of the subscription payloads.
“subscribe_id” will be used in all messages in either direction related to the subscription. For this
reason, the “subscribe_id” should be chosen by the client to be a unique number in the context of
the connection.

requestid

Messages from the client may contain a “requestid”. If a “requestid” is populated, IP Office will
send a RequestResponse indicating that the message has been received.

label
This is an optional string. It is not used by IP Office.

timeout

“Timeout” value set to zero, or not specified means no expiry. Presence subscriptions should have
explicit “Timeout” value and value should set in seconds between 60 and 86400. Units are seconds.

In order to refresh a Subscribe, the client should send a new Subscribe message with the same
subscribe_id, and only containing a new timeout value:

Message

{

subscribe

{
subscribe_id=98765

timeout=3600
presence

After (eg) 50 minutes, send a refresh....

Message

{

subscribe

{
subscribe_id=98765

timeout=3600

}
}

This will now run another 3600 seconds before terminating.

RequestResponse
“RequestResponse” message used to acknowledge the Request with the results.

message RequestResponse

{
int32 requestid = 1;

int32 result = 2;
string additional = 3;
}

This message is used to acknowledge both Subscribe and General Commands requests.

Fields Description
requestid ID of the received Request
result Success or error code (error codes in Appendix)
additional Additional details, for example, error reason string. Not currently used.

Notify
“Notify” message uses to send notification to a subscriber to inform on the latest change on the
resources on which the Subscriber is interested.

message Notify

{
int32 subscribe_id =1;
int32 notify_id = 2;
string label = 3;
oneof payload
{

NotifyPresence presence = 10;

NotifyCallControl callcontrol = 14;
NotifyLines lines = 40;

NotifyUser user = 41,

NotifyQueue queue = 42;
NotifyRefreshWrapper refreshwrapper = 45;

}
}
Fields Description
Subscribe_id ID present in the Subscribe Request
Notify_id Notify ID added by the IP Office
label Usually label from Subscribe Request (not currently)
One of the payloads
presence Set if Notify is for Presence subscription
callcontrol CallHandling events if subscribe is one of User, Queue, ParkHandler
lines Set if Notify is for lines subscription (add/remove users or queues)
user Set if Notify for User subscription (user status or config)
queue Set if Notify for Queue subscription (queue status or config)
refreshwrapper Set if Notify for refreshwrapper subscription

Client should acknowledge Notify message by sending NotifyAck, if “notify_id” present in the
received NOTIFY message. Client should ignore NOTIFY message, if one of the payloads is not set,
subscription Id does not exist or payload is not expected with “subscribe_id” mentioned in the
Notify message.

NotifyAck

Client should acknowledge the NOTIFY message by sending NotifyAck message, if “notify_id”
present in the received NOTIFY message. If “notify_id” is included by IP Office in the Notify
message, IP Office does not send next Notify until the last Notify is acknowledged.

message NotifyAck

{
int32 subscribe_id =1;
int32 notify_id = 2;

}

Fields Description
subscribe_id Corresponding Subscription ID
notify_id Notify Id from the NOTIFY message

Subscription message flow

App IP Office
Subscribe Subscribe Payloads
SubscribeLines OR
Requestresponse SubscribeUser
Etc...
Notify

NotifyAck

Figure 1 - Subscribe Message flow

End the Subscription

A subscription can be terminated at any time by the App sending a Subscribe-End request.
Subscribe-End request should contain “subscribe_id” of the subscription that needs to be

terminated.

SubscribeEnd

message SubscribeEnd

{
int32 requestid = 1;
int32 subscribe_id=1;
string reason = 3;

}

Fields

request_id Request ID
subscribe_id Subscription ID (required)
Reason string. Not functional, but may be added to a report in IP Office.

reason

Subscribe End message flow

App

Subscribe

Description

IP Office

Requestresponse

Notify

NotifyAck

Subscribe_id

Subscribe Payloads

Notify Payload

Terminate the Subscription

IP Office can terminate a subscription asynchronously by sending SubscribeTerminated message.
“subscribe_id” indicates the subscription that is terminated by IP Office.

SubscribeTerminated

message SubscribeTerminated

{
int32 subscribe_id =1;
string reason = 2;
}
Fields Description
subscribe_id Subscription ID
reason Reason string (not currently populated)

Subscription terminated message flow

App IP Office
Subscribe Subscribe_id
Subscribe Payloads
Requestresponse
Notify
Notify Payload
NotifyAck

SubscribeTerminated J Subscribe id

Subscription services

Each subscription service is independent and can be unsubscribed individually. You should only
subscribe to the services that you need for your application.

The following services are available:

Service Description Notes

Presence Each presence subscription You can have several
contains a list of presentities to subscriptions at a time, each
watch. containing a different list of

presentities.

Lines This maintains an updated list of | Only one of these is allowed
all the users on the SCN and
queues on the PBX

User This is a subscription for a Choose users out of the lines list.
particular user. It renders
individual user status, and
optionally the telephony calls
presenting on the user.

Queue This is a subscription for an Choose queues out of the lines
individual Queue. It renders list, or if you know the queue
Queue configuration, and name, you can just subscribe by
optionally calls that are being queue name.
handled on the queue.

ParkServer This subscribes to the activity on | Only one of these is allowed
the ParkServer. That is showing
calls which are currently parked..

RefreshWrapper This is a little utility to help Only one.
group notifications on different
subscriptions into atomic events.
It is not watertight, but it can be
useful.

Subscribe for Presence

Client should set SubscribePresence payload in the Subscribe request message for the presence
subscription, with a table of presentities to monitor. On successful subscription, IP Office sends

RequestResponse for the request.

SubscribePresence may not be of major interest. However, it was the first service to be

implemented.

SubscribePresence

This message is a payload of Subscribe message.

message SubscribePresence

{
repeated Presentity entry = 1;
int32 flags =2
}
Fields Description
entry List of the Presentities
flags Flags is a bitfield of options
0x01: include unread voicemail counter in presentity
0x02: Do not change app presence to ‘Oftline’ when all apps are disconnected
Presentity

This message is an element of SubscribePresence and carries details of presentity. Presentity can
be a phone number, a SIP address, an Email address or a UniquelD. Each presentity should be
assigned a local reference ID (LREF) to reduce the size of the NOTIFY updates (though this is not
mandatory).

Note that presence subscription is really an alternative to subscribing to all the users individually. If
you subscribe to all the user lines, you get the basic part of the presence information from each
line.

message Presentity

{
string presentity = 1;
int32 lref = 2;
}
Fields Description
presentity Presentity can be phone number, SIP URI or Email address.
Iref Iref is a local reference ID of the presentity
NotifyPresence

NotifyPresence is a payload of Notify message. From the provided presentity list, set of all IP Office
users will be searched. IP Office will NOTIFY all presentities in the monitor list in NotifyPresence
payload. All new presentities will have their initial state NOTIFY as soon as they are added to the
Subscribe. Afterwards, only changed presentities will be NOTIFIED. This will be indicated in “full”
field.

message NotifyPresence

{
int32 full = 1;
repeated NotifyPresentity entry = 2;
}
Fields Description
full Indicates whether presentities list is full or just changes.
entry Holds the list of Presentity elements
NotifyPresentity

Each Notify will contain all the tracked fields for that presentity. Tracked fields are carried in
NotifyPresentity message, which is an element of NotifyPresence.

message NotifyPresentity
{
string presentity = 1;
int32 lref = 2;
int32 sac = 3;
int32 phonestate = 4;
Absence absence = 5;
string app = 6;
bool fwdu = 7;
int32 vmunread_messages = §;
bool noapphandler = 9;

}
Fields Description

presentity Presentity identifier, provided by Client

Iref Iref of Presentity , provided by Client. If this is specified, then the presentity
identifier above will not need to be included.

sac DND telephony status of the presentity

phonestate Phone state of the presentity

absence Absence text set by the presentity

app App presence set by the presentity

fwdu Presentity has forwarding enabled

vmunread_messages Presentity has unread voicemail messages (dependent on subscribe flags =
0x01)

noapphandler There are no applications that can control app presence. (dependent on

subscribe flags = 0x02). If this subscribe flag is *not* set, then when there are
no applications, the “app” string will show “Offline”

e Absence Text maximum length is set to 21.

o Application presence maximum length is set to 34.
e “sac” is set to non-zero, if DND is enabled for the presentity.

Phone state ID State of the phone

0 Idle

Dialling
Ringing

ACW
Connected
Logout

Fault

Recover

8 Unknown state

Table 1 - Phone states

N[N N | B WIN|—

UpdatePresence

You can add and remove individual presentities from a subscription using an Update message. An
example is below.

1% subscribe...

Message

{
subscribe
{
subscribe_id=98765
timeout=3600
presence
{
entry
{
presentity=201
Iref=5678
}
entry
{
presentity=202
Iref=5679
}
entry
{
presentity=203
Iref=5680

Later update...

Message

{

subscribecmd

{
subscribe_id=98765

presence

{
add

{
presentity=204

I[ref=5681

add

{
presentity=205

l[ref=5682
}

remove

{
I[ref=5678

}
}
}
}

You will get an immediate notification of the states of the new presentities.

Absence

Absence will only be present if there is an Absence message set. When set, the message has the
following elements:

message Absence

{ int32 msg=1;
string str = 2;
}
Fields Description
msg Message type.
str Holds the Absence text.

If the msg is set to 11, the whole note will be contained in “str”.

If the Absence text is set on an IP Office desk handset, the following values may be set in msg:

Fields Description

NeREeLREEN R NIV R SR S R

—| —
—_ O

“ON HOLIDAY UNTIL” + str
“WILL BE BACK” + str

“AT LUNCH UNTIL” + str
“MEETING UNTIL” + str
“PLEASE CALL” + str

“DON’T DISTURB UNTIL” + str
“WITH VISITOR UNTIL” + str
“WITH CUSTOMER UNTIL” + str
“BACK SOON”

“BACK TOMORROW”

str

Note that msg=11 and str ="” (or null) is a blank string. This is not the same as Absence not set

and should be avoided.

Subscribe for Lines

The lines subscription gives a list of Users and Queues, and sufficient information to subscribe to the
individual user or queue. You will automatically get updates when a User or Queue is added of

removed from the network.

message LinesUser

{
bytes guid = 1;
string extn = 2;
string name = 3;
}
message LinesQueue
{
bytes guid = 1;
string extn = 2;
string name = 3;
}
message NotifyLines
{
int32 flags = 1;

repeated LinesUser adduser = 2;

repeated LinesQueue addqueue = 3;
repeated LinesUser deleteuser = 4;
repeated LinesQueue deletequeue = 5;
repeated LinesUser changeuser = 6;
repeated LinesQueue changequeue =7;

}

message Subscribelines

{
int32 flags = 1;

You can choose whether to just get notification for Users, or just get notification for Queues via the
flags in the Subscribelines. field with is a bit array. You can also see availability for the ParkHandler,
though this is normally always available.

Here is an example sequence:

Message

{

subscribe

{
requestld=1

subscribe_id=5555
timeout=3600
lines

{
flags=7
}

}
}

You get a RequestResponse, because the Subscribe had a requestid

Message

{

requestresponse

{
requestid=1
result=0

}
}

You should have only one Subscription to “Lines”. The IP Office will notify you of all the lines (Users
and Queues), which you subscribe to separately.

Meaning of “Flags”

Bit 0 List all users
Bit 1 List all groups
Bit2 Report park server availability

Notify Response
The first Notify will contain a list of all the Users and Queues in the system.

Message

Because there was a notify_id in the Notify, the application should send a NotifyAck

Meaning of Notify “Flags”

Bit 0 Park server can be subscribed
Bit 1 Meaning not described here
Bit2 Meaning not described here.

Then subsequently when an administrator Adds or removes a set of users, there will be another
Notify

If the administrator changes the name or extn number of a user, you will get a changeuser with the
same GUID

Subscribe User
Using the lines subscription, the allocation now has a table of users and queues. From this, you could
just subscribe to Presence, but if you want to perform functions on a user, you need to Subscribe to

each user individually. Typically, the application may start a large number of subscriptions at this
point.

message SubscribeUser

{
bytes guid = 1;
int32 flags = 2;
int32 ccflags = 3;
}

You must use the GUID out of the lines table in the Subscribe:

Message

{

subscribe

{
requestid=2
subscribe_id=7000
user

{
guid=DC51BA0008A311DD80530050569F6EF8
flags=0x1
ccflags=0x19

}

}
}

The subscribe_id must be a new value for each user subscription.

There are effectively two parallel subscriptions being enabled here. (User config) + (User call
control). If you do not need to subscribe to call control, then do not set the ccflags. Then you will just
get the basic user configuration.

Meaning of “flags” in user

Bit 0 (0x01) MAILBOX Include voicemail box message counters

Bit 1 (0x02) FWD Include Forwarding details

Bit 2 (0x04) APP Include Application presence

Bit 3 (0x08) ABSENCE Include Absence (when enabled)

Bit 11(0x800) ACTIVAPP If this is set, then this subscription actively counts as

an application that can edit the app field.

(So Equinox phones will not say ‘Offline’ on this
presentity while this subscription is registered)
This flag can be actively changed using “makelive”
or “makedead” booleans on the UpdateUserApp
payload of an UpdateUser message.

Bits 4..10 and 12..31 Not described here

Meaning of “ccflags” in user. These flags define the level of detail you will get back in callinfo events.

A good setting for regular applications would be 0x99

| Bit 0 (0x01) | Primary callcontrol data

Bit (0x02)

Local and remote devices

Bit 2 (0x04)

Additional simultaneous targets

Bit 3 (0x08)

Conference membership

Bit 4 (0x10) Dial info
Bit 5 (0x20) Extended Trunk detail
Bit 6 (0x40) Extended Queue information

Bit 7 (0x80)

Language, privacy

From the User config subscription, you get back a “user” notify.

Message

{
notify

{

subscribe_id=7000

notify_id=1

user

{
extn=2002
name=Bergcamp
email=dbergcamp@denmarklegends.com
language=dan
voicemail=1
mailbox

Fields in User Notify

extn User number in the dial plan

name User name

fullname User full name

katakananame User katakana name (Japan only)

email User email address

featuresavailable Actions that are allowed

language Locale code

dnd Do not disturb

barred User is barred from making external calls
xdirectory User is ex-directory

voicemail User has voicemail enabled

loggedinextn User is logged in to this extension
extnfault User does not have a working phone
loggedoff User is not logged in anywhere

absence Absence info

mailbox Summary content of the voicemail mailbox
app Application presence string
noapphandler There is no application registered that can edit the app field
ec500 Mobile twinning enabled

fwdu Forward Unconditional

fwdb Forward on busy

fwdna

Forward on no answer

mailto:email%3Ddbergcamp@denmarklegends.com

fwdhg Hunt group calls follow fwdu rule

fwdunumber Forward Unconditional destination

fwdbnumber Forward busy destination, if different from fwdunumber.
fwdtovm Forward Unconditional destination is voicemail
offswitch User is allowed to set forward number to off-switch

Featuresavailable
This is a bit-field

Bit 0 (0x00000001) VALID

Means this field is populated (not present in older
versions)

Bit 1 (0x00000002) SAC

Can Set or Unset Do Not Disturb

Bit 2 (0x00000004) ABSENCE

Can change absence text

Bit 3 (0x00000008) EC500

Can change mobile twinning setting

Bit 4 (0x00000010) LOGIN

Can hot-desk to another extension

Bit 5 (0x00000020) SHORTCODE

Allowed to send shortcodes

Bit 6 (0x00000040) MAKECALL Allowed to MakeCall

Bit 7 (0x00000080) FWDU Allowed to set Forward Unconditional

Bit 8 (0x00000100) DFOI (reserved)

Bit 9 (0x00000200) APP Allowed to change the application presence string

If one of these fields changes, you will get a new notify.user on this same subscription.

If any bits are set in ccflags, you also get a Callcontrol subscription on this same subscribe_id. For

example, an incoming call looks like:

Message
{
notify
{
subscribe_id=7000
callcontrol
{
refreshinstance=1
callinfo
{
callid=1
state=RINGING
direction=INBOUND

gcid =01 CO A8 2A 0B 00 00 03 EC

featuresavailable=0x23 DROP ANSWER REDIRECT

callingparty

{
number=61001
name=Agent 61001
nametype=5

Call Control commands and notifications are described later.

Update User
You can issue commands on the user subscription to change the user’s configuration

message UpdateUser

{
UpdateUserSAC sac = 1;

UpdateUserAbsence absence = 2;
UpdateUserEC500 ec500 = 3;

repeated ShortCodeData shortcodedata = 4;
UpdateUserLoginExtn loginextn = 7;
UpdateUserApp app = 8;

UpdateUserFwdU fwdu = 9;

The commands available are not very complex, but you can also send ShortCodeData which enables
more control.

sac Enable/disable DND

absence Set/clear Absence text

ec500 Set/Unset Mobile twinning.

shortcodedata Other configuration options

loginextn Hot-desk user to a different extension

app Change user’s application presence

fwdu Change users forward uncondional
settings including On/Off, destination

Set DND
Message

{

subscribecmd

{
subscribe_id=7000

user

Set Voicemail-box content
This is a bit of a random thing to include here but is a useful trick for certain applications that want
to offer voicemail services instead of regular VMPro..

If IP Office is providing the voicemail through (eg) VMPro, then the voicemail server will update the
user with message counts: newmessages, oldmessages, savedmessages.

However, if voicemail is being provided by a client application, it is possible for the client application
to show the mailbox content through this interface. Note that the IP Office view of the mailbox
content may occasionally clear the values, and the application should then re-assert the correct
numbers.

This interface is superior to using “DisplayMsg”, as it should show the detail on all interfaces, not just
on the phone display.

You use shortcode 70 to set voicemail content, and the shortcodeval string must be in the format *;’
(semicolon) followed by Snewmessages,Soldmessages,Ssavedmessages

Message
{
subscribecmd
{
requestid=3
subscribe_id=7000
user

{

shortcode

{
shortcode=70
shortcodeval=;3,0,0

}

}
}
}

Results in a notify (provided you set bit O in the subscribe):

Message
{
notify
{
subscribe_id=7000
notify_id=2
user
{
extn=61000
name=User 61000
language=eng

voicemail=1
mailbox
newmessages=3

}

}
Other shortcodes
Shortcode Parameter string Action
integer
0 Set forward unconditional
1 Unset forward unconditional
2 Set forward on busy
3 Unset forward on busy
4 Set forward no answer
5 Unset forward no answer
6 destination Set forward number
7 Set DND
8 Unset DND
9 exception Set DND exception
10 Clear all DND exceptions
17 Voicemail on
18 Voicemail off
94 Time in seconds Set noAnswer timeout
109 $set,$val, $str SetAbsentText
114 destination Set FwdBusy number
166 Set EC500
167 Unset EC500

Subscribe Queue

Using the lines subscription, the allocation now has a table of users and queues. From this, you could
just subscribe to Presence, but if you want to perform functions on a queue, you need to Subscribe
to each queue individually.

message SubscribeQueue

{
bytes guid = 1;
int32 flags = 2;
int32 ccflags = 3;
string name =4;

You should use the GUID out of the lines table in the Subscribe:

Message

{

subscribe

{

requestid=2

In some applications, where all you want to do is control a single queue whose name you know, you
do not need to subscribe to the lines table to extract the guid. You just subscribe to the queue by

name:

Meaning of “flags” in queue

Bit 0

Include voicemail box message counters

Bit 1

Include huntgroup members list

Bits 2..31

Not described here

Queue Notify

message NotifyQueue
{
enum ServiceMode
{
Unset =0;
Active = 1;
NS = 2;
00S =3;
}
string extn = 2;
string name =3;
string katakananame =4;
string email = 5;
int32 ringmode = 6;

int32 noanswertime =7;

bool voicemail = 8;

int32 voicemailtime = 9;
ServiceMode servicemode = 10;
QueueMembers queuemembers = 11;
Mailbox mailbox = 12;

}

extn Number in the dial plan

name Queue name

email Queue email

ringmode 0 =ringidle
1 = sequential
2 = group

noanswertime Time in seconds to ring around
agents

voicemail Voicemail enabled

voicemailtime Time in seconds before call goes
to voicemail

servicemode Active, Night service or OOS

queuemembers Agents in this queue

mailbox Contents of queue’s voicemail
box.

Mailbox is included if flags bit O is set in the subscribe.queue.

message Mailbox

{
int32 newmessages = 1;
int32 oldmessages = 2;
int32 savedmessages = 3;
}

QueueMembers is included if flags bit 1 is set in the subscribe.queue

message QueueMember

{
string extn =1;
bool disabled = 2;
}

message QueueMembers

{

repeated QueueMember member = 1;

}

This is a list of all agents in the queue, and whether they are currently disabled (not accepting calls)

There are a set of commands for administering the Queue configuration.

message UpdateQueue

{
SetServiceMode setservicemode = 1;
SetVoicemail setvoicemail = 2;
QueueMembers members = 3;
repeated QueueMember addmember = 4;
repeated QueueMember deletemember = 5;

}

You can either specify the entire members list, or you can add or remove members from the list
individually.

You can also use addmember to change a member status from enabled to disabled in the queue.
“addmember” is an update if the member already exists.

Call Control notifications on a Queue
This is covered in more detail in the Call Control section, but here is a very brief description.

If you set bit 0 of “ccflags” in the subscribe.queue you will automatically get Notifications for calls
coming into a Queue. These calls can be tracked and manipulated.

Message
{
notify

{
subscribe_id=7500

callcontrol
{
refreshinstance=1
callinfo
{
callid=1
state=RINGING
direction=INBOUND
featuresavailable=0x6060E0B1 DROP BLINDXFER REDIRECT PARK TAG ACCT FORCECLEAR
AUTH PRIO FINISH
callingparty
{
number=01707123456
name=Avaya Test trunk
nametype=9
}
gueuedetail
{
number=98765
name=Agents
priority=1
}

calldata

{

language=eng

}

targets
{
target

{
partyinfo

{
number=61002
name=Agent 61002
nametype=5
}
}

The “ccflags” you specify defines the level of detail that you see. In general you should only ask for

data that you intend to use.

Meaning of “ccflags” in queue

Bit 0 (0x01)

Primary callcontrol data

Bit 1 (0x02)

Local and remote devices

Bit 2 (0x04)

Additional simultaneous targets

Bit 3 (0x08)

Conference membership

Bit 4 (0x10) Dial info
Bit 5 (0x20) Extended Trunk detail
Bit 6 (0x40) Extended Queue information

Bit 7 (0x80)

Language, privacy

Bit 8 (0x100)

Conference membership

Bit 9 (0x200) Reserved
Bit 10 (0x400) Reserved
Bit 11 (0x800) Reserved
Bit 12 (0x1000) Reserved
Bit 13 (0x2000) Notes

Bit 14 (0x4000) UCID

Bit 15 (0x8000) P-Intrinsics
Bit 16 (0x10000) Reserved
Bit 17 (0x20000) Reserved
Bit 18 (0x40000) Targets

Bit 30 (0x40000000)

Ephemeral (you only see calls while they are actually
queueing)

For queue calls, the direction is generally INBOUND

Call Control Notifications

User, Queue and ParkHandler can include implicit Call Control subscriptions depending on the
setting of the “ccflags” field in the subscription.

NotifyCallControl
NotifyCallControl is a payload of Notify message.

message NotifyCallControl

{
repeated Calllnfo callinfo=2;
repeated CallLost calllost = 3;

}

Notify contains updates of each call appearance (callinfo) until the call appearance is ended, when
a Notify will be generated with calllost.

One Notify can contain multiple callinfo updates, and multiple calllost. A single Notify represents a
single event, so after a Transfer complete you would probably get calllost for both the CallOnHold
and the Assistant call in the same payload.

The table of callinfo does not necessarily contain all the call appearances, only those with
reportable changes.

A NotifyCallControl report represents the current information about a call appearance. You are not
guaranteed to see every transition phase of a call that moves quickly between phases. So, for
example a call that is made and auto-answered may transition instantly to CONNECTED state. You
will not get a Notify for all the intermediate phases.

Callinfo
Callinfo is a payload of NotifyCallControl

message Calllnfo
{
enum State
{
UNKNOWN = 0;
DIALTONE =1,
DIALLING = 2;
DIALLED = 3;
RINGING = 4;
RINGBACK =5;
CONNECTED =6;

ONHOLD =7,
ONHOLDPENDTRANSFER =8;
ONHOLDPENDCONF =9;
DISCONNECTED = 10;
BUSY = 11;
FAILED =12;
WAITINGFORACCT = 13;
WAITINGFORAUTH = 14;
WAITINGFORLINE = 15;
REMINDER=16;
AFTERCALLWORK=17;
RINGINGDIVERT=18;
RINGINVOICEMAIL=19;
ANSWEREDBYVOICEMAIL=20;
LEAVINGVOICEMAILMESSAGE=21;
QUEUEING=22;
RETARGETING=23;

}

enum Direction

{
UNDEFINED =0;
OUTBOUND =1;
INBOUND =2;
PICKUP = 3;

}

enum FailedCause

{
UNSET =0;
UNSPECIFIED = 1;
UNALLOCATEDNUMBER = 2;
REJECTED = 3;
NUMBEROOQOO =4;
NETWORKOOO =5;
BARRED = 6;
NOCHANNEL =7;
NOACCOUNTCODE = 8;
NOAUTHCODE =9;
NOLICENCE = 10;
LOCALRESOURCES = 11;
BANDWIDTH =12;
COMPATIBILITY = 13;
CANTRECORD = 14;
NORESPONSE=15;

}

int32 callid = 2;

int32 referencecallid =3;

int32 relatedcallid = 4;

State state = 5;

Direction direction = 6;

bool activeheld = 7;

bytes gcid = 8;

int32 featuresavailable = 9;
string calledparty = 10;
PartylInfo callingparty = 11;
Partylnfo connectedparty = 12;
PartylInfo originalcalledparty = 13;
string tag = 14;

string accountcode = 15;

bool mute =16;

FailedCause failedcause =17;
int32 featuresavailable2 = 18;
bool recording =19;

string parkslot = 20;

Absence absence = 21;

bool recordingpaused =22;
repeated ConferenceMember conferencemember =52;
Diallnfo dialinfo = 53;
Trunkinfo trunkinfo = 54;
Queuelnfo queueinfo = 55;
CallData calldata = 56;

Note notes = 62;

Targets targets = 67

Fields Description

Callid Call identifier, provided by IP Office. It has uniqueness only within this
subscription.

Referencecallid Reference identifier provided by the MTCTTI app. If call was made using
MakeCall, this is the reference provided in the MakeCall. MTCTI App may
assert it or change it at any time using an Update.

Relatedcallid When a call is an Assistant call (eg during an Assisted Transfer), then this is
the callid of the call on-hold pending transfer

State Q.931 style state of the call

Direction If the device receives a call and is ringing, then that is INCOMING. If the
device makes a call and hears RingBack Tone from the far end, that is
OUTGOING. If the call has been established by Call Pickup, Call Steal,
UnPark, that is PICKUP.

Activeheld If the person you were talking to has put you on hold, so you are listening to
holdmusic, that is activeheld

Geid Global call Identity of this call. When a call is made between two parties, they
will both see the same gcid. It is not unique across reboots.

featuresavailable This is a bitfield of CallFunction Updates that may be effective at this time for
this call. See final section.

Calledparty Usually for outbound calls, this is the number that was called.

Callingparty For incoming calls, this describes the caller.

Connectedparty For calls where the other end is defined, this describes the other end

originalcalledparty For incoming calls which have not arrived directly at this user (diversion or
huntgroup), this describes the target of the call

Tag This is a text label which has been attached to this call

Accountcode ‘When an account code is attached to a call, and the account code is not hidden,
it will be presented here.

Mute Mute is not always available. In IP Office it is not normally possible to mute a

call in the PBX. (It has to be muted on the handset / application itself). It is
normally possible to mute a call into a Conference.

Also if ‘mute’ is set on the handset, this is not going to reflect in this field.
This field will only reflect the ‘mute’ status if it is a controllable scenario.

Failedcause When trying to make a call, and the call fails, it will report state = FAILED.
The reason why the call failed will be in this field.

featuresavailable2 Additional bitfield of featuresavailable. None defined

Recording [for user]

If this call is being recorded under the control of the user, then this field will be
set. This does not reflect system recording for which the user does not have
visibility or control.

[for queue]

This indicates whether the call is being recorded by the system.

parkslot For ParkHandler only, this identifies the parkslot that the call is occupying.

Absence For calls on a User, this shows the FAR END Absence text. (So the person you
are calling)

recordingpaused This is the paused state of any system call recording. Even though an agent

cannot normally control whether a system call recording is in progress, they
may be able to control the recording-paused state

conferencemember This is a repeating list of all the other parties in a conference.

Dialinfo When making an outbound call, this contains details of what is being dialled,
what type of call is being made, whether the display should be suppressed
because it contains authorization codes, whether we are withholding our

identity.

queuedetail If the call is in a queue, this gives the detail about the queue and the priority of
the call in the queue.

Calldata This contains a motley set of ancilliary details about the call, like nominal
language of the conversation, whether the call is private etc.

Targets (subscribe.queue call only) This lists the nominal ringing targets for a call

which is in the RINGING, QUEUEING or RETARGETING states.
Note that with IP Office an Agent will pick up the longest waiting call on a
queue, even if apparently on the list of targets for a different call.

CallLost
CallLost is a payload of NotifyCallControl

message CallLost

{

int32 callid=1;

int32 referencecallid = 2;
int32 reason = 3;

bool thisenddropped =4;
string description = 5;

Fields Description
callid Call identifier, provided by IP Office. It has uniqueness only within this
subscription.
reference_callid Reference identifier provided by Equinox. If call was made using MakeCall,

this is the reference provided in the MakeCall. Equinox may assert it or change
it at any time using an Update.
If a MakeCall fails instantly, and for some reason there is not a stable FAILED
state, you may never see a Calllnfo for the call, only the CallLost. In this case,
the application will have to match the reference callid with the failed call
attempt.

reason Regular reason codes: 16 = Normal

thisenddropped For a mature call, this tells the application which end terminated the call.
description Not suitable for presenting to the phone U, as it will not be a localized string.
May contain useful information, or not.

Modifying the Subscription
From the point of view of CallControl subscription, modifying the subscription means exercising call
control — making calls, dropping calls etc.

UpdateCallControl

UpdateCallControl is a payload of SubscribeCmd message. This message carries the commands for
manipulating calls.

message UpdateCallControl

{
int32 callid = 1;
int32 referencecallid = 2;
MakeCall makecall = 3;
CallFunction callfunction = 4;
UnParkCall unparkcall = 6;

}
Fields Description

callid The callid assigned by IP Office to this call

referencecallid The callid assigned by Application to this call. One of referencecallid or callid
must be populated.

makecall Payload description for making a new call. referencecallid must be populated,
and callid must not be populated.

callfunction Commands to manipulate calls already in existence.

unparkeall Payload description for unparking a call. referencecallid must be populated,
and callid must not be populated. When parking and unparking a call, the
callid will not be the same. A different number will be assigned on UnPark.

MakecCall

MakeCall is a payload to initiate an outbound call.

message AdvancedMakecCall
{
string accountcode = 1;
string authcode = 2;
string tag = 3;

bool withholdcli=5;
bool privacy = 6;
string madn = 7;
bool allowcli = 8;
string explicitcli = 10;

message MakeCall

{
string target=1;
int32 type =2;
AdvancedMakeCall advanced = 3;

}
Fields Description
target The dialled string. If empty, then call would normally transition to
DIALTONE.
type There are certain values for this field which should be used carefully:

104 = Page Call
105 = Forcefeed
106 = Intrude
108 = Pickup
109 = CampOn (don’t allow call to go to voicemail)
116 = Dial a MeetMe conference
A normal call should not have this specified.
advanced This should only be included if you want to add complex attributes to the call
you are making.
accountcode = Account code to assign to this call
authcode = Authorization code to assign to this call
tag = Text label to attach to the call
withholdcli = make call anonymously
privacy = do not allow others to intrude on this call
madn = Specify call origin for campaign call
allowcli = Reveal CLI on calls from phones which are normally configured as
hide CLI.
explicitcli = change the CLI of the outgoing call.

CallFunction

Call manipulation controls. The call is selected by the callid or reference_callid of the
UpdateCallControl parent payload.

message CallFunction
{
enum Action
{
None =0;
DropCall =1,
AnswerCall = 2;
HoldCall = 3;

UnHoldCall = 4;
BlindTransfer = 5;

Redirect = 6;
Dial = 7;
Park = 8;

SetupTransfer=9;
SetupConf = 10;
CompleteTransfer =11,
CompleteConf =12;
AddToConf =13;
MemberFunction = 14;
SetTag =15;
SetAccountCode = 16;
Unused16 =17,
PushToEC500 = 18;
GenerateDigits = 19;
Unused20 = 20;
Unused21 =21,
Unused22 = 22;
ForceClear = 23;
SetAuthCode = 24;
CallRecordingOn = 25;
CallRecordingOff = 26;
PrivacyOn = 27;
PrivacyOff = 28;
MuteOn = 29;
MuteOff = 30;
Unused31 = 31;
AgentRecordingControl = 32;
Unused33 = 33;
SetPriority = 34;
Finish = 35;
}
Action action=1;
string argl = 2;
MemberFunctionData memberfunctiondata = 4;
repeated Callinstance callinst = 5;
AgentRecording agentrecording = 6;

Fields Description
action Command to perform on the call appearance
argl Text argument that goes with certain commands, like Dial
memberfunctiondata Rich data to go with MemberFunction (manipulating conference members)

In the case of CompleteTransfer, you would normally transfer the relatedcallid
call which is ONHOLDPENDXFER. However, you *can* explicitly specify a
CallInstance different call you want to complete the transfer with.
In CompleteConf, the same thing applies, but you *can* specify a different call
or list of calls you want to conference.
Required sub-message for AgentRecordingControl function.
AgentRecording This allows the call system recording to be paused or unpaused. (Does not
have any effect on user local call recording)

Function Use for argl

BlindTransfer Transfer target
Redirect Redirect target

Dial Digit(s) to dial

Park Parkslot
SetupTransfer Optional target for assisted transfer call.
AddToConf Conference target
SetTag Tag text
GenerateDigits DTMF digit(s) to play
SetAccountCode Account code

Set Auth code Auth code
SetPriority ‘1°, 2%, 0or ‘3’

Conference Member functions

message MemberFunctionData

{

enum Action

{
None =0;
DropCall =1,
MuteOn = 2;
MuteOff = 3;

}
int32 Iref = 1;

Action action=2;

}

Use these functions to manage individual members of your conference. You will only be able
to perform the action if you have sufficient privilege on the conference to do so.

UnParkCall

UnParkCall is a payload to unpark a call

message UnParkCall

{
string parkid = 1;

}

There is no guaranteed indication that an UnPark was successful, except that if successful, you will
receive a Calllnfo notification showing the unparked call (and the referencecallid supplied). You

would not normally expect to call this function unless you knew the parkid was occupied. You should
subscribe to ParkHandler to keep track of parkslot occupancy.

If you specify a RequestID, you may get a useful fail code in the RequestResponse.

RecordingControls

These apply to system recordings only. User can pause or Un-pause a call recording using
RecordingControls.

connectedparty

{
number=0657765

}

recordingpaused € Recording now paused

}
}
}
}

CallControl explicitly for Queue calls

If you have at least set “ccflags” bit 0 (0x01), you will receive call notifications whenever a call arrives
in the queue, and a notification whenever that call changes. These call notifications will be in the
form of a callinfo message.

You may receive multiple callinfo messages and multiple calllost messages in a single notify (when
there are several calls), but for each call you will receive a maximum of one.

Several MTCTI3 clients can subscribe to the same queue, and they will all receive notifications. Note
that if one client issues the “Finish” command (to end notifications), this will terminate the
notifications on ALL clients.

Also note that before ‘Finish’, a call will only be reported on one Queue. If a call is in Sales, then is
transferred to International, then the call will still be reported in Sales, and not in International,
unless the application sends a Finish to stop the reporting in Sales.

This is because by default, the Queued call is reported through its entire lifetime.

If you only want to monitor the queued calls during the time they are queueing, you need to set
“ccflags” bit 30 (0x40000000)

While the call is being handled by IP Office, the mtcti3 client will receive notifications about the call
whenever the call information changes.

The client will only receive a Call Lost event once the call is completed unless the client explicitly
sends a Finish event.

Additionally, the mtcti3 client has an Update capability to modify the call handling.

Lifetime of a simple call

CALLINFO RINGING

CALLINFO Targeting an agent
CALLINFO Answered by agent
CALLINFO Transferred to new Agent
CALLINFO Agent has put call on hold

| CALLLOST | Caller has hung up

Actions on Queued calls

Actions can be performed on any call. Some actions simply enhance the queueing functionality
which already exists in IP Office, and some actions completely override the default behaviour. For
example, you can change the priority of a call, and the IP Office queueing mechanism will still be
functioning. However, if you Redirect or Transfer the call, the queueing will be replaced.

If all you want to do is report what happens to a call that originally targets a queue, you do not need
to perform any actions at all.

Actions that can be performed on a call are indicated in the featuresavailable bitfield. If you perform
an action that is not available, the Action will be ignored.

Action result

DropCall Clears the call

ForceClear If it is a regular call, it will clear the call. If it is a call
into a meetme conference, it will terminate the
conference.

SetTag Changes the tag label on the call

SetAccountCode Changes the account code of the call

SetPriority Changes the call priority in the queue
1=low
2 = medium
3 = high

Park Parks the call to a parkslot

BlindTransfer This is the major feature. You can use this to direct
the call at any phase of its life.

CallRecordingOn/Off Turns on/off call recording

AddToConf When in a conference:
Invite members to a conference

MemberFunction When in a conference:
Mute or drop conference members

Mute On/Off When in a conference:
Mute the caller

Finish End the CTI association. The call will not end, but it
will no longer generate Calllnfo events.

|II

The “powerful” function is:

BlindTransfer

BlindTransfer action

Normally a BlindTransfer action would be used before the caller talks to an agent. You can use
BlindTransfer to target an explicit agent, or to redirect the call to an explicit Queue, go to a pre-
configured or interactive dialog with VMPro or to connect to an IP Office service like a MeetMe
conference or an FNE.

BlindTransfer takes only one argument, but the “argl” argument can be formatted to provide some
extended functionality.

/Stype/destination
Type can be:

102 = Voicemail

104 = Page

105 = Force autoanswer
106 = intrude

107 =Priority call

109 = CampOn

111 = Whisper

112 = Inclusione

116 = MeetMe conference
120 = FNE

BlindTransfer to a Callflow
So, to route to a particular VMPro callflow

Transfers the call to “CallFlow” on VMPro

BlindTransfer to a MeetMe Conference

You see the call is now connected to the conference.

BlindTransfer to a conference requiring PIN access

Where the PIN is 123456

The character between the 5 and the M is a semi-colon.

BlindTransfer to a functional queue

You can transfer a call from the “owner” queue to another IP Office queue with a simple
BlindTransfer to the new queue. This call will continue to be monitored here as it is handled by the
other queue, and you can abandon the queue at any time by performing another BlindTransfer.

(2502 is a huntgroup)

You will continue to get notify events as the queue changes the agents that are targeted, and after
the call is answered.

Error codes

Error Code Description

MTCTISESS SUCCESS 0 Success

MTCTISESS ERRUNKNOWN 1 Unknown error

MTCTISESS UNPACKERR 2 Message unpack error

MTCTISESS NOTINSTRUMENTED 3 Not instrumented

MTCTISESS NOTFOUND 4 Not found

MTCTISESS TOOMANY 5 Too many

MTCTISESS TOOBIG 6

MTCTISESS USERNOTFOUND 7

MTCTISESS SERVICE NOT AVAILABLE 8

MTCTISESS NOTALLOWED 9

MTCTISESS SUBSCRIPTION INVALID 100 Not a recognized subscription

MTCTISESS SUBSCRIPTION_INVALID ID 101 Subscription Update with invalid ID

MTCTISESS SUBSCRIPTION TIMEOUT TOO SMALL 102

MTCTISESS GENCMD_ ERRUNKNOWN 150 General Command Error

MTCTISESS GENCMD INVALID PAYLOAD 151 General Command badly formatted

MTCTISESS GENCMD REQUIRED DATA MISSING 152 General Command with mandatory
element missing

MTCTISESS PRESENCE ERRUNKNOWN 500 Any error to do with presence
subscription

MTCTISESS REQUESTFAILED 5000 A valid command has failed

MTCTISESS REQUESTTIMEOUT

MTCTISESS REQUEST INVALID PAYLOAD
MTCTISESS REQUEST INVALID CONTEXT

Specific Error codes for Call Control

5001
create a response

5002 Missing or field out of range.
5003 Can find context for this action

In some case IP Office can be more specific about the reason why an Action failed. If it can’t be more
specific, it will return one of the generic Error codes above:

MTCTISESS CALLCONTROL NOPHONE 600 Cant make a call, or unpark a call
because the user is not logged in to
any handset

MTCTISESS CALLCONTROL EXTNFAULT 601 Cant Make a call because the user’s
phone is not connected

MTCTISESS CALLCONTROL_CALLNOTFOUND 602 Can perform action on this call,
because the call cannot be found

MTCTISESS CALLCONTROL MAXCALLS 603 Cant Make a call because the user
has no more call appearances.

MTCTISESS CALLCONTROL _BADACCT 604 The account code entered is not
valid

MTCTISESS CALLCONTROL BADAUTH 605 The authorization code is not valid

MTCTISESS CALLCONTROL TARGETNOTFOUND 606 Typically for UnPark, or
AddToConference, cannot find the
thing you are targeting.

MTCTISESS CALLCONTROL PERMISSION 607 You do not have permission to
perform this action

MTCTISESS CALLCONTROL BADFORMATTING 608 One of the fields is missing or string
is too long or number is out of range

MTCTISESS CALLCONTROL INVALIDCALLSTATE | 609 You can’t do this action at this time.

MTCTISESS CALLCONTROL CANTBEDONE 610 Typically you cannot answer the
call on this phone because you need
to physically pick up the handset.

A valid command has taken too long to

MTCTISESS CALLCONTROL NOCOVERAGE 611 You cant Drop a ringing call if there
is no coverage destination.

MTCTISESS CALLCONTROL TRANSFERFAILED 612 The blind transfer target is invalid or
refused the call.

MTCTISESS CALLCONTROL PARKFAILED 613 Could not park this call

MTCTISESS CALLCONTROL OTHERNOTFOUND 614 Trying to CompleteTransfer or
CompleteConf with invalid related
calls.

MTCTISESS CALLCONTROL CANTCOMPLETE 615 TransferComplete not allowed,
maybe because of the nature of the
calls you are trying to join.

MTCTISESS CALLCONTROL UNSUPPORTED 616 Not a supported function

MTCTISESS CALLCONTROL ALREADYDONE 617 The command would have no effect

Features Available
Meaning of “FeaturesAvailable” in Callinfo

Bit 0 Drop

Bit 1 Answer Call

Bit 2 Hold call

Bit 3 UnHold call

Bit4 Blind Transfer

Bit 5 Redirect

Bit 6 Dial

Bit 7 Park

Bit 8 SetupTransfer

Bit9 CompleteTransfer

Bit 10 CompleteConf

Bit 11 AddToConf

Bit 12 AdminConfMember

Bit 13 SetTag

Bit 14 SetAccountCode

Bit 15 reserved

Bit 16 PushToEC500

Bit 17 GenerateDigits

Bit 18 reserved

Bit 19 reserved

Bit 20 RecordingPauseControl

Bit 21 ForceClear

Bit 22 SetAuthCode

Bit 23 CallRecordingOn

Bit 24 CallRecordingOff

Bit 25 PrivacyOn

Bit 26 PrivacyOff

Bit 27 MuteOn

Bit 28 MuteOff

Bit 29 SetPriority

Bit 30 Finish

Call functions individually described

DropCall
TAPI equivalent: lineDrop()

Control: only try to do this if bitO of “featuresavailable” is set.

Argl

not used

Line types

User or Queue or ParkServer
Action

User: IP Office will try to clear the call from this user. If call is ringing, it will try to send the call to
coverage. If call is answered, the call will be cleared. If connected to a conference, the user will be
dropped out of the conference. This does not necessarily clear the conference.

Queue or Park Server: Call will be dropped.

Errors

DropCall may fail even if bit0 is set.

If it fails, and you have populated the ‘requestid’ field, you will get the error in the RequestResponse:

Unspecified Error: MTCTISESS_REQUESTFAILED
Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT
Can’t find CalllD: MTCTISESS_NOTFOUND

If it fails due to (eg) an inability to find a suitable coverage target, you may get MTCTISESS SUCCESS
but the call will not drop. In this case you will usually get MTCTISESS CALLCONTROL_NOCOVERAGE.
This is a good example of the rule that the application should only use Notify updates to observe
what is actually going on.

AnswerCall
TAPI equivalent: lineAnswer()

Control: only try to do this if bitl of “featuresavailable” is set.

Argl

not used

Line types

User only
Action

IP Office will try to answer a ringing call at this user. If the user has multiple simultaneous devices
ringing at the same time for the same call, then IP Office will choose the most appropriate device to
answer the call. This is chosen in the order:

Desk phone or teleworker

Soft phone

Mobile Equinox application

It is possible to be more precise by using the ‘devicehint’ in the UpdateCallControl payload. If you
specify SOFTPHONEANY it will only answer the call on a softphone.

For some phone types, like a ringing POTS phone, it is not possible to Answer a call through CTI. (CTI
cannot take the phone off-hook). Generally in this case, bitl of featuresavailable should be unset.

Also, note that if there is already a Connected call, Answering a ringing call may result either in the
Answered call being Answered-to-OnHold, or the previously connected call to be demoted to
OnHold.

Errors
AnswerCall may fail even if bitl is set.
If it fails, and you have populated the ‘requestid’ field, you will get the error in the RequestResponse:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS _REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Hard pots phone on hook: MTCTISESS_CALLCONTROL_CANTBEDONE

Unsuitable action (eg if call was already answered manually while the command was in transit):
MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

HoldCall
TAPI equivalent: lineHold()

Control: only try to do this if bit2 of “featuresavailable” is set.

Argl

not used

Line types

User only

Action

IP Office will try to put an active call on Hold. For the person talking to this user, he may expect to
hear HoldMusic.

Note.

When putting a call onHold, the IP Office may initiate a Hold-reminder timer and after the Hold-
reminder expires a deskphone may start ringing. None of this is reflected in CTI3. The OnHold call
stays onHold even while the deskphone is doing Ring-reminder, and can only go back to Connected
using UnHold (not Answer)

Errors

HoldCall may fail even if bit2 is set.

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Already on Hold: MTCTISESS_CALLCONTROL_ALREADYDONE

Call not in a state where it can be put on Hold: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

UnHoldCall
TAPI equivalent: lineUnHold()

Control: only try to do this if bit3 of “featuresavailable” is set.

Argl

not used
Line types
User only
Action

IP Office will try to make a previously Held Call to Connected state. This would generally
automatically force any other Connected call into Held.

Errors
UnHoldCall may fail even if bit3 is set.

Some 3™ party SIP handsets cannot be coaxed through CTI to take an OnHold call and UnHold it.
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS _REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Already Active: MTCTISESS_CALLCONTROL_ALREADYDONE

Call not in a state where it can be taken OffHold: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
Cant be done on this type of phone: MTCTISESS_CALLCONTROL_CANTBEDONE

BlindTransfer
TAPI equivalent: lineBlindTransfer()

Control: only try to do this if bit4 of “featuresavailable” is set.

Argl

The transfer-to destination. In a successful BlindTransfer, the connected or ringing call is
immediately disconnected from the user and is sent to another destination specified by argl.
BlindTransfer frequently fails if the transfer-to destination is not a valid target.

The minimum length of the string is 1, and the maximum length is 78.

Characters in this field would normally be 0-9, ‘#' ‘*’ but for exotic transfers, other characters may
be expected. Non-ascii characters must be encoded in Utf8.

Line types

User or Queue or ParkServer

Action

IP Office will try transfer the call to the specified destination.

Errors

BlindTransfer may fail even if bit4 is set.

If the transfer does not succeed, the call will stay with the user.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
argl missing or invalid: MTCTISESS CALLCONTROL BADFORMATTING

cannot redirect the call: MTCTISESS_CALLCONTROL_TRANSFERFAILED

Redirect
TAPI equivalent: lineRedirect()

Control: only try to do this if bit5 of “featuresavailable” is set.

Argl

The transfer-to destination. In a successful Redirect, the ringing call is immediately disconnected
from the user and is sent to another destination specified by argi.

Redirect frequently fails if the transfer-to destination is not a valid target.

The minimum length of the string is 1, and the maximum length is 78.

Characters in this field would normally be 0-9, ‘# ‘*’ but for exotic transfers, other characters may
be expected. Non-ascii characters must be encoded in Utf8.

Action

IP Office will try to redirect the call to the specified destination.

Line types

User or Queue

Errors

Redirect may fail even if bit5 is set.

If the redirect does not succeed, the call will stay with the user.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
argl missing or invalid: MTCTISESS CALLCONTROL_BADFORMATTING

cannot redirect the call: MTCTISESS_CALLCONTROL_TRANSFERFAILED

Dial
TAPI equivalent: lineDial()

Control: only try to do this if bit6 of “featuresavailable” is set.

Argl

The minimum length of the string is 1, and the maximum length is 78. But it would be unexpected
for this to be anything other than 1 as this is used primarily for overlap dialling.

Characters in this field would normally be 0-9, ‘# “*’
When dialling a destination, IP Office will append the supplied digits to the dialled string.

Line types

User only

Action

When using overlap dialling, IP Office will progress a call from Dialtone to Dialling to Dialled as the
target number is resolved.

Errors
Dial may fail even if bit6 is set.
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT

Can’t find CallID: MTCTISESS _CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
argl missing or invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

Park
TAPI equivalent: linePark()

Control: only try to do this if bit7 of “featuresavailable” is set.

Argl

The minimum length of the string is 1, and the maximum length is 9.
Characters in this field would normally be 0-9, ‘4" “*’

Line types

User or Queue

Action

There is some risk to trying to park a call if you have no knowledge of the state of the park slot you
are trying to use. For this reason, it would be recommended that a private park slot is used, or the
application has a subscription to the PARKSERVER so it knows which park slots are free.

Errors
Park may fail even if bit7 is set.
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
argl missing or invalid: MTCTISESS CALLCONTROL_BADFORMATTING

SetupTransfer
TAPI equivalent: lineSetupTransfer()

Control: only try to do this if bit8 of “featuresavailable” is set.

Argl

This field is optional. If you do not include it, the new call created will go into the DIALTONE state. If
it is included, the new call will use this string as the target to dial. This string has to be a complete
number. You will not have the opportunity to dial further.

The minimum length of the string is 0, and the maximum length is 78

Characters in this field would normally be 0-9, ‘#’ ‘*’ but for exotic transfers, other characters may
be expected. Non-ascii characters must be encoded in Utf8.

Line types

User only

Action

When performing SetupTransfer on a call, you are creating a new call (the assistant transfer call)
which is related to the original call. The original call should transition to HOLDFORTRANSFER state
and show “relatedcallid” association with this new call.

You cannot specify the “referencecallid” for this new call.
Errors
SetupTransfer may fail even if bit8 is set.

If a destination is specified and the target is invalid, this function should succeed, and a new call is
created with state == FAILED.

This would fail if the phone is a digital phone with no spare call appearances.
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
argl invalid: MTCTISESS _CALLCONTROL_BADFORMATTING

No spare call appearances: MTCTISESS CALLCONTROL_MAXCALLS

SetupConf
TAPI equivalent: lineSetupConference()

Control: only try to do this if bit8 of “featuresavailable” is set (same bit as SetupTransfer).

Argl

This field is optional. If you do not include it, the new call created will go into the DIALTONE state. If
it is included, the new call will use this string as the target to dial. This string has to be a complete
number. You will not have the opportunity to dial further.

The minimum length of the string is 0, and the maximum length is 78

Characters in this field would normally be 0-9, ‘# ‘*’ but for exotic transfers, other characters may
be expected. Non-ascii characters must be encoded in Utf8.

Line types

User only

Action

This function is practically identical to SetupTransfer

When performing SetupConf on a call, you are creating a new call (the assistant transfer call) which
is related to the original call. The original call should transition to HOLDFORCONF state and show
“relatedcallid” association with this new call.

You cannot specify the “referencecallid” for this new call.

Errors
SetupConf may fail even if bit8 is set.

If a destination is specified and the target is invalid, this function should succeed, and a new call is
created with state == FAILED.

This would fail if the phone is a digital phone with no spare call appearances.
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS CALLCONTROL_INVALIDCALLSTATE
argl invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

No spare call appearances: MTCTISESS CALLCONTROL_MAXCALLS

CompleteTransfer
TAPI equivalent: lineCompleteTransfer(LINETRANSFERMODE_TRANSFER)

Control: only try to do this if bit9 of “featuresavailable” is set.
Argl

Not used

Callinst

This may be used, in which case is would override any “relatedcallid” relationship and may transfer
together two calls which were previously unrelated. Only 0 or 1 callinst should be specified.

Line types

User only

Action

CompleteTransfer joins two calls together and drops the user out of the call.

CompleteTransfer can be called without callinst, as long as there is a related_callid. If there is no
callinst, and no related_callid, the Completion of the transfer will fail.

Errors
CompleteTransfer may fail even if bit9 is set.

There are several reasons why a CompleteTransfer may fail. There may not be two calls to join
together. The two calls specified may not be allowed to be joined together (eg two public calls may
not be allowed to talk together without an internal party, or joining the two calls together may result
is a call which cannot be cleared).

It is not always possible for the MTCTI3 application to know in advance whether the transfer will
succeed or fail.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
Cant find call inst: MTCTISESS_CALLCONTROL_OTHERNOTFOUND

The transfer targets are incompatible: MTCTISESS_CALLCONTROL_CANTCOMPLETE

CompleteConference
TAPI equivalent: lineCompleteTransfer(LINETRANSFERMODE_CONFERENCE)

Control: only try to do this if bit10 of “featuresavailable” is set.
Argl

Not used

Callinst

This may be used, in which case is would override any “relatedcallid” relationship and may
conference together two calls which were previously unrelated.

There can be several calls listed in the callinst list in which case all the listed calls will by joined to the
conference

Line types

User only

Action

CompleteConference joins two or more calls together into a conference.

CompleteConference can be called without callinst, as long as there is a related_callid. If there is no
callinst, and no related_callid, the Completion of the conference will fail.

When one of the calls is already a conference, the other call will be joined into the conference.

There are many rules about joining parties into a conference. Some parties are not allowed to join
some conferences, or the conference capacity may be reached.

This function either fully succeeds or fully fails. If any party is not allowed into the conference, then
no parties will join.

Errors

CompleteConference may fail even if bit10 is set.

It is not always possible for the MTCTI3 application to know in advance whether the
CompleteConference will succeed or fail. MTCTI3 will not give a useful reason for failing the function
and will not identify any rogue call which is blocking the function completion.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
Cant find call inst: MTCTISESS_CALLCONTROL_OTHERNOTFOUND

The conference targets are incompatible: MTCTISESS_CALLCONTROL_CANTCOMPLETE
There is a privacy issue in making this conference: MTCTISESS _CALLCONTROL_PERMISSION

AddToConference
TAPI equivalent: lineAddToConference()

Control: only try to do this if bit11 of “featuresavailable” is set.

Argl

This must be a string of length between 1 and 78 digits. It is the target address of the invited party to
the conference. It must be a complete number

Line types
User or Queue
Action

This is only allowed if the call is already connected to a conference, and the user has privileges in
that conference to invite new conference members.

Errors
AddToConference may fail even if bit11 is set.

If the number which is used to dial the new conference member is invalid, then normally there is a
new ConferenceMember created, with state=FAILED. This member call will then have to be dropped.

The function AddToConference reports SUCCESS in this case.

AddToConference may fail of there are insufficient conference resources, or the conference capacity
is reached, or the user does not have the privilege to perform the function.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED
Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT
Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
There is a permission error: MTCTISESS_CALLCONTROL_PERMISSION

argl missing or invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

Could not target the destination: MTCTISESS_CALLCONTROL_TARGETNOTFOUND

MemberFunction
TAPI equivalent: lineDrop() — for action=Drop, none for mute/unmute

Control: only try to do this if bit12 of “featuresavailable” is set.

Argl

Not used

Line types

User or Queue

Memberfunctiondata

This is required. It specifies which conference member you wish to Mute/UnMute/Drop. It also
specifies which of these three functions is to be performed.

Action

This is only allowed if the user has the privilege to perform these functions in this conference.
Errors

MemberFunction may fail even if bit12 is set.

If the referred to conference member does not exist.

If the user does not have the privilege.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
Can’t find Iref: MTCTISESS_CALLCONTROL_OTHERNOTFOUND

There is a permission error: MTCTISESS_CALLCONTROL_PERMISSION

Unknown command: MTCTISESS CALLCONTROL_UNSUPPORTED

SetTag
TAPI equivalent: lineSetCallData()

Control: only try to do this if bit13 of “featuresavailable” is set.

Argl

Can be a string of length 0 — 127 Unicode characters after converting from Utf8 to BMP-O0. If there
are NULL characters in the callData, the tag is effectively truncated at the NULL.

If empty, this clears the call tag.

Line types

User or Queue or Parkserver

Action
Adds a call label to the call, which is distributed with the call if it is transferred.
Errors

This function does not fail on a valid call. If the string length is more that 127 characters, it will be
truncated.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED
Remote SCN target not responding: MTCTISESS _REQUESTTIMEOUT
Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

SetAccountCode
TAPI equivalent: lineCallDevSpecific()

Control: only try to do this if bit14 of “featuresavailable” is set.

Argl

Can be a string of length 0 — 15 Unicode characters after converting from Utf8 to BMP-0.
If empty, this clears the account code.

Line Types:

User or Queue

Action

Tags the call with the specified account code.

Only pre-configured account codes are allowed to be entered, unless there are wild-card account
codes in the IP Office config.

Note

If the MTCTI3 application wants to know the list of account codes configured on IP Office, there is a
pseudo-file that can be read using the GeneralCmd “GetFile”. The file to read is
“nasystem/AccountCode”

Errors

This function will fail if the account code is not a valid code matching one in the IP Office
configuration.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS _REQUESTFAILED

Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
argl invalid: MTCTISESS _CALLCONTROL_BADFORMATTING

Not a recognized account code: MTCTISESS CALLCONTROL_BADACCT

SetNotes
Not supported in this release

PushToEC500
TAPI equivalent: none

Control: only try to do this if bit16 of “featuresavailable” is set.
Argl

Not used.

Line Types

User only

Action

This only works for users who have a Mobile Twinning destination configured. This function starts
the process of transferring the call to the mobile twin device, but the transfer only completes if the
call is answered on the mobile. While the mobile is still ringing, the caller can still talk to the user.

Errors

This function will fail if Mobile twinning destination is not set up or cannot be targeted. This function
returns SUCCESS once the push is initiated. It does not wait until the transfer completes before it
reports the result.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED
Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT
Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
Could not target mobile: MTCTISESS CALLCONTROL_TRANSFERFAILED

GenerateDigits
TAPI equivalent: lineGenerateDigits()

Control: only try to do this if bit17 of “featuresavailable” is set.

Argl

Required. The length should be in the range 1 — 32 characters 0-9, “*’ ‘#

Line Types

User only

Action

This sends DTMF to the far end of the call. Each character in the string is sent individually.
Errors

This function will succeed if any character in the string is sent. It may be that the call is dropped part
way through the generate digit string, in which case the result is still SUCCESS.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
argl missing or invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

ShortCodeAction
Not supported in this release

AnswerPage
TAPI equivalent: none

Control: only try to do this if bit0 of “featuresavailable2” is set.

Argl

Not used

Line Types

User only
Action

If this call is an inbound Page call (so you are hearing a Page) you can convert this to a 2-way
conversation using this function.

The “pagecall” field in the Callinfo will indicate that it is an incoming page call.

Errors

This function will succeed only if the call is an incoming Page call, and the user is allowed to convert
the call.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
permission error: MTCTISESS_CALLCONTROL_PERMISSION

ForceClear
TAPI equivalent: none

Control: only try to do this if bit21 of “featuresavailable” is set.

Argl

Not used

Line Types

User or Queue or Parkserver

Action

This is a brutal function and should not normally be offered. If the user is in a conference, the
conference will be terminated.

If the user is receiving an incoming call, the call will be cleared all the way to the source. You should
normally use Drop.

Errors
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS _REQUESTFAILED
Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

SetAuthCode
TAPI equivalent: lineCallDevSpecific()

Control: only try to do this if bit22 of “featuresavailable” is set.

Argl

Can be a string of length 0 — 15 Unicode characters after converting from Utf8 to BMP-0.
If empty, this clears the auth code.

Line Types

User only

Action

Tags the call with the specified auth code.

Only pre-configured auth codes are allowed to be entered.

Note

Auth codes are permissions, so if you enter a valid auth code, you are allowed to make certain calls.
An Auth code is generally associated with a user, so provides executive users with more permissions.
The user who owns the code is nominally billed for the call.

The MTCTI3 application does not have access to a list of valid auth codes.

Errors

This function will fail if the auth code is not a valid code matching one in the IP Office configuration.
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS CALLCONTROL_INVALIDCALLSTATE
argl invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

Not a recognized auth code: MTCTISESS CALLCONTROL_BADAUTH

CallRecordingOn/Off
TAPI equivalent: lineCallDevSpecific()

Control: only try to do this if bit23/24 of “featuresavailable” is set.

Argl

Not used

Line Types

User only

Action

User: Starts or stops personal call recording of the call (to the user’s mailbox).
Errors

This function will fail if the call is private, or the voicemail does not have the functionality or
capacity.

If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
permission error: MTCTISESS_CALLCONTROL_PERMISSION

PrivacyOn/Off
TAPI equivalent: lineCallDevSpecific()

Control: only try to do this if bit25/26 of “featuresavailable” is set.

Argl

Not used
Line Types
User only
Action

Makes a call locally private. This will prevent call recording of the call you are on, as long as you have
enough authority. (If you are a minor delegate in a big conference, you cannot stop the conference
from being recorded)

Making a call not-private only means you have unset your own privacy. If another party to the call
has set their own privacy, you cannot override that.

Errors
Generally succeeds.
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED
Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT
Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE

MuteOn/Off
TAPI equivalent: none

Control: only try to do this if bit27/28 of “featuresavailable” is set.
Argl

Not used

Line Types

User only

Action

This only applies if this user is in a conference and wishes to manipulate his own mute status in the
conference.

It does not change the Mute setting on his handset/headset. This is just because you cannot control
this using CTl on most phones.

Errors
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_ CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
Not possible to perform this function: MTCTISESS CALLCONTROL_CANTBEDONE

SetPriority
TAPI equivalent: none

Control: only try to do this if bit29 of “featuresavailable” is set.

Argl

A text string denoting the new priority. 1 = low priority, 2 = medium priority, 3 = high priority.
Line Types

Queue only

Action

This changes the priority of the call in the current queue. It does not persist after a call is answered
and transferred to a new queue.

There are only 3 allowed values of Argl : “1”, “2”, or “3”

In general, calls with a higher priority are answered first in a queueing situation.
Errors
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS_REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
argl invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

Not possible to perform this function: MTCTISESS CALLCONTROL CANTCOMPLETE

Finish
TAPI equivalent: none

Control: only try to do this if bit30 of “featuresavailable” is set.

Argl

If included, must be “1”.

Line Types
Queue only
Action

This disassociates the call from this Queue. If you do not disassociate the call, it will continue to be
followed on this queue until the call ends. You ‘Finish’ the call if your application has no further
interest in this call.

MTCTI3 only follows a call on one Queue at a time, so if you want to view it on a new Queue, you
need to “Finish” it on the old Queue. Using Argl = “1” means that it will immediately start reporting
on any new queue it is associated with. Otherwise it only starts reporting when it subsequently
arrives at the new Queue.

Errors
If it fails and you have populated the ‘requestid’ field, you will get the error:

Unspecified Error: MTCTISESS _REQUESTFAILED

Remote SCN target not responding: MTCTISESS_REQUESTTIMEOUT

Can’t find CalllD: MTCTISESS_CALLCONTROL_CALLNOTFOUND

Call not in a state to perform this function: MTCTISESS_CALLCONTROL_INVALIDCALLSTATE
argl invalid: MTCTISESS_CALLCONTROL_BADFORMATTING

Not possible to perform this function: MTCTISESS_CALLCONTROL_CANTCOMPLETE

Alternative connection methods

Noframing
If you do not want to handle the protocol framing (1% 4 octets of each message contains {0,0,0,1}
header), you can instead use the websocket protocol “tpkt/openapinoframing”

(that is “noframing” appended to the end of the string)

Then the message stream in both directions will be pure protocol buffers.

Limits
A maximum of 10 x MTCTI3 connections are allowed per IPOffice.

The maximum number of presentites subscribed per MTCTI 3 connection is the same as the user limit
on the system..

Version Compatibility

This is supported on IPOffice 11.1.0.0 and future versions until such time as it is withdrawn. In
Release 11.0.4.2, there is some support, but some error reporting may be missing.

Resilient solutions

For a resilient solution with an IP Office primary and an IP Office secondary, the client MTCTI3
application can work in a live-live deployment. Connections to either PBX will render more-or-less
identical information for users and commands can be sent down either connection (we do not
commit to a particular level of identicality). For queues, the configuration and command interfaces
are mirrored, but the view of the queued calls differs on each system.

Calls queueing on the primary can be seen and controlled on the primary

Calls queueing on the secondary can be seen and controlled on the secondary.

What this means

In an IP Office failover, you would want the IP Office secondary to act as a resilient backup of the IP
Office primary for groups. Then the queues on the secondary automatically become active when the
primary is down.

Resilient app
As the IP Office allows for up to 10 x MTCTI3 connections, the client application can itself have a
resilient live-live twin.

Development tools

The most important development tool will be SysMonitor. SysMonitor will decode all the messages
that your application sends and receives.

SysMonitor
When using SysMonitor, you should enable the following flags to decode CTI3 connections and
protocols.

For Web sockets
%AII Settings X ‘
. ATM | cal | DTE | EConf | FrameRelay | GOD | H.323 | Interface |
T | vComp | weN | wan | cn | scw | Jade |
I

| ISDN | Key/Lamp | Directory | Media | PPP | R2 | Routing SIP | System |

~SNMP Events

I~ Recewved Message Processing

[Trap Generation

[~ FileSys [~ DHCP [~ SCEP
[~ Memory Card Commands [~ DNS [Referredéuth
[~ TFTP [~ Telnet [~ Firewall
[~ (TFTP Warnings) [T Time
[~ (TFTP Download) [~ SMTP
| wurre | [Outdialer

‘ [Websocket Ping Pong [~ Syslog

For CTI3 protocols

}WAHSettings X
| ISDN | Keyp/Lamp | Diectory | Media | PPP | R2 | Routing | Services | SIP | System |

ATM | cal | DTE | EConf | FrapeBelay | GOD | H323 | Interface |
™ | Veomp | VPN | waN | SCN | ssi | Jade |

™ CSTA V¥ MTCTI Tx WV Ful
[~ TAPI ¥ MTCTIRx W Fuil
[~ (TAPI Call Log) v MTCTI Events
[~ (TAP! Line) ¥ cTh
[(TAPI Dnex Resiliency) v CTI3
[~ (TAPI Raw Tx)

When a line is open, you can perform actions on the line.

Getting started with the proto file

A good starting point is to download the latest protobuf code from github. At time of writing, the
latest version is v3.10.0.

On github, there are protobuf files for: c++, c#, java, js, objective, php, python, and ruby. (example
protobuf-cpp-3.10.0.zip)

There is also a version of the ‘proto’ file compiler called ‘protoc’. You should match the same version
of ‘protoc’ compiler with the protobuf source code for a successful compile.

You need these steps to build and decode messages automatically. Now it is perfectly possible to
write your own code to encode and decode the messaging as the protocol buffer encoding
technique is published by google, but this would not be recommended because of the ready
availability of these tools and implementations.

C++ and visual studio

Note that for C++ the v3.10.0 protobuf code requires a C++ 11 compiler. On visual studio, this is
vs2017 or later. For a version that does not require a C++ 11 compiler, you need to go back to v3.5.0
or earlier. These earlier versions work perfectly well with our ipo_mtcti3.proto file, but there are
speed optimizations that may be available with the later protobuf code.

Converting “ipo_mtcti3.proto” into source code:
R:\google>protoc --cpp_out=R:\google ipo mtcti3.proto

Produces:

Directory of R:\google

24/10/2019 09:20 <DIR>
24/10/2019 09:20 <DIR>

24/10/2019 09:20 1,034,570 ipo mtcti3.pb.cc € generated
24/10/2019 09:20 665,490 ipo mtcti3.pb.h < generated
09/10/2019 11:26 13,726 ipo:mtcti3.proto
22/10/2019 16:22 <DIR> protobuf < unzipped
22/10/2019 15:38 5,281,431 protobuf-cpp-3.5.0.zip < github
22/10/2019 15:38 1,256,007 protoc-3.5.0-win32.zip < github
22/10/2019 15:41 4,029,440 protoc.exe < unzipped

6 File(s) 12,280,664 bytes

4 Dir(s) 45,700,952,064 bytes free

Solution Explorer

@ o-2dn #RA

Search Solution Explorer (Ctrl+;)

b & Header Files
P &= Resource Files
4 & Source Files

b & ctid_tester

P & digestauth include the
4 google P "pmtubuf"
4 & protobuf files
b & io
b & stubs

B+ any.pb.cc
b ++ apipb.cc
P *+ arena.cc

Also include

Solution Explorer

@ o-2dn #RA

Search Solution Explorer (Ctrl+;)

b & Header Files
P &= Resource Files
4 & Source Files

4 &5 cti3_tester
*+ cti3_call.cpp
*+ cti3_conf.cpp
*+ cti3_conn.cpp
*+ cti3_debug.cpp
*+ cti3_line.cpp
*+ cti3_session.cpp
*+ cti3_tester.cpp
*+ cti3_testerDlg.cpp
*+ ipo_mtcti3.pb.cc

v v v v T v v T v

++ stdafx.cpp protoc

b & digestauth generated
Fl N mnncala

When you have connected your application you are ready to send and receive protocol buffers.

They are encoded in C++ like this:

#include <mtcti/ipo_mtcti3.pb.h>
#include <string>
void CTI3Session::FrameAndTransmit(std::string * obuf)

}

int x = obuf->length();

UBYTE * dp = new UBYTE[x+4];
memcpy(dp+4, obuf->data(), x);
dp[0] = O;

dp[1] =0;

dp[2] =0;

dp[3]=1;

TxFramedMessage(&dp[0], x +4);
delete[] dp;

void CTI3Session::StartCTI3Subscribe(CTI3Lines * Alines)

{

Message msg;

std::string obuf;

Subscribe * s = msg.mutable_subscribe();
s->set_requestid(nextrequestid++);
s->set_subscribe_id(Alines->subscriptionid);
s->set_timeout(Alines->timeout);
Subscribelines * slines = s->mutable_lines();
slines->set_flags(7);

msg.SerializeToString(&obuf);
FrameAndTransmit(&obuf);

And decoding:

void CTI3Session::RxFramedMessage(UBYTE * dp, intlen)

{

if(len>4)
{
if((dp[0] == 0) && (dp[1] == 0) && (dp[2] == 0) && (dp[3] == 1))
{
std::string istring(dp + 4, dp + len -4);
Message m;

m.ParseFromString(istring);
if(m.has_notify())
{
ULONG subscribeid = (ULONG)m.notify().subscribe_id();
ULONG notifyid = (ULONG)m.notify().notify_id();
CTI3GeneralSubscription * ss = FindSubscription(subscribeid);
if(ss)
{
if(ss->0OnNotify(m.notify()))
{
NotifyAck(subscribeid, notifyid);
}
}
}

// Add your code here for other payloads
1

Java

You get “protobuf-java-3.10.0.jar” from github
Compiling the proto file using protoc yields “lpoMtcti3.java”

R:\google>protoc --java out=R:\google ipo mtcti3.proto
54/10/2019 17:04 2,099,987 IpoMtcti3.java
These two objects (the jar and the java) go together.

The primary object is “IpoMtcti3.Message”

To build an serialize a simple lines subscription, looks something like:

IpoMtcti3.Subscribelines linesSubscribe =

IpoMtcti3.Subscribelines.newBuilder () .setFlags (1) .build();

IpoMtcti3.Subscribe subscribeMsg =
IpoMtcti3.Subscribe.newBuilder () .setSubscribeld (subscribelId)

.setRequestid(26)

.setTimeout (0)

.setlines (linesSubscribe)

Jouild() ;

IpoMtcti3.Message Msg =
IpoMtcti3.Message.newBuilder () .setSubscribe (subscribeMsqg) .build() ;

target.sendProtoMsg (Msg.toByteArray()); // Need to prepend the framing..

To decode messages from the line:

public void handleMessage (byte[] message) {
byte[] msgBytes = source.afterReceive (message) ;
try {
IpoMtcti3.Message Msg = IpoMtcti3.Message.parseFrom(msgBytes) ;
clientEndPoint.processMessageFromIPO (Msqg) ;

} catch (InvalidProtocolBufferException ipbe) {
System.out.println("Invalid protocol buffer exception");

}

Javascript
R:\google>protoc --js_out=R:\google ipo mtcti3.proto

This generates a bunch of js files for each defined object, the main one being:

Message.js

This has the functions to serialize and deserialize the binary data into and out of the ‘Message’
object

I don’t have any code for using this.

Establishing a Websocket connection

HTTP: 192.168.42.31(4096)-(443) HTTPSession(Secure) (Total = 2)
HTTP: 192.168.42.31(4096)-(443) HTTPSession: Operational

HTTP: 192.168.42.31(4096)-(443) HTTPSession: TLSOperational Resumed=false
52346mS HTTP: Secure Rx Src: 192.168.42.31(4096)-(443)
GET /tpkt/openapi HTTP/1.1
Connection: Upgrade

Authorization: Basic *eemennnene €= “TastApplication:password” encoded as Base64
User-Agent: MyUserAgent 1.0

Host: 192.168.42.11 €= Try to avoid populating “Host” header. It is un-necessary.
Upgrade: websocket
Sec-WebSocket-Key:
Sec-WebSocket-Protocol: openapi
Sec-WebSocket-Version: 13
HTTP: 192.168.42.31(4096)-(443) HTTPServerSessionlO: stCreationCallback(7)
HTTP: Public IP=192.168.42.31 Private IP=Not set
HTTP: 192.168.42.31(4096)-(443) HTTPServerSessionlO: stCreationCallback URI is authenticated
HTTP: ClientSessionsMgr::PopulatePwd(): Enter
HTTP: 192.168.42.31(4096) HTTPWebSocketUpgradeServerSessionlO: stCreationCallback
HTTP: 192.168.42.31(4096) HTTPWebSocketUpgradeServerSessionlO
HTTP: 192.168.42.31(4096) HTTPWebSocketUpgradeServerSessionlO: SetState Schedule
HTTP: 192.168.42.31(4096) HTTPWebSocketUpgradeServerSessionlO: SetState Proceed

52371mS CTI3: session=1 start €= When successful, you see this

52371mS HTTP: Secure Tx Dest: 192.168.42.31(4096)-(443)
HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Server: IPOffice/WebSocketServer/
Upgrade: websocket
Sec-WebSocket-Accept: JU7m3Vkt8i15EzHqOXXGrxInN5I=
Sec-WebSocket-Protocol: openapi
Sec-WebSocket-Version: 13

First payload
This is a typical lines subscription
Message
{
subscribe
requestid=1
subscribe_id=1
timeout=3600

lines
{
flags=7
}
}
}

It should encode as exactly these 14 bytes:

1A0C 080110011890 1C C2 02 02 08 07

With framing, it should be:

00000001 1A0C 080110011890 1C C202 02 08 07

If you send it correctly, you will see it decoded on SysMonitor.

Early releases of IP Office

Before Release 11.1.0.0, this interface is under controlled introduction, and may not be fully
functional. Particularly, the error reporting does not really exist.

You need to add a NoUser source number for releases prior to 11.1.0.0

e
—

= NoUser:

| User |‘Joicer‘nai| | DD | ShortCodes | Source Mumbers | Telephony | Forwarding | Dial In |‘uro

Source Mumber

OPEMAPLALLOW

Additional features will be added with new releases.

In 11.1.0.0 there is a GeneralCmd called “getversioninfo”, which is a simple way to find out what
release of IP Office you are connected to.

Something like this:

Message
generalcmd

requestid=3000
getversioninfo

Message

generaldata

{
responseid=3000
versioninfo=IP Office 11.1.0.0 build 600

It does not work on versions before 11.1.0.0

Change History

Issue ‘ Date ‘

1.0 15/4/2020 Initial Creation

1.1 01/08/2025 Updated for 12.2

