Administering IP Office 11.0 High Availability and Avaya Session Border Controller for Enterprise 7.2.2 to support Remote Workers

Abstract

This document provides step-by-step instructions about how to configure IP Office 11.0 (IPO) and Avaya Session Border Controller for Enterprise 7.2.2 (SBCE) to support different soft clients locally and remotely. It does not substitute the Installation or Administration Guides but collects all steps needed for a working solution. The goal is to register Avaya Communicator for Windows, Avaya Communicator for iPad, Avaya One-X Mobile Preferred (Android and IOS) and Equinox in VoIP mode using signaling and media encryption, and to have Presence and Instant Messaging on them.
Generating Identity Certificates for SBCE ...- 39 -
Extracting Private Key and Identity Certificate ...- 40 -
Adding IPO Root CA Certificate on SBCE ..- 40 -
Adding SBCE Identity Certificate on SBCE ...- 41 -
Configuring SBCE ..- 42 -
TLS Profiles ..- 43 -
External Interface ..- 44 -
Media Interfaces ..- 45 -
Signaling Interfaces ...- 46 -
Server Profile ..- 48 -
Routing ...- 50 -
Topology Hiding ..- 51 -
Subscriber Flow ...- 52 -
Server Flow ...- 54 -
Application Relays ..- 56 -
TURN/STUN service ...- 58 -
Configuring WebRTC Gateway ...- 60 -
SIP Clients ...- 61 -
Communicator for Windows ..- 61 -
Communicator for iPad ..- 62 -
Onex-X Mobile Preferred for Android ..- 62 -
One-X Mobile Preferred for IOS ..- 62 -
Equinox ..- 63 -
Troubleshooting ...- 63 -
WebRTC Clients ...- 65 -
PhoneService ...- 65 -
IP Office Web Client ...- 67 -
Avaya Communicator for Web ..- 69 -
Troubleshooting tools ...- 72 -
Overview

A typical deployment can be the following:

Soft clients want to register to IPO directly when they are in the office using Wifi, and want to register through the SBCE when they are on mobile network or on Wifi at a remote site. To achieve this, Split DNS is needed, which resolves the same FQDNs to the internal IP of IP Office or the public IP of SBCE depending on where the clients are. In the reference configuration IP Office Server Edition will be used where the One-X Portal and IP Office components are on the same Virtual Machine, so have the same IP address.

The IP Office / One-X Portal Resiliency setup requires two IP Office Server Edition, one will act as a Primary Server, the other as Secondary. The IP Office resiliency supports Alternate Registration of SIP endpoints, which means only one of the servers can accept registrations at the same time. When the primary server goes down, secondary will take over the control and will start accepting registrations.

NOTE: IP Office Resiliency protects only against server outage, but not against network issues between the client and the server. In other words, if the link between the client and the primary server goes down while the server itself is up and can still communicate with secondary server, the client will NOT be able to register either to primary or secondary. The client can register to secondary only if the primary server itself goes down.

In the IP Office high availability setup the SBCE can be just considered as “part of the link” between the client and the IP Office. Practically we do two identical and independent configuration on SBCE mapping a dedicated external/internal IP pair to Primary IP Office SE, and another dedicated external/internal pair to Secondary IP Office SE. In this sense it does not matter if the SBCE itself is Simplex or HA, or even two independent boxes (one dedicated for Primary IPO, other dedicated to Secondary IPO), the logic of the configuration will be the same in all those scenarios.
NOTE: Communicator for iPad does not support resiliency. The other clients can support resiliency including both voip and presence.

Prerequisites

VMware

VMware ESXi deployment is out of the scope of this document. The assumption is that VMware environment or Avaya Virtualization Platform (AVP) has already been deployed.

vSphere Client

1. Open a browser to https://<IP of VMware ESXi host>

![vSphere Client](image)

2. Click on Download vSphere Client
3. Run the downloaded exe file and follow the installation wizard

IP Office Administration Tools

1. Download latest IPOAdminLite_XXX.exe from plds.avaya.com
2. Run the file on your PC and follow the wizard
3. After completing installation, Start Menu will have the following new entries:
Firewall configuration

1. Allow Layer 3 NAT only, disable all SIP aware functionality, ALG, etc.
2. Forward the following ports to the B1 interface of the SBCE

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Source Port</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>5061</td>
<td>SIP</td>
</tr>
<tr>
<td>TCP</td>
<td>5222</td>
<td>XMPP</td>
</tr>
<tr>
<td>TCP</td>
<td>9443</td>
<td>WebRTC, REST, XMPP</td>
</tr>
<tr>
<td>TCP</td>
<td>7443</td>
<td>BOSH/XMPP</td>
</tr>
<tr>
<td>UDP</td>
<td>3478</td>
<td>STUN</td>
</tr>
<tr>
<td>UDP</td>
<td>50000-55000</td>
<td>RTP relay</td>
</tr>
<tr>
<td>UDP</td>
<td>35000-40000</td>
<td>RTP media</td>
</tr>
</tbody>
</table>

Installing Primary IP Office

Deploying OVA

1. Download latest IP Office OVA file from plds.avaya.com
2. Start vSphere Client and connect to vCenter / AVP host
3. Go to File / Deploy OVF Template
4. Click Browse, select the OVA file and click Open
5. Click Next
6. Click **Next**
7. License Agreement will be displayed, click **Accept** then **Next**
8. Set the name then click **Next**

9. Select data store and disk provision mode, then click **Next**

10. Select network mappings, then click **Next**
11. Wizard will display the summary, click **Finish**

12. Once deployment has completed, the new virtual machine appears in the inventory of virtual machines. Select the virtual machine and start it.

Changing default IP

1. Right click on the IP Office virtual machine then click on **Open Console**

2. If this is the first boot, wait for the virtual machine to boot up until the following can be seen in the console window

```
#    IP Office Server Edition    #
#*******************************************************************************

Running.
Config page (LAM1): https://192.168.42.1:7870
Config page (LAM2): https://192.168.43.1:7870

General commands:
- "login" - Log in
- "startx" - Start Graphics Environment

Configuration commands:
- "1" - Change Language
- "2" - Change Keyboard

Command:
```

3. Click in the window (to release cursor from console window use the left CTRL+ALT keys)
4. Enter the command **login**
5. Default login is **root** with password **Administrator**
6. Enter the command **system-config-network**. The menu that appears is navigated using the cursor keys, tab key and Enter key.
7. Select **Device configuration** and press **Enter**
8. Select the network interface to configure and press Enter

9. Enter network parameters for the interface

10. Select OK and press Enter
11. Select Save and press Enter
12. Select Save & Quit and press Enter
13. To logout, enter exit
14. Shut down and then power on the virtual machine again
Primary Server Ignition

1. Open a browser and connect to https://<PrimaryServerIP>:7071
2. Use password Administrator

 ![Login Screen]

3. At the EULA check I Agree then click Next

 ![EULA Screen]

4. Select Primary (Server Edition) and click Next
5. No new hardware available, click **Next**

6. Set network parameters as needed, enter hostname (**FQDN**), then click **Next**

7. Set NTP server, Timezone and Companding, then click **Next**
8. Set passwords, then click **Next**

9. Select **Generate new CA Certificate** and click **Next**
10. At the summary click **Apply**

Initial Configuration

1. Start **IP Office / Manager** on your PC
2. Click on the **Open configuration from IP Office** icon
3. Select the IP Office box and click OK. If list is empty, type the IP address of the server in Unit/Broadcast Address, then click Refresh

4. Login with the Administrator password you set during Ignition

5. Check Activate IP Office Select Mode, edit System Name, LAN1 Interface, DHCP Mode, DNS server, leave the rest on default, then click Save.
Installing License

1. Open a browser to https://<PrimaryServerIP>:52233/WebLM/index.jsp

2. Log On with User Name admin and Password weblmadmin. On first login, the default password has to be changed.

3. After password change, login with the new password.

4. Go to Server properties and note the Primary Host ID.
5. Obtain license file using the above Host ID
6. Go to Install license, click on Choose File and select the license file, accept the terms & conditions, then click on Install

Installing Secondary IP Office

Deploy the OVA and set IP address same way as on primary.

Secondary Server Ignition

1. Open a browser and connect to https://<SecondaryServerIP>:7071
2. Use password **Administrator**
3. At the EULA check I **Agree** then click **Next**

4. Select Secondary (Server Edition) and click Next
5. No new hardware available, click **Next**
6. Set network parameters as needed, enter hostname (**FQDN**), then click **Next**

7. Set Timezone and Companding, then click **Next**
8. Set passwords, then click **Next**

9. At the summary click **Apply**
Adding Secondary Server to the Solution

1. Open a browser and connect to https://<PrimaryServerIP>:7070, use the Administrator login and password you set during Ignition

2. On the Solution tab click on Configure and select Add System to Solution
3. Select **Secondary Server**, enter its **IP** and **Web Socket Password** then click on **Discover**

4. Select the discovered system and click **Next**

5. Select the Primary IP and click **OK**
6. Enter System Name and verify/correct all other data

![System Name Input]

7. On the Solution tab click on Configure and select Resiliency Administration

![Solution Configuration]

17 May 2018
8. Select **Backup Primary Server** and click **Update**

![Resiliency Administration](image)

9. Reboot both servers

Configuring IP Office

VoIP Setup

1. Expand the IP Office element under **Solution** and select **System**
2. Under **LAN1 / VoIP** tab set the followings:
 a. Check **SIP Registrar Enable**: allows to register SIP clients to IPO
 b. Un-check **Auto-create Extn/User**: we want to manually control what users can be added and registered
 c. Un-check **SIP Remote Extn Enable**: we will use SBCE for remote worker so IPO does not need to handle NAT scenarios
 d. Set **SIP Domain Name**: this is the local SIP domain the clients will register to
 e. Set **SIP Registrar FQDN**: the SIP registrar (IPO) fully qualified domain name
 f. Check **Layer 4 protocols** and set relevant ports

 ![VoIP tab settings](image)

3. Go to **VoIP** tab and select **Allow Direct Media Within NAT Location**
4. Go to **VoIP Security** tab and set the **Media** to **Preferred**

5. Click **OK** and **Save** configuration

6. Repeat above settings on secondary server using ipo11sec.example.com as SIP Registrar FQDN

Extensions

1. Expand the IP Office element under **Solution** and select **Extension**
2. Right-click on **Extension** and select **New / SIP Extension**
3. Enter **Base Extension**, this will be used on User form to assign extension to user, and set password
7. Click **OK** and **Save** configuration

Users

1. Expand the IP Office element under **Solution** and select **User**
2. Right-click on **User** and select **New**
3. Under **User** tab set the followings:
 a. **Name**: short user name
 b. **Password**: use digits only as this password will be used by most of the clients to register, and not all clients support alphanumeric password
 c. **Extension**: must match the Base Extension
 d. **Full Name**: full name of the user
 e. **Profile**: select **Power User**
 f. **Unique Identity**: set the email address that will belong to the given user in Zang as this will connect the IPO user with the Zang user. This configuration is needed for Equinox Instant Messaging.
4. Under Voicemail tab set **Voicemail Code**

5. Under **Telephony / Supervisor Settings** tab set the **Login Code**

NOTE: This configuration is needed by One-X Mobil Preferred to be able to see Presence status of other users

1. Expand the IP Office element under **Solution** and select **Group**
2. Right-click on **Group** and select **New**
3. Under **Group** tab set the followings:
 a. **Name**: name of the group
 b. **Profile**: select **XMPP Group**

![Group configuration example](image)

4. Click **Edit**
5. Select all **Available Users** and click **Append**, then click **OK**

![Select Members](image)

6. Click **OK** and **Save** configuration

Configuring One-X Portal

1. Open a browser and connect to https://<PrimaryServerIP>:9443/onexportal-admin.html, use the **Administrator** login and password you set during Ignition
2. Under **Configuration / IM/Presence** set the **XMPP Domain Name** and click **Save**.

3. Go to **Configuration / Host Domain Name**, set the FQDN of primary and secondary server, then click **Save**.
4. Reboot both servers

Installing SBCE

Deploying OVA

1. Download latest SBCE OVA file from plds.avaya.com
2. Start vSphere Client and connect to vCenter / AVP host
3. Go to File / Deploy OVF Template
4. Browse the OVA and click Next
5. At OVF Template Details click Next
6. Click Accept at EULA, then click Next
7. Enter Name for the virtual machine and click Next
8. Select Small SBC configuration and click Next
9. Select data store and disk provision mode, then click Next
10. Select Destination Network and click Next
11. Click Finish at the summary
12. Once VM is deployed, start it

Setting Management IP

1. Right click on the SBCE virtual machine then click on Open Console
2. Wait for the virtual machine to boot up until the following can be seen in the console window:
3. Click in the console and enter 2
4. Navigate to Select and hit Enter

5. Hit Enter on Yes

6. Hit Enter on OK

7. Select Configuration, then hit Enter on Select

8. Select IPv4 and hit Enter on Select
9. Select **Appliance Configuration** and hit Enter on **Select**

10. Fill in the DNS and NTP parameters and hit Enter on **OK**

11. Select **Management Interface Setup** and hit Enter on **Select**
12. Fill in the IP details of management interface and hit Enter on OK

13. Select **Time Zone** and hit Enter on Select

14. Select your time zone and hit Enter on Select

15. Hit Enter on Back
16. Hit Enter on Done

17. Enter new root password

```
INFO: ---------------------------------------------------------------------
INFO: Configuring password for 'root' user
INFO: Your password should meet following requirements:
INFO: 1. At least 8 characters
INFO: 2. 1 upper case letters
INFO: 3. 1 lower case letters
INFO: 4. 1 other characters (_, $, @, etc.)
INFO: 5. 1 digits
INFO: ---------------------------------------------------------------------
Changing password for user: root
New Password:
```

18. Enter new password for ipcs login
19. Enter new password for grub

Setting VMware network for external interface

1. At the console login with root using the new password
2. Issue the command `ip addr` and note the MAC address of B1 interface
3. In vSphere client right click on the SBCE VM and select **Edit Settings**
4. Select the **Network adapter** where MAC address matches the **MAC address of B1 interface**, change the **Network Connection** and click **OK**

![SBCE initial configuration](image)

SBCE initial configuration

1. Open browser and connect to https://<Management IP>/
2. Login with Username *ucsec* and default password *ucsec*
3. As this is the first time login, *ucsec* default password has to be changed
4. Login again with *ucsec* using the new password
5. Go to **System Management** and click **Install**
6. Set the following fields:
a. Device Configuration
 i. Appliance Name: internal name of the SBCE

b. DNS Configuration
 i. Primary: IP of DNS server

c. Network Configuration
 i. Name: name of internal network
 ii. Default Gateway: gateway for internal interface
 iii. Subnet Mask: subnet mask of internal interface
 iv. Interface: we use A1 for internal traffic
 v. Address #1: IP of internal interface used for primary IPO
 vi. Address #2: IP of internal interface used for secondary IPO

7. Click Finish when form is filled in
8. Close the Installation Wizard browser window

Licensing

1. Obtain SBCE license and install it to the WebLM server
2. Go to System Management / Licensing tab
3. Enter the External WebLM Server URL and click Save

Changing default Listen Port Range

 NOTE: This step is necessary so that later we are able to configure listen port 9443 in Application Relay

1. Go to Device Specific Settings / Advanced Options and select Port Ranges tab
2. Change the Listen Port Range to 9500-9999 and click Save

3. Go to System Management and on the Devices tab click on Restart Application

Certificates for IPO

Exporting IP Office Root CA

1. Open a browser and connect to https://<PrimaryServerIP>:7071
2. Login as Administrator
3. Go to Settings tab and scroll down to Certificates
4. Under CA Certificate click on Download (PEM-encoded) and save the file to your PC

5. Rename the downloaded file (root-ca.pem) on your PC to IPO_RootCA.crt

Generating Identity Certificate for Primary Server

Note: Some clients are sensitive to what information is in the Subject Alternative Name field of the Identity Certificate of the IP Office, so it is recommended to list all the FQDNs and IP addresses in the Subject Alternative Name that clients might interact with during SIP and XMPP communication.

1. Open a browser and connect to https://<PrimaryServerIP>:7071
2. Login as Administrator
3. Go to Settings tab and scroll down to Certificates
4. Enter the following data then click Regenerate and Apply
 a. Subject Name: enter the FQDN of primary server
 b. Subject Alternative Name(s): list the FQDN of primary server, the XMPP and SIP domains, the internal IP address of primary server
5. In the popup window click **Yes**

Generating Identity Certificate for Secondary Server

NOTE: this is needed only if IP Office and One-X Portal are on different machines

1. Open a browser and connect to **https://<PrimaryServerIP>:7071**
2. Login as **Administrator**
3. Go to **Settings** tab and scroll down to **Certificates**
4. Check **Create certificate for a different machine**
5. Enter the following data then click **Regenerate**
 a. **Machine IP**: IP of secondary server
 b. **Password**: password to encrypt the certificate and key, for example **Avaya123$**
 c. **Subject Name**: enter the FQDN of secondary server
 d. **Subject Alternative Name(s)**: list the the FQDN of secondary server, the SIP domain, the internal IP address of secondary server

6. Click on the link in the popup window and save the file
Installing Identity Certificate on Secondary Server

1. Open a browser and connect to https://<PrimaryServerIP>:7070
2. Login as Administrator
3. Go to Security Manager / Certificates
4. Click on the pencil icon to edit certificate
5. Click on Set
6. Browse for the certificate file and enter the password, then click Upload
Certificates for SBCE

Different IP addresses and FQDNs are used on SBCE for primary and secondary IPO, so we need corresponding ID certificates.

Generating Identity Certificates for SBCE

1. Open a browser and connect to https://<PrimaryServerIP>:7071
2. Login as Administrator
3. Go to Settings tab and scroll down to Certificates
4. Check Create certificate for a different machine
5. Enter the following data then click Regenerate
 a. Machine IP: external IP of SBCE
 b. Password: password to encrypt the certificate and key, for example Avaya123$
 c. Subject Name: enter the FQDN of primary IPO
 d. Subject Alternative Name(s): list the FQDN of primary IPO, the XMPP and SIP domains
6. Click on the link in the popup window and save the file as sbce_ipo11.p12
7. Repeat the procedure for secondary using file name sbce_ipo11sec.p12
Extracting Private Key and Identity Certificate

1. Open WinSCP to SBCE Management IP using port 222 and ipcs login
2. Copy the p12 file (for example sbce_ipo11.p12) from your PC to SBCE /tmp directory
3. Ssh to SBCE Management IP using port 222 and ipcs login
4. Issue command su – and type the root password
5. Issue the commands in bold:
   ```
   [root@sbce ipcs]# cd /tmp
   [root@sbce tmp]# openssl pkcs12 -in sbce_ipo11.p12 -out sbce_ipo11.pem
   Enter Import Password: Avaya123$
   MAC verified OK
   Verifying - Enter PEM pass phrase: Avaya123$
   [root@sbce tmp]# openssl pkcs12 -nocerts -in sbce_ipo11.p12 -out sbce_ipo11.key
   Enter Import Password: Avaya123$
   MAC verified OK
   Verifying - Enter PEM pass phrase: Avaya123$
   ```
6. Copy the new pem and key files from SBCE to your PC
7. Repeat the procedure for secondary

Adding IPO Root CA Certificate on SBCE

1. Login to SBCE web interface
2. Go to TLS Management / Certificates
3. Click Install
4. Fill the form then click Upload
 a. **Type:** CA Certificate
 b. **Name:** descriptive name for the root CA certificate, for example IPO_RootCA
 c. Check **Allow Weak Certificate/Key** to be able to add the self-signed IPO Root CA
 d. **Certificate File:** click **Choose File** and open IPO_RootCA.crt
5. The IPO Root CA is a self-signed certificate, click on Proceed

6. Certificate will be displayed, click Install, then Finish

Adding SBCE Identity Certificate on SBCE

1. Login to SBCE web interface
2. Go to TLS Management / Certificates
3. Click Install
4. Fill the form then click Upload
 a. Type: Certificate
 b. Name: name for the SBCE identity certificate, for example sbce_ipo11
 c. Certificate File: click Choose File and open sbce_ipo11.pem
 d. Trust Chain File: click Choose File and open IPO_RootCA.crt
 e. Key: select Upload Key File
 f. Key File: click Choose File and open sbce_ipo11.key
5. Certificate will be displayed, click **Install**, then **Finish**
6. Repeat the procedure for secondary

<table>
<thead>
<tr>
<th>Type</th>
<th>Certificate</th>
<th>CA Certificate</th>
<th>Certificate Revocation List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>sbce_ipo11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overwrite Existing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allow Weak Certificate/Key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certificate File</td>
<td>Choose File</td>
<td>sbce_ipo11.pem</td>
<td></td>
</tr>
<tr>
<td>Trust Chain File</td>
<td>Choose File</td>
<td>IPO_RootCA.crt</td>
<td></td>
</tr>
<tr>
<td>Key</td>
<td>Use Existing Key from Filesystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key File</td>
<td>Choose File</td>
<td>sbce_ipo11.key</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Certificate</th>
<th>CA Certificate</th>
<th>Certificate Revocation List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>sbce_ipo11sec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overwrite Existing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allow Weak Certificate/Key</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certificate File</td>
<td>Choose File</td>
<td>sbce_ipo11sec.pem</td>
<td></td>
</tr>
<tr>
<td>Trust Chain File</td>
<td>Choose File</td>
<td>IPO_RootCA.crt</td>
<td></td>
</tr>
<tr>
<td>Key</td>
<td>Use Existing Key from Filesystem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key File</td>
<td>Choose File</td>
<td>sbce_ipo11sec.key</td>
<td></td>
</tr>
</tbody>
</table>

7. Ssh to SBCE **Management IP** using port **222** and **ipcs** login
8. Issue command **su** - and type the root password
9. Issue the commands in bold:
   ```
   [root@sbce ipcs]# cd /usr/local/ipcs/cert/key
   [root@sbce key]# enc_key sbce_ipo11.key Avaya123$
   writing RSA key
   [root@sbce key]# enc_key sbce_ipo11sec.key Avaya123$
   writing RSA key
   ```

Configuring SBCE
TLS Profiles

1. Login to SBCE web interface
2. Go to TLS Management / Client Profiles and click Add
3. Enter the following data then click Next
 a. Profile Name: descriptive name
 b. Certificate: select sbce_ipto11.pem
 c. Peer Certificate Authorities: select IPO_RootCA.crt
 d. Verification Depth: enter 1

4. Enable all TLS versions, then click Finish

5. Go to TLS Management / Server Profiles and click Next
6. Enter the following data then click Finish
a. **Profile Name:** descriptive name
b. **Certificate:** select **SBCE_ID.crt**
c. **Peer Verification:** select **None**

![TLS Profile screenshot]

7. Enable all TLS, then click **Finish**

![Renegotiation Parameters screenshot]

8. Repeat the procedure for secondary

External Interface

1. Go to **Device Specific Settings / Network Management** and on the **Interfaces** tab click on **Disabled** link for both A1 and B1 interfaces to enable them
2. Go to **Networks** tab and click **Add**

3. Enter the following data then click **Finish**
 a. **Name**: name of external interface
 b. **Default Gateway**: gateway for external interface
 c. **Subnet Mask**: mask for external interface
 d. **Interface**: select B1
 e. **IP Address**: address of external interface

4. Go to **System Management** and click on **Restart Application**

Media Interfaces

1. Go to **Device Specific Settings / Media Interface** and click **Add**
2. Set **Name** for internal interface, choose **A1** from the drop down of **IP Address**, select **TLS Profile**, then click **Finish**

<table>
<thead>
<tr>
<th>Name</th>
<th>Int-RW-ipo11</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Internal (A1, VLAN 0)</td>
</tr>
<tr>
<td></td>
<td>10.1.1.40</td>
</tr>
<tr>
<td>Port Range</td>
<td>35000 - 40000</td>
</tr>
</tbody>
</table>

Finish

3. Repeat for secondary

<table>
<thead>
<tr>
<th>Name</th>
<th>Int-RW-ipo11sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Internal (A1, VLAN 0)</td>
</tr>
<tr>
<td></td>
<td>10.1.1.41</td>
</tr>
<tr>
<td>Port Range</td>
<td>35000 - 40000</td>
</tr>
</tbody>
</table>

Finish

4. Add external media interface, choose **B1** this time

<table>
<thead>
<tr>
<th>Name</th>
<th>Ext-FW-RW-ipo11</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Ext_Firewall_Fri (B1, VLAN 0)</td>
</tr>
<tr>
<td></td>
<td>10.2.2.2</td>
</tr>
<tr>
<td>Port Range</td>
<td>35000 - 40000</td>
</tr>
</tbody>
</table>

Finish

5. Repeat for secondary

<table>
<thead>
<tr>
<th>Name</th>
<th>Ext-FW-RW-ipo11sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP Address</td>
<td>Ext_Firewall_Sec (B1, VLAN 0)</td>
</tr>
<tr>
<td></td>
<td>10.3.3.2</td>
</tr>
<tr>
<td>Port Range</td>
<td>35000 - 40000</td>
</tr>
</tbody>
</table>

Finish

Signaling Interfaces

1. Go to **Device Specific Settings / Signaling Interface** and click **Add**
2. Set **Name** for internal interface, choose **A1** from the drop down of **IP Address**, remove TCP and UDP port, set **TLS Port**, select **Server** for **TLS Profile**, then click **Finish**
3. Repeat for secondary

4. Add external media interface, choose B1 this time
5. Repeat for secondary

Server Profile

1. Go to Global Profiles / Server Configuration and click Add
2. Enter Profile Name and click Next

3. Set Server Type to Call Server, enter SIP Domain, select TLS Client Profile, enter IP/Port/Transport of IP Office and click Next
4. Authentication is not needed toward IP Office so just click **Next**
5. Heartbeat is not needed, just click **Next**
6. Registration is not needed, just click **Next**
7. Ping is not needed, just click **Next**
8. Check **Enable Grooming** otherwise TLS between SBCE and IP Office will not work correctly, set **Interworking Profile** to **avaya-ru**, then click **Finish**

9. Repeat the procedure for secondary
Routing

1. Go to Global Profiles / Routing and click Add
2. Enter Profile Name and click Next

<table>
<thead>
<tr>
<th>Profile Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ipo11</td>
<td></td>
</tr>
</tbody>
</table>

3. Click Add, enter Priority, set Server Configuration to IPO and click Finish
4. Repeat the procedure for secondary

 Profile Name | **ipo11sec**

Topology Hiding

1. Go to Global Profiles / Topology Hiding, click on default profile then click on Clone
2. Enter name and click Finish

 Clone Profile
 - Profile Name: default
 - Clone Name: IPO

3. Click on the newly created IPO profile, then click on Edit
4. Set Replace Action to Overwrite and enter example.com as Overwrite Value for Request-Line, From, To, then click Finish
NOTE: Using the default topology hiding during the registration of Communicator for Windows, the SBCE would put the IP of IPO in the Request URI of the REGISTER message which would cause that the IPO includes the internal IP address instead of Host Domain Name in the onex_server field of the 200 OK xml body. This means that client would not be able to register to One-X Portal and would not have Presence/IM.

Subscriber Flow

1. Go to Device Specific Settings / End Point Flows, select Subscriber Flows tab and click Add
2. Enter Flow Name, select the external interface for the Signaling Interface and click Next
3. Enter the following data and click Finish
 a. Media Interface: select the external interface
 b. End Point Policy Group: select avaya-def-low-enc
 c. Routing Profile: select the IPO server profile
 d. Topology Hiding Profile: select default
5. Repeat the procedure for secondary
Server Flow

1. Go to Device Specific Settings / End Point Flows, select Server Flows tab and click Add
2. Enter Flow Name, select the external interface for the Signaling Interface and click Next
3. Enter the following data and click Finish
 a. Flow Name: enter name
 b. Server Configuration: select IPO
 c. Received Interface: select the external interface
 d. Signaling Interface: select the internal interface
 e. Media Interface: select the internal interface
 f. End Point Policy Group: select avaya-def-low-enc
 g. Routing Profile: select default
 h. Topology Hiding Profile: select IPO
6. Repeat for secondary
Application Relays

NOTE: Different clients require different Application Relays. These relays function as port forwards. See more detail about necessary ports under the Client Differences topic.

1. Go to Device Specific Settings / DMZ Services / Relay Services, select Application Relay tab and click Add
2. Enter the following data and click Finish
 a. Name: enter a name
 b. Service Type: select Other
 c. Remote IP/FQDN: enter the IP of the server
 d. Remote Port: enter 5222
 e. Remote Transport: select TCP
 f. Listen IP: select the external interface
 g. Listen Port: enter 5222
 h. Connect IP: select the internal interface
 i. Listen Transport: select TCP
3. Repeat the above procedure for port 9443, 7443, 443 for both servers plus 80 and 411 for primary. At the end following list should be present:
TURN/STUN service

1. Go to Device Specific Settings / TURN/STUN service and on the TURN/STUN Profiles tab click Add. Enter the following data then click Finish
 a. Profile Name: set a name
 b. UDP Listen Port: 3478
 c. Media Relay Port Range: 50000-55000
 d. Enable Authentication
 e. Enable Server Authentication
 f. Username: enter a username that will be used by WebRTC Gateway
 g. Password: enter password
 h. Realm: enter domain
 i. Enable UDP Relay
Go to Device Specific Settings / TURN/STUN service and on the TURN Relay tab click Add. Enter the following data then click Finish.

Select the internal interface as Listen IP, the external interface as Media Relay IP, and the TURN/STUN Profile, then click Finish.
3. Add TURN Relay for secondary

![Image of TURN Relay configuration](image)

Configuring WebRTC Gateway

1. Open a browser and connect to https://<PrimaryServerIP>:7070, use the Administrator login and password.
2. On the Applications menu click on WebRTC Configuration.
3. Go to the Media Gateway Settings and enter the followings then click Save:
 a. STUN Server Address: public IP of corporate firewall (or the SBCE external interface if there is no corporate firewall).
 b. STUN Server Port: 3478.
 c. TURN Server Address: internal interface of SBCE.
 d. TURN Server Port: 3478.
 e. TURN User Name: user name defined on SBCE TURN configuration.
 f. TURN Password: password defined on SBCE TURN configuration.
 g. Enforce TURN: set to Yes otherwise RTP will not necessarily go through the TURN server because in ICE candidate list the relay candidate is the last choice, if there are other working candidates, those will be preferred to relay.

![Image of WebRTC Gateway configuration](image)

4. From the WebRTC Configuration dropdown select secondary.
5. Go to Media Gateway Settings and enter the details for secondary

SIP Clients

Communicator for Windows

The Avaya Communicator for Windows starts with a DNS A query on the configured Server Address (FQDN of IP Office), then initiates SIP registration to the IP address returned by the DNS server. The IP Office will send the FQDN of One-X Portal in the onex_server field of 200 OK SIP response. The client does a DNS A query on this onex_server value, and then initiates XMPP connection to the IP address learnt from DNS server. On the client we need to configure the **FQDN, SIP port, transport and SIP domain of the IP Office**. For failover the client uses the FQDN returned by IPO during the SIP registration. The FQDN is in the backup_ipoffice_server field of the 200 OK.

Configuration:

1. In **Settings / Server** set the followings:
 a. **Server Address**: FQDN of IP Office (SIP Registrar FQDN on IP Office)
Communicator for iPad

The Avaya Communicator for iPad starts with a DNS A query on the configured Server Address (FQDN of IP Office), then initiates SIP registration to the IP address returned by the DNS server. The IP Office will send the FQDN of One-X Portal in the onex_server field of 200 OK SIP response. The client does a DNS A query on this onex_server value, and then initiates XMPP connection to the IP address learnt from DNS server. On the client we need to configure the FQDN, SIP port, transport and SIP domain of the IP Office.

NOTE: This particular client requires that all the addresses it connects to (FQDN of IP Office and One-X Portal) are listed in the Subject Alternative Name field of the server certificate. Keep this in mind when generating Identity Certificate for IP Office or SBCE.

Configuration:
1. In Settings / Accounts and Services / Phone Service set the followings:
 a. Phone Server Address: FQDN of IPO
 b. Phone Server Port: 5061
 c. Phone Service Domain: SIP domain
 d. TLS: enable
 e. Extension: Extension from User tab of IPO User form
 f. Password: Password from User tab of IPO User form
2. In Settings / Accounts and Services / Presence Service enable Presence Service and leave empty the Presence Server Address

Onex-X Mobile Preferred for Android

The Avaya One-X Mobile Preferred for Android first contacts the One-X Portal through the REST API (port 9443) and downloads im_info and sip_info to learn primaryOnexAddress, secondaryOnexAddress and sipRegistrarFqdn. The client does a DNS A query on these FQDNs and then registers to One-X Portal and IPO. On the client we need to configure the FQDN of One-X Portal. User Name is the Name from User tab of IPO User form, Password is Password from User tab of IPO User form. For failover the client queries sip_info from secondaryOnexAddress learnt from initial im_info, then registers to the sipRegistrarFqdn.

Configuration:
1. In Settings / Server ID and user account set the FQDN of One-X Portal, the user name and password
2. In Settings / Voice Over IP / VoIP operation mode set Always
3. In Settings / Advanced / Advanced VoIP check Secure Connection. This option is needed for encrypted signaling and media.

One-X Mobile Preferred for IOS

The Avaya One-X Mobile Preferred for IOS first contacts the One-X Portal through the REST API (port 9443) to learn the XMPP Domain and the SipRegistrarFqdn, then does DNS A query on XMPP Domain to learn the IP of One-X Portal and a DNS A query on SipRegistrarFqdn to learn the IP of IP Office, finally registers to One-X Portal and IPO. On the client we need to configure the FQDN of One-X Portal. User
Name is the **Name** from User tab of IPO User form, Password is **Password** from User tab of IPO User form.

NOTE: Since this particular client does a DNS A query on the **XMPP domain**, it is highly recommended to set the **XMPP domain** to the same as **Host Domain Name** to make sure it is resolvable to the address of One-X Portal. If Resiliency is implemented, the REST API will include the **primaryOnexAddress** and **secondaryOnexAddress** fields in im-info which contains the Host Domain Names of Primary and Secondary servers. In that case the client uses these addresses instead of the XMPP Domain.

Failover works same way as on Android client.

Configuration:

1. In **Settings / UC Server Settings** set the **FQDN of One-X Portal**, the **User Name** and **Password**
2. In **Settings / Application Configuration / VoIP Mode** set **Always**
3. Uncheck **Settings / Security Settings / Validate Server Certificates**
4. In **Settings / Advanced Settings / Advanced VoIP** check **Secure Connection**. This option is needed for encrypted signaling and media.

Equinox

Equinox client is available on multiple platforms, Windows, Android, iOS, MAC. They all have a common behavior, common configuration, etc. The Equinox registration starts with a DNS A query on the FQDN learnt from 46xxsettings (SIP_CONTROLLER_LIST), then initiates SIP registration to the IP address returned by the DNS server. The client also initiates TLS connection for presence and directory services to the same address on port 443. At the same time the client signs in to Zang Spaces for Instant Messaging. For failover the Equinox client uses the FQDN returned by IPO during the SIP registration. The FQDN is in the **backup_ipoffice_server** field of the 200 OK.

The two recommended way to configure Equinox:

1. **Email based configuration** where Zang email is used. The Client will contact accounts.zang.io and check if domain of the given email address exists as a valid domain in Zang. If yes, it attempts to download the Public Settings of Equinox Cloud Client application which is assigned to the given domain. Example configuration:

```
{
   "Client_Settings_File_Address": [

   {
      "Profile_Name": "IPO11",
      "Client_Settings_File_Url": "http://ipo11.example.com/46xxsettings.txt"
   }
   ]
}
```

 In case of successful download, the client extracts the **Client_Settings_File_Url** and downloads the settings file from the given URL.

2. **Web based configuration** where the URL is http://<FQDNofPrimary>/46xxsettings.txt

 Once the settings file is downloaded, the client will ask the SIP extension and password. If email based configuration is used, client will also ask the password to sign in to Zang Spaces.

Troubleshooting
1. Use ping or nslookup to verify that all FQDNs are resolvable to the appropriate IP addresses. For example on the external DNS:

 ![Image of Ping Command]

2. Query the im-info and sip-info from One-X Portal and check if primaryOnexAddress, secondaryOnexAddress, sipRegistrarFqdn fields are populated with appropriate FQDNs.

 Enter in the browser: https://<FQDN>:9443/inkaba/user/my/im-info

 ![Image of IM-Info Command]

 Enter in the browser: https://<FQDN>:9443/inkaba/user/my/sip-info

 ![Image of SIP-Info Command]

 In case of failover, the im-info will contain the same values, but sip-info will point to Secondary IP Office.

3. Run a traceSBC on the SBCE and check the registration of a Communicator for Windows or Equinox client. In the 200 OK of REGISTER, check the onex_server and backup_ipoffice_server fields. During normal operation the onex_server should contain the FQDN of Primary One-X Portal and backup_ipoffice_server should contain the FQDN of Secondary IP Office.
During failover the onex_server should contain the FQDN of Secondary One-X Portal and backup_ipoffice_server should contain 0.0.0.0.

WebRTC Clients

PhoneService

To test the solution, use the PhoneService demo WebRTC client.

1. Open in Chrome https://<FQDNOfOneX>:9443/PhoneService and click on Settings icon
2. Scroll down to Remote Worker section and enter the FQDN of OneX portal at the STUN server (or you can configure any public STUN server) with port 3478

3. After saving the configuration enter **Username** and **Password** on the main screen and click **Login**
4. After successful login make a call to a local user and verify two way talk path

IP Office Web Client

2. Enter **Username** and **Password** on the main screen and click **Login**
3. After successful login verify presence, then make a call to a local user either using Dialpad or by calling directly a contact.
Avaya Communicator for Web

Avaya Communicator for Web can be used either as a Chrome plugin or a standalone Windows application.

1. Open in Chrome and install Avaya Communicator for Web from the Chrome App Store

2. Start Avaya Communicator for Web and login with your account (or click on Create account if not yet created)

3. Once logged in with account, set Authorize using field to Use explicit credentials, then set the Presence Server and Media Server to the FQDN of One-X Portal, and use the login/password of the user on One-X Portal to connect.
4. When logged in, click on presence status

5. Change the Phone device to **Softphone**
6. Verify both presence and softphone is available/ready

7. Make a call using dial pad or contact and verify talk path
Troubleshooting tools

There are some common troubleshooting practices for all clients, and there are client specific options as well.

1. Common to all clients
 a. In Chrome open new tab with `chrome://webrtc-internals`
 Make a test call, select the latest call on webrtc-internals and check the icecandidates, the connection, etc.

 b. Do a `traceSBCE` trace on SBCE and enable STUN/TURN/ICE capture
2. **PhoneService**

The debug logs can be captured in the Developer tool of the browser (CTRL+SHIFT+I in Chrome). To enable verbose logging, open Settings on the main screen, check **Enable Logs**, and set password to **Avaya123**, then click **Save**.
3. **Web Client**

The debug logs can be captured in the Developer tool of the browser (CTRL+SHIFT+I in Chrome).
4. Avaya Communicator for Web

The debug logs can be captured in Chrome opening app/avaya/background.html from the Extensions. (Image showing Chrome's Developer Tools with the highlighted background.html file.)